

Disciplina
Sistemas de Computação

A
ul

a
14

Dining Philosophers

It’s lunch time in the philosophy dept

Five philosophers, each either eats
or thinks

Share a circular table with five
chopsticks

Thinking: do nothing

Eating => need two chopsticks, try to
pick up two closest chopsticks

Block if neighbor has already picked
up a chopstick

After eating, put down both
chopsticks and go back to thinking

Dining Philosophers v1

Dining Philosophers v1

Mas será que funciona?

Dining Philosophers v2

Dining Philosophers v2

Real-world Examples

Producer-consumer
Audio-Video player: network and display threads;
shared buffer

Web servers: master thread and slave thread

Dining Philosophers
Cooperating processes that need to share limited
resources

Set of processes that need to lock multiple resources

Disk and tape (backup),
Travel reservation: hotel, airline, car rental databases

Deadlocks

What are deadlocks?

Conditions for deadlocks

Deadlock prevention

Deadlock detection

Real-world Examples

Producer-consumer
Audio-Video player: network and display threads;
shared buffer

Web servers: master thread and slave thread

Dining Philosophers
Cooperating processes that need to share limited
resources

Set of processes that need to lock multiple resources

Disk and tape (backup),
Travel reservation: hotel, airline, car rental databases

Deadlocks

Deadlock: A condition where two or more threads are
waiting for an event that can only be generated by
these same threads.

Example:

Deadlocks: Terminology

Deadlock can occur when several threads compete
for a finite number of resources simultaneously

Deadlock prevention algorithms check resource
requests and possibly availability to prevent deadlock.

Deadlock detection finds instances of deadlock
when threads stop making progress and tries to
recover.

Starvation occurs when a thread waits indefinitely for
some resource, but other threads are actually using it
(making progress).

=> Starvation is a different condition from deadlock

Necessary Conditions for Deadlock

Deadlock can happen if all the following
conditions hold.

Deadlock Detection Using a Resource
Allocation Graph

Deadlock Detection Using a Resource
Allocation Graph

Deadlock Detection Using a Resource
Allocation Graph

Deadlocks Prevention
Prevent deadlock: ensure that at least one of the necessary
conditions doesn't hold.

Mutual Exclusion: make resources sharable (but not all resources
can be shared)

Hold and Wait:

Guarantee that a thread cannot hold one resource when it requests another

Make threads request all the resources they need at once and make the thread
release all resources before requesting a new set.

No Preemption:

If a thread requests a resource that cannot be immediately allocated to it, then
the OS preempts (releases) all the resources that the thread is currently
holding.

Only when all of the resources are available, will the OS restart the thread.

Problem: not all resources can be easily preempted.

Circular wait: impose an ordering (numbering) on the resources and
request them in order.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

