
Web APIs: From Start to Finish // eMag Issue 22 - Jan 2015 1

Web apis:
From Start to Finish

eMag Issue 22 - January 2015

THIS ISSUE

A BUSINESS
PERSPECTIVE
ON APIS

INTERVIEW

An Interview with
HAL Creator Mike
Kelly

INTERVIEW
Roy Fielding on
Versioning, Hypermedia,
and REST

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN PROFESSIONAL SOFTWARE DEVELOPMENT

FOLLOW US CONTACT US

A Business
Perspective on APIs
This article examines APIs from a business perspective,
whether or not they are open and overtly monetized. It
covers the importance of tying your APIs back to your
business value, looks at the type of data that should be used,
and studies the success stories of Amazon and Twilio.

A Web API Design
Methodology
This article provides a brief overview of the
design methodology covered in the book
“RESTful Web APIs” by Richardson and
Amundsen.

Roy Fielding on Versioning,
Hypermedia, and REST
Roy Fielding talks to Mike Amundsen about versioning on the Web,
why hypermedia is a requirement in his REST style, the process
of designing network software that can adapt over time, and the
challenge of thinking at the scale of decades.

REST-y Reader
Rounding out our first Web APIs series
Mike shares books je recommends for those
who want to learn more about designing,
impelementing, and maintaining APIs for
the Web.

Implementing Hypermedia
In this article, we’ll talk about four different real-world
implementations of hypermedia: how you may already
be using hypermedia through image links, how GitHub
uses the Link header for pagination, using hypermedia
in constrained systems like iOS, and how Balanced uses
hypermedia principles to build their product.

An Interview with HAL Creator Mike Kelly
As part of our ongoing series on Web APIs Mike Amundsen talks to Mike Kelly about his reasons
for creating HAL and his experiences over the last three years with web developers and the API
community.

GENERAL FEEDBACK feedback@infoq.com

ADVERTISING sales@infoq.com

EDITORIAL editors@infoq.com
facebook.com

/InfoQ
@InfoQ google.com

/+InfoQ
linkedin.com

company/infoq

https://www.facebook.com/InfoQ
https://twitter.com/@infoq
https://plus.google.com/+infoq
https://www.linkedin.com/company/infoq

A LETTER FROM THE EDITOR

Designing, implementing, and maintaining APIs for the Web is more
than a challenge; for many companies, it is an imperative. This eMag
contains a collection of articles and interviews from late 2014 with
some of the leading practitioners and theorists in the Web API field.
The material here takes the reader on a journey from determining
the business case for APIs to a design methodology, meeting
implementation challenges, and taking the long view on maintaining
public APIs on the Web over time.

In the first article, Matt McLarty examines APIs from a business
perspective. He covers the importance of tying APIs to your business
value and studies the success stories of Amazon and Twilio. Matt is
Vice President of the API Academy from CA Technologies where API
design, implementation, and alignment is a primary focus. Anyone
charged with aligning APIs to business goals will find valuable lessons
in his piece.

I also had the chance to sit down with Mike Kelly to talk about
his Hypertext Application Language (HAL) format, currently the most
popular of the new “hypermedia” message designs in use today. Mike
Kelly is a well-known voice in the API and REST communities and his
observations on why HAL has gained traction with companies like
Amazon and what this means for the future of “Hypermedia APIs” is
enlightening.

As the runtime interface for Web APIs moves toward one
that supports backward-compatible changes and allows for some
level of evolvability, a consistent design methodology that makes
it possible for both service providers and consumers to work
indepedently on the same interface — even when separated by time

and distance — becomes critically important.
To that end, my contribution to this series
is a brief overview of the Web API design
methodology covered in the book “RESTful
Web APIs” which I co-wrote with REST API
guru Leonard Richardson.

Business strategies and design
methodologies are not worth much without
actual implementation guidance and Steve
Klabnik’s piece on four real-world examples
of hypermedia API usage adds a great deal
to the series. He points out that you may
already be using hypermedia through image
links, how GitHub uses the Link header
for pagination, the advantage of using
hypermedia in constrained systems like iOS,
and how a Web payment startup, Balanced,
used hypermedia principles to build their
product from the ground up. Steve is a Rails
committer, Rust contributor, author of “Rails
4 in Action”, “Designing Hypermedia APIs”,
& “Rust for Rubyists” and he’s a recognized
implementation authority in the Web
community.

And no eMag on Web APIs would be
complete without a chance to hear from
person who coined the term “REST” — Roy
Fielding. Roy is a Senior Principal Scientist
at Adobe and a major force in the world of
networked software. His name appears on
more than a dozen specifications with both
the IETF and W3C and, through his various
roles in the Apache Software Foundation,
he helped shape the world of open source
software. I had the honor of interviewing
Roy for this series where he talked about
versioning on the Web, why hypermedia is a
requirement in his REST style, the process of
designing network software that can adapt
over time, and the challenge of thinking at
the scale of decades. His view of the “state of
Web APIs” twenty years on is both interesting
and challenging.

Rounding out the set, I share a list
of books and articles I highly recommend
for those who want to learn more about
designing, implementing, and maintaining
APIs for the Web. The set is not limited to
books on HTTP, the Web, and APIs specifically,
though. I also include a handful of references
to Information Theory, complexity, and
usability design — all topics which come into
play when creating robust, long-lasting Web
APIs.

I really enjoyed putting this collection
together and was inspired by the advice and
observations of the series contributors. I hope
you find it valuable and that you, too, will find
the content enlightening and helpful as you
work to create great APIs for the Web.

In his role of Director of
Architecture for the API
Academy, Amundsen heads
up the API Architecture and

Design Practice in North America. He has authored numerous
books and papers on programming over the last 15 years. His
most recent book is a collaboration with Leonard Richardson
titled “RESTful Web APIs” published in 2013. Mike’s 2011 book,
“Building Hypermedia APIs with HTML5 and Node”, is an
oft-cited reference on building adaptable Web applications.

MIKE
AMUDSEN

http://www.infoq.com/author/Mike-Amundsen

A BUSINESS
PERSPECTIVE
ON APIS

(@mattmclartybc) is
vice president of the
API Academy from

CA Technologies. The API Academy helps
companies thrive in the digital economy
by providing expert guidance on strategy,
architecture, and design for APIs.

MATT
MCLARTY

APIs are at the heart of every major
information technology trend.
Mobile devices, cloud computing,
the Internet of Things (IoT), big
data, and social networks all rely on
Web-based interfaces to connect
their distributed components and
deliver innovative and disruptive
solutions to every industry in global
business. Smart grid technology is
transforming the energy industry.
Connected-car solutions are
viewed as a key differentiator in
the automotive industry. Amazon is
disrupting every industry it touches.
In all of these cases, APIs are both
catalysts and enablers.

READ ONLINE ON InfoQ

http://www.infoq.com/author/Matt-McLarty
http://www.infoq.com/articles/web-apis-business-perspective

Web APIs: From Start to Finish // eMag Issue 22 - Jan 20156

APIs are at the heart of every
major information technology
trend. Mobile devices, cloud
computing, the Internet of
Things (IoT), big data, and social
networks all rely on Web-based
interfaces to connect their
distributed components and
deliver innovative and disruptive
solutions to every industry in
global business. Smart grid
technology is transforming the
energy industry. Connected-car
solutions are viewed as a key
differentiator in the automotive
industry. Amazon is disrupting
every industry it touches. In all
of these cases, APIs are both
catalysts and enablers.

Because of this business
impact, much has been written
about “the business of APIs”.
On the open Web, there is a
distinct business model for using
APIs as an external channel for
innovation and revenue. This is
documented comprehensively
by Kin Lane on his API Evangelist
site, and summarized elegantly
by Mehdi Medjaoui in this recent
post. However, this open-API
model represents the tip of the
iceberg when it comes to API
adoption across the technology
spectrum. In fact, the majority
of Web APIs are hidden within
the solutions they enable. In this
sense, the business of APIs is just
business itself.

This article will examine
APIs comprehensively from a
business perspective, whether
or not they are open and overtly
monetized. I will cover the
importance of tying your APIs
back to your business value, look
at the type of data that should be
used, and study the API success
stories of Amazon and Twilio. I
hope that these lessons will help
you build useful and usable APIs.

Measuring API Business
Value
The general business value
of APIs can be measured. It

all starts with data. For many
companies and organizations,
the data they collect is viewed
as a liability. Servers and storage
are expensive. However, in the
increasingly digitized world,
data can also be a precious asset.
Data provides insights on clients
that can be turned into business
opportunities and new revenue
streams. The big-data craze seeks
to sort out the digital confusion
through high-value analytics.
The imminent IoT explosion will
bring an exponential increase in
data, making it even more critical
for companies to be on the right
side of the data ledger.

The degree to which a
company’s data is an asset as
opposed to a liability is driven
by three things: its accessibility,
accuracy, and applicability.

Any web API provides
accessibility to some data to
some degree. Valuable APIs
provide access to accurate
data that applies to their
core business. This enables
companies to achieve an iterative
approach I call “Data-Enabled
Disruption”, which I will explain
below. Furthermore, these
three data attributes provide a
methodology for determining
which data and services should
be exposed through APIs, and
how those APIs are implemented
(see table).

Examining this methodology
from the perspective of APIs,
these three data attributes
can be consolidated into two
attributes of APIs:
• “Useful APIs” provide

accurate and applicable
data.

• “Usable APIs” provide
accessible data.

Obviously, the most
valuable APIs are both useful
and usable. However, in order
to define these API attributes
further, let’s examine each one
individually.

Useful APIs
A common mistake people
make when developing APIs is
to assume that all data is useful.
There is a widely propagated
myth that if you open up your
data, magical developers will
appear and spread pixie dust on
it that increases your revenue,
creates innovative ideas,
and opens up new business
channels. APIs and open data
are not enough on their own.
This “medium is the message”
thinking was responsible for
many of the failed SOA initiatives
that occurred in enterprise
integration over the last decade.
I recall one very large enterprise
that was embarking on a $50M+
SOA and private cloud initiative.
They were baffled when I asked

A BUSINESS PERSPECTIVE ON APIS

Data Applicability Will this data help drive my key business goals?
Does this data differentiate my business?
Will I commoditize this data if I expose it
externally?

Data Accuracy How current is the data being provided?
Is the data coming from an authoritative
source?
Is data being accessed by the right end users
for the right purpose?

Data Accessibility Which data is available for programmatic
consumption?
What are the different ways this data can be
accessed?
How easy is it for developers to build apps that
use this data?
Can the data access scale to meet the client
needs?

https://twitter.com/kinlane
http://apievangelist.com/index.html
https://twitter.com/medjawii
https://medium.com/@medjawii/5-ways-an-api-is-more-than-an-api-bddcdb0517ca
https://medium.com/@medjawii/5-ways-an-api-is-more-than-an-api-bddcdb0517ca
http://www.forbes.com/sites/mikekavis/2014/06/26/the-internet-of-things-will-radically-change-your-big-data-strategy/
http://www.forbes.com/sites/mikekavis/2014/06/26/the-internet-of-things-will-radically-change-your-big-data-strategy/

Web APIs: From Start to Finish // eMag Issue 22 - Jan 2015 7

what services they would be
exposing to which clients. All
they cared about was building
the infrastructure. Needless to
say, the initiative failed.

