Inteligência Artificial

Aula 11
Prof^a Bianca Zadrozny
http://www.ic.uff.br/~bianca/ia

Aula 11 - 22/04/09

Incerteza

Capítulo 13 – Russell & Norvig Seções 13.1 a 13.4

Aula 11 - 22/04/09

Incerteza

- Seja a ação A_t = sair para o aeroporto t minutos antes do vôo.
- A_t me levará ao aeroporto a tempo?
- Dificuldades de saber o resultado da ação:
 - Estados parcialmente observáveis
 - Estados das estradas, trânsito, etc.
 - Sensores ruidosos
 - Relatórios de trânsito
 Incerteza quanto ao efeito das ações
 - Acidentes, pneu furado, etc.
 - Grande complexidade em prever e modelar o trânsito

Aula 11 - 22/04/09

Incerteza

- Um procedimento puramente lógico não é muito útil nesse caso, porque:
 - 1. Arriscaria deduzir algo potencialmente falso
 - "A₄₅ me levará a tempo ao aeroporto"
 - Levaria a conclusões fracas para tomada de decisões
 - "A₄₅ me levará a tempo ao aeroporto, se nenhum acidente ocorrer na ponte, se não chover, se nenhum pneu furar, etc."
 - 3. Levaria a conclusões que não práticas
 - 1. "A₁₄₄₀ me levará a tempo ao aeroporto"

Aula 11 - 22/04/09

Lidando com a incerteza

- Probabilidade
 - Modela o grau de crença de um agente dadas as evidências disponíveis
 - "A₂₅ chegará a tempo ao aeroporto com probabilidade 0.04"
 - "A₄₅ chegará a tempo ao aeroporto com probabilidade 0.85"
 - "A₆₀ chegará a tempo ao aeroporto com probabilidade 0.95"

Aula 11 - 22/04/09

Probabilidade

- A probabilidade proporciona um meio para resumir a incerteza que vem de:
 - Preguiça = falha em enumerar todas as possíveis exceções à regra
 - Ignorância = falta de conhecimento sobre fatos relevantes, condições iniciais

Probabilidade

- · Probabilidade subjetiva ou bayesiana
 - Estabelece o estado de crença do agente em uma sentenças, dadas as evidências.
 - Muda quando novas evidências chegam
 - P(A₂₅|nenhum acidente) = 0.06
 - P(A₂₅|nenhum acidente, 5 a.m.) = 0.15
- · As sentenças são verdadeiras ou falsas.
 - O que muda é o grau de crença do agente na sentença.
 - Atribuir probabilidade 0 a uma sentença significa acreditar que ela é falsa com certeza absoluta.
 - Atribuir probabilidade 1 a uma sentença significa acreditar que ela é verdadeira com certeza absoluta.

Aula 11 - 22/04/09

Decisões sob incerteza

· Suponha o seguinte conjunto de crenças:

 $P(A_{25} \text{ chega a tempo} \mid ...) = 0.04$ $P(A_{90} \text{ chega a tempo} \mid ...) = 0.70$ $P(A_{120} \text{ chega a tempo} \mid ...) = 0.95$ $P(A_{1440} \text{ chega a tempo} \mid ...) = 0.9999$

- · Que ação o agente deve tomar?
 - Depende de suas preferências sob perder o vôo versus o tempo esperando no aeroporto.
 - Teoria da utilidade = representação de preferências
 - Teoria da decisão = teoria da probabilidade + teoria da utilidade

Aula 11 - 22/04/09

Introdução à probabilidade

- · Elemento básico: variável aleatória
 - Análogo à lógica proposicional
 - Mundos possíveis são definidos pela atribuição de valores às variáveis.
 - Cada variável aleatória tem um domínio que determina seus valores possíveis.
 - · Tipos de domínio
 - Booleano, ex.: Cárie possui valores em <verdadeiro,falso>
 - Discreto, ex.: Clima possui valores em <ensolarado, chuvoso, nublado, neves
 - Contínuo, ex.: Temperatura

Aula 11 - 22/04/09

Introdução à probabilidade

- Proposições elementares
 - São construídas através da atribuição de valores a variáveis.
 - Ex.: Clima = ensolarado, Cárie = falso (abreviado como ¬cárie)
- Proposições complexas
 - São formadas a partir de proposições elementares e conectivos lógicos padrão
 - Ex.: Clima = ensolarado ∨ Cárie = falso

Aula 11 - 22/04/09

Introdução à probabilidade

- · Evento atômico
 - Especificação completa do estado do mundo sobre o qual o agente está incerto.
 - Uma atribuição de valores a TODAS as variáveis das quais o mundo é formado.
 - Eventos atômicos são mutuamente exclusivos e exaustivos.

