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Preface

Early work in data mining and machine learning did not address the complex circumstances in 
which models are built and applied. It was assumed that a fixed amount of data was available and 
only simple objectives such as predictive accuracy were considered.  Over time, there has been a 
growing interest in the data mining and machine learning communities in research addressing 
economic utility factors related to acquiring data, building models, and applying models.  This 
interest in how utility considerations impact the data mining process led us to introduce the term 
utility-based data mining and to organize the First Workshop on Utility-Based Data Mining, 
which was held during last year's KDD conference.

The second workshop will again bring together researchers and practitioners who are involved in 
all aspects of utility-based data mining. Our goal is to continue to promote a study of all aspects 
of utility-based data mining and examine how utility considerations from different stages of the 
data  mining  process  interact.  We  also  would  like  to  increase  the  communication  between 
researchers and data mining practitioners as well as the communication between those in the data 
mining community and those in related communities,  as evidenced by our choice of invited 
speakers.

We believe the very positive response we have had from both academia and industry during the 
first workshop indicates the importance of utility-based data mining research and hope that the 
second workshop will continue to promote a fruitful exchange of ideas to further advance the 
field. 

We  would  like  to  thank  all  the  researchers  that  submitted  their  recent  work,  our  Program 
Committee, our panelists, and our invited speakers, Russell Greiner and Michael Littman, for 
their generous contributions to this workshop.

Bianca Zadrozny
Gary Weiss

Maytal Saar-Tsechansky
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Budgeted Learning of Probabilistic Classifiers

Russell Greiner
Department of Computing Science

and Alberta Ingenuity Centre for Machine Learning
University of Alberta

Edmonton, Alberta, Canada T6G 2E8

greiner@cs.ualberta.ca

ABSTRACT
Researchers  often  use  clinical  trials  to  collect  the  data 
needed to evaluate some hypothesis, or produce a classifier. 
During this process, they have to pay the cost of performing 
each test.  Many studies will run a comprehensive battery of 
tests on each subject, for as many subjects as their budget 
will allow – i.e., “round robin” (RR).  We consider a more 
general model, where the researcher can sequentially decide 
which single test to perform on which specific individual; 
again subject  to  spending only the  available  funds.   Our 
goal here is to use these funds most effectively, to collect 
the data that allows us to learn the most accurate classifier. 

We first explore the simplified “coins version” of this task. 
After observing that this is NP-hard, we consider a range of 
heuristic algorithms, both standard and novel, and observe 
that our “biased robin” approach is both efficient and much 
more effective than most other  approaches,  including the 
standard  RR  approach.  We  then  apply  these  ideas  to 
learning a naive-bayes classifier, and see similar behavior. 
Finally, we consider the most realistic model, where  both 
the researcher gathering data to build the classifier, and the 
user (e.g., physician) applying this classifier to an instance 
(patient)  must  pay  for  the  features  used  ---  e.g.,  the 
researcher has $10,000 to acquire the feature values needed 
to produce an optimal $30/patient classifier. Again, we see 
that  our  novel  approaches are  almost  always much more 
effective that the standard RR model.

This  is  joint  work with Aloak  Kapoor,  Dan  Lizotte  and 
Omid  Madani.  See  the  Budgeted  Learning  Webpage  at 
http://www.cs.ualberta.ca/~greiner/BudgetedLearning.
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Reinforcement Learning and Utility-Based Decisions

Michael Littman
Department of Computer Science

Rutgers University
Piscataway, NJ, 08854-8019

littman@cs.rutgers.edu

ABSTRACT
In  one  model  of  utility-based  data  mining (UBDM),  the 
primary  concerns  are  the  cost  of  acquiring  data,  the 
computational costs of mining the data, and the benefit of 
using  the  mined  knowledge.   Finding  a  truly  optimal 
strategy over all these sources of utility is intractable.  I will 
describe some recent trends in the reinforcement learning 
literature that deal with a set of analogous problems from a 
PAC perspective and I will attempt to connect these ideas 
back to the UBDM setting.
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Maximizing Classifier Utility when Training Data is Costly 
Gary M. Weiss and Ye Tian 

Department of Computer and Information Science 
Fordham University 

441 East Fordham Road 
Bronx, NY 10458 

 

{gweiss, tian}@cis.fordham.edu 
 
 

ABSTRACT 
Classification is a well-studied problem in machine learning and 
data mining. Classifier performance was originally gauged almost 
exclusively using predictive accuracy. However, as work in the 
field progressed, more sophisticated measures of classifier utility 
that better represented the value of the induced knowledge were 
introduced. Nonetheless, most work still ignored the cost of ac-
quiring training examples, even though this affects the overall 
utility of a classifier. In this paper we consider the costs of acquir-
ing the training examples in the data mining process; we analyze 
the impact of the cost of training data on learning, identify the 
optimal training set size for a given data set, and analyze the per-
formance of several progressive sampling schemes, which, given 
the cost of the training data, will generate classifiers that come 
close to maximizing the overall utility.   

Categories and Subject Descriptors 
I2.6 [Artificial Intelligence]: Learning – induction. 
H2.8 [Database Management]: Database Applications – data min-
ing. 

General Terms 
Algorithms, Performance, Economics 

Keywords 
Data mining, machine learning, induction, decision trees, utility-
based data mining, cost-sensitive learning, active learning 

1. INTRODUCTION 
Classification is an important application area for data mining. 
The quality of a classifier is almost always measured exclusively 
by its performance on new examples. Originally only simple 
measures like predictive accuracy were used. However, as the 
field advanced and more complex problems were addressed, more 
sophisticated performance measures were introduced—measures 

that more accurately reflect how the classifier will be used in its 
target environment. Thus, it is now not uncommon for misclassi-
fication cost information to be considered when evaluating classi-
fier performance or for profit/loss metrics to be used. 
The ultimate goal of utility-based data mining [12] is to consider 
all utility considerations in the data mining process and maximize 
the utility of this entire process. In the case of classification, this 
translates to considering the costs associated with building the 
classifier and the costs/benefits associated with applying the clas-
sifier. As just mentioned, there has been a substantial amount of 
work in properly measuring the costs and benefits of applying the 
classifier. However, with the exception of some work from the 
active learning community, the costs associated with building the 
classifier are often ignored. This is a mistake, since the cost of 
building a classifier can be quite substantial. These costs may 
include the cost of acquiring the training cases, the cost of clean-
ing and preparing the training data, the cost of labeling the train-
ing data and the CPU time and hardware costs associated with 
building the classification model. These costs are described in 
more detail in Section 2. 
In this paper we focus on the cost of acquiring complete, usable, 
training cases, where one has no control over which specific train-
ing examples can be acquired (this differentiates our work from 
the work on active learning). Thus, the value/utility of a classifier 
is the value associated with using the classifier minus the cost of 
the training data used to build the classifier. With this notion of 
utility, if classifier A performs only slightly worse than classifier 
B but is much less costly to generate, classifier A will be consid-
ered the better classifier. In Section 3.3 we formalize this notion 
of total utility so that we can precisely determine when one classi-
fier is “better” than another. The main contribution of this paper is 
that we analyze the trade-off of between acquiring more training 
data (and the concomitant increase in predictive accuracy) and the 
cost of acquiring this data. We show that for each data set and 
learner there is an optimal training set size that maximizes the 
overall utility of the classifier. We then propose two progressive 
sampling schemes and demonstrate that they can be used to gen-
erate classifiers with near optimal overall utility.  

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee. 
UBDM ’06, August 20, 2006, Philadelphia, Pennsylvania, USA. 
Copyright 2006 ACM 1-59593-440-5/06/0008…$5.00. 

