Sistemas de Computacao

1950 : Mainframe 1980: Micro computer 1990: Internet 2007 Diffuse IT

"~ Dining Philosophers

» |t's lunch time in the philosophy dept

s Five philosophers, each either eats
or thinks N\ - ek

= Share a circular table with five
chopsticks ©

= Thinking: do nothing

= Eating => need two chopsticks, try to
pick up two closest chopsticks

s Block if neighbor has already picked
up a chopstick

s After eating, put down both
chopsticks and go back to thinking

Semaphore chopstick([5];

do{

wait(chopstick[i]); // left chopstick

wait(chopstick[(i+1)%5]); // right chopstick
// eat

signal(chopstick[i]); // left chopstick

signal(chopstick[(i+1)%5]); // right chopstick
// think

} while(TRUE);

Semaphore chopstick([5];

Mas sera que funciona?
do{

wait(chopstick[i]); // left chopstick

wait(chopstick[(i+1)%5]1); // right chnpstlck
// eat

signal(chopstick[i]); // left chopstick

Ei -
signal(chopstick[(i+1)%5]); // right chopstick

// think
} while(TRUE);

#define N 5

#define LEFT (i+N—1)%N
#define RIGHT (i+1)%N
#define THINKING 0

#define HUNGRY 1

#define EATING 2

typedef int semaphore;

int state[N].

semaphore mutex = 1;
semaphore s[N];

void philosopher(int i)
{
while (TRUE) {
think();
take forks(i);
eat();
put_forks(i);

/* number of philosophers */

/* number of i's left neighbor */

/* number of i's right neighbor */

/* philosopher is thinking */

/* philosopher is trying to get forks */

/* philosopher is eating */

/* semaphores are a special kind of int */
/* array to keep track of everyone’s state */
/* mutual exclusion for critical regions */

/* one semaphore per philosopher */

/* i: philosopher number, from 0 to N-1 */

/* repeat forever */

/* philosopher is thinking */

/* acquire two forks or block */
/* yum-yum, spaghetti */

/* put both forks back on table */

void take forks(int i)
{

down({&mutex);
state[i] = HUNGRY ;
test(i),
up(&mutex);
down(&s[i]);

}

void put_forks(i)

{
down({&mutex);
state[i] = THINKING:
test(LEFT):
test{RIGHT);
up{&mutex);

}

void test(i)

{

/* 1. philosopher number, from 0 to N-1 */

/* enter critical region =/

/* record fact that philosopher i is hungry */
/* try to acquire 2 forks */

/* exit critical region */

/* block if forks were not acquired */

/* i. philosopher number, from 0 to N-1 */

[* enter critical region */

/* philosopher has finished eating */
/* see if left neighbor can now eat */
/* see if right neighbor can now eat */
/* exit critical region */

/* i: philosopher number, from 0 to N-1 */

if (state[i] == HUNGRY && state[LEFT] = EATING && state[RIGHT] != EATING) |

state[i] = EATING:

up(&s[i]);

s Producer-consumer

s Audio-Video player: network and display threads;
shared buffer

s Web servers: master thread and slave thread
» Dining Philosophers
s Cooperating processes that need to share limited
resources

s Set of processes that need to lock multiple resources

s Disk and tape (backup),
s Travel reservation: hotel, airline, car rental databases

- What are deadlocks?
» Conditions for deadlocks
- Deadlock prevention

- Deadlock detection

s Producer-consumer

s Audio-Video player: network and display threads;
shared buffer

s Web servers: master thread and slave thread
» Dining Philosophers
s Cooperating processes that need to share limited
resources

s Set of processes that need to lock multiple resources

s Disk and tape (backup),
s Travel reservation: hotel, airline, car rental databases

s Deadlock: A condition where two or more threads are
waiting for an event that can only be generated by
these same threads.

s Example:

Process A: Process B:
printer.Wait(); disk. Wait();
disk.Wait(); printer. Wait();

/I copy from disk // copy from disk
// to printer // to printer
printer.Signal(); printer.Signal();

disk.Signal(); disk.Signal();

" Deadlocks: Terminology

s Deadlock can occur when several threads compete
for a finite number of resources simultaneously

- Deadlock prevention algorithms check resource
requests and possibly availability to prevent deadlock.

- Deadlock detection finds instances of deadlock
when threads stop making progress and tries to
recover.

s Starvation occurs when a thread waits indefinitely for
some resource, but other threads are actually using it
(making progress).

=> Starvation is a different condition from deadlock

s Deadlock can happen if all the following
conditions hold.

» Mutual Exclusion: at least one thread must hold a resource in non-

sharable mode, i.e., the resource may only be used by one thread at a
time.

s Hold and Wait: at least one thread holds a resource and is waiting for

other resource(s) to become available. A different thread holds the
resource(s).

s No Preemption: A thread can only release a resource voluntarily;
another thread or the OS cannot force the thread to release the resource.

Circular wait: A set of waiting threads {¢,, ..., £ } where ¢, is waiting on
t.,(i=1ton)and ¢ is waiting on ¢,.

Allocation Graph

We define a graph with vertices that represent both resources
{ry, ..., r,} and threads {¢,, ..., ¢ }.

— A directed edge from a thread to a resource, ¢, — r; indicates that ¢, has
requested that resource, but has not yet acquired it (Request Edge)

— A directed edge from a resource to a thread r, — ¢, indicates that the OS has
allocated », to ¢, (Assignment Edge)

Allocation Graph

We define a graph with vertices that represent both resources
{ry, ..., r,} and threads {¢,, ..., ¢ }.

— A directed edge from a thread to a resource, ¢, — r; indicates that ¢, has
requested that resource, but has not yet acquired it (Request Edge)

— A directed edge from a resource to a thread r, — ¢, indicates that the OS has
allocated r, to 1, (Assignment Edge)

If the graph has no cycles, no deadlock exists.
If the graph has a cycle, deadlock might exist.

rl r2
» o '
'.'-.
t1 i2 t3 4 _
. L _
L

r3 rd

Allocation Graph

What if there are multiple interchangeable instances of a resource?
— Then a cycle indicates only that deadlock might exist.

— If any instance of a resource involved in the cycle 1s held by a thread not in
the cycle, then we can make progress when that resource 1s released.

1 r2 rl r2
) (2 3) (2 3 (v

r3 rd r3 r4

Prevent deadlock: ensure that at least one of the necessary
conditions doesn't hold.

s Mutual Exclusion: make resources sharable (but not all resources
can be shared)

s Hold and Wait:

s Guarantee that a thread cannot hold one resource when it requests another

s Make threads request all the resources they need at once and make the thread
release all resources before requesting a new set.

s No Preemption:

s |f a thread requests a resource that cannot be immediately allocated to it, then
the OS preempts (releases) all the resources that the thread is currently
holding.

s Only when all of the resources are available, will the OS restart the thread.

s Problem: not all resources can be easily preempted.

s Circular wait: impose an ordering (numbering) on the resources and
request them In order.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