The good news is that the
desired revenue and innovation
can be achieved if the right data
is exposed through the right
APIs. Google Maps leveraged
Google’s dominant Web
presence to deliver an API-based
service that filled a market gap.
The service was so useful that
Google was able to monetize it
at a premium. Through its API,
Google Maps was embedded in
the original iOS platform, and the
initial poor reception for Apple’s
replacement only emphasized
its value. Social networks, led
by Facebook and Twitter, are
a medium whose growth and
success are inexorably linked
to their use of APIs in order to
facilitate Web linking and mobile
adoption. Useful APIs have
even impacted federal election
campaigns.

The Amazon.com API
story
The potential for business success
through APIs runs much deeper
inside organizations than is
apparent from the world of open
APIs. This potential was heavily
exploited at Amazon.com, a
company whose API origins were
internal. Amazon’s enduring
API-enabled success is arguably
unmatched in any industry. The
company provides a number of
lessons through its use of APIs
that can help other organizations
achieve business success with
their own API programs.

The first and most obvious
lesson from Amazon is how to
position APIs as building blocks
for product and solution offerings.
Brad Stone spends a chapter in
his book on how fundamental
APIs are to the technological
landscape at Amazon. Kin
Lane summarizes nicely how

adamant Jeff Bezos was and is in
ensuring interfaces at Amazon
provide programmable access.
According to these reports and
others, product managers must
identify the lowest common
denominators of business value
in their offering proposals. The
technical teams then use these
“primitives” to create APIs that
expose this business value to
other developers who create the
remainder of the solution. The
logic behind this is that these
increments of business value can
be used and combined easily for
future offering development.

This is how Amazon Web
Services (AWS) could be delivered
and enhanced so rapidly: Amazon
had API-enabled its infrastructure
services in order to optimize the
process of expanding its capacity.
AWS came about by turning
those internal functions into an
external product. As you can see,
Amazon goes a step further than
just ensuring the APIs it provides
include useful data. It inverts this
principle and instead ensure that
every quantum of data employed
in a solution sits behind an API.

The second API lesson
from Amazon is how to use an
API-based approach to collect,
analyze, improve, and distribute
valuable data. Jeff Bezos had
an epiphany about Amazon’s
core value proposition in the
early days of online bookselling:
“We don’t make money when
we sell things. We make money
when we help customers
make purchase decisions.” He
aligned the execution of the
company with this insight,
and this led to strategic moves
such as personalization and the
broadening of channels.

In fact, it is clear from the
above-stated value proposition
that data—applicable, accurate
and accessible data to guide
customer decisions—was more
vital to Amazon’s success than
books or any other goods that
they might sell. At Amazon, APIs
are the conduit for the continual
accumulation and improvement
of data. This cyclical process
fuelled Amazon’s growth. I call
this 360 degree cycle “Data-
Enabled Disruption (DED)”, and
summarize it as follows:

http://arstechnica.com/information-technology/2012/11/built-to-win-deep-inside-obamas-campaign-tech/
http://arstechnica.com/information-technology/2012/11/built-to-win-deep-inside-obamas-campaign-tech/
http://brad-stone.com/book/
http://brad-stone.com/book/
http://apievangelist.com/2012/01/12/the-secret-to-amazons-success-internal-apis/
http://gigaom.com/2013/11/18/the-secret-to-amazons-cloud-success-might-be-jeff-bezos-corporate-culture/
http://gigaom.com/2013/11/18/the-secret-to-amazons-cloud-success-might-be-jeff-bezos-corporate-culture/
http://www.businessinsider.com/bezos-pioneering-requires-being-misunderstood-2013-1
http://www.businessinsider.com/bezos-pioneering-requires-being-misunderstood-2013-1
http://www.businessinsider.com/bezos-pioneering-requires-being-misunderstood-2013-1
http://www.businessinsider.com/bezos-pioneering-requires-being-misunderstood-2013-1

Web APIs: From Start to Finish // eMag Issue 22 - Jan 20158

As a result of DED, many of
Amazon’s former competitors
are now dead. By utilizing APIs
at all points of the data lifecycle,
Amazon is able to continuously
improve the accuracy,
applicability, and accessibility of
its data.

The final API lesson from
Amazon derives from the
disciplined way the company
is able to balance its tactical
delivery with its strategic
positioning. This was evident
from the start, when Jeff Bezos
recognized the potential of the
World Wide Web and had a vision
to create “the everything store”.
Knowing that he needed to start
small, Bezos analyzed the market
and identified online book-
retailing as a ripe entry point
with an optimized supply chain.
This paradoxical approach of
ensuring timely execution while
maintaining religious devotion to
the future vision is now a tenet of
the company culture at Amazon,
where solutions must add value
in both what they deliver and
what they enable. An API-based
delivery approach supports this
principle, since APIs power new
applications and services while

facilitating future use cases.
This iterative methodology has
fuelled the company’s relentless
expansion ever since.

Each of these services has
an associated external API, but
each one is also built on the API
scaffolding provided by earlier
offerings. As companies look to
grow their businesses vertically
and horizontally, they can utilize
the Amazon approach that
is predicated on useful APIs:
continually collect and harvest
applicable data, use APIs as the
common access points to that
data, deliver only what is needed
in the short term with the long
term firmly in mind, then expand
from a position of strength.

Usable APIs and the
importance of API
design
As remarkable as Amazon’s
success has been and as
fundamental as its APIs have
been to that success, their
external APIs are not generally
regarded as the best designed
and easy to use. Still, with the
explosive growth of APIs and the
increasing acceptance of their
necessity, API usability is a key

differentiator for companies that
want to dominate their industries
or even startups that just want to
establish their innovative service.

Mobile devices and the
consumerization of IT are
creating a generational paradigm
shift in enterprise application
development. Previously, there
has been dumb terminal-
mainframe, then client-server,
and most recently the distributed
topology of the Web. I have talked
previously about what I call “the
shedding of tiers”, moving away
from the n-tiered Web model
to an API-centered topology in
support of mobile and cloud.
This shift includes a move away
from Java Enterprise Edition to
JavaScript and its derivatives as
the languages of choice. All of
this means that there is a new
wave of developers who will
increasingly be the ones building
new enterprise solutions. These
developers are conditioned
to seek out APIs for functions
that they require. Companies
can anticipate this shift and
cater to this new generation of
developers by emphasizing the
usability of their APIs.

A BUSINESS PERSPECTIVE ON APIS

http://developer.amazon.com/
http://www.programmableweb.com/news/9000-apis-mobile-gets-serious/2013/04/30
http://www.wired.com/2014/04/the-universe-is-programmable/
http://www.wired.com/2014/04/the-universe-is-programmable/
https://www.linkedin.com/today/post/article/20140716032508-16039030-the-rebirthing-of-the-mobile-app?trk=hb_ntf_MEGAPHONE_ARTICLE_POST
https://www.linkedin.com/today/post/article/20140716032508-16039030-the-rebirthing-of-the-mobile-app?trk=hb_ntf_MEGAPHONE_ARTICLE_POST
https://www.linkedin.com/today/post/article/20140716032508-16039030-the-rebirthing-of-the-mobile-app?trk=hb_ntf_MEGAPHONE_ARTICLE_POST
https://www.youtube.com/watch?v=23nyxjRPe94
https://www.youtube.com/watch?v=23nyxjRPe94
http://www.drdobbs.com/architecture-and-design/building-successful-web-apis/240166439

Web APIs: From Start to Finish // eMag Issue 22 - Jan 2015 9

Consider the telecommunications
industry. For years, the big carriers
have competed vengefully
against each other while trying
to deliver value-added services
that go beyond network delivery.
This industry has experienced
incredible disruption over the last
15 years, with the advent of VoIP,
the convergence of business and
operator services, and the revolution
in mobile-device services. In each
of these disruptions, APIs played
a role. In spite of their dominant
position in traditional telco
services, the big carriers struggled
to take advantage. They had even
more difficulty when they tried to
collaborate on initiatives like Parlay
X and OneAPI, as summarized in
this article by Alan Quayle. So, if the
big guys weren’t exploiting these
opportunities, who was?

Twilio was founded in 2007
with the goal of providing easy-
to-use voice and text contact
services, all deployed in the cloud. It
demonstrated a platform mentality
from the outset and recognized
that its API would be its number-
one business channel. SMS and
VoIP services are certainly useful,
but in order to compete with the
big carriers, Twilio needed to deliver
more than a set of commoditized
telco services.

Twilio’s key insight was to
recognize that the initial clients
of its service was not the end user
of the app calling the API but
the developers creating the apps
themselves. It knew that the greatest
growth lay in the mobile app-
development segment so it came
up with a set of metrics to measure
how well it was serving this client
group. In addition to measuring
traditional end-user statistics like
end-to-end API-call response times,
it measured the time it would take
new developers to register for their
APIs, and set aggressive targets.
This focus improved usability and
made Twilio clearly different from
the big telcos. When it came time

for app developers to choose a
SMS or VoIP provider for their apps,
this rapid, carrier-agnostic service
stood well above its competitors. By
providing a useful API, Twilio could
justify charging for this service and
make money on every API call. By
providing a usable API, it drove up
these volumes and along with it its
revenues.

Industries beyond
telecommunications are ripe for
data-enabled disruption too.
Consider Ingenie, the insurance
startup that found an opportunity
in the way actuarial-based pricing
punishes the 16 to 25-year-old
demographic. The company collects
individual driver data through a
proprietary smart device in the car,
then use that to offer insurance
discounts to this group. Useful and
usable APIs allowed Ingenie to
use data-enabled disruption and
“Twilio” the insurance industry.

Useful and usable API
lessons

To recap, there are a number
of steps you can take to ensure the
success of your API program:
• Align your APIs with your

business strategy.
• Do this by including accessible,

accurate and applicable data in
your APIs.

• Make sure your APIs are both
useful and usable.

• Like Amazon, establish a
disciplined culture of iterative
data-enabled disruption.

• Like Twilio, create a phenomenal
API developer experience to
differentiate your business
versus larger competitors.

Follow these lessons, and you will
set a course for business success
that is bolstered by your APIs. You
are the best judge of what will make
your APIs useful to your clients.
Make sure to read the other articles
in this series, and you will learn
some great tips on how to make
those APIs usable.

