Inteligência Artificial

Aula 10
Prof^a Bianca Zadrozny
http://www.ic.uff.br/~bianca/ia-pos

Raciocínio Probabilístico ao Longo do Tempo

Capítulo 15 – Russell & Norvig Seções 15.1 a 15.2

Aula 10 - 23/11/10

Raciocínio ao Longo do Tempo

- Em muitas aplicações, temos que criar modelos probabilísticos para sequências de observações.
 - Reconhecimento de voz
 - Localização de robôs
 - Interação do usuário
 - Monitoramento médico
- Precisamos introduzir tempo nos modelos probabilísticos
- Abordagem básica: modelos ocultos de Markov (HMMs)
- Mais geral: redes bayesianas dinâmicas

Aula 10 - 23/11/10

Modelos de Markov

• Um modelo de Markov é uma rede bayesiana com estrutura em cadeia.

 $P(X_1) \qquad P(X|X_{-1})$

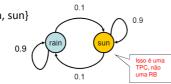
- Cada nó é identicamente distribuído (processo estacionário).
- Valor de X em um determinado momento é chamado de estado.
- Parâmetros:
 - Probabilidades iniciais
 - Probabilidades de transição

Aula 10 - 23/11/10

Exemplo: Cadeia de Markov

• Clima

– Estados: X = {rain, sun}– Transições:

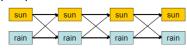


- Distribuição inicial: 1.0 sun
- Qual é a probabilidade depois de 1 passo?

 $P(X_2 = \text{sun}) = P(X_2 = \text{sun}|X_1 = \text{sun})P(X_1 = \text{sun}) + P(X_2 = \text{sun}|X_1 = \text{rain})P(X_1 = \text{rain})$ $0.9 \cdot 1.0 + 0.1 \cdot 0.0 = 0.9$ Auta $10 \cdot 23/11/10$

Exemplo: Inferência em Cadeia de Markov

• Pergunta: Qual é a probabilidade P(X) para um dia qualquer?



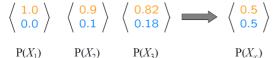
$$P(x_t) = \sum_{x_{t-1}} P(x_t|x_{t-1})P(x_{t-1})$$

 $P(x_1) = \text{conhecida}$

10 - 23/11/10

Exemplo: Inferência em Cadeia de Markov

• Quando a observação inicial é "sun"



• Quando a observação inicial é "rain"

$$\left\langle \begin{array}{c} 0.0 \\ 1.0 \end{array} \right\rangle \quad \left\langle \begin{array}{c} 0.1 \\ 0.9 \end{array} \right\rangle \quad \left\langle \begin{array}{c} 0.18 \\ 0.82 \end{array} \right\rangle \quad \Longrightarrow \quad \left\langle \begin{array}{c} 0.5 \\ 0.5 \end{array} \right\rangle$$

 $P(X_1)$ $P(X_2)$ $P(X_3)$ $P(X_{\infty})$

Aula 10 - 23/11/10

Exemplo: Inferência em Cadeia de Markov

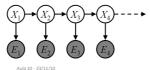
- Se simularmos a cadeia por tempo suficiente:
 - A incerteza se acumula
 - Depois de algum tempo não temos a menor ideia de qual é o estado atual
- Distribuições estacionárias
 - Para a maioria das cadeias, a distribuição final é independente da distribuição inicial
 - Chamada de distribuição estacionária da cadeia

Aula 10 - 23/11/10

Modelos Ocultos de Markov

- Cadeias de Markov não são úteis para a maioria dos agentes.
 - Precisam de observações pra atualizar as suas crenças.
- Modelos Ocultos de Markov (Hidden Markov Models - HMMs)
 - Cadeia de Markov usada para os estados
 - O agente observa saídas (efeitos) a cada instante de

– Rede bayesiana:

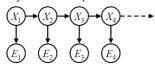


Exemplo Rain, Rain, $Umbrella_{t+}$ $(Umbrella_t)$ Umbrella,

- Um HMM é definido por:
 - Distribuição inicial: $P(X_1)$
 - Transições: $P(X|X_{-1})$
 - P(E|X)- Emissões:

Independência Condicional

- HMMs tem duas propriedades importantes:
 - O futuro depende do passado através do presente
 - Observação atual só depende do estado atual



- · Isso significa que as observações são independentes umas das outras?
 - Não! São correlacionadas através dos estados ocultos

Aula 10 - 23/11/10

Violações da Independência Condicional

- Propriedades do modelo podem não ser verdadeiras na prática.
- · Soluções:
 - Aumentar a ordem do modelo de Markov (estado atual passa a depender de n estados anteriores)
 - Colocar outras informações no estado.
 - Exemplo: além da posição e velocidade do robô, incluir estado da bateria.

Exemplos reais de HMMs

- HMMs para reconhecimento de voz
 - Observações são sinais acústicos (contínuos)
 - Estados são sílabas de palavras (dezenas de milhares)
- HMMs para tradução automática
 - Observações são palavras (dezenas de milhares)
 - Estados são possibilidades de tradução pra cada palavra (dezenas por palavra)
- HMMs para localização de robôs
 - Observações são leituras dos sensores (contínuos)
 - Estados são posições em uma mapa (contínuos)

Aula 10 - 23/11/10

Tarefas de Inferência

- Filtragem (ou monitoramento): $P(\mathbf{X}_t | \mathbf{e}_{1:t})$
- Estimar a probabilidade do estado atual dada a sequência de observações até o momento.
- Previsão: $\mathbf{P}(\mathbf{X}_{t+k}|\mathbf{e}_{1:t})$
 - Estimar a probabilidade de um estado futuro dada a sequência de observações até o momento.
- Suavização: $\mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:t})$
 - Melhores estimativas de estados passados, essencial para o aprendizado.
- Decodificação: $\arg \max_{\mathbf{x}_{1:t}} P(\mathbf{x}_{1:t}|\mathbf{e}_{1:t})$
 - Descobrir a sequência mais provável de estados, dada a sequência de observações

Aula 10 - 23/11/10

Filtragem (Algoritmo Forward)

· Ideia: Encontrar um algoritmo recursivo

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = f(\mathbf{e}_{t+1}, \mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t}))$$

$$\begin{split} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) &= \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t},\mathbf{e}_{t+1}) \\ &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1},\mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) \\ &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) \\ \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \sum_{\mathbf{X}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t,\mathbf{e}_{1:t}) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \\ &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \sum_{\mathbf{X}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \end{split}$$

 $\mathbf{f}_{1:t+1} = \text{FORWARD}(\mathbf{f}_{1:t}, \mathbf{e}_{t+1}) \text{ where } \mathbf{f}_{1:t} = \mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$

Aula 10 - 23/11/10

