

Disciplina
Sistemas de Computação

A
ul

a
11

FCFS: First Come, First Served

Round Robin: Use a time slice and preemption
to alternate jobs.

SJF: Shortest Job First

Multilevel Feedback Queues: Round robin on
each priority queue.

Lottery Scheduling: Jobs get tickets and
scheduler randomly picks winning ticket.

Scheduling Algorithms

Schedule the job that has the least (expected) amount
of work (CPU time) to do until its next I/O request or
termination.

Advantages:

Provably optimal with respect to minimizing the average
waiting time

Works for preemptive and non-preemptive schedulers

Preemptive SJF is SRTF - shortest remaining time first

=> I/O bound jobs get priority over CPU bound jobs

Disadvantages:

Impossible to predict the amount of CPU time a job has left

Long running CPU bound jobs can starve

SJF/SRTF: Shortest Job First

5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice
1 second, context switch time of 0 seconds

SJF: Example

5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice
1 second, context switch time of 0 seconds

SJF: Example

Multilevel feedback queues use past behavior to
predict the future and assign job priorities

=> overcome the prediction problem in SJF

If a process is I/O bound in the past, it is also likely to
be I/O bound in the future (programs turn out not to be
random.)

To exploit this behavior, the scheduler can favor jobs
that have used the least amount of CPU time, thus
approximating SJF.

This policy is adaptive because it relies on past
behavior and changes in behavior result in changes to
scheduling decisions.

Multilevel Feedback Queues (MLFQ)

Multiple queues with different priorities.

Use Round Robin scheduling at each priority level, running the
jobs in highest priority queue first.

Once those finish, run jobs at the next highest priority queue,
etc. (Can lead to starvation.)

Round robin time slice increases exponentially at lower
priorities.

Approximating SJF:
Multilevel Feedback Queues

Job starts in highest priority queue.

If job's time slices expires, drop its priority one level.

If job's time slices does not expire (the context switch
comes from an I/O request instead), then increase its
priority one level, up to the top priority level.

=> CPU bound jobs drop like a rock in priority and I/O
bound jobs stay at a high priority.

Adjusting Priorities in MLFQ

3 jobs, of length 30, 20, and 10
seconds each, initial time slice
1 second, context switch time
of 0 seconds, all CPU bound
(no I/O), 3 queues

Multilevel Feedback Queues:
Example 1

3 jobs, of length 30, 20, and 10
seconds each, initial time slice
1 second, context switch time
of 0 seconds, all CPU bound
(no I/O), 3 queues

Multilevel Feedback Queues:
Example 1

Since SJF is optimal, but unfair, any increase in
fairness by giving long jobs a fraction of the CPU when
shorter jobs are available will degrade average waiting
time.

Possible solutions:

Give each queue a fraction of the CPU time. This
solution is only fair if there is an uniform distribution of
jobs among queues.

Adjust the priority of jobs as they do not get serviced
(Unix originally did this.) This ad hoc solution avoids
starvation but average waiting time suffers when the
system is overloaded because all the jobs end up with a
high priority.

Improving Fairness

Give every job some number of lottery tickets.

On each time slice, randomly pick a winning ticket.

On average, CPU time is proportional to the number of
tickets given to each job.

Assign tickets by giving the most to short running jobs,
and fewer to long running jobs (approximating SJF).
To avoid starvation, every job gets at least one ticket.

Degrades gracefully as load changes. Adding or
deleting a job affects all jobs proportionately,
independent of the number of tickets a job has.

Lottery Scheduling

FCFS: Not fair, and average waiting time is poor.

Round Robin: Fair, but average waiting time is poor.

SJF: Not fair, but average waiting time is minimized
assuming we can accurately predict the length of the
next CPU burst. Starvation is possible.

Multilevel Queuing: An implementation
(approximation) of SJF.

Lottery Scheduling: Fairer with a low average waiting
time, but less predictable.

Summary of Scheduling Algorithms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