2. THE COST OF TRAINING DATA 
This paper focuses on the cost of training data and how it impacts 
the overall learning/data mining process. In this section we de-
scribe in some detail what we mean by the cost of training data. 
We then motivate this research by describing three data mining 
scenarios.  
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2.1 What are the Costs of Training Data? 
In this paper we are concerned with the cost of acquiring labeled 
examples that can be used to train a classifier. In this section we 
describe several of the costs associated with acquiring training 
data. The primary cost we are concerned with is the cost of ac-
quiring the raw, but labeled, training examples. Specifically, we 
assume that a data-mining practitioner can request a batch of b 
examples with some cost c. We assume no restrictions on the 
value of b, although depending on the domain, there may be re-
strictions on b (i.e., you may not have total flexibility in specify-
ing the batch size). We also assume that c does not depend on the 
specific examples, although our analysis is not highly dependent 
on this assumption. Turney [9], who provides a fairly comprehen-
sive list of costs associated with classifier learning, refers to this 
cost as the “cost of cases.” 
Training data often needs to be prepared before it can be used for 
learning. Data preparation may include cleaning the data, remov-
ing outliers and transforming the data into a format suitable for 
mining. These data preparations steps often have a cost associated 
with them—especially if some manual effort is required. Thus, 
even if training cases are free, there still may be a cost for gener-
ating usable training cases. Thus the research described in this 
paper is relevant when there are data preparation costs. 
In many situations unlabeled training cases may be freely avail-
able but there may be a cost for labeling them. Turney refers to 
this as the “cost of teacher” [9]. Our research is also relevant in 
this situation. However, when there is a cost of teacher one may 
selectively label examples, which is an example of active learning 
[1]. Because we assume that the user has no control of the exam-
ples that are requested, we do not cover active learning in this 
paper and hence our work does not apply for situations where 
active learning is used. Nonetheless, in practice active learning is 
not always utilized when there is a cost of teacher. Active learn-
ing can also be used when there is a cost associated with measur-
ing specific feature values. We do not consider this type of cost. 
In summary, our work differs from the work on active learning in 
that we focus on the cost of acquiring complete cases (cost of 
cases), in which one has little or no control over which specific 
cases are acquired. 

2.2 Motivating Examples 
We believe that for many domains there are costs associated with 
acquiring training data and, just as importantly, one has some 
choice in the number of training examples that can be acquired. In 
these situations, it is essential to consider the cost of data acquisi-
tion if one is to maximize the overall utility of the classifier. 
Three examples are provided in this section. 
Based on past experience in industry, we know that it is quite 
common to acquire training data from an external vendor, whose 
business relies on selling information. For example, in order to 
build classification models to classify businesses, we acquired 
summary business data from D&B and detailed survey data from 
Ziff Davis. Companies that sell data typically do not require their 
customers to buy either “all or nothing.” Depending on the com-
pany, a customer may be allowed to choose a number of records 
and pay based on that number or choose from a set of predeter-
mined levels of data coverage and pay based on that level of cov-
erage. 

A second example comes from the task of classifying a phone line 
as belonging to a residential or business customer based on the 
pattern of phone usage. Information describing every phone call is 
recorded as a call-detail record, which is generated in real-time 
and stored sequentially. Because the classification task requires 
examples to be at the phone-line level, all of the call detail re-
cords associated with each phone number must be aggregated. 
Given that billions of call-detail records are generated every 
month and because the aggregation step requires sorting all of 
these records, this data preparation step is very expensive in terms 
of both disk space and CPU time. Thus, in this domain the train-
ing examples were expensive even though the raw data was essen-
tially free. 
The third example comes from the domain of game playing. If our 
goal is to learn something about an opponent so that we can de-
sign a game-playing strategy tailored to this opponent, the train-
ing data will usually be costly, in terms of time or in money if 
betting is involved. For example, if you want to learn something 
about an opponent in poker “you may play only 50 or 100 hands 
against a given opponent and want to quickly learn how to exploit 
them” [3]. 
We hope that the descriptions of the various costs and these two 
simple examples motivate the need to factor in the training data 
costs when building a classifier. It is interesting to note, however, 
that except for the work on active learning, as described in more 
detail in Section 6, very little research has addressed this issue. 
Specifically, past research does not address the “cost of cases” at 
all. This is true even though learning curves, which describe the 
relationship between training set size and classifier performance, 
are well known and frequently studied—they are just rarely used 
in practice. 

3. DESCRIPTION OF EXPERIMENTS 
The experiments in this paper vary the training set size and then 
track the accuracy of the induced classifier. This performance 
information is then combined with cost information in order to 
determine the overall utility of the classifier. We outline our ex-
perimental methodology in Section 3.1, summarize the data sets 
we analyze in Section 3.2 and discuss how we measure total util-
ity in Section 3.3. 

3.1 Experimental Methodology 
All of the experiments in this paper use C4.5 [8], a popular deci-
sion tree learner that is a descendant of ID3. In order to determine 
the relationship between training set size and predictive accuracy, 
training sets are generated with a variety of sizes. The data is 
partitioned via random sampling as follows. For each experiment, 
25% of the data is randomly selected and allocated to the test set, 
while the remaining 75% of the data is potentially available for 
training. However, because we want to vary the training set size, 
for most experiments only a portion of this 75% will be assigned 
to the training set (the remainder is not used). All results in this 
paper are based on averages over 20 runs, in order to increase the 
statistical significance of our results. Because it does not take 
much CPU time to build the models for any of the data sets ana-
lyzed in this paper, the use of multiple runs does not seriously 
limit our work. In future work we may investigate the use of sin-
gle runs if the size of the training sets warrants it. 
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We investigate two simple sampling schedules. Sampling sched-
ule S1 uses the following training set sizes: 10, 50, 100, 500, 
1000, 2000, …, 9000, 10000, 12000, 14000, 16000, etc. Specifi-
cally, after the first five training set sizes the training set size is 
incremented by 1,000 until the training set size reaches 10,000, 
after which the training set size is incremented by 2,000. Our 
second sampling schedule, S2, starts with a training set size of 50 
and then successively doubles the training set size. This geometric 
sampling scheme is motivated by previous work on progressive 
sampling, which shows that given certain assumptions (which do 
not hold in this paper), this schedule is asymptotically optimal [7]. 
This previous work on progressive sampling is described in Sec-
tion 6. For sampling schedules S1 and S2, in addition to evaluat-
ing the training set sizes just described, the largest possible train-
ing set size (i.e., 75% of the data set size) is also evaluated. For 
some of the plots in our results section, Section 4, some additional 
training set sizes were evaluated in order to improve the granular-
ity of our results. These additional training set sizes were not used 
in Section 5, where we discuss a progressive sampling strategy. 

3.2 Data Sets 
We analyze the ten data sets described in Table 1. In order to 
improve the presentation of our results, the data sets are parti-
tioned into two groupings based on their relative sizes: large and 
small. Table 1 also lists the total number of examples in each data 
set. The data sets were obtained from the UCI Machine Learning 
Repository [6], except for those marked with an asterisk, which 
were originally made available from researchers at AT&T (these 
data sets are available from the author). 

Large Data Sets Small Data Sets 
adult 21,281 kr-vs-kp 3,196 
coding* 20,000 move* 3,029 
blackjack* 15,000 german 1,000 
boa1* 11,000 breast-wisc 699 
network1* 3,577 crx 690 

Table 1: Description of Data Sets 

3.3 Measuring Total Utility 
We evaluate the performance of the induced classifiers based on 
total utility because we need to take the cost of training data into 
consideration. Thus, our utility metric must take into account the 
cost of training data (data cost) and the cost of classification er-
rors (error cost). We do not include other possible costs, such as 
the CPU time cost associated with training the classifier, although 
we do record these CPU times and comment on their potential 
impact on total utility. In future work we plan to consider these 
and other costs in the utility metric. Total cost is defined below in 
equation 1. 

