

Disciplina
Sistemas de Computação

A
ul

a
13

Semaphores

What are semaphores?

Semaphores are basically generalized locks.

Like locks, semaphores are a special type of
variable that supports two atomic operations and
offers elegant solutions to synchronization
problems.

They were invented by Dijkstra in 1965.

hardware support for synchronization

Use interrupts or test&set to ensure atomicity

Semaphores

Semaphore: an integer variable that can be updated
only using two special atomic instructions.

Binary (or Mutex) Semaphore: (same as a lock)

Guarantees mutually exclusive access to a resource
(only one process is in the critical section at a time).

Can vary from 0 to 1

It is initialized to free (value = 1)

Counting Semaphore:

Useful when multiple units of a resource are available

The initial count to which the semaphore is initialized is
usually the number of resources.

A process can acquire access so long as at least one
unit of the resource is available

Semaphores: Key Concepts

Like locks, a semaphore supports two atomic operations,
Semaphore.Wait() and Semaphore.Signal().

S.Wait() //wait until semaphore S
 // is available

<critical section>

S.Signal() // signal to other processes
 // that semaphore S is free

Each semaphore supports a queue of processes that are
waiting to access the critical section (e.g., to buy milk).

If a process executes S.Wait() and semaphore S is free (non-
zero), it continues executing. If semaphore S is not free, the
OS puts the process on the wait queue for semaphore S.

A S.Signal() unblocks one process on semaphore S's wait
queue.

Binary Semaphores: Example

Signal and Wait: Example

1 empty execute execute

0 empty execute execute

-1 P1 block execute

0 empty execute execute

1 empty execute execute

2 empty execute execute

Using Semaphores

Mutual Exclusion: used to guard critical sections

the semaphore has an initial value of 1

S->Wait() is called before the critical section, and S-
>Signal() is called after the critical section.

Scheduling Constraints: used to express general
scheduling constraints where threads must wait for
some circumstance.

The initial value of the semaphore is usually 0 in this case.

Example:

Summary

Locks can be implemented by disabling
interrupts or busy waiting

Semaphores are a generalization of locks

Semaphores can be used for three purposes:
To ensure mutually exclusive execution of a critical
section (as locks do).

To control access to a shared pool of resources (using
a counting semaphore).

To cause one thread to wait for a specific action to be
signaled from another thread.

What's wrong with Semaphores?

Semaphores are a huge step up from the equivalent
load/store implementation, but have the following
drawbacks.

They are essentially shared global variables.

There is no linguistic connection between the semaphore
and the data to which the semaphore controls access.

Access to semaphores can come from anywhere in a
program.

They serve two purposes, mutual exclusion and scheduling
constraints.

There is no control or guarantee of proper usage.

Solution: use a higher level primitive called monitors

What is a Monitor?

A monitor is similar to a class that ties the
data, operations, and in particular, the
synchronization operations all together,

Unlike classes,
monitors guarantee mutual exclusion, i.e., only one
thread may execute a given monitor method at a time.

monitors require all data to be private.

Monitors: A Formal Definition

A Monitor defines a lock and zero or more condition
variables for managing concurrent access to shared
data.

The monitor uses the lock to insure that only a single thread
is active in the monitor at any instance.

The lock also provides mutual exclusion for shared data.

Condition variables enable threads to go to sleep inside of
critical sections, by releasing their lock at the same time it
puts the thread to sleep.

Monitors: A Formal Definition

Monitor operations:

Encapsulates the shared data you want to protect.

Acquires the mutex at the start.

Operates on the shared data.

Temporarily releases the mutex if it can't complete.

Reacquires the mutex when it can continue.

Releases the mutex at the end.

Condition Variables

It is a queue of threads waiting for
something inside a critical section.

It enable a thread to sleep inside a critical
section

Any lock held by the thread is atomically
released when the thread is put to sleep

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