A BUSINESS PERSPECTIVE ON APIS

A common
mistake people
make when
developing APIs
is to assume that
all data is useful.
- Matt McLarty

http://alanquayle.com/2012/06/a-brief-history-of-telco-apis/
http://www.twilio.com/
http://apievangelist.com/2014/08/04/twilio-the-hell-out-of-the-largest-and-most-important-industries/
http://apievangelist.com/2014/08/04/twilio-the-hell-out-of-the-largest-and-most-important-industries/

Web APIs: From Start to Finish // eMag Issue 22 - Jan 201510

An Interview with HAL Creator Mike Kelly

Mike Kelly is a software entrepreneur and founder of the API consultancy Stateless - assisting
companies with their strate gy, design and implementation challenges. He lives just outside
London in a small city called Winchester with my wife and three children. Mike work primarily
with clients in London and Europe and recently traveled to Detroit, Michigan as a guest speaker
and panelist for Apigee’s API Craft event where he talked about Hypermedia APIs and his very
popular hypermedia design named Hypertext Application Language (HAL).

In 2011, he released the
Hypertext Application Language
(HAL) media type for APIs. Since
that time, HAL has grown to
be the dominant hypermedia
format for APIs.

Kelly does not often attend
public events but recently made
an exception and participated
in the 2014 API-Craft event in
Detroit, where he talked about
HAL and about the future of
hypermedia and APIs in general.

Not long after that event,
Mike Amundsen interviewed
Kelly to talk about his reasons for
creating HAL and his experiences
over the last three years with
Web developers and the API
community.

In July 2011, you registered the
HAL media type with the IANA.
What was your motivation to
create HAL?

I was working with a client on the
new API of their SaaS product.
The roadmap for the product
included significant back-end
changes that were going to
affect URL structures in the API. I
wanted to design the API so that
we could roll out those changes
with as little friction as possible,
and hypermedia seemed like the
ideal style for that.

So, one the key goals was to
lessen the impact of change
over time?

Right. Another objective was
to optimize the developer
onboarding experience since
API integration was a key value
proposition of the product and
a key driver of sales. For me that
meant we needed to have clear,
accessible documentation and
the API itself had to be easy to
play around with.
For that, I wanted to build an
API browser that would allow
developers to jump around
and explore the API and its
documentation in a similar

READ ONLINE ON InfoQ

by Mike Amundsen

http://stateless.co/
http://stateless.co/hal_specification.html
http://www.iana.org/assignments/media-types/application/vnd.hal+json
http://www.infoq.com/articles/web-apis-hal
http://www.infoq.com/author/Mike-Amundsen

Web APIs: From Start to Finish // eMag Issue 22 - Jan 2015 11

way you do with a Web app. So I
needed a general-purpose format
we could use across the whole
API that we could then build a
browser against.

So you initially created HAL to
solve a problem for one of your
projects. To use Eric Raymond’s
words, you “scratched an itch”
you had. If HAL was built to
solve your SaaS problem, how
did it grow to be such a common
format used by so many others?

The approach seemed to work
really well, so I shared the idea
with some other people in the
API space by sketching out some
examples of a new general-
purpose format based on JSON.
Feedback was really positive and
a couple of people even started to
adopt this sketched-out format in
their APIs. Momentum built and,
to cut a long story short, I ended
up having to build a Web page
describing the sketch in more
detail. I called it the “Hypermedia
Application Language” and this
eventually evolved into a formal
Internet draft.

HAL was the first in a wave of
new API-centric media types
registered in the last few years.
What do you think is going
on here? Why are these new
designs popping up now?

I think there’s a growing realization
that although our APIs may cover
very different business domains,
there’s a lot of common territory
shared in terms of architectural
style. Media types are a way we
can start to collectively map some
of this territory on the web of
APIs and allow us to develop and
share tools and techniques that
are applicable to a broad range of
problems.

One of the important design
choices in HAL is that it focuses
on links and resources in the
message and relies on human-
readable documentation to
explain how to manipulate
those resources using HTTP
methods. Why did you design
HAL this way?

I find that most APIs I work on
need to optimize the developer
onboarding experience because
it is what drives up key success
metrics like API-user acquisition
and activation. In my opinion, to
achieve this you need concise
API messages and rich, human-
readable documentation
that clearly demonstrates to
developers what those messages
will look like.

So your design relies on
both a machine-readable
format and human-readable
documentation. What about
the idea that the message
should contain all the details
for executing a transition such
as the arguments, method
names, etc.?

I think there is a law of diminishing
returns when adding features
to a media type. More is not
always better since more features
mean more of a burden for
consumers of the format. HAL is
my interpretation of where the
sweet spot lies in hypermedia-
type design.

In early 2014, Amazon.com
announced that its AppStream
API was using HAL. What role
did you play in helping Amazon
learn how to use HAL for their
API?

Encouragingly, I didn’t play any
direct role at all. I think this is a
good indication that HAL’s design
and specification are heading in
the right direction. APIs using
HAL are popping up all over the
place. It’s impossible to keep track
of them!
So the API community is picking
this up on their own and solving
problems with HAL. Uou have a
mailing list for HAL (HAL Discuss)
and it seems pretty active with
many people asking questions
and sharing experiences. I
noticed, though, that you don’t
seem to post a lot there. Why is
that?
Another promising thing that’s
been happening is that I do not
have to answer many questions
or give advice on the mailing list
any more, since the community
of HAL adopters are actively
sharing their experiences and
interpretations of the spec. I
think that’s a really healthy thing
because, at this point, HAL has
evolved beyond my intended
design and is actually about what
I managed to communicate and
how that has been interpreted
and deployed by the community.
Fortunately, those two things
seem to be largely in unison!

I don’t have any figures, but
it seems that among the new
round of designs that have come
out in the last few years, HAL
is the most-used hypermedia
format. Is that true? If so, why
do you think that’s happening?
Why are so many developers
attracted to HAL?

I don’t have any figures on
that either, but I would agree
it does seem that way. I’d like
to think this was because HAL’s
design is well balanced and
introduces hypermedia without
compromising too much on the
simplicity of JSON. In reality, it’s

http://www.infoq.com/news/2014/03/amazon-hal-appstream
http://docs.aws.amazon.com/appstream/latest/developerguide/rest-api.html
http://docs.aws.amazon.com/appstream/latest/developerguide/rest-api.html

Web APIs: From Start to Finish // eMag Issue 22 - Jan 201512

probably partly that and partly
that it just appeared in the right
place at the right time.

This gets back to your design
decisions. For example, one
topic that comes up with some
regularity on the HAL Discuss
mailing list is the fact that HAL
lacks inline forms like those in
HTML, Siren, Collection+JSON,
and a few others. What do you
say to people who want to add
these details to the HAL spec?

Whilst it is possible to try to
add more dynamic affordances
to HAL, I’ve actively resisted
doing that because I feel that
the added complexity of doing
so damages the developer
experience by making the
messages less concise and at the
same doesn’t solve enough real-
world problems that cannot be
solved using a simpler design.
One of the reasons often cited
for needing forms in an API
message is that they’re required
for a GUI application. My issue
with this is that HTML is a
perfectly adequate hypermedia
format for representing GUI
forms - it’s ubiquitous and
developers are very familiar with
it. Most of the media types that
are introducing forms in JSON
seem to be reinventing that
relatively complicated wheel,
which seems like a lot of effort
for not very much gain.

So you really see HAL as
a format for machine-to-
machine use? And you
don’t see this adding this
information inline as very
useful for machines?

My opinions on forms intended
for machine-to-machine are
probably a whole other interview

on its own! In summary, I’m very
skeptical and I haven’t seen
many compelling examples
(theoretical, or real world) that
convince me they are worth the
added complexity.
Having said all of that, a while
ago, I did sketch out an extension
to HAL called HALO which would
introduce this type of dynamic
affordance. People are interested
in it but, to be honest, I don’t
really feel convinced enough
about its usefulness to push it
forward right now.

Over a year ago, you started
a HAL RFC. The current
document has expired. Do
you have plans to pick this up
again?

Yes. I recently sent out a call to
action on HAL Discuss asking
for some final feedback and
adjustments to the specification.
If any readers have input to share
here, please raise a pull request!

Looking back, is there
anything you might have
done differently with HAL?
Anything you know now that
you wish you’d known then?

I’m fairly happy with the way
things have gone and how
things have worked out.
I probably should have written
and released the HAL browser
sooner, since that has really
made things click for a lot of
people. Also, I should have
proactively engaged high-
profile open-source Web
frameworks like Rails::API and
Ember.js in their early stages
since they’re good candidates to
adopt a general-purpose media
type like HAL as their default
message format, which would
have made adopting HAL even

easier. I should mention there are
actually third-party HAL libraries
for both Rails and Ember, and
for many other languages and
frameworks.

It seems that every few
months, a new format appears.
As one of the first in this new
wave of media-type designers,
do you have any advice about
creating a new media type?

My advice would be not to worry
too much about having the
longest feature list. The shorter
your specification, the better.
Scratch an itch; don’t look for a
problem to solve. Don’t try to
sound clever; use plain language
and simple examples. Make
sure you share it with others as
early as possible so that you can
iterate on the wording and make
it as clear as possible. And finally,
try to avoid reinventing HTML in
JSON!

AN INTERVIEW WITH HAL CREATOR MIKE KELLY

http://tools.ietf.org/html/draft-kelly-json-hal-06

Web APIs: From Start to Finish // eMag Issue 22 - Jan 2015 13

A Web API Design Methodology

Mike Amundsen in his role of Director of Architecture for the API Academy,
Amundsen heads up the API Architecture and Design Practice in North America. He
has authored numerous books and papers on programming over the last 15 years.
His most recent book is a collaboration with Leonard Richardson titled “RESTful Web
APIs” published in 2013. Mike’s 2011 book, “Building Hypermedia APIs with HTML5
and Node”, is an oft-cited reference on building adaptable Web applications.

Designing Web APIs is more than just URLs, HTTP status codes, headers,
and payloads. The process of design –-what is essentially a “look and
feel” for your API –-is very important and is well worth the effort. This
article briefly outlines a methodology that results in an API design that
takes advantage of both HTTP and the Web. And it can work for more
than just HTTP. If, at some point, you need to implement the same service
over WebSockets, XMPP, MQTT, etc., most of the features of this design
will work the same. That can make supporting multiple protocols in the
future easier to implement and maintain.

Good design goes beyond URLs, status
codes, headers, and payloads
Typically, Web API design guidance focuses on the
common features such as URL design, proper use
of HTTP features such as status codes, methods,
headers, and the design of payloads that hold
serialized objects or object graphs. These are
valuable implementation details but not much in
the way of API design. And it is the design of the

API –-the way the essential features of the service
are expressed and described –-that can make an
important contribution to the success and usability
of your Web API.

A good design process or methodology defines
a consistent, repeatable set of steps to employ when
working to expose a server-side service component
as an accessible, usable Web API. That means that a
clear methodology can be shared with developers,

READ ONLINE ON InfoQ

http://www.infoq.com/author/Mike-Amundsen
http://www.infoq.com/articles/web-api-design-methodology

Web APIs: From Start to Finish // eMag Issue 22 - Jan 201514

designers, and software
architects in order to help
coordinate activities throughout
the implementation cycle. An
established methodology can
also be refined over time as each
team discovers ways to improve
and streamline the process
without adversely affecting
implementation details. In fact,
implementation details can
change (e.g. which platform,
OS, frameworks, and UI style
to employ) independently of
the design process when these
two are cleanly separated and
defined.