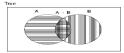
Aula 11 - 22/04/09

Evento atômico: exemplo

- Se o mundo consistir somente de 2 variáveis booleanas (*Cárie* e *DorDeDente*), então há 4 eventos atômicos distintos:
 - Cárie = verdadeiro ∧ DorDeDente = verdadeiro
 - Cárie = verdadeiro ∧ DorDeDente = falso
 - Cárie = falso ∧ DorDeDente = verdadeiro
 - Cárie = falso ∧ DorDeDente = falso

Axiomas da Probabilidade

- Para quaisquer proposições A, B
 - $-0 \le P(A) \le 1$
 - -P(verdade) = 1 e P(falso) = 0
 - (proposições neces. verdadeiras -- válidas -- prob=1 e proposições neces. falsas – não satisfatíveis -- prob.=0)
 - $P(A \lor B) = P(A) + P(B) P(A \land B)$



Aula 11 - 22/04/09

Probabilidade

 A probabilidade de uma proposição é igual à soma das probabilidades dos eventos atômicos em que ela é válida:

$$P(a) = \sum_{e_i \in e(a)} P(e_i)$$

 Essa equação permite calcular a probabilidade de qualquer proposição dada uma distribuição conjunta total que especifique todos os eventos atômicos.

Aula 11 - 22/04/09

Probabilidade incondicional ou "a priori"

- É o grau de crença em uma proposição na ausência de outras informações.
 - Exemplos:
 - P(Cárie = verdadeiro) = 0.1
 - P(Clima = ensolarado) = 0.72
- Distribuição de probabilidades
 - Dá probabilidades a todos os valores possíveis de uma variável aleatória.

P(Clima) = <0.72,0.1,0.08,0.1> (normalizado, i.e., soma da 1)

Aula 11 - 22/04/09

Distribuição de Probabilidade Conjunta

 Probabilidades de todas as combinações de valores de um conjunto de variáveis aleatórias.

P(Clima, Carie) = tabela 4 × 2 de valores:

Clima =	ensolarado	chuvoso	nublado	neve	
Cárie = verdadeiro	0.144	0.02	0.016	0.02	
Cárie = falso	0.576	0.08	0.064	0.08	

- Uma distribuição conjunta total especifica a probabilidade de qualquer evento atômico.
 - Qualquer probabilidade nesse domínio pode ser calculada a partir da distribuição conjunta total.

Aula 11 - 22/04/09

Probabilidade condicional ou "a posteriori"

- É o grau de crença em uma proposição dada a presença de evidências (valores de variáveis aleatórias conhecidos).
 - Exemplos:
 - P(Cárie = verdadeiro | DorDeDente = verdadeiro) = 0.8
 - P(Cárie = verdadeiro | DorDeDente = verdadeiro, Cárie = verdadeiro) = 1
 - P(Cárie = verdadeiro | DorDeDente = verdadeiro, Ensolarado = verdadeiro) = P(Cárie = verdadeiro | DorDeDente) = 0.8
- Distribuição condicional
 - P(Y|X) fornece o valor de P(Y=y_i | X=x_i) para cada valor de i e j possíveis.

