

Disciplina
Sistemas de Computação

A
ul

a
12

Motivation: too much milk problem

Motivation: too much milk problem

People need to coordenate

You love milk, but don't want too much

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk away3:20
Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

Motivation: too much milk problem

Synchronization: use of atomic operations to ensure
cooperation between threads

Atomic Operation: an operation that always runs to
completion or not at all!

It is indivisible: it cannot be stopped in the middle and
state cannot be modified by someone else in the
middle!

Fundamental building block – if no atomic operations,
then have no way for threads to work together!

On most machines, memory references and
assignments (i.e. loads and stores) of words are
atomic!

Synchronization Terminology

Mutual Exclusion: ensure that only one thread does a
particular activity at a time and excludes other threads
from doing it at that time

Critical Section: piece of code that only one thread
can execute at a time

Lock: mechanism to prevent another process from
doing something

Lock before entering a critical section, or before
accessing shared data.

Unlock when leaving a critical section or when access
to shared data is complete

Wait if locked

=> All synchronization involves waiting.

Synchronization Terminology

Too Much Milk Problem:
conditions and correctness properties

What are the wished conditions we want to
achieve?

Neither ”too much milk” nor ”no milk”

What are the correctness properties for this
problem?

Only one person buys milk at a time.

Someone buys milk if you need it.

Too Much Milk Problem:
Possible solution?

Restrict ourselves to atomic loads and stores as
building blocks.

Leave a note (a version of lock)

Remove note (a version of unlock)

Do not buy any milk if there is note (wait)

Too Much Milk: Solution 1

Does this work?

Too Much Milk: Solution 2

Does this work?

How about using labeled notes so we can
leave a note before checking the milk?

Too Much Milk: Solution 3

Does this work?

At point Y, either there is a note A or not.

1. If there is no note A, it is safe for thread B to check and buy milk, if
needed. (Thread A has not started yet).

2. If there is a note A, then thread A is checking and buying milk as
needed or is waiting for B to quit, so B quits by removing note B.

At point X, either there is a note B or not.

1. If there is not a note B, it is safe for A to buy since B has either not
started or quit.

2. If there is a note B, A waits until there is no longer a note B, and
either finds milk that B bought or buys it if needed.

Thus, thread B buys milk (which thread A finds) or not, but
either way it removes note B. Since thread A loops, it waits
for B to buy milk or not, and then if B did not buy, it buys the
milk.

Correctness of Solution 3

It is too complicated - it was hard to convince
ourselves this solution works.

It is asymmetrical - thread A and B are different. Thus,
adding more threads would require different code for
each new thread and modifications to existing threads.

A is busy waiting - A is consuming CPU resources
despite the fact that it is not doing any useful work.

=> This solution relies on loads and stores being
atomic.

Is Solution 3 a good solution?

Have your programming language provide atomic
routines for synchronization?

Locks: one process holds a lock at a time, does its
critical section releases lock.

Semaphores: more general version of locks.

Monitors: connects shared data to synchronization
primitives.

=> All of these require some hardware support,
and waiting.

Language Support for Synchronization

Locks: provide mutual exclusion to shared data with
two “atomic” routines:

Lock.Acquire - wait until lock is free, then grab it.

Lock.Release - unlock, and wake up any thread waiting
in Acquire.

Rules for using a lock:

Always acquire the lock before accessing shared data.

Always release the lock after finishing with shared data.

Lock is initially free.

Locks

This solution is clean and symmetric.

How do we make Lock.Acquire and Lock.Release atomic?

Implementing Too Much Milk with Locks

Implementing high level primitives requires low-level
hardware support

What we have and what we want

Hardware Support for Synchronization

Communication among threads is typically done
through shared variables.

Critical sections identify pieces of code that cannot be
executed in parallel by multiple threads, typically code
that accesses and/or modifies the values of shared
variables.

Synchronization primitives are required to ensure that
only one thread executes in a critical section at a time.

Achieving synchronization directly with loads and stores is
tricky and error-prone

Solution: use high-level primitives such as locks,
semaphores, monitors

Summary

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

