

Disciplina
Sistemas de Computação

A
ul

a
09

OS as a Traffic Cop:

Manages all resources

Settles conflicting requests for resources

Prevent errors and improper use of the computer

OS as a facilitator (“useful” abstractions):

Provides facilities/services that everyone needs

Standard libraries, windowing systems

Make application programming easier, faster, less error-prone

Some features reflect both tasks:

File system is needed by everyone (Facilitator) …

… but File system must be protected (Traffic Cop)

Operating System Roles (recall)

Several Distinct Phases:

Hardware Expensive, Humans Cheap

Eniac, … Multics

Hardware Cheaper, Humans Expensive

PCs, Workstations, Rise of GUIs

Hardware Really Cheap, Humans Really Expensive

Ubiquitous devices, Widespread networking

Very Brief History of OS

Rapid Change in Hardware Leads to changing OS:

Batch => Multiprogramming => Timesharing => Graphical UI
=> Ubiquitous Devices

Gradual Migration of Features into Smaller Machines

Situation today is much like the late 60s

Small OS: 100K lines

Large: 10M lines

Works for 100-1000 people-years

Very Brief History of OS

How do we provide multiprogramming?

What are processes?

How are they related to threads and address spaces?

Important Questions

Unit (“thread”) of execution:

Independent Fetch/Decode/Execute loop

Unit of scheduling

Operating in some address space

Threads

Fetch
Exec

R0
…

R31
F0
…

F30
PC

…
Data1
Data0

Inst237
Inst236

…
Inst5
Inst4
Inst3
Inst2
Inst1
Inst0

Addr 0

Addr 232-1

What happens during execution?

Execution sequence:

Fetch Instruction at PC

Decode

Execute (possibly using registers)

Write results to registers/mem

PC = Next Instruction(PC)

Repeat

PC
PC
PC
PC

Uniprograming vs. Multiprograming

Uniprogramming: one thread at a time

MS/DOS, early Macintosh, batch processing

Easier for operating system builder

Get rid of concurrency (only one thread accessing resources!)

Does this make sense for personal computers?

Multiprogramming: more than one thread at a time

Multics, UNIX/Linux, OS/2, Windows NT – 8, Mac OS X,
Android, iOS

Often called “multitasking”, but multitasking
has other meanings

Challenges of Multiprograming

Each application wants to own the machine  virtual
machine abstraction

Applications compete with each other for resources

Need to arbitrate access to shared resources  concurrency

Need to protect applications from each other  protection

Applications need to communicate/cooperate with each other
 concurrency

Processes
Process: unit of resource allocation and execution

Owns memory (address space)

Owns file descriptors, file system context, …

Encapsulate one or more threads sharing process
resources

Why processes?

Navigate fundamental tradeoff between protection and
efficiency

Processes provides memory protection while threads don’t
(share a process memory)

Threads more efficient than processes (later)

Application instance consists of one or more processes

The Basic Problem of Concurrency

The basic problem of concurrency involves resources:

Hardware: single CPU, single DRAM, single I/O devices

Multiprogramming API: processes think they have exclusive
access to shared resources

OS has to coordinate all activity

Multiple processes, I/O interrupts, …

How can it keep all these things straight?

Basic Idea: Use Virtual Machine abstraction

Simple machine abstraction for processes

Multiplex these abstract machines

Dijkstra did this for the “THE system”

Few thousand lines vs 1 million lines in OS 360 (1K bugs)

How can we give the illusion of
multiple processors?

vCPU3vCPU2vCPU1

Shared Memory

Assume a single processor. How do we provide the illusion
of multiple processors?

Multiplex in time!
Each virtual “CPU” needs a structure to hold:

Program Counter (PC), Stack Pointer (SP)
Registers (Integer, Floating point, others…?)

How switch from one virtual CPU to the next?
Save PC, SP, and registers in current state block
Load PC, SP, and registers from new state block

What triggers switch?
Timer, voluntary yield, I/O, other things

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

Properties of this simple
multiprogramming technique

All virtual CPUs share same non-CPU resources

I/O devices the same

Memory the same

Consequence of sharing:

Each thread can access the data of every other thread (good for
sharing, bad for protection)

Threads can share instructions
(good for sharing, bad for protection)

Can threads overwrite OS functions?

This (unprotected) model is common in:

Embedded applications

Windows 3.1/Early Macintosh (switch only with yield)

Windows 95—ME (switch with both yield and timer)

How to protect threads from one another?

1. Protection of memory
- Every thread does not have access to all memory

2. Protection of I/O devices
- Every thread does not have access to every device

3. Protection of access to processor: preemptive
switching from thread to thread

- Use of timer

- Must not be possible to disable timer from usercode

P
rogra m

 A
d dress S

pace

Program’s Address Space
Address space =
the set of accessible addresses +
associated states:

For a 32-bit processor there are 232 = 4
billion addresses

What happens when you read or write
to an address?

Perhaps nothing

Perhaps acts like regular memory

Perhaps ignores writes

Perhaps causes I/O operation
(Memory-mapped I/O)

Perhaps causes exception (fault)

Providing Illusion of Separate Address Space:
Load new Translation Map on Switch

Prog 1
Virtual

Address
Space 1

Prog 2
Virtual

Address
Space 2

Code

Data

Heap

Stack

Code

Data

Heap

Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space

Traditional UNIX Process

Process: Operating system abstraction to represent
what is needed to run a single program

Often called a “Heavy Weight Process”
Formally: a single, sequential stream of execution in its
own address space

Two parts:
Sequential program execution stream

Code executed as a single, sequential stream of execution
(i.e., thread)
Includes State of CPU registers

Protected resources:
Main memory state (contents of Address Space)
I/O state (i.e. file descriptors)

Important: There is no concurrency in a heavy weight
process

Process
Control
Block

How do we Multiplex Processes?