A seven-step API design
methodology
What follows is a brief overview of
the design methodology covered
in the book RESTful Web APIs
by Richardson and Amundsen.
There is not enough room here
to go into depth for each step in
the process but this article can
give the big picture. Also, the
reader can use this overview as
a guide for developing a unique
Web API design process that fits
the local skills and goals of your
group.

Seven steps seem like quite
a few. In reality, there are only five
design steps and two additional
items in the list, including
implementing and publishing.
These last two round out the
process to provide an end-to-
end experience.

You should plan to reiterate
through these steps as needed.
You may draw state diagrams and
get through Step 2 then realize
there are more parts to be listed
in Step 1. When you get around
to writing the code (Step 6), you
may discover a number of things
missed in creating the semantic
profile (Step 5), etc. The key is
to use the process to expose as
many details as possible and
to be willing to go back a step
or two in order to capture the
items you missed along the way.

Iteration is the key to building a
more complete picture of your
service and clarifying how it can
be exposed to client applications.

Step 1: List all the parts
The first step is to list all the
pieces of data a client application
might want to get out of the
service or put into it. We’ll call
these the semantic descriptors.
“Semantic” because they deal
with the meaning of data in the
application and “descriptors”
because they describe what is
happening in the application
itself. Note that the point of view
here is that of the client, not the
service. It’s important to design
the API as something the client
will be using.

For example, in a simple
app like a to-do list, you might
find the following semantic
descriptors:
• id: the unique identifier for

each record in the system
• title: the title of each to-do

item

• dateDue: the date the to-do
item is due for completion

• complete: a yes/no flag
indicating whether the to-do
item has been completed

In a full-featured application,
there could be many more
semantic descriptors to cover
things like categories of to-do
items (work, family, gardening,
etc.), user information (for a
multi-tenant implementation),
and so on. We’ll keep this one
simple in order to focus on the
process itself.

Step 2: Draw state
diagrams

The next step is to
draw state diagrams for the
proposed API. Each box in the
diagram represents a possible
representation –-a document
that includes one or more of the
semantic descriptors identified
in Step 1. You can use arrows to
indicate transitions from one box
to the next – from one state to
the next. These transitions are
initiated by protocol requests.

A WEB API DESIGN METHODOLOGY

http://restfulwebapis.com

Web APIs: From Start to Finish // eMag Issue 22 - Jan 2015 15

Don’t yet worry about
indicating which protocol method
is used in each transition. Just
indicate whether the transition is
safe (e.g. HTTP GET), unsafe/non-
idempotent (e.g. HTTP POST), or
unsafe/idempotent (PUT).

(Idempotent actions are
repeatable without unexpected
side effects. For example, HTTP
PUT is idempotent because the
specification says servers should
use the state values passed from
the client to replace any existing
values for the target resource.
However, HTTP POST is non-
idempotent since the HTTP spec
states that POSTed values should
be used to append to, not replace,
an existing resource collection.)

In this case, a client
application for our simple to-do
service might need to access the
list of available items, to filter that
list, to view a single item, and to
mark an item complete. Many of
these actions use state values to
pass data between the client and
server. For example, the add-
item action allows the client to
pass the state values title and
dueDate. Here is a diagram that
illustrates those actions (previous
page).

The actions shown in the
diagram (and listed below) are
also semantic descriptors -- they
describe the semantic actions for
this service.
• read-list
• filter-list
• read-item
• create-item
• mark-complete
As you work through the
diagram, you might find that you
missed actions or data items the
client will want or need. That’s an
opportunity to go back to Step
1 to add new descriptors and/or
improve on the diagram in Step 2.

Once you have reiterated
through these two steps you
should have a good idea of all the
data points and actions the client

will need to interact with your
service.

Step 3: Reconcile magic
strings
The next step is to reconcile all
the “magic strings” in your service
interface. The magic strings are
all the descriptor names, which
have no intrinsic meaning but
merely represent actions or
data elements that clients will
access when communicating
with your service. Reconciling
these descriptor names means
adopting well-known public
names from sources like:
• Schema.org
• microformats.org
• Dublin Core
• IANA Link Relation Types
These are all repositories of
well-defined, shared names.
When you use these for your
service interface, it is likely that
developers will have seen these
before and will understand what
they mean. This can improve the
usability of your API.

While it is a good idea to
use shared names for descriptors
on your service interface, you
don’t need to use them for your
internal implementation (e.g. the
data-field names in a database).
The service itself can map the
public interface names to the
internal storage names without
any problem.

For the sample to-do service,
I was able to find acceptable
existing names for all but one
semantic descriptor: create-item.
For this case, I resorted to creating
a unique URI based on rules from
the Web Linking RFC 5988. There
are trade-offs to selecting well-
known names for your interface
descriptors. They rarely perfectly
match your internal data-storage
elements and that’s OK.

Here are my results:
• id -> identifier from

Dublin Core: http://purl.org/
dc/elements/1.1/identifier

• title -> name from
Schema.org: https://schema.
org/name

• dueDate -> scheduledTime
from Schema.org: https://
schema.org/scheduledTime

• complete -> status from
Schema.org: https://schema.
org/status

• read-list -> collection
from IANA Link Relation
Types: http://www.iana.org/
assignments/link-relations/
link-relations.xhtml

• filter-list -> search
from IANA Link Relation
Types: http://www.iana.org/
assignments/link-relations/
link-relations.xhtml

• read-item -> item from
IANA Link Relation Types:
h t t p : / / w w w. i a n a . o r g /
assignments/link-relations/
link-relations.xhtml

• create-item -> http://
mamund.com/rels/create-
item using RFC 5988

• mark-complete - edit
from IANA Link Relation
Types: http://www.iana.org/
assignments/link-relations/
link-relations.xhtml

Based on my name reconciliation,
here is my updated state diagram:
(see next page)

Step 4: Select a media
type
The next step in the design
process for your API is to select a
media type to use when passing
messages between client and
server. One of the hallmarks of
the Web is that data is passed
as standardized documents
over a uniform interface. It is
important to select a media type
that supports both the data
descriptors (e.g. “identifier”,
“status”, etc.) as well as the
action descriptors (e.g. “search”,
“edit”, etc.). There are quite a few
formats available.

Some of the most popular
hypermedia formats as I write this
are (in no special order):

https://tools.ietf.org/html/rfc7231%23section-4.3.4
https://tools.ietf.org/html/rfc7231%23section-4.3.3
http://schema.org/
http://microformats.org/
http://dublincore.org/documents/dces/
http://www.iana.org/assignments/link-relations/link-relations.xhtml
https://tools.ietf.org/html/rfc5988
http://purl.org/dc/elements/1.1/identifier
http://purl.org/dc/elements/1.1/identifier
https://schema.org/name
https://schema.org/name
https://schema.org/scheduledTime
https://schema.org/scheduledTime
https://schema.org/status
https://schema.org/status
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml

Web APIs: From Start to Finish // eMag Issue 22 - Jan 201516

• Hypertext Markup Language
(HTML)

• Hypertext Application
Language (HAL)

• Collection+JSON (Cj)
• Siren
• JSON API
• Uniform Basis for Exchanging

Representations (UBER)
It is also important to select a
media type that will work well
with your target protocol. Most
developers prefer the HTTP
protocol for service interfaces.
However, WebSockets, XMPP,
MQTT, and CoAP are also
used, especially for high-speed,
short-message, peer-to-peer
implementations.

For this example, I’ll use
HTML as the message format
and HTTP as the protocol. HTML
has all the data-descriptor
support that’s needed (
for lists, for items, and
 for data elements). It
also has adequate support for
action descriptors (<A> for safe
links, <FORM method=”get”>
for safe transitions, and <FORM
method=”post”> for unsafe
transitions).

(The state diagram
currently shows the edit action
as idempotent –ce.g. HTTP PUT
but HTML still does not have
native support for PUT. For this
example, I’ll use an added field
to help make HTML’s POST-only
support idempotent.)

Now I can try out the
interface by creating some
sample representations based
on the state diagram. For our
example, we have only two
representations to render: the
“To-Do List” and the “To-Do Item”
representations.

Remember, as you work
through the representation
samples of your state diagram,
you may find things you missed in
earlier steps (missing descriptors,
changes in action descriptors
such as idempotency, etc.).
That’s fine. Now is the time to
work these all out –-before you
commit this design to code.

Once you’re satisfied
that the representations are
complete, there is an additional
step you need to do before
starting to write code: create the
semantic profile.

Step 5: Create a
semantic profile
A semantic profile is a document
that lists all the descriptors in your
design and includes details about
each one to help developers
when building both client and
server implementations. The
profile is an implementation
guide, not an implementation
description. This is an important
distinction.

Service description formats
Service description document
formats have been around for
quite a while and are handy
when you want to generate code
for, or document, an existing
implementation of a service.
There are quite a few formats
around.

The top contenders as I
write the article are:
• Web Services Definition

Language (WSDL)
• Atom Publishing Protocol

(APP)
• Web Application Description

Language (WADL)
• API Blueprint
• Swagger
• RESTful API Modeling

Language (RAML)

Profile Formats
There are only a few profile
formats at the moment. The ones
I recommend are:
• Application-Level Profile

Semantics (ALPS)
• JSON-LD and Hydra

Both are relatively new. The
JSON-LD specification reached
W3C Recommendation status
early in 2014. Hydra is still an
Unofficial Draft (as of this writing)
and has an active community of
developers. ALPS is still in early
draft stage with the IETF.