Total Cost = Data Cost + Error Cost        [1] 

Before we can understand the error cost term, some background is 
required. For our experiments, a classifier is built from training 
data and its accuracy is evaluated using separate test data. The 
purpose of any classifier is to classify new, unlabeled, exam-
ples—not the test set. We thus assume the existence of a score 
data set, S, which the user will apply the classifier to, over some 
period of time. The error cost will be based on the number of 

errors we expect to get when classifying the score data set, which 
can be estimated as the error rate on the test set multiplied by the 
size of S, denoted |S|. Thus error cost is directly proportional to 
|S|. Although we do not know the value of |S| for any of the data 
sets in this paper, a domain expert should be able to estimate its 
value, although this may not always be a simple task (e.g., it may 
depend on how long the classifier is used, how successful it is, 
etc.). 
For each experiment we know the number of training examples, n, 
and the estimated error rate, e, based on the performance of the 
classifier on the test set. We assume that there is some fixed cost 
Ctr for acquiring each training example and some fixed cost Cerr 
for each error made on an example in the score data set. Data cost 
will then equal n·Ctr and error cost will be estimated as e·|S|·Cerr. 
The total cost for a classifier then is given by equation 2, which is 
our measure of total utility. 

Total Cost =  n·Ctr + e·|S|·Cerr        [2] 

With specific domain knowledge we would be able to estimate 
Ctr, Cerr, and |S| and thus calculate total cost. However, in our 
case we do not know these values. Therefore we need to treat 
them as variables and analyze a wide range of values in order to 
properly analyze a data set. The problem with this situation is that 
three variables make a thorough analysis difficult. However, we 
can reduce this to two variables by arbitrarily assuming |S| is 100. 
This does not reduce the generality of our results because we can 
easily account for other values of |S| via a simple calculation. 
Namely, error cost is proportional to the product |S|·Cerr so that if 
we find that |S| is 100,000 instead of 100, we can simply look at 
the experiment results for Cerr/1,000 rather than Cerr. In a sense, 
we are measuring error cost in terms of every 100 score examples 
and then adjusting for different score set sizes. 
Given that we now only need to track Ctr and Cerr, for analysis 
purposes we can simplify things further by only tracking the ratio 
of these two variables. While the real total cost will depend on the 
actual constants, the optimal training set size, for example, will 
only depend on the ratio of the costs. So, in our results we simply 
report the cost ratio, Ctr:Cerr, where Ctr is typically 1, the unit 
cost, and Cerr ≥ 1. Because we want to plot our results using nu-
merical values, we often use the relative cost or relative cost ratio 
instead, which is simply Cerr/Ctr.  For example, if the cost ratio is 
1:100 then the relative cost ratio is 100. Note that in this case we 
can say that from a utility perspective it is an even trade-off to 
purchase 100 training examples if it will reduce the number of 
errors by 1, assuming |S| is 100. We can remove the condition on 
|S| by stating things in a slightly different manner: purchasing 100 
training examples leads to an even trade-off if it results in a 1% 
reduction in error rate. 
As an example, we can compute the total cost associated with one 
of the experiments reported in this paper, which uses the adult 
data set. For this particular experiment, n is 1500 and the error 
rate of the resulting classifier is 15.8%. The cost ratio is 1:1000 
and, as discussed, for now we presume the score set will have 100 
examples. Using equation 2, the total cost is then: 
 Total cost = 1500·1 + .158·100·1000 = 1500 + 15800 = 17,300 
One potential issue with the utility measure in equation 2 is that if 
|S| is sufficiently large then the second term will dominate the 
first, in which case the cost of acquiring the training data is not 
important. Will the error cost term always dominate the data cost 
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term? We do not believe so for several reasons. First, for some 
domains the cost of acquiring training data is very significant and 
once the learning curve begins to flatten out it may take tens or 
hundreds of thousands of training examples to improve accuracy 
by even a tenth of a percent. In this region, even if |S| is very 
large, the first term may still play a significant role. It is within 
that region that we expect our cost model to be most useful. In 
addition, |S| need not always be extremely large. For example, in 
the poker example mentioned in Section 2.2 one will not typically 
play a large number of poker hands against a single opponent. 
Finally, other work in the field seems to support our intuition that 
data cost is important. For example, the entire field of active 
learning is based on the assumption that error cost will not totally 
dominate the data cost—if it did then active learning would be 
unnecessary. 
We conclude this section on measuring total utility by noting that 
total cost is not the only metric we could have used to measure 
utility. We could alternatively have factored in a benefit for each 
correctly classified example and a cost for each incorrectly classi-
fied example. However, given the goals of this paper we do not 
believe that there is much value in also evaluating this perform-
ance metric, although we recommend that practitioners use this 
alternative metric if it makes sense for a specific domain. 

4. RESULTS 
This section includes our main results. Section 4.1 describes how 
we use the cost ratio information to analyze the learning curve 
data generated by our experiments. Section 4.2 presents detailed 
results for a representative data set and then Section 4.3 provides 
summary results for the remaining data sets. 

4.1 Analyzing the Impact of the Cost Ratio 
The basic experiments in this paper involve generating the learn-
ing curves for each data set. In order to analyze these results, we 
need to vary the cost ratios and then see how this impacts the total 
utility of the classifier. In particular, we want to determine the 
optimal training set size for any cost ratio and we would like to 
see how this optimal training set size changes as the cost ratio is 
varied. 
In our analysis we examine a wide range of cost ratios. We cannot 
focus on the most realistic values since those values are domain 
specific and we do not have the requisite domain knowledge. 
Rather, we try to examine a sufficient range of cost ratios so that 
we hit the “two extremes” and sample some points in between. 
Specifically, for each data set we strive to analyze cost ratios such 
that for one of the cost ratios the optimal strategy is to acquire 
almost no training data (≤ 10 examples) and for another cost ratio 
the optimal strategy is to acquire all possible training data. 
The cost ratio that leads us to acquire all of the training examples 
may be quite high, such as 1:50,000 (the cost ratio required by the 
adult data set). This cost ratio, which says that the cost of an error 
is 50,000 times that of the cost of a training example, may appear 
to be unrealistic, but that is not necessarily so. For example, if we 
have a direct marketing campaign where it costs $1 to produce 
and mail a catalog and the demographic information that is pur-
chased to help build a predictive model is $100 per 10,000 house-
holds, one can see that a training example is very cheap relative to 
the cost of an error ($1 for each household that was mistakenly 
predicted to make a purchase). Also recall that the errors are per 
100 score examples. The cost ratio of 1:50,000 with 100 score 

examples is equivalent, as described in Section 3.3, to a cost ratio 
of 1:50 if there are 100,000 examples in the score set. Stated more 
generally, a cost ratio of 1:50,000 means that purchasing 50,000 
training examples leads to an even trade-off if the error rate is 
reduced by 1%. This certainly seems like it could be a reasonable 
trade-off. 