Aula 11 - 22/04/09

Probabilidade Condicional

- Pode ser definida em termos de probabilidades a priori:
 P(a | b) = P(a \land b) / P(b) se P(b) > 0
- Regra do produto dá uma definição alternativa:
 P(a ∧ b) = P(a | b) P(b) = P(b | a) P(a)
- Isso pode ser generalizado para distribuições totais: e.g.
 P(Clima, Cárie) = P(Clima | Cárie) P(Cárie)
 (que é um conjunto de 4 x 2 equações, não uma multiplicação matricial.)
- Regra da cadeia é obtida a partir de aplicações sucessivas da regra do produto:

$$\begin{array}{ll} \mathsf{P}(\mathsf{X}_1,...,\mathsf{X}_n) &= \mathsf{P}(\mathsf{X}_1,...,\mathsf{X}_{n-1}) \, \mathsf{P}(\mathsf{X}_n \mid \mathsf{X}_1,...,\mathsf{X}_{n-1}) \\ &= \mathsf{P}(\mathsf{X}_1,...,\mathsf{X}_{n-2}) \, \mathsf{P}(\mathsf{X}_{n-1} \mid \mathsf{X}_1,...,\mathsf{X}_{n-2}) \, \mathsf{P}(\mathsf{X}_n \mid \mathsf{X}_1,...,\mathsf{X}_{n-1}) \\ &= ... \\ &= \prod_{i=1}^n \mathsf{P}(\mathsf{X}_i \mid \mathsf{X}_1,...,\mathsf{X}_{i-1}) \end{array}$$

Inferência Probabilística

- Inferência probabilística: a computação a partir de evidências observadas de probabilidades posteriores para proposições de consulta.
- Inferência com o uso de distribuições conjuntas totais: base de conhecimento a partir da qual são derivadas respostas para todas as consultas.

Aula 11 - 22/04/09

Exemplo: Inferência Probabilística

 Suponha um domínio com a seguinte distribuição conjunta total:

	dordedente		-dordedente	
	boticão	⊸boticão	boticão	⊸boticão
cárie	.108	.012	.072	.008
cárie	.016	.064	.144	.576

• Para qualquer proposição a, P(a) é a soma dos eventos atômicos \boldsymbol{w} onde \boldsymbol{a} ocorre: $P(a) = \sum_{w:w|=a} P(w)$

Aula 11 - 22/04/09

Exemplo: Inferência Probabilística

· Suponha um domínio com a seguinte distribuição conjunta total:

	dorde	dordedente		ledente
	boticão	⊸boticão	boticão	⊸boticão
cárie	.108	.012	.072	.008
⊸cárie	.016	.064	.144	.576

• Para qualquer proposição ${\pmb a}$, P(a) é a soma dos eventos atômicos ${\pmb w}$ onde ${\pmb a}$ ocorre: P(a) = $\sum_{w:w|=a}$ P(w)

P(dordedente) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Aula 11 - 22/04/09

Exemplo: Inferência Probabilística

· Suponha um domínio com a seguinte distribuição conjunta total:

	dordedente		⊸dora	ledente
	boticão	⊸boticão	boticão	⊸boticão
cárie	.108	.012	.072	.008
⊸cárie	.016	.064	.144	.576

• Para qualquer proposição α , P(a) é a soma dos eventos atômicos w onde α ocorre: P(a) = $\sum_{w:w|=a}$ P(w)

 $P(dordedente \lor c\'{a}rie) = 0.108 + 0.012 + 0.016 + 0.064 + 0.072 + 0.008 = 0.28$

Aula 11 - 22/04/09

Exemplo: Inferência Probabilística

· Podemos calcular probabilidades condicionais:

	dordedente		⊸dora	ledente	
	boticão -	⊸boticão	boticão	⊸boticão	
cárie	.108	.012	.072	.008	
cárie	.016	.064	.144	.576	

P(¬cárie/dordedente)

= P(¬cárie ∧ dordedente)

0.016+0.064

0.108+0.012+0.016+0.064

= 0.4

Aula 11 - 22/04/09

Normalização

	dordedente		⊸dora	ledente
	boticão	⊸boticão	boticão	⊸boticão
	.108	.012	.072	000
cárie	.108	.012	.072	.008

- O denominador pode ser visto como uma constante de normalização $\pmb{\alpha}$.

 $\textbf{P}(\text{C\'arie}|\text{dordedente}) = \alpha \ \textbf{P}(\text{C\'arie},\text{dordedente})$

- = α [P(Cárie,dordedente,boticão) + P(Cárie,dordedente,¬boticão)] = α [<0.108,0.016> + <0.012,0.064>]
- $= \alpha [<0.12,0.08>]$
- = <0.6,0.4>]