Since a profile document
should describe the real-life
aspects of a problem space (not
just a single implementation

A WEB API DESIGN METHODOLOGY

http://www.w3.org/TR/html5/
http://stateless.co/hal_specification.html
http://amundsen.com/media-types/collection/
https://github.com/kevinswiber/siren/blob/master/README.md
http://jsonapi.org/
https://rawgit.com/mamund/media-types/master/uber-hypermedia.html
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc6455
http://xmpp.org/rfcs/rfc6120.html
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
https://tools.ietf.org/html/rfc7252
http://www.w3.org/TR/wsdl
https://tools.ietf.org/html/rfc5023%23section-8
http://www.w3.org/Submission/wadl/
https://github.com/apiaryio/api-blueprint/blob/master/API%2520Blueprint%2520Specification.md
https://github.com/wordnik/swagger-spec/blob/master/README.md
http://raml.org/spec.html
http://tools.ietf.org/html/draft-amundsen-richardson-foster-alps-00
http://www.w3.org/TR/json-ld/
http://www.w3.org/ns/hydra/spec/latest/core/

Web APIs: From Start to Finish // eMag Issue 22 - Jan 2015 17

001 <html>
002 <head>
003 <!-- for test display only -->
004 <title>To Do List</title>
005 <style>
006 .name, .scheduledTime, .status, .item {display:block}
007 </style>
008 </head>
009 <body>
010 <!-- for test display only -->
011 <h1>To-Do List</h1>
012
013 <!-- to-do list collection -->
014
015
016
017 1
018
019 First item in the list
020 2014-12-01
021 pending
022
023
024
025 2
026
027 Second item in the list
028 2014-12-01
029 pending
030
031
032
033 3
034
035 Third item in the list
036 2014-12-01
037 complete
038
039
040
041 <!-- search transition -->
042 <form method="get" action="/list/" class="search">
043 <legend>Search</legend>
044 <input name="name" class="identifier" />
045 <input type="submit" value="Name Search" />
046 </form>
047
048 <!-- create-item transition -->
049 <form method="post" action="/list/" class="http://mamund.com/rel/create-item">
050 <legend>Create Item</legend>
051 <input name="name" class="name" />
052 <input name="scheduledTime" class="scheduledTime" />
053 <input type="submit" value="Create Item" />
054 </form>
055
056 </body>
057 </html>

“To-Do List” representation

Web APIs: From Start to Finish // eMag Issue 22 - Jan 201518

001 <html>
002 <head>
003 <!-- for test display only -->
004 <title>To Do List</title>
005 <style>
006 .name, .scheduledTime, .status, .item, .collection {display:block}
007 </style>
008 </head>
009 <body>
010 <!-- for test display only -->
011 <h1>To-Do Item</h1>
012
013 Back to List
014
015 <!-- to-do list collection -->
016
017
018
019 1
020
021 First item in the list
022 2014-12-01
023 pending
024
025
026
027 <!-- edit transition -->
028 <form method="post" action="/list/1" class="edit">
029 <legend>Update Status</legend>
030 <input type="hidden" name="etag" value="q1w2e3r4t5y6" class="etag" />
031 <input type="text" name="status" value="pending" class="status" />
032 <input type="submit" value="Update" />
033 </form>
034
035 </body>
036 </html>

“To-Do Item” representation

within that space), the format
is quite different than typical
description formats.

You’ll notice that this
document looks like a basic
vocabulary of all the possible
data values and actions in the
to-do service interface – and
that’s the idea. Services that
agree to abide by this profile can
make their own decisions about
protocol, message format, and
even URLs. Clients who agree to
accept this profile will be built
to recognize and, if appropriate,

activate the descriptors shown in
this document.

This is also a great format
for generating human-readable
documentation, analyzing
similar profiles, tracking which
profiles are most commonly
used, and even generating state
diagrams. But that’s a subject for
another article.

Now that you have the
complete list of descriptors with
reconciled names, the annotated
state chart, and a semantic
profile document, you’re ready

to start coding a sample server
and client.

Step 6: Write some code
At this point, you should be
able to turn over your design
documents (state charts and
semantic profile) to developers
of both the server and client
apps in order to start a specific
implementation.

The HTTP server should
implement the state diagram
created in Step 2 and requests
from the client should trigger the

A WEB API DESIGN METHODOLOGY

Web APIs: From Start to Finish // eMag Issue 22 - Jan 2015 19

ALPS document for the to-do state chart

001 <alps version="1.0">
002 <doc>
003 ALPS profile for InfoQ article on "API Design Methodology"
004 </doc>
005
006 <!-- data descriptors -->
007 <descriptor id="identifier" type="semantic" ref="http://purl.org/dc/

elements/1.1/identifier" />
008 <descriptor id="name" type="semantic" ref="https://schema.org/name" />
009 <descriptor id="scheduledTime" type="semantic" ref="https://schema.org/

scheduledTime" />
010 <descriptor id="status" type="semantic" ref="https://schema.org/status" />
011
012 <!-- action descriptors -->
013 <descriptor id="collection" type="safe" ref="http://www.iana.org/assignments/

link-relations/link-relations.xhtml" />
014 <descriptor id="item" type="safe" ref="http://www.iana.org/assignments/link-

relations/link-relations.xhtml">
015 <descriptor href="#identifier" />
016 </descriptor>
017 <descriptor id="search" type="safe" ref="http://www.iana.org/assignments/link-

relations/link-relations.xhtml">
018 <descriptor href="#name" />
019 </descriptor>
020 <descriptor id="create-item" type="unsafe" ref="http://mamund.com/rels/create-

item">
021 <descriptor href="#name" />
022 <descriptor href="scheduledTime" />
023 </descriptor>
024 <descriptor id="edit" type="idempotent" ref="http://www.iana.org/assignments/

link-relations/link-relations.xhtml">
025 <descriptor href="#identifier" />
026 <descriptor href="#status" />
027 </descriptor>
028 </alps>

proper state transitions in the
service. Each representation sent
from the service should be in the
format selected in Step 3 and
should include a link to the profile
created in Step 4. Responses
should include the appropriate
hypermedia controls that
implement the actions shown
in the state chart and described
in the profile document. Client
and server developers can build
their implementations relatively
independently at this point
and use test runs to validate

compliance with the state
diagram and profile.

Once you have stable
running code, there is one more
step in our list: publishing.

Step 7: Publish your API
Web APIs should publish at
least one URL that is promised
to always respond to clients,
even in the far future. I call
this the “billboard URL” –-the
one everyone knows. It is also
a good idea to publish the
profile document so that new

implementations of the service
can link to it in responses. You
can also publish human-readable
documentation, tutorials, etc. to
help developers understand and
use your service.

Once that is done, you
should have a well-designed,
stable, accessible service up and
running, ready to use.

In conclusion
This article covered a set of steps
for designing APIs for the Web,
and focused on getting the data

Web APIs: From Start to Finish // eMag Issue 22 - Jan 201520

and action descriptions correct and
documenting them in a machine-
readable way to make it easy for
human developers to implement
clients and servers for this design
even if they are not in direct contact
with each other.

The steps are:
1. List all the Parts

Gather all the data elements
clients will need in order
to interact with the service

2. Draw State Diagrams
Document all the actions
(state transitions) that will
be available for the service

3. Reconcile Magic Strings
Clean up your public
interface to match (as best
possible) well-known names

4. Select a Media Type
Review message formats to
find the one that most closely
aligns the service transitions
with the target protocol.

5. Create a Semantic Profile
Write up a profile document
that defines all the descriptors
used in the service

6. Write Some Code
Share the profile document
and the state diagram to
client and server developers
and start writing code to test
compliance and adjust the
profile/diagrams as needed.

7. Publish Your API
Publish your “billboard URL”
and profile document so that
others can use them to create
new services and/or client
applications.

It is likely that you’ll need to
reiterate through some steps along
the way as you discover missing
elements and make trade-off
decisions with your design. The
sooner that happens in the process,

the better. It’s also possible that you
will be able to use this API design
at some point in the future to
create implementations using new
formats and protocols that may be
requested by developers at some
point.

This methodology is just one
possible way to create a dependable,
repeatable, consistent process for
designing your Web APIs. As you
work through this example, you
may find it works better for you to
insert additional steps, collapse
some, and, of course, the message
format and protocol decisions may
vary from one case to the next.

Hopefully, this gives you some
ideas on how to create an optimal
API design methodology for your
organization or team.

A WEB API DESIGN METHODOLOGY

Web APIs: From Start to Finish // eMag Issue 22 - Jan 2015 21

Implementing Hypermedia

Steve Klabnik is a Rails committer, a Rust contributor, and the author of Rails 4
in Action, Designing Hypermedia APIs, and Rust for Rubyists. He currently lives
in the New York area and travels the world speaking about the Web.

A lot of (virtual) ink has been spilled on the theory of using hypermedia in
your APIs, but what about the practice? At the API Craft 2014 conference,
many people who shared stories of using hypermedia sheepishly admitted
that they hadn’t talked about it publicly. Many of us resolved to share
more of our stories. I’d like to share my own with you.

I’ll talk about four real-world
implementations of hypermedia:
how you may already be using
hypermedia through image links;
how GitHub uses the Link header
for pagination; using hypermedia
in constrained systems like
iOS; and how Balanced uses
hypermedia principles to build its
product. Each of these scenarios
showcases a different aspect of
using hypermedia in API design.

Thumbnail images
While much of the theory
of hypermedia talks about

hypermedia as the fundamental
theory of your entire API, I have
a little secret to share: it doesn’t
have to be that way. You can
gain some of the advantages
of hypermedia without entirely
overhauling your API. The
two cases I see most often
concern thumbnail images and
pagination.

You may be using
hypermedia without even
realizing it. I see this most often
in APIs that contain images,
often thumbnails. Consider

this (partial) API response, from
Twitter (Code 1).

Nobody would suggest that
Twitter has a hypermedia API,
but this response does indeed
contain links and therefore is
employing hypermedia. We
could include these images inline
using a data URI, but instead, we
use links.

By including links, an API
client is allowed to choose
which information to download.
The links inform the client of
available options and where to

READ ONLINE ON InfoQ

http://www.infoq.com/author/Steve-Klabnik
http://api-craft.org/
https://dev.twitter.com/docs/api/1.1/get/users/show
https://dev.twitter.com/docs/api/1.1/get/users/show
http://www.infoq.com/articles/implementing-hypermedia

Web APIs: From Start to Finish // eMag Issue 22 - Jan 201522

find them. In other words, this is just as “real” a form
of hypermedia as any other usage.

To make these benefits a bit more clear, let’s
consider a slightly different response:

We introduce hypermedia here to avoid
including all three versions of the profile image. We
tell our clients that there are three possible images
available, and we tell the client where it can find each
image. Our client is now able to choose what it wants
to do based on what it’s trying to accomplish in the
moment. It does not have to download all three
versions of the image if it only wants one. We’ve
made our payload smaller, we’ve increased client
flexibility, and we’ve increased discoverability.

What I’m getting at here is that you may already
be deploying a teeny bit of hypermedia even if
you’ve never thought about it before. And you didn’t

need to design your whole API around hypermedia
to gain the benefit in this one case.

Pagination
Pagination is another area where a tiny bit of
hypermedia can considerably simplify client code.
Let’s take GitHub as a real-world example of this. In
its documentation, GitHub talks about one of the
constraints of its API:
Different API calls respond with different defaults.
For example, a call to list GitHub’s public repositories
provides paginated items in sets of 30, whereas a call
to the GitHub Search API provides items in sets of 100.

It’s easier to communicate the default when the
response is inline. Let’s examine how GitHub actually
implements this.