4.2 Detailed Analysis of the Adult Data Set 
Our analysis of the adult data set begins with its learning curve, 
shown in Figure 1. As is common for learning curves, there is a 
very steep increase in accuracy at first which then diminishes as 
more training data becomes available. It is worth noting that the 
learning curve for this data set never reaches an asymptote, even 
when there are more than 15,000 training examples. What is par-
ticularly interesting is that the learning curve shows a small but 
steady increase in accuracy for an extended period of time—as 
the training set size grows from 4,500 to 15,960 training examples 
the accuracy increases from  85.0% to 85.9%. Also note that the 
learning curve is not smooth like an idealized learning curve and 
in a few cases shows a decrease in accuracy as the training set 
size increases (we expect these statistical aberrations would dis-
appear given an infinite number of runs with random sampling). 
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Figure 1: Learning Curve for Adult Data Set 

Given the learning curve data it is straightforward to compute the 
total cost for a variety of cost ratios, by using equation 2 (recall 
that |S| is fixed at 100). In figure 2 total cost is plotted versus 
training set size for six different cost ratios (Ctr:Cerr). 
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Figure 2: Utility Curves for Adult Data Set 
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If we look at the 10:1 cost ratio, which places the highest relative 
cost on the training data (and is the only case where Ctr>Cerr), we 
see that the curve is linear. The reason for this is that in this situa-
tion data cost completely dominates error cost, so that total cost 
essentially equals data cost and hence is directly proportional to 
the size of the training set. When the ratio shifts to 1:1, data cost 
still dominates, but the slope is less because the total cost is now 
much less (approximately one-tenth the cost for 10:1). As the cost 
ratio continues to shift toward a higher relative cost for errors, the 
curve becomes non-linear and the minimum total cost (identified 
for each curve by the large square marker) no longer is at the 
minimum training set size, but rather shifts towards the larger and 
larger training set sizes. At a relative cost of 1:7500, the lowest 
cost is achieved with a training set size of 6,500. 
One problem with Figure 2 is that the total cost rises as the cost 
ratio becomes more skewed, which obscures some of the changes 
of the curves with lower total cost. To fix this problem we nor-
malize each curve by dividing the total cost by the maximum total 
cost associated with the curve. The results for normalized cost are 
shown in Figure 3. This method for representing the results also 
permits us to examine higher cost ratios and shows us that for a 
cost ratio of 1:50,000 the optimum strategy is to use all of the 
training data. 
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Figure 3: Normalized Utility Curves for Adult Data Set 

Figure 3, in conjunction with Figure 1, shows that once the learn-
ing curve begins to flatten out, a great increase in the cost ratio is 
required for it to be worthwhile to use more training data. This is 
encouraging in that once we get past a certain point, the optimal 
training set size is not overly sensitive to the exact value of the 
cost ratio; hence a good estimate of this ratio should be adequate. 
Figure 3 also makes it clear that using all of the potentially avail-
able training data is not a good strategy—for most relative cost 
ratios the total (normalized) cost is much lower for the optimal 
training set size than when the maximum number of training ex-
amples are used.  
Figure 4 provides the most highly summarized information con-
cerning the adult data set. It shows, for each relative cost 
(Cerr/Ctr), the optimum training set size. The optimum training 
set size curve can be used by a practitioner to determine the 
amount of training data to obtain even if the precise cost ratio is 
not known (in Section 5 we introduce a progressive sampling 
strategy to find this optimum without first requiring all of the 
potentially available training data). At a minimum, curves like 

those in Figure 4 can inform a data mining practitioner of the 
trade-offs involved. We provide the associated accuracies beneath 
some of the data points, to help correlate these results with the 
learning curve results in Figure 1. 
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Figure 4: Optimal Training Set Sizes for Adult Data Set 

The shape of the optimal training set size curve in Figure 4 de-
serves some discussion. This curve is not smooth and this is not 
because we only calculate the optimal training set size for certain 
relative costs. The curve is not smooth because the learning curve 
in Figure 1 is not smooth. You may also note that there is a sharp 
increase in slope when the relative cost increases from 4,000 to 
5,000 (between these two values the optimal training set size 
jumps from 1,400 to 5,000 examples). This is due to the fact that 
the learning curve in Figure 1 temporarily shows a small decrease 
in accuracy when the training set size increases beyond 1,400 and 
hence the cost ratio must increase significantly to overcome the 
“burden” of purchasing training examples which do not increase 
the accuracy of the classifier. 

4.3 Summary Results for all Data Sets 
In this section we present summary results for all of the data sets. 
Figures 5 and 6 show the learning curves for the large and small 
data sets, respectively. Note that for many of the data sets a pla-
teau is not reached using the available training data. For some, 
like coding, the performance is still improving relatively rapidly, 
while for others, like adult, it is improving only slowly.  
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Figure 5: Learning Curves for Large Data Sets 
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Figure 6: Learning Curves for Small Data Sets 

Figures 7 and 8 show the optimal training set sizes for the large 
and small data sets, respectively (the curve for adult is not pro-
vided again). Note that once the relative cost is sufficiently high, 
all of the potentially available training data will be used and then 
the optimal training set size curve will flatten out completely. 
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Figure 7: Optimal Training Set Sizes for Large Data Sets 
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Figure 8: Optimal Training Set Sizes for Small Data Sets 

5. Progressive Sampling Strategies 
The results in Section 4 demonstrate that one can improve overall 
classifier utility by properly trading-off the cost of acquiring addi-
tional training data with its benefits (i.e., fewer errors). However, 

to be of practical use, we need a strategy that identifies a good 
(near-optimal) training set size g without acquiring/using more 
than g training examples. That is, we must “pay” for training ex-
amples “up front”, so once we acquire them we will always use 
them. The strategy used in Section 4 of trying a variety of training 
set sizes up until the maximum number available makes no sense 
in this context. What we need is a progressive sampling strategy 
to identify g while purchasing only g examples. 

5.1 Overview of Progressive Sampling 
The general outline of a progressive sampling strategy is simple. 
You begin with some initial amount of training data and then, 
iteratively, build a classifier, evaluate its performance and acquire 
additional training data. There are two key decisions faced by 
such a progressive sampling algorithm: 1) when to terminate the 
loop and stop acquiring training data, and 2) how many training 
examples to acquire at each iteration (i.e., the batch size). 
In our progressive sampling experiments we use a simple stopping 
strategy: we stop obtaining more training data after the first ob-
served increase in total cost. Note that this guarantees that we will 
not achieve the optimal cost because, at minimum, there is one 
better training set size (i.e., the one observed before the increase). 
That is, once we have acquired additional training data we have 
incurred the cost associated with purchasing it, and must include 
this cost we analyzing the performance of the progressive sam-
pling strategy. If the accuracy of the learning curve is non-
decreasing, then this stopping condition will lead to a training set 
size that is very close to optimal. Our results show that the actual 
learning curves are not always non-decreasing, but this does not 
usually have a big impact on the results.   
The choice of how much additional training data to acquire at 
each iteration is decided by a sampling schedule. In this paper we 
only evaluate very simple, non-adaptive sampling schedules, al-
though more sophisticated ones are described later as possible 
future work. We utilize the sampling strategies S1 and S2 that 
were described in Section 3.1 as our progressive sampling strate-
gies. With a few exceptions, S1 samples every 1000 examples 
whereas S2 uses a geometric sampling scheme that starts with 50 
examples and then repeatedly doubles the training set size. 

5.2 Progressive Sampling Results 
This section presents the results of the two progressive sampling 
strategies, S1 and S2. As described earlier, each strategy termi-
nates after the first observed increase in total cost. Because we 
want to see how well these strategies perform, we compare them 
to the “optimal strategy” that always selects the optimal training 
set size and cost based on S1 (which samples more frequently 
than S2). We also compare these progressive sampling strategies 
to our “straw man” strategy, which simply uses all of the avail-
able training data.1  This second comparison quantifies the benefit 
of considering the training data cost when building a classifier, 
since without such knowledge a reasonable strategy would be to 
use all potentially available training data. 
                                                                 
1 There may not always be a maximum “amount of available 

training data” for a data set, but in many cases there will be 
(e.g., the number of records describing businesses is limited by 
the number of businesses). In this paper we assume that the only 
data available is in the original data set and the maximum 
amount available for training is equal to 75% of this amount.   
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5.2.1 Detailed Results for the Adult Data Set 
We begin by presenting detailed results for the adult data set. 
Table 2 presents the results for the progressive sampling strategies 
S1, S2 and the “optimal” version of S1, Optimal-S1. We report 
the results for a variety of relative cost ratios. For each cost ratio 
and strategy, we report the selected training set size, the total cost 
and the CPU time, in seconds, associated with all of the experi-
ments used to identify that training set size. For example, for a 
relative cost ratio of 10,000 a training set size of 9,000 yields the 
optimal cost, which is 152,900. The total CPU time required is 
9.15 seconds, which is the time to build all of the classifiers using 
the sampling schedule, up until the training set size of 10,000. 