The current state of process held in a
process control block (PCB):

This is a “snapshot” of the execution and
protection environment
Only one PCB active at a time

Give out CPU time to different processes
(Scheduling):

Only one process “running” at a time
Give more time to important processes

Give pieces of resources to different
processes (Protection):

Controlled access to non-CPU resources
Example mechanisms:

Memory Mapping: Give each process their own
address space
Kernel/User duality: Arbitrary multiplexing of I/O
through system calls

CPU Switch From Process to Process

This is also called a “context switch”
Code executed in kernel above is overhead

Overhead sets minimum practical switching time

Lifecycle of a Process

As a process executes, it changes state:
new: The process is being created
ready: The process is waiting to run
running: Instructions are being executed
waiting: Process waiting for some event to occur
terminated: The process has finished execution

Process Scheduling

PCBs move from queue to queue as they change state

Decisions about which order to remove from queues are
Scheduling decisions

Many algorithms possible

What does it take to create a process?
Must construct new PCB

Inexpensive

Must set up new page tables for address space

More expensive

Copy data from parent process? (Unix fork())

Semantics of Unix fork() are that the child process gets a
complete copy of the parent memory and I/O state

Originally very expensive

Much less expensive with “copy on write”

Copy I/O state (file handles, etc)

Medium expense

 Process = Program?

More to a process than just a program:
Program is just part of the process state
I run emacs on lectures.txt, you run it on homework.java –
same program, different processes

Less to a process than a program:
A program can invoke more than one process
cc starts up cpp, cc1, cc2, as, and ld

main () {

 …;

}

A() {

 …

}

main () {

 …;

}

A() {

 …

}

Heap

Stack

A
main

Program Process

Multiple Processes Collaborate on a Task

Need Communication mechanism:
Separate address spaces isolates processes
Shared-Memory Mapping

Accomplished by mapping addresses to common DRAM
Read and Write through memory

Message Passing
»send() and receive() messages

Works across network

Proc 1 Proc 2 Proc 3

Shared Memory Communication

Prog 1
Virtual

Address
Space 1

Prog 2
Virtual

Address
Space 2

Data 2

Stack 1

Heap 1

Code 1

Stack 2

Data 1

Heap 2

Code 2

Shared

Communication occurs by “simply” reading/writing to shared address page

Really low overhead communication

Introduces complex synchronization problems

Code

Data

Heap

Stack

Shared

Code

Data

Heap

Stack

Shared

Inter-process Communication (IPC)
Mechanism for processes to communicate and to
synchronize their actions

Message system – processes communicate with each
other without resorting to shared variables

IPC facility provides two operations:
–send(message) – message size fixed or variable
–receive(message)

If P and Q wish to communicate, they need to:

establish a communication channel between them

exchange messages via send/receive

Implementation of communication link

physical (e.g., shared memory, hardware bus,
syscall/trap)

logical (e.g., logical properties)

Modern “Lightweight” Process with Threads

Thread: a sequential execution stream within process
(Sometimes called a “Lightweight process”)

Process still contains a single Address Space

No protection between threads

Multithreading: a single program made up of a number of
different concurrent activities

Sometimes called multitasking, as in Ada …

Why separate the concept of a thread from that of a process?

Discuss the “thread” part of a process (concurrency)

Separate from the “address space” (protection)

Heavyweight Process = Process with one thread

Single and Multithreaded Processes

Threads encapsulate concurrency: “Active” component

Address spaces encapsulate protection: “Passive” part

Keeps buggy program from trashing the system

Why have multiple threads per address space?

Examples of multithreaded
programs

Embedded systems

Elevators, Planes, Medical systems, Wristwatches

Single Program, concurrent operations

Most modern OS kernels

Internally concurrent because have to deal with
concurrent requests by multiple users

But no protection needed within kernel

Database Servers

Access to shared data by many concurrent users

Also background utility processing must be done

Examples of multithreaded programs
(con’t)

Network Servers

Concurrent requests from network

Again, single program, multiple concurrent operations

File server, Web server, and airline reservation systems

Parallel Programming (More than one physical CPU)

Split program into multiple threads for parallelism

This is called Multiprocessing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Recall (61C): What happens during execution?
	Uniprograming vs. Multiprograming
	Challenges of Multiprograming
	Processes
	The Basic Problem of Concurrency
	How can we give the illusion of multiple processors?
	Properties of this simple multiprogramming technique
	How to protect threads from one another?
	Recall: Program’s Address Space
	Providing Illusion of Separate Address Space: Load new Translation Map on Switch
	Traditional UNIX Process
	How do we Multiplex Processes?
	CPU Switch From Process to Process
	Lifecycle of a Process
	Process Scheduling
	What does it take to create a process?
	Process =? Program
	Multiple Processes Collaborate on a Task
	Shared Memory Communication
	Inter-process Communication (IPC)
	Modern “Lightweight” Process with Threads
	Single and Multithreaded Processes
	Examples of multithreaded programs
	Examples of multithreaded programs (con’t)