You make a request to a paginated resource,
such as their search resource:

It returns a Link header:

The Link header, defined in RFC 5988, gives
us, well, links. The links consist of a URL and a link

001 GET https://api.twitter.com/1.1/users/show.json?screen_name=rsarver
002
003 {
004 “name”: “Ryan Sarver”,
005 “profile_image_url”: “http://a0.twimg.com/profile_images/1777569006/image1327396628_

normal.png”,
006 “created_at”: “Mon Feb 26 18:05:55 +0000 2007”,
007 “location”: “San Francisco, CA”,
008 “profile_image_url_https”: “https://si0.twimg.com/profile_images/1777569006/

image1327396628_normal.png”,
009 “utc_offset”: -28800,
010 “id”: 795649,
011 “lang”: “en”,
012 “followers_count”: 276334,
013 “protected”: false,
014 “profile_background_image_url_https”: “https://si0.twimg.com/profile_background_

images/113854313/xa60e82408188860c483d73444d53e21.png”,
015 “verified”: false,
016 “time_zone”: “Pacific Time (US & Canada)”,
017 “description”: “Director, Platform at Twitter. Detroit and Boston export. Foodie

and over-the-hill hockey player. @devon’s lesser half”,
018 “profile_background_image_url”: “http://a0.twimg.com/profile_background_

images/113854313/xa60e82408188860c483d73444d53e21.png”,

Code 1

001 GET https://api.example.com/profile
002
003 {
004 “name”: “Steve”,
005 “picture”: {
006 “large”: “https://somecdn.com/

pictures/1200x1200.png”,
007 “medium”: “https://somecdn.com/

pictures/100x100.png”,
008 “small”: “https://somecdn.com/

pictures/10x10.png”
009 }
010 }

001 GET “https://api.github.com/search/
code?q=addClass+user:mozilla”

001 Link: <https://api.github.com/search/
code?q=addClass+user%3Amozilla&
page=2>; rel=”next”,

002 <https://api.github.com/search/
code?q=addClass+user%3Amozilla&
page=34>; rel=”last”

IMPLEMENTING HYPERMEDIA

https://developer.github.com/guides/traversing-with-pagination/
http://tools.ietf.org/html/rfc5988

Web APIs: From Start to Finish // eMag Issue 22 - Jan 2015 23

relation, which is where the rel comes from. Because
we’re on the first page of the results, GitHub shows
us that we have a next and last option.

If we fetch the link at next, we get a different set
of headers:

Now, we can see that there’s also a prev and first
page, too.

So where’s the advantage? Well, client code is
easier. Consider Ruby. If we wanted to get the next
page of search results in the traditional manner, we’d
do this:

With hypermedia, we instead do this:

It’s much easier and far less prone to errors.
Furthermore, if GitHub decides to change the
defaults to 10 per page and forbids 15 per page, the
hypermedia code will not need to change. The first
one will, and until you’ve fixed the bug, your users
will be stranded.

iOS hypermedia
One growth area I see for hypermedia is iOS. Here’s
why: in order to make changes to an iOS app, you

have to go through Apple’s approval process. But
if you use hypermedia, the server can change the
behavior of the client. Long ago, some friends and I
did this for a project. Names have been changed to
protect the innocent....

We were working on a podcast application. As
such, we served large audio and video files. At the
time, Apple had a restriction on audio: you could not
serve high-quality audio over the GSM connection.
We devised a scheme to get around this: links.

When the app was under review, we would
have our server serve the podcast with low-quality
audio links. The review would pass, and then we
would have the server serve high-quality audio. Our
customers would then get a free upgrade to higher-
than-technically-allowed files. Sneaky!

Once we had this idea, however, we applied it to
other aspects of the application. For example, some
podcasts would also broadcast live and allow you to
call into the show. In the UI, we made the app ask the
server if the show was broadcasting live or not. If it
was, the app displayed a button you could click to
call in. The app would poll this endpoint as long as
you were on the screen, and once the show ended, it
would disable the button. This kind of server-driven
interaction is hypermedia’s bread and butter, but
would be impossible if we had to redeploy a new
client to change the state of the button.

The people who ran the podcast could provide
the app with information about when the podcast
would air. Something like “Each Friday at noon”
would appear on an information screen. The app
fetched this information from our server. If the
podcasters wanted to change the time of the show
on an app that didn’t fetch the information from
the server, app users would need an app update in
order to receive the corrected information and the
updated app would have to go through the “waiting
for review” process again. Because the profile was
server-driven, as soon as the show operator would
click “save”, every app would automatically retrieve
that new information.

This involves hypermedia in two ways. First, the
mentality that the server dictates the possibilities
and the client displays those possibilities is central
to the hypermedia way of API design. Each of these
three instances is a great example of this principle in
action.

Second, we implemented this through links.
Upon startup, the app would fetch a configuration
XML file from the server, which would provide a link
to the RSS feed, a link to the “find out if we’re on the
air” feed, and a link to the profile information. The
app would then use these links as appropriate. To
implement the RSS switch, we’d just change feed at
the link destination from low quality to high quality,

001 Link: <https://api.github.com/search/
code?q=addClass+user%3Amozilla&page=15>;
rel=”next”,

002 <https://api.github.com/search/
code?q=addClass+user%3Amozilla&page=34>;
rel=”last”,

003 <https://api.github.com/search/
code?q=addClass+user%3Amozilla&page=1>;
rel=”first”,

004 <https://api.github.com/search/
code?q=addClass+user%3Amozilla&page=13>;
rel=”prev”

001 require ‘uri’
002 url = “https://api.github.com/search/

code”
003 per_page = 15
004 current_page = 1
005 next_page = 1 # zero based, of course
006 page = (current_page + next_page *

per_page).to_s
007
008 query = “addClass+user%3Amozilla”
009
010 uri = URI(url)
011 uri.query = URI.encode_www_

form([[“q”, query], [“page”, page]])
012
013 puts Net::HTTP.get(uri);

001 # response contains parsed body from
previous request.

002
003 puts Net::HTTP.get(response.

headers[:link].rels[:next])

Web APIs: From Start to Finish // eMag Issue 22 - Jan 201524

and the app would fetch that
entirely different feed by default.

There’s a lot of fruitful
ground to be explored here. A
client that reacts to what a server
says without client updates is
crucial when you cannot often
update the client. In situations
like iOS or embedded devices,
this constraint is obvious, and
your users probably do not
update your client as often as
you’d like....

Case study: Balanced
The API of Balanced, my previous
employer, is hypermedia enabled
and follows the JSON API
standard that I co-author. My
previous examples described
the addition of a sprinkling of
hypermedia to responses, but
Balanced is fully hypermedia-
driven. This has led to good effects
but also to some challenges.

On the good side, new
features can roll out without
breaking older clients. For
example, the 1.1 release of the
API was the first to completely
follow the JSON API spec. After
1.1 was released, Balanced
launched a Push to Card feature,
which was entirely new. Because
of hypermedia, the company
did not need to release this
feature as API version 1.2: older
clients simply ignored the
new feature, and new clients
were able to use it. This makes
operations significantly easier, as
having many different versions
complicates both deployment
and development. This trend will
continue as Balanced continues
to add features to its API.

Hypermedia enthusiasts
often talk about the benefits, but
it’s not all positive. In the interest
of balance, (pun intended),
I’d like to mention one of the
downsides. When a customer
reports a support issue, the first
question you need to ask them
is “Who are you?” In many cases,
that would be “What’s your

customer ID?” Since Balanced
uses hypermedia, it doesn’t have
a customer ID: it has a customer
URL. Occasionally, customers
would be confused when we’d
ask for their customer URL.

This kind of thing will
change as more people
understand hypermedia APIs, but
because we’re in the early days,
anyone who creates an API that’s
fully hypermedia-driven needs to
be willing to help educate users
on how to use it. In Balanced’s
case, this meant providing clients
for many different languages
up front, because many people
don’t know how to develop good
hypermedia clients yet. While it’s a
good idea to give your customers
pre-built clients anyway, in this
case, Balanced had to, whereas
with a more conventional API,
they could have made a business
decision to focus development
efforts elsewhere.

Conclusion
As you can see, hypermedia
can take many different forms,
and doesn’t have to be the sole
organizing principle of your
API. First, we talked about how
you may be using hypermedia
without realizing it, via image
links. Then, we talked about
GitHub and its pagination
example. Next, we went over
how a server-driven client
doesn’t need to be updated as
often, which helps in constrained
environments like iOS. Finally,
we talked about a company
that has used hypermedia as a
competitive advantage, but not
without a drawback or two.

I hope that these real-world
implementations of hypermedia
help you realize that hypermedia
doesn’t have to be all or nothing,
and that you may already be
doing it in some cases. I’m excited
to see hypermedia spring up in
more and more APIs, and to hear
people talk about their successes
and failures with the technique.

You may be using
hypermedia without
even realizing it.
- Steve Klabnik

IMPLEMENTING HYPERMEDIA

https://www.balancedpayments.com/
http://jsonapi.org/
http://jsonapi.org/
https://www.balancedpayments.com/push-to-card

Web APIs: From Start to Finish // eMag Issue 22 - Jan 2015 25

Roy Fielding on Versioning, Hypermedia,
and REST

Roy Fielding is currently senior principal scientist at Adobe Systems. While a graduate student
at University of California, Irvine, he worked on a class project to create a maintenance robot
for the Web called MOMSpider and created the libwww-perl library based on Tim Berners-
Lee’s libwww. There, he derived some of the underlying principles behind the architecture of the
WWW, calling it the HTTP Object Model and later renaming it Representational State Transfer or
REST.

Roy Fielding is a major force
in the world of networked
software. Roy’s contributions to
open standards are extensive.
His name appears on more
than a dozen RFC specifications
including HTTP, URI Templates,
and others. Roy is also one of
the editors for the W3C’s Do
Not Track standards effort. As a
founding member of the Apache
Software Foundation, he was
instrumental in the creation
of the Apache HTTP Server
(httpd) server along with a
number of other open-source
projects.

Roy took some time while
traveling between standards
meetings to answer InfoQ’s
questions on a topic that often

starts debates: versioning on the
Web. He also talked about why
hypermedia is a requirement
in his REST style, the process of
designing network software that
can adapt over time, and the
challenge of thinking at the scale
of decades.

In August 2013, you gave a talk
at the Adobe Evolve conference
in which you offered advice on
how to approach versioning
APIs on the Web. It was a single
word: “Don’t.” What reaction to
that guidance have you seen?

I think everyone in attendance
had a positive reaction, since

most are our customers and
familiar with the design rationale
behind the Adobe Experience
Manager products. Of course, I
wasn’t reading the slides for that
audience. I was explaining the
rationale behind the conclusions
seen in them.The Internet
reaction to the published slides
was a little more mixed, with
some folks misunderstanding
what I meant by versioning
and others misunderstanding
the point about changing
the hostname/branding. By
versioning, I meant sticking
client-visible interface numbers
inside various names so that the
client labels every interaction as
belonging to a given version of
that API.

READ ONLINE ON InfoQ

by Mike Amundsen

http://doc.gnu-darwin.org/momspider/momspider
http://roy.gbiv.com/
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc6570
http://www.w3.org/TR/tracking-dnt/
http://www.w3.org/TR/tracking-dnt/
http://apache.org/
http://apache.org/
http://httpd.apache.org/
http://httpd.apache.org/
http://www.slideshare.net/evolve_conference/201308-fielding-evolve/31
http://www.infoq.com/articles/roy-fielding-on-versioning
http://www.infoq.com/author/Mike-Amundsen

Web APIs: From Start to Finish // eMag Issue 22 - Jan 201526

Unfortunately, versioning of
interface names only manages
change for the API owner’s
sake. That is a myopic view of
interface design, one where
the owner’s desire for control
ignores the customer’s need
for continuity.What happens
when you version an API?