Relative
Cost Ratio Size Cost CPU Size Cost CPU Size Cost CPU

1 10 34 0.00 50 74 0.00 100 122 0.00
10 10 25 0.00 50 292 0.00 100 319 0.00
20 500 2,233 0.20 50 2,470 0.00 100 538 0.00

200 500 3,966 0.20 1,000 4,266 0.53 800 4,060 0.40
500 500 9,165 0.20 2,000 9,945 1.23 1,600 9,480 0.92

5,000 5,000 79,450 4.17 6,000 79,800 5.27 12,800 83,700 14.84
10,000 9,000 152,900 9.15 7,000 154,700 6.48 12,800 154,600 14.84
15,000 9,000 224,850 9.15 7,000 228,550 6.48 15,960 226,860 20.88
20,000 9,000 296,800 9.15 7,000 302,400 6.48 15,960 297,160 20.88
50,000 15,960 721,460 20.89 7,000 745,500 6.48 15,960 718,960 20.88

Optimal-S1 S1 S2

 
Table 2: Progressive Sampling Strategy Comparison for Adult 

Table 2 shows us that S1 and S2 are quite effective strategies, 
since they come relatively close to achieving the optimal cost. 
The S2 strategy seems to outperform S1, although if more training 
data were available we would expect S1 to do better—since each 
strategy stops one iteration after the lowest cost that extra step 
would be more costly for S2, which geometrically increases the 
training set size. Our total cost metric does not factor in CPU 
time, but the results for the adult data set indicate that this is 
probably okay, since the CPU times are all quite small. However, 
this might not be true for much larger data sets. We discuss exten-
sions to the total utility metric to factor in the cost of computation 
in Section 7. 
Figure 9 compares the performance of the S1 and Straw Man 
strategies for cost ratios below 1:10,000. Note that the x-axis is 
not scaled in this case, in order to make the results easier to read. 
We see that the straw man strategy of just using all of the training 
data independent of the relative cost ratio leads to very poor re-
sults until a relative cost ratio of about 1:10,000 is reached. This 
motivates the need and benefit of factoring in the training data 
cost when building a classifier. 
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Figure 9: Comparison of S1 and Straw Man Strategies for Adult 

5.2.2 Summary Results for the Large Data Sets 
A comparison of the performance of the S1 strategy with the S1-
optimal strategy, for the five large data sets, is provided in Table 
3. The results show that the S1 progressive sampling strategy is 
quite effective, except for very low relative costs. In these situa-
tions the training data is relatively expensive and the stopping 
criteria, which requires that the sampling strategy go past the 
optimal training set size, is heavily penalized. An adaptive sam-
pling strategy that reduces the batch size as increases in training 
set size lead to smaller improvements in total utility would likely 
reduce the impact of this problem. The results for the S2 strategy 
are not included in this section due to space considerations and 
because it is not that different than the S1 sampling strategy given 
the amount of available training data (it would be very different if 
the data sets were much larger).  

Relative
 Cost Ratio Adult Blackjack Boa1 Coding Network1

1 115.7% 53.2% 70.1% 62.8% 91.0%
20 10.6% 34.6% 5.1% 2.0% 0.7%

500 8.5% 1.0% 1.2% 2.1% 2.7%
1,000 3.2% 2.6% 2.3% 0.6% 3.6%
5,000 0.4% 1.4% 4.7% 0.2% 1.5%

10,000 1.2% 1.1% 5.9% 0.0% 1.3%
15,000 1.6% 1.6% 6.3% 0.0% 1.2%
20,000 1.9% 1.9% 6.5% 0.0% 1.1%
50,000 3.3% 0.7% 6.9% 0.0% 1.0%

Increase In Total Cost: S1 vs. S1-optimal

 
Table 3: Optimal vs. S1 for Large Training Sets 

Table 4 compares the straw man strategy with the S1 progressive 
sampling strategy for the five large data sets and shows that, con-
sistent with the results presented in Figure 9 for the adult data set, 
the straw man strategy performs very poorly when the relative 
cost ratio is below a certain threshold. After a point they perform 
similarly and the straw man strategy is even sometimes superior, 
because the S1 strategy sometimes stops prematurely, due to a 
temporary decrease in accuracy in the learning curves. If more 
training data were available, such that the learning curves reached 
a plateau with only a fraction of this training data, we would then 
expect the straw man strategy to perform poorly even for these 
higher cost ratios. 

Relative
Cost Ratio Adult Blackjack Boa1 Coding Network1

1 21428.5% 12024.0% 8345.6% 15880.9% 3270.9%
20 557.6% 976.5% 802.6% 1539.2% 381.0%

500 131.4% 61.3% 27.9% 43.7% 5.8%
1,000 68.1% 26.1% 11.0% 13.4% 0.0%
5,000 8.4% 2.9% -2.6% 0% 0%

10,000 1.5% 0.4% -4.3% 0% 0%
15,000 -0.4% -0.4% -4.9% 0% 0%
20,000 -1.4% -0.8% -5.2% 0% 0%
50,000 -3.2% 0.1% -5.7% 0% 0%

Increase In Total Cost: Straw Man vs. S1

 
Table 4: Straw Man vs. S1 for Large Training Sets 

We have not shown the CPU times required by the progressive 
sampling strategies, except for the adult data set. However, these 
times are under a minute in every case and hence the cost of com-
putation does not appear to be a significant consideration for these 
data sets.  
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6. RELATED WORK 
Previous research, to the best of our knowledge, does not directly 
address the cost of cases that we address in this paper. However, 
there is a substantial amount of research that studies related costs 
and issues. We describe these research efforts in this section and 
comment on how they relate to our work. 
Work on progressive sampling has focused on efficiently finding 
the training set size where the learning curve reaches a plateau 
[7]. The motivation for that work is to reduce the cost of computa-
tion—the training data cost is not taken into account. If we ignore 
the cost of computation, the past work on progressive sampling is 
a special case of our work, where the cost of training data is arbi-
trarily small, but non-zero (if it were zero one would just use all 
of the available training data even if a plateau is reached). This 
previous work showed that a geometric sampling scheme, similar 
to our S2 strategy, is asymptotically optimal, with respect to the 
cost of computation (not with respect to training data cost). As 
described shortly, we plan to generalize our work to include the 
cost of computation, at which point our work will subsume this 
previous work on progressive sampling. 
Weiss and Provost [11] factored in the cost of cases, but only in a 
limited way. The assumption in that work was that the cost of 
cases limited the amount of training data and this amount is al-
ready specified. The only decision in that work was what class 
distribution should be used for training in order to maximize clas-
sifier performance. That work also used a progressive sampling 
strategy, although the goal in that case was to identify the optimal 
class distribution. 
In this paper we assume that one has no control over which exam-
ples are added to the training data. That is, if there is a cost asso-
ciated with labeling an example, we cannot selectively choose 
which examples to label and if there is a cost associated with 
measuring feature values, we cannot determine which examples to 
add based on these feature acquisition costs. Thus, we do not 
consider active learning methods which have been used in other 
work [1, 4, 10, 13].  Nonetheless, one does not always have the 
freedom to use active learning methods (e.g., in the scenario 
where one is purchasing data from an external source). Also, 
much of the work on active learning assumes a fixed budget [4], 
in which case the decision is just which examples are best to label 
or features to measure, and there is no need to determine when to 
stop acquiring more training data. The closest match to our re-
search from the active learning community is research where the 
marginal utility of each example is estimated and this is used to 
determine how many examples to label [5].  
One of the contributions of our research is that it shows how the 
optimal training set size varies based on the relative cost of train-
ing examples versus errors. These optimal training set size curves 
may be useful even if the specific cost ratios are not known.  The 
cost curves of Drummond and Holte [2] are quite analogous to 
our optimal curves, except that their curves show the optimal 
performance based on the ratio of the cost of a false positive to a 
false negative classification error, rather than the cost of a training 
example versus the cost of an error. Both their curves and ours 
can aid a practitioner who must make decisions about how to 
generate the best classifier. 

