!istemas de !omputagéo

1950 : Mainframe 1980: Micro computer 1990: Internet 2007 Diffuse IT







» People need to coordenate
s You love milk, but don't want too much

Time Person A Person B

3:00 Look in Fridge. Out of milk

3:05 Leave for store

3:10 Arrive at store Look in Fridge. Out of milk
3:15 Buy milk Leave for store

3:20 Arrive home, put milk away Arrive at store

3:25 Buy milk

3:30 Arrive home, put milk away







s Synchronization: use of atomic operations to ensure
cooperation between threads

s Atomic Operation: an operation that always runs to
completion or not at all!

= |tis indivisible: it cannot be stopped in the middle and
state cannot be modified by someone else in the
middle!

s Fundamental building block — if no atomic operations,
then have no way for threads to work together!

s On most machines, memory references and
assignments (i.e. loads and stores) of words are
atomic!



= Mutual Exclusion: ensure that only one thread does a
particular activity at a time and excludes other threads
from doing it at that time

= Critical Section: piece of code that only one thread
can execute at a time

s Lock: mechanism to prevent another process from
doing something

s Lock before entering a critical section, or before
accessing shared data.

= Unlock when leaving a critical section or when access
to shared data is complete

s Wait if locked
=> All synchronization involves waiting.



conditions and correctness properties

+ \What are the wished conditions we want to
achieve?

s Neither "too much milk” nor ’no milk”

s \WWhat are the correctness properties for this
problem?

s Only one person buys milk at a time.
s Someone buys milk if you need it.



Possible solution?

s Restrict ourselves to atomic loads and stores as
building blocks.

s Leave a note (a version of lock)
s Remove note (a version of unlock)

s Do not buy any milk if there is note (wait)

/




Thread A Thread B

if (noMilk & NoNote) { if (noMilk & NoNote) {

leave Note; leave Note;

buy milk; buy milk;

remove note, remove note,
h }

» Does this work?



\J \LJ \ o/

« How about using labeled notes so we can
leave a note before checking the milk?

Thread A

leave note A

if (noNote B) {
if (noMilk){
buy milk;

}

remove note;
» Does this work?

Thread B

leave note B

if (noNote A) {
if (noMilk){
buy milk;

}

remove note;



Thread A

leave note B
Y: if (noNote A) {

leave note A
X: while (Note B) {

do nothing; if (noMilk){
} buy milk;
if (noMilk){ }
buy milk; }
} remove note B;

remove note A;
» Does this work?



s At point Y, either there is a note A or not.

1. If there is no note A, it is safe for thread B to check and buy milk, if
needed. (Thread A has not started yet).

2. If there is a note A, then thread A is checking and buying milk as
needed or is waiting for B to quit, so B quits by removing note B.

s At point X, either there is a note B or not.

1. If there is not a note B, it is safe for A to buy since B has either not
started or quit.

2. If there is a note B, A waits until there is no longer a note B, and
either finds milk that B bought or buys it if needed.

s Thus, thread B buys milk (which thread A finds) or not, but
either way it removes note B. Since thread A loops, it waits
for B to buy milk or not, and then if B did not buy, it buys the
milk



» |t is too complicated - it was hard to convince
ourselves this solution works.

s |t is asymmetrical - thread A and B are different. Thus,
adding more threads would require different code for
each new thread and modifications to existing threads.

s Ais busy waiting - A is consuming CPU resources
despite the fact that it is not doing any useful work.

=> This solution relies on loads and stores being
atomic.



= Have your programming language provide atomic
routines for synchronization?

s Locks: one process holds a lock at a time, does its
critical section releases lock.

s Semaphores: more general version of locks.

= Monitors: connects shared data to synchronization
primitives.

=> All of these require some hardware support,
and waiting.



s Locks: provide mutual exclusion to shared data with
two “atomic” routines:

s Lock.Acquire - wait until lock is free, then grab it.

= Lock.Release - unlock, and wake up any thread waiting
In Acquire.

s Rules for using a lock:

s Always acquire the lock before accessing shared data.
s Always release the lock after finishing with shared data.
s Lock is initially free.



Thread A Thread B

Lock.Acquire(); Lock.Acquire();
if (noMilk){ if (noMilk){
buy milk; buy milk;
} ;
Lock.Release(); Lock.Release();

= This solution is clean and symmetric.

s How do we make Lock.Acquire and Lock.Release atomic?



= Implementing high level primitives requires low-level
hardware support

+ \What we have and what we want

Concurrent programs

Low-level atomic load/store 1nterrupt disable test&set
operations (hardware)

High-level atomic | lock semaphore
operations (software) |monitors send & receive




T summary

s Communication among threads is typically done
through shared variables.

= Critical sections identify pieces of code that cannot be
executed in parallel by multiple threads, typically code
that accesses and/or modifies the values of shared
variables.

s Synchronization primitives are required to ensure that
only one thread executes in a critical section at a time.

s Achieving synchronization directly with loads and stores is
tricky and error-prone

s Solution: use high-level primitives such as locks,
semaphores, monitors



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