 Either, (a) the version is
eventually changed and all of the
components written to the prior
version need to be restarted,
redeployed, or abandoned
because they cannot adapt
to the benefits of that newer
system, or (b) the version is never
changed and is just a permanent
lead weight making every API
call less efficient.

A lot of developers throw
up their hands in disgust at this
point and claim that I just don’t
understand their problem. Their
systems are important. They are
going to change. New features
are going to be provided. Data
is going to be rearranged. They
need some way to control how
old clients can coexist with new
ones.

Naturally, that is where I
have to explain why “hypermedia
as the engine of application
state” is a REST constraint. Not an
option. Not an ideal. Hypermedia
is a constraint, as in you either
do it or you aren’t doing REST.
You can’t have evolvability if
clients have their controls baked
into their design at deployment.
Controls have to be learned on
the fly. That’s what hypermedia
enables.

But that alone is still
not enough for evolvability.
Hypermedia allows application
controls to be supplied on
demand, but we also need to
be able to adapt the clients’
understanding of representations
(understanding of media types
and their expected processing).

That is where code-on-demand
shines.

So, one of the reasons
hypermedia is a requirement
in the REST style is to deal with
change over time?

Anticipating change is one of
the central themes of REST. It
makes sense that experienced
developers are going to think
about all of the ways that their
API might change in the future,
and to think that versioning
the interface is paving the way
for those changes. That led to
a never-ending debate about
where and how to version the
API.

The techniques that
developers learn from managing
in-house software, where they
might reasonably believe they
have control over deployment
of both clients and servers,
simply don’t apply to network-
based software intended to cross
organizational boundaries. This is
precisely the problem that REST
is trying to solve: how to evolve
a system gracefully without the
need to break or replace already
deployed components.

Hence, my slides try to
restore focus to where it belongs:
evolvability. In other words, don’t
build an API to be RESTful, build it
to have the properties you want.
REST is useful because it induces
certain properties that are known
to benefit multi-org systems, like
evolvability. Evolvability means
that the system doesn’t have to
be restarted or redeployed in
order to adapt to change.

Does that mean that as long as
I use the REST style, I am free
and clear of versioning issues?

 No. It is always possible for some
unexpected reason to come
along that requires a completely
different API, especially when
the semantics of the interface
change or security issues require
the abandonment of previously
deployed software. My point was
that there is no need to anticipate
such world-breaking changes
with a version ID. We have the
hostname for that. What you are
creating is not a new version of
the API but a new system with a
new brand.

On the Web, we call that a
new Web site. Web sites don’t
come with version numbers
attached because they never
need to. Neither should a RESTful
API. A RESTful API (done right) is
just a Web site for clients with a
limited vocabulary.

One of the things you say about
REST is that it was designed to
support “software engineering
on the scale of decades.” What
does that mean, precisely?

REST was originally created to
solve my problem: how do I
improve HTTP without breaking
the Web? It was an important
problem to solve when I started
rewriting the HTTP standard in
1994-95. I was a post-Masters
Ph.D. student in software
engineering, trying not to screw
up what was clearly becoming
the printing press of our age,
which means I had to define a
system that could withstand
decades of change produced by
people spread all over the world.
How many software systems built
in 1994 still work today? I meant
it literally: decades of use while
the system continued to evolve,
in independent and orthogonal
directions, without ever needing
to be shut down or redeployed.
It’s two decades, so far.

ROY FIELDING ON VERSIONING, HYPERMEDIA, AND REST

Web APIs: From Start to Finish // eMag Issue 22 - Jan 2015 27

You have acknowledged that
this is a level of engineering
at which most architects,
designers, and developers
don’t operate. So why talk
about this level of engineering
scale?

I talk about it because the
initial reaction to using REST for
machine-to-machine interaction
is almost always of the form “We
don’t see a reason to bother with
hypermedia – it just slows down
the interactions, as opposed to
the client knowing directly what
to send.” The rationale behind
decoupling for evolvability
is simply not apparent to
developers who think they
are working towards a modest
goal, like “works next week” or
“We’ll fix it in the next release.”If
developers can conceive of
their systems being used for a
much longer time, then they can
escape their own preconceptions
about how it will need to change
over time. We can then work back
from decades to years (How long
until you don’t know your users?)
or even months (How long until
you’ve lost control over client
deployment?).

The HTTP application-level
protocol is often cited as
an example of successful
engineering at the scale of
decades. Yet, HTTP has gone
through more than one
version and the early versions
of HTTP got a number of
things wrong including the
host header problem, absolute
time-caching directives, and
others. Does that run counter
to your “Don’t” guidance for
Web APIs?

No, HTTP doesn’t version the
interface names – there are no
numbers on the methods or
URIs. That doesn’t mean other
aspects of the communication
aren’t versioned. We do want
change, since otherwise we
would not be able to improve
over time, and part of change
is being able to declare in what
language the data is spoken. We
just don’t want breaking change.
Hence, versioning is used in ways
that are informative rather than
contractual.

By the way, it is more
accurate to say that HTTP got
almost everything right, but
that the world simply changed
around (and because of) it. Host
would have been a stupid idea
in 1992 because nobody needed
multiple domains per IP until the
Web made being on the Internet
a business imperative. Persistent
connections would have been
a terrible idea up until Mosaic
added embedded images to
HTML. And absolute times for
expiration made more sense
when people hosting mirrors
looked at those fields, not caches,
and the norm was to expire in
weeks rather than seconds.

A RESTFUL API
(DONE RIGHT)
IS JUST A WEB

SITE FOR CLIENTS
WITH A LIMITED

VOCABULARY.
 - Roy T. Fielding

https://www.simple-talk.com/opinion/geek-of-the-week/roy-fielding-geek-of-the-week/
http://www8.org/w8-papers/5c-protocols/key/key.html

Web APIs: From Start to Finish // eMag Issue 22 - Jan 201528

What lessons can we draw from the
fact that HTTP and even HTML have
changed over time?

What we learned from HTTP and
HTML was the need to define how the
protocol/language can be expected to
change over time, and what recipients
ought to do when they receive a change
they do not yet understand. HTTP was
able to improve over time because we
required new syntax to be ignorable
and semantics to be changed only when
accompanied by a version that indicates
such understanding.

It seems Web developers struggle to
handle change more than in the past.
Are we running into new problems?
Or just seeing more of the same?

I think there are just more opportunities
to struggle now than there were in the
past. It has become so easy for people to
create systems with astonishing reach,
whereas it used to take years to get a
company just to deploy a server outside
its own network. It’s a good problem to
have, most of the time.

Software developers have always
struggled with temporal thinking.

 Finally, in addition to “Don’t,” what
advice you would pass on to Web API
designers, architects, and developers
to help them deal with the problem of
change over time?

I didn’t say don’t change over time – just
don’t use deliberately breaking names in
an API.

I find it impossible to give out
generic device, since almost anything
I could say would have to be specific to
the context and type of system being
built. REST is still my advice on how to
build an application for the Web in a
fashion that is known to work well over
time and known to create more Web as a
result (more addressable resources).

Web APIs: From Start to Finish // eMag Issue 22 - Jan 2015 29

REST-y Reader

Mike Amundsen in his role of Director of Architecture for the API Academy, Amundsen
heads up the API Architecture and Design Practice in North America. He has authored
numerous books and papers on programming over the last 15 years. His most recent
book is a collaboration with Leonard Richardson titled “RESTful Web APIs” published in
2013. Mike’s 2011 book, “Building Hypermedia APIs with HTML5 and Node”, is an oft-
cited reference on building adaptable Web applications.

The primary list is a handful of books that speak
directly to the work of HTTP, APIs, REST, and
hypermedia. These are not the only books on the
subjects but they are the ones I find myself referring
to most often in my own work.

The secondary list contains books that, while
not directly in the field of APIs, have affected my
thinking on the way we design and implement stuff
on the Web. I had a hard time narrowing down this

list and there are quite a few more I’d add, but I’ll save
that for another time.

Finally, I added a section for other resources.
These are useful sources that are not book length.
Mostly these are blog posts, peer-reviewed papers,
etc. that cover topics that come up when working
through a tough problem or trying to get a handle on
the concepts behind common practice and theory. I
often keep bookmarks to these items close at hand.

READ ONLINE ON InfoQ

I am regularly asked which books I recommend for those who want to
learn more about designing, implementing, and maintaining APIs for the
Web. Here’s a short list that covers quite a bit of ground with a minimum
amount of reading. These are books I found along the way as I was
learning about APIs and many of them are still on my go-to shelf that
holds the book I consult most often.

http://www.infoq.com/author/Mike-Amundsen
http://www.infoq.com/articles/rest-reading-list

Web APIs: From Start to Finish // eMag Issue 22 - Jan 201530

Primary books
RESTful Web Services
Leonard Richardson and Sam
Ruby (2008)
This essential book was one of
the first to document the create-
read-update-delete (CRUD) style
of HTTP APIs – a style that is still
the most common way to create
RESTful APIs. The writing style is
excellent and the material top-
notch. It’s also cool that publisher
O’Reilly Media has released this
under the Creative Commons
License in several e-book
formats. You should definitely
have this one handy.

HTTP Developer’s Handbook
Chris Shiflett (2003)
I found this book an excellent
guide and reference for the
HTTP protocol and for writing
programs that use HTTP. I still
refer to this book when trying to
grok HTTP edge cases. I still love
this well-written and organized
book.

RESTful Web Services Cookbook
Subbu Allamaraju (2010)
This is a great set of simple
recipes for solving real-world
problems for HTTP APIs. While
this book covers the usual things
like designing URIs, payloads, and
handling status codes, etc., I really
like its recipes for supporting
async operations, long query
strings, and what Allamaraju
calls “HTTP controllers”. I’m on my
second copy and it’s already well
worn.

REST in Practice
Jim Webber, Savas Parastatidis,
and Ian Robinson (2010)
This book has a distinct enterprise
feel and was one of the first to
illustrate the use of hypermedia
for business applications. Its
sample app for RESTBucks coffee
shop is an oft-cited example.
With sample code in both C#
and Java, this book speaks to
common enterprise developers

as well as to those interested in
what it is like to mount a full-
featured app from start to finish.

Building Hypermedia APIs with
HTML5 and Node
Mike Amundsen (2011)
I wrote this book to explore the
parts of the REST architecture
that Fielding had left out: the
details behind “hypermedia as
the engine of application state”
(HATEOAS). It’s a very short book
that covers sample hypermedia
designs in XML, JSON, and HTML.
I’ve received lots of positive
comments on the book and
often find its references and
examples showing up online and
in customers’ internal materials.