7. LIMITATIONS AND FUTURE WORK 
The work described in this paper has several limitations and can 
be extended in many ways. In this section we describe some of 
the limitations and possible future extensions. We expect to ad-
dress many of these issues in the near future. 
One of the limitations of our work concerns the size of the data 
sets. Ideally we would have sufficient training data for all of our 
data sets so that the learning curves would always reach a plateau. 
If that were the case then additional data would not be of any 
benefit and then we could completely analyze the behavior of the 
data set with respect to training set size. Unfortunately, for many 
of our data sets a plateau is not reached. It would therefore be 
valuable to analyze much larger data sets, especially those that are 
complex enough to require a great deal of training data in order 
for the learning curve to reach a plateau.  
Our utility metric considers the cost of data but not the cost of 
computation (i.e., CPU time). We intend to include the cost of 
computation in future analyses. However, since both progressive 
sampling strategies required less than one minute of CPU time 
when applied to each of the ten data sets, it is important that we 
first obtain much larger and more complex data sets. In addition, 
we intend to analyze more sophisticated sampling schedules, in-
cluding adaptive schedules, where the amount of training data 
requested in each “batch” varies based on the expected change in 
total cost (which could be extrapolated based on the changes in 
total cost for the previous batches). These more sophisticated 
schemes would be more likely to find the true “optimal” training 
set size, by reducing the batch size as the marginal utility of add-
ing training data approaches zero. Note that this behavior is the 
opposite of what happens when the cost of computation is the 
main cost; the past work on progressive sampling increases the 
batch size over time since it uses a geometric sampling 
scheme[7]. 

8. CONCLUSION 
This paper analyzed the impact of training data cost on total clas-
sifier utility, where total utility considers the cost of the training 
data as well as the performance of the classifier on classifying 
new examples. We introduced a variety of charts to help visualize 
the relationship between training data cost, the cost of errors and 
total utility. We also identified the optimal training set size for 
different data sets and different cost ratios and showed that over-
all utility can be substantially improved by not using all of the 
training data that is potentially available. Two simple progressive 
sampling strategies were also introduced and were shown to be 
relatively effective in finding the optimal training set size and 
optimal total utility. Furthermore, one of these progressive sam-
pling strategies was shown to outperform the “straw man” strat-
egy of using all potentially available training data. The research 
described in this paper fills in a “hole” in the area of Utility-Based 
Data Mining by considering the cost of training cases in the data 
mining process. 
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ABSTRACT
In order to familiarize oneself with a rich new world, one
needs to learn a great deal. This massive learning includes
learning to recognize myriad categories and learning to make
use of them for learning other categories. The process of
playing prediction games may make this massive learning
possible. In this paper, we describe prediction games and
present a discussion of properties of algorithms and systems
that would play them well. The great potential of prediction
games is in pointing to ways of achieving powerful large-scale
learning without the need for human supervision.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning - Induction

General Terms
Algorithms

1. INTRODUCTION
We introduce the learning process of playing prediction

games in an infinitely rich world. Prediction games may be a
step toward making powerful massive unsupervised learning
possible. The learned outcome could find tremendous use.

The games are played by a system that takes its sequence
of inputs from the world and makes learning episodes out
of it. Our running example will be prediction in text, i.e.,
playing prediction games in the world of natural language,
as available in the online text. One such game is fill-in-
the-blank, played as follows: the system repeatedly inputs a
sentence and hides a portion of it such as a word or phrase.
Several components of the system then become active and
make predictions about what is missing using the available
context. The activated components may then be updated
according to the answer, which is available. The system
moves on to the next learning opportunity.
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The important point is that the amount of training in-
stances is viewed as unbounded. All the learning subpro-
cesses work to improve prediction. The utility is in terms of
the operationality of the prediction system: coverage, depth,
accuracy, and speed. In the case of prediction in text, the
learned system may lead to significant practical improve-
ments in statistical language modeling or complement cur-
rent techniques [16]. Byproducts of such processes, as we
explain, include learning associations and discovering new
concepts. We next describe infinitely rich worlds and predic-
tion games in more detail. We motivate a systems approach
for playing these games and discuss desiderata on solution
techniques and some of the challenges we see, such as scala-
bility and prevalence of noise. We briefly describe the work
we have begun in this direction. Besides prediction in lan-
guage, we mention possible games in other worlds. We give
the wider context and motivation for prediction games, and
situate prediction games with respect to existing learning
frameworks.

2. PREDICTION GAMES
Prediction games are proposed to make massive learning

possible. By massive learning, we mean learning in the order
of millions of categories and beyond, and estimating values
for variables in the order of billions, and beyond. Prediction
games consist of an infinitely rich world and a system that
plays the games in that world.

We will use prediction in text as our main example, and
in particular the fill-in-the-blank game, as explained in the
introduction: every sentence or passage in the online text
can serve as a source of one or more learning episodes. In
each game the system hides a portion of an input sentence,
say a word or a phrase, and sees how well it can predict it,
using the context derived from the rest of the sentence and
possibly the broader context such as the passage, the page,
and so on. For example, in the sentence, “I rode my bike
to school”, the word “bike” could be covered, and then the
question posed by the system to itself is what can replace X

in “I rode my X to school”. The answer may be in the form
of a single phrase, or several candidate phrases ranked (e.g.,
“bike, vehicle, motor bike, car, horse, table,..”) or assigned
probabilities. If we constrain the context to the words and
sentences occurring before X, we obtain the game of predict-
the-next-word, which is also the typical problem addressed
by statistical language modeling [16, 7].

2.1 The Fundamental Role of Concepts
In describing the world and the system we make use of
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the work on categories or concepts1 in cognitive psychology
[14]. An infinitely rich world has a few properties. First,
an infinitely rich world is a source of unbounded experience.
Ample learning experience is a prereqisite for achieving mas-
sive learning. Second, the world is also infinitely rich in that
it enjoys infinitely many regularities. These regularities are
in the form of the many categories that entities in the world
can be grouped into. For us, a category is a very general
notion and in our every day world includes groupings of
physical things, events, actions, feelings, and so on. Ex-
ample categories include: “red”, “happy”, 2 “office chair”,
“my father”, “southern lakes”, and so on. In prediction in
text, categories are sets of words. From the view point of the
system, we may think of concepts (hardwired or learned cat-
egories) as an implicit set of vector values (feature values or
stimuli) for which membership in the set can be determined
by some components of the system at adequate accuracy
and efficiency levels.

There is an infinity of ways in which to carve up a rich
world into various categories. Learned new categories for the
most part should serve a purpose for the system. Here, the
main purpose is improving overall prediction ability. Cate-
gories serve as great abstractors. Without them, one could
not learn from the past, every experience would be brand
new, and one would not be able to predict. Categories are
fundamental in dealing with a rich world. If they are effec-
tively discovered and recognized, the problems of sparsity in
natural language and handling invariance in vision are ade-
quately addressed. Categories are necessary for intelligence.

The regularities in the world are also in the form of the
many types of relations that the categories tend to enjoy
with one another, such as temporal or spatial co-occurrence,
part-of, friends, or generalization and specialization rela-
tions (e.g., the category “animal” is a generalization of the
category “dog”). Relations help in predicting categories and
learning new ones.

Each learning episode contains a few categories that com-
prise the context (the features) to be used for prediction, and
a category to be predicted. Many categories, the raw cate-
gories, are hard-wired: their detection in a learning episode
is achieved by some component of the system that was part
of the system from the outset. Many categories will be con-
structed (discovered) by the system. A new category can
be a grouping of several existing categories, or may be a re-
finement of an existing category. For example, a category
corresponding to the to-be family of verbs may be discov-
ered at some point: it is recognized whenever any of the
to-be verbs (“is”, “are”, “was”,..) in their various forms
are present. The category “bank” can be refined into the
financial-institution sense, the physical building sense (that
houses the financial institution), and the side-of-river sense.

Improving prediction performance is the main driver for
learning new categories. Other factors include the difficulty
of discovering the category and recognizing it. A category
has to have some use for the system to spend resources for

1In cognitive psychology, a distinction is made between a
category in the external world and the concept of it, as rep-
resented internally in the mind [14]. This is an important
distinction, but in this paper to simplify the presentation,
we don’t make a distinction.
2The system playing the game is viewed here as part of the
world. Therefore, parts of the system may learn to predict
the current or subsequent state of other parts.

detecting it. New categories, once learned, are treated the
same way as raw categories: they serve as features to de-
fine context and they are treated as targets to be predicted,
though their detection may take longer time than raw cate-
gories.

In text prediction, each possible phrase is treated as a raw
category. Detection of these categories may be regarded as
hard-wired (NOT learned). Simple features include those
corresponding to presence of phrases, and those correspond-
ing to relative position of the phrase with respect to the
phrase to be predicted (e.g., a feature can correspond to the
word “drink” appearing in two positions before the word
to be predicted). More complex features that may be only
evaluated part of the time include part of speed tagging
and parsing output. Thus, the number of features (learn-
ing dimensionality) and classes can be in the millions and
beyond. After some learning, the features extracted from
the sentence “He flies frequently to X” includes raw fea-
tures such as the word “flies” appears 3 positions before, as
well as more abstract features such as one corresponding to
the composite category “traveling-action” appearing before
target with confidence 0.6. The system’s predictions for X

may include the names of a few locations, such as cities or
travel destinations, as well as categories or groupings that
correspond to travel destinations.

2.2 An Abstraction
We may view prediction games as a table or matrix of

instances and target values, < xi, yi >, just as is common in
supervised learning. However the table has infinitely many
rows, and the dimensionality and the set of categories to be
predicted are unbounded as well. Each row corresponds to
an instance or an episode and the last column, the target
column to be predicted, corresponds to a category.

In text prediction, each phrase serves as a category, so new
phrases will be seen as the online text is processed. More
importantly, new categories will be constructed out of old
ones and these categories will be equal citizens. Newly con-
structed categories address the sparsity problem. Efficient
discovery of new useful categories is a very important prob-
lem. Features are some functions of the categories, such as
whether the category is present in the context, or was re-
cently seen, or the location of the category, or conjunctive
and relational features involving multiple categories. There-
fore, the dimensionality of the problem in practice starts out
very high, and furthermore it is growing, as more categories
are constructed out of the old ones. The table is highly
sparse: only a finite number of features will have a nonzero
value in each row. In prediction in text, we do not see a
need for negative feature values. Some functionalities may
best be achieved if the feature values reflect a measure of
confidence or probability.

2.3 Other Games
Other worlds include the world-wide-web, our own every

day visual/physical world (e.g., the problem of vision), and
the social world and predicting people’s actions.

The world-wide-web may be viewed as a superset of the
text online. Web pages include text, but are part of a larger
structure of a website, and contain additional content or
structure that could be utilized, such as tables and pictures,
html layout, and links to other pages.

Real-time prediction in a changing visual scene provides
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ample learning episodes. The changes can be due to moving
objects, camera movement, and changes in attention. One
game can be to predict what will be seen next, based on what
has been seen recently. What is learned include temporal
or spatial co-occurrence of categories (physical objects) as
well as recognizing a whole based on seeing some parts and
inferring the remaining parts.

The task of predicting people’s actions and reactions, i.e.,
obtaining a sense of what a person or groups of people may
do in various circumstances, for example in social interac-
tions, or in cooperative team work or in competitions, may
turn out to be the most challenging of prediction games.

2.4 A Systems Approach
The diversity of categories and relations that could hold

between them, and the evolving nature of the world, makes
statistical modeling challenging and likely inadequate. Sim-
ilarly, a single algorithm cannot do the job either. Search
in the space of systems may be the best strategy for find-
ing effective solutions. A prediction system does not try to
model the world, in the sense of building replicas of it in-
ternally, nor estimate parameter values for a model within
some constrained family of statistical models. It only strives
to predict some of the world’s aspects well. A system, for
example the operating system of a computer, consists of a
number of interacting components and is driven by a number
of different algorithms responsible for tasks such as paging,
process scheduling, and I\O. Similar to an operating system,
issues of operationality or maintaining some level of service
also holds for a prediction system. The difference from an
operating system is that the prediction system learns and
adapts and self-organizes extensively, and grows in its func-
tionality over time. Learning is central to its operationality.

2.5 Applications
A powerful predicting system and the byproducts of what

is learned should find a number of applications. For the sake
of the the system itself, as the system improves at predicting,
it does not have to spend as much time and resources into
verifying the presence of certain categories such as certain
important events. This can have life saving consequences.
Based on sounds alone, one may assess the danger level, and
quickly finish crossing the street when a fast approaching
car is heard. In other situations, partial context is the only
information the system has practical access to (e.g., due to
occlusion or poor lighting conditions). However, in much of
the day to day activity, since the system can predict and
classify robustly based on partial context, the system is in
general faster and more accurate and is freed to spend its
resources to focus on other learning activity.

A prediction system for text may lead to significant prac-
tical improvements over current language modeling technol-
ogy or complement it in ways. Another application is answer
to questions of the type “what does the phrase X mean?”:
find contexts that X appears in by querying the web, hide
the phrase, and see what categories (single phrases or sets
of phrases) are predicted. Those categories or phrases likely
have the same type as X.

3. HOW?
Prediction games involve predicting a large number of cat-

egories, and while there is noise, the system has access to an
unbounded sequence of learning episodes. The large-scale

aspects of prediction games motivate the following desider-
ata on candidate solutions (systems and algorithms):

• Online algorithm that are time and memory efficient

• Handle large number of features: sample size efficiency

• Handle large numbers of categories (prediction as well
as discovery of new categories)

• Robust to imperfections, uncertainty, and variety

Several online linear learning algorithms satisfy some of
the above desiderata. The issue of very large numbers of
classes appears not to have been addressed adequately be-
fore. A basic immediate question is how to efficiently learn
and recognize myriad categories? It appears that this prob-
lem has found good solutions in nature [17, 10].

A related problem is what may be referred to as the recall
problem: how to quickly narrow down the possible candidate
true positive categories when the system is presented with
an instance? An effective solution to the recall problem may
play an important part in addressing the challenge of large
number of classes. We recently proposed the framework of a
recall system for this purpose [13]. The ideal recall system,
given an instance (a feature vector), quickly outputs a small
set of candidate categories (say tens), and does not miss the
true categories of the instance. We realized this functional-
ity by an index that maps (connects) features to categories.
An efficient algorithm for learning the index was given, al-
though superior algorithms may yet to be discovered. The
recall system, while high on recall and drastically reducing
the number of candidate categories, may still be poor on
precision3. Online learning algorithms could be used to effi-
ciently learn classifiers for each category. The classifiers cor-
responding to the retrieved concepts can be applied to the
instance to precisely determine the right categories. Alter-
natively, or in conjunction, learning weighted mappings can
make possible adequate ranking of the recalled categories
(i.e., without the need for classifier training and applica-
tion). The recall system may also facilitate other learning
activities, such as concept discovery and learning concepts
in terms of other learned concepts.