REST API Design Rulebook
Mark Masse (2011)
This book is a good source of
design patterns for CRUD-style
APIs. It covers the basics like
URI design for singulars, plurals,
and operations, and decently
reviews the HTTP spec for
methods, headers, and status
codes. For me there is a bit too
much reliance on Masse’s own
WRML format but that is just my
personal preference.

RESTful Web APIs
Leonard Richardson and Mike
Amundsen (2013)
This book is the sequel to
Richardson and Ruby’s RESTful
Web Services and covers a lot
of new territory. Where the
earlier book focused on HTTP
resources, this one emphasizes
hypermedia formats. It dips a toe
into the Semantic Web waters
with reviews of a handful of RDF-
based formats and introduces
profiles to help carry application-
level meaning into the Web API
space. It was fun for me to work
with Leonard Richardson on this
and we have gotten lots of great
feedback.

Secondary books
I read quite a few books and find
some that are technically outside
the field of APIs, HTTP, and REST
but that are still quite helpful
when I am working on designing
and implementing distributed
apps. Here are a few of my top
picks for expanding your mind
outside the typical API readings.

The Design of Everyday Things
Don Norman (2013)
Originally published in 1988,
this book sets the groundwork
for the field of human-computer
interaction (HCI) and what we
know as usability. Norman works
through all sorts of examples of
how humans and devices (not
just computers) interact. The
book defines his action lifecycle,
clarifies the notion of affordance,
and gives some excellent advice
on how to think about designing
user interfaces based on your
audience, the environment in
which the device is used, and
the goal you have in mind as a
designer. This is a must-have for
your bookshelf.

In Search of Certainty
Mark Burgess (2013)
Burgess is the creator of the
CFEngine technology, which
acts as an independent agent
that monitors large-scale
infrastructure. His experience
led him to apply an immunology
model to complex computer
systems, and the book chronicles
his journey from a basic idea
to a full set of tools with their
own agency on the network.
I like the writing style and the
great references to physics,
brain science, and the history of
computing in general. Toward the
end, Burgess puts in a bit more
reference to his product than I’d
prefer, but it makes sense since
it is the work on CFEngine that
brings all these themes together.
This book gets you thinking
about what it takes to create safe

REST-Y READER

http://www.crummy.com/writing/RESTful-Web-Services/
http://www.amazon.com/exec/obidos/ASIN/0672324547/ref%3Dnosim/chrisshiflett-20
http://shop.oreilly.com/product/9780596801694.do
http://shop.oreilly.com/product/9780596805838.do
http://shop.oreilly.com/product/0636920020530.do
http://shop.oreilly.com/product/0636920020530.do
http://shop.oreilly.com/product/0636920021575.do
http://restfulwebapis.com/
http://www.amazon.com/The-Design-Everyday-Things-Expanded/dp/0465050654
http://markburgess.org/certainty.html

Web APIs: From Start to Finish // eMag Issue 22 - Jan 2015 31

and successful autonomous bots
on the network.

Information: A History, a
Theory, a Flood
James Gleick (2012)
Gleick’s 1987 book Chaos
popularized the concepts in
chaos theory and this book does
the same for information theory.
Gleick has a great storytelling
style and covers quite a bit
of ground in the book’s 300+
pages. He covers it all, from
remote drumming to quantum
computing, with excellent stories
and real insight. I still go back and
read sections of this book just for
the enjoyment.

Information: A Very Short
Introduction
Luciano Floridi (2010)
This handy text supplies the
basics of information theory. It
starts with a clear explanation
on how data is different than
information and talks about
how information theory is tied
up on math, physics, biology,
economics, and even social
ethics. Where Gleick tells stories,
Floridi lays out the facts and links
between fields of study. These
two books make a great pair.

Memory Machines: The
Evolution of Hypertext
Belinda Barnet (2013)
If you want to learn how hypertext
morphed and grew over the
last 50 years (yes, one half of a
century) then this is book for you.
Barnet has collected personal
interviews with Ted Nelson,
Douglas Engelbart, Tim Berners-
Lee, and many others. You get a
picture of how competing ideas
and market forces shaped the
modern hypertext/hypermedia
world. You also learn about
many initial ideas on the use and
implementation of hypertext
that are still not yet available.

Complexity: A Guided Tour
Melanie Mitchell (2011)
This accessible book on the
world of complexity theory
takes the reader through a bit
of history, genetic programming
theory for devices, and automata
programming for large systems.
Along the way, there are clear
examples and even references
to running code. Mitchell’s work
is an excellent text for anyone
interested in digging into this
huge topic.

Other sources
Here are papers, blog posts, and
other sources I keep handy for
review and reference. These are
the links I often send to others
when they ask for examples,
clarification, or background on a
topic.

Architectural Styles and the
Design of Network-Based
Software Architectures
Roy T. Fielding (2000)
This is the dissertation that
launched a thousand arguments.
Seriously, this is a document
everyone in the API space
should read. It’s not long and it’s
relatively easy to read. And it is
the document that defines REST.
Often, if people read this at
all, they only read the fifth
chapter, “Representational
State Transfer (REST)”. To me,
that is not the best part of the
dissertation. Instead, I like the
second chapter, “Network-Based
Application Architectures”, in
which Fielding describes the
rationale and desired outcome
for building distributed systems.
In fact, I recommend reading
this dissertation in the following
order: chapters 2, 1, 4, 3, 6, and
5. That’s right, read the REST
chapter last. I think it makes a lot
more sense when you do this.

“REST APIs must be hypertext-
driven”
Roy T. Fielding: Untangled (2008)
The same year RESTful Web
Services was released, Fielding
published this now (in)famous
blog post explaining that
hypermedia (he uses the word
hypertext) is a required element
for his REST style. In another
important step, he uses this post
to expand on what he meant
by the phrase “hypertext as the
engine of application state”
– what people have gotten into
the habit of calling HATEOAS and
which Fielding prefers to call
the “hypermedia constraint”.
The comment thread below this
post is one of the most valuable
conversations I’ve seen Fielding
engage in over the topic of REST.

“What’s different/better/worse
than other JSON hypermedia
media types?”
Kevin Swiber et al: GitHub (2013)
In mid-2013, Emmanuel Gomez
asked in Kevin Swiber’s Siren
JSON hypermedia format repo
a great question about how to
choose which hypermedia JSON
format to use for implementation.
The subsequent comment
thread is pure gold. Most of the
authors of these popular formats
(Mike Kelly for HAL, Kevin Swiber
for Siren, Jorn Wildt for MASON,
myself for Collection+JSON)
chime in, and there are a number
of insights in the thread. If you’re
contemplating a JSON format
for hypermedia, this is a great
resource of commentary.

Hypermedia Types
Mike Amundsen (2011)
This is a series of Web pages
I started in 2010 in order
to analyse and categorize
hypermedia formats based
on a set of properties that all
hypermedia types will exhibit. A
set of elements called “H-Factors”

http://www.amazon.com/The-Information-History-Theory-Flood/dp/1400096235
http://www.amazon.com/The-Information-History-Theory-Flood/dp/1400096235
http://www.amazon.com/Information-A-Very-Short-Introduction/dp/0199551375
http://www.amazon.com/Information-A-Very-Short-Introduction/dp/0199551375
http://www.anthempress.com/memory-machines
http://www.anthempress.com/memory-machines
http://www.amazon.com/Complexity-Guided-Tour-Melanie-Mitchell/dp/0199798109
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://github.com/kevinswiber/siren/issues/15
https://github.com/kevinswiber/siren/issues/15
https://github.com/kevinswiber/siren/issues/15
http://dret.net/lectures/ppos-spring11/reading/HypermediaTypes.pdf

Web APIs: From Start to Finish // eMag Issue 22 - Jan 201532

are defined to help study how hypermedia
actually works for inline business applications
and this has been picked up by several other
people to help in both design and analysis of
hypermedia formats. It’s a work in progress
and I sometimes pass this link to folks
asking about some fundamentals of what
hypermedia controls are and how they work.

“How to Follow Instructions”
Leonard Richardson: InfoQ (2012)
In this presentation, Richardson discusses
how hypermedia can help create machine-
readable instructions for clients to follow. He
adopts a helpful point of view (and recalls
the days of BBSs and file servers before HTTP
and links were common) and the slides are
excellent, too. It’s well worth the 50 minutes.

Designing Hypermedia APIs
Steve Klabnik (2014)
Klabnik is a great resource for down-to-
earth, no-nonsense advice on what it takes
to actually implement running code that
uses hypermedia. He started this living book
in 2012 and continues to add to it. If you’re
looking for a complete story, cover to cover,
this is probably not a good resource for you.
However, if you want to keep an eye on the
ever-growing body of knowledge on what it
is like to actually build and maintain these
types of systems, Designing Hypermedia
APIs is a great addition to your regular
reading. I always look forward to his periodic
updates.

Conclusion
That’s a tour through my top-level bookshelf
and my common bookmarks. There are quite
a number of other books and links worth
sharing but this is a good start. If you have
other sources you use often when you are
designing and implementation Web APIs, I’d
love to hear about them.

REST-Y READER

http://www.infoq.com/presentations/REST-Hypermedia-Links-Forms
http://www.designinghypermediaapis.com/
http://www.infoq.com/minibooks/emag-continuous-delivery-stories

PREVIOUS ISSUES

21

20

19

18
Agile Project Management

Automation in the Cloud
and Management at Scale

Infrastructure
Configuration
Management Tools

In this eMag, we curated a series of articles that look at
automation in the cloud and management at scale. We
spoke with leading practitioners who have practical,
hands-on experience building efficient scalable
solutions that run successfully in the cloud.

Infrastructure configuration management tools are
one of the technical pillars of DevOps. They enable
infrastructure-as-code, the ability to automate your
infrastructure provisioning.

Project management is a crucial and often maligned
discipline. In the software world, project management
is mainly about coordinating the efforts of many people
to achieve common goals. It has been likened to
herding cats – a thankless undertaking that seems to
engender little or no respect from the teams who are
being managed. This eMag examines where and how
project management fits in agile.

Continuous Delivery encompasses a set of strong practices
to be successful and bring value to the organization
implementing it, be it through reduced cycle time, more
robust products, more visibility on current status, etc. But
since continuous delivery can and should affect practices
across the entire software lifecycle that means collaboration
between different teams (Dev, QA, Ops, etc) is mandatory.

In short: reaping the benefits of continuous delivery is hard
work! Culture, processes or technical barriers can challenge
or even break such endeavors.

With this eMag we wanted to share stories from leading
practitioners who’ve been there and report from the
trenches. Their examples are both inspiring and eye opening
to the challenges ahead.

Continuous Delivery
Stories

http://www.infoq.com/minibooks/configuration-management-tools
http://www.infoq.com/minibooks/emag-agile-project-management
http://www.infoq.com/minibooks/emag-cloud-automation-management
http://www.infoq.com/minibooks/emag-continuous-delivery-stories

	_GoBack
	_GoBack