Next, we discuss constraints and desiderata that we see
important for any would be candidate architecture and al-
gorithm in effectively playing prediction games.

3.1 Scalability: Information vs. Computation
Scalability is paramount. The system is to operate in an

information rich environment, and what is to be learned,
an operational predicting system, requires by definition an
information hungry process. In some scenarios, for example
learning to predict by processing the online text, there is
much data available, and the data is relatively static. It
is the algorithms’ speed that determines how fast it can
learn from this abundance. In real-time scenarios such as in
vision, the system is bombarded with information, and may

3Here, precision and recall are from the point of view of
an instance, and not the category. In machine learning lit-
erature, recall and precision are often used from the point
of view of the category (e.g., recall is the portion of true
positive instances that were classified positive for a single
category. Our use is similar to information retrieval, were
documents are categories here.
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have to ignore (drop) much incoming and possibly valuable
information due to its processing limits.

There is a trade-off here: on one hand the system can
spend much time on the current instance, or it can revisit
past instances, perhaps optimize some measure of accuracy
over them, or, on the other hand, to spend the computa-
tional resources for further exploring the world and acquir-
ing possibly new useful information. A natural question
is what determines a good balance and how to achieve it.
The ultimate objective, whether the emphasis is competence
more on breadth of prediction versus depth, may play a role
in the answer. Obtaining insights into the nature of this
tradeoff would be very valuable. Recent work in large-scale
text mining has raised some of these issues [15].

3.1.1 Learn in an Online Fashion
Batch learning or optimization can provide significant im-

proved accuracy in typical learning problems, when com-
pared to online methods. However, batch techniques are
designed inherently with finite data in mind, and prediction
games are about unbounded data. Bottou and Le Cun point
to both theoretical and empirical advantages of properly de-
signed online algorithms over batch, in terms of accuracy
achieved, when training data is abundant [4]. Furthermore,
as features are induced (new concepts are discovered), the
whole learning activity takes on an evolving nature. While
one can imagine subsampling and instance selection (e.g., via
some measure of instance utility) to keep things sufficiently
small, and using incremental or staged batch learning and
optimization, this solution appears complex, and may not
be the best utilization of learning time (see also Section 3.3
on code complexity).

A quick calculation demonstrates the considerable poten-
tial advantages of light linear time online learning. Consider
algorithms A, B and C taking respectively n, n log

10
n, and

n2 steps to learn from n instances. Then in the time that
algorithm B takes to process a million instances, algorithm
A can learn from six millions instances, while algorithm C

has only processed a 1000 instances. And of course, the
advantages of linear time processing grows with increasing
n. One has to ask whether the accuracy benefits of a more
time consuming algorithm is worth the opportunity loss in
learning from more data.

Even within linear time processing settings, one should
keep the tradeoffs in mind: imagine a system B taking 10
times longer per instance than a simpler system A as system
B uses more sophisticated feature extractors or many more
newly discovered concepts or deploys sophisticated inference
processes. The lighter system A may still exhibit superiority
since it can learn from ten times as many training instances
in the same period. More sophistication, for example in im-
proved feature extraction or inference, is definitely needed at
some point to extend the reach of the prediction system, but
the question is how to determine a good balance. For best
results, a system may have to learn to deploy increasingly
sophisticated processing only as needed. The field of percep-
tual leaning in cognitive science has investigated learning of
new features for improved recognition as well as learning to
speed up task accomplishment [12].

In general, the constraint of a finite memory will also
be a great constraining factor, informing the design of sys-
tems and algorithms. The significant advantage of online
algorithms here is that one need not store the instances:

instances (learning episodes) are processed and translated
into a feature vector, used for learning, and then discarded
(onto the next instance). Most of the memory will be in
terms of the categories stored and the connections among
them. Thus considerations need to be made regarding for
example the number of (nonzero) weights used in the sys-
tem, and the memory consumption during learning those
weights. Research on online computations and mining data
streams share some of the objectives and challenges, and
insights and algorithmic and analysis techniques developed
there may be applicable [8, 3].

Therefore, our view is that the primary solution methods
will be online. In order to achieve effective learning from a
rich world, a number of online algorithms for various sub-
tasks will have to be devised. These subtasks include:

• online feature selection and reduction

• feature or concept discovery and clustering

• speeding up of feature extraction and classification.

Speed ups in overall concept detection are important so that
the system can move on to effectively learning more complex
concepts.

3.2 Robustness to Imperfections, Uncertainty,
Variety

There are numerous sources of imperfections and uncer-
tainty or noise. In prediction in text, features include phrases
or categories discovered, and their relations. But phrases are
ambiguous and there can be misspellings, or missing val-
ues, or imperfect segmenters, or inaccurate passages. The
newly discovered categories are also imperfectly recognized
(poor precision or recall). In vision (and other perceptual
domains), sensors are noisy and objects may occur in differ-
ent lighting conditions, or may be partially occluded or be
viewed from different angles and distances. There may be
considerable variety within the same object class. Therefore,
uncertainty and variability may be even more problematic.
Prediction games are played for developing robustness in a
variety of conditions, to detect/predict categories in many
of their guises. Therefore effective solution algorithms will
yield a system that is robust in numerous ways. The predic-
tion system should learn from the sum of all its experience,
rather than putting too much weight on any single instance.
A learning strategy may include ignoring those instances for
which the target category to be predicted, the observed out-
come, is very uncertain. A similar strategy goes in using
feature values. Igoring difficult episodes, at least temporar-
ily, may be an effective partial strategy. Of course, this
assumes basically that the system knows (at least for the
most part) when it doesn’t know: it has access to accurate
confidence values. This is also related to a problem we may
refer to as the grounding problem. The first time a system
starts out, how could it be sure of any thing? We assume
that the system is endowed with many sensors or feature
extractors that work adequately, and they are sufficient to
start the games.

3.3 Program Simplicity
In designing such learning systems, low code complexity

and uniformity of architecture is an important guideline not
to deviate from. Perhaps most of the program complexity
and diversity may be concentrated into the preprocessing
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and raw feature extraction components. The system will
be learning a variety of things to improve overall prediction
ability (in breadth, depth, and speed), but we hope that
the number of distinct central algorithms utilized will be
relatively few. Much of the functionality and diversity in
the system should be the result of learning and experience,
as opposed to explicit programming. “Keep it simple, as
much as possible” should inform the design and search for
algorithms.

3.4 Other Aspects
There are a number of other issues that can lead to fruit-

ful research. For example, for the most part, we have as-
sumed that the system will be passive in obtaining its learn-
ing episodes. However, increasing coverage (number of cate-
gories learned) motivates an active exploration of the world,
at least after some period of purely passive observation. In
the scenario of learning from the online text on the web,
passive learning corresponds to crawling the web randomly,
while active crawling can correspond to activities such as
looking for specific pages and passages that contain certain
phrases, perhaps using a search engine.

Another general area is defining the problems and dis-
covering the algorithms for learning the control mechanisms
necessarily for managing the complexity of the system. How
are decisions regarding whether to deploy more costly fea-
ture extractors or inference algorithms made? How are these
decisions streamlined over time? In general, what are the or-
ganizational principles and the organizing processes? Much
is unclear regarding even the nature of the problems, but
we think processes such as prediction games are promising
candidates for raising these issues and may inspire useful
problem formulations. Prediction games also provide the
ample learning experience that appears necessary to achieve
effective operational systems.

4. DISCUSSION
Prediction games liberate us from the labeling bottleneck,

i.e., explicit human supervision. The world serves as the
teacher. Considerations of early learning, in infants and ba-
bies, is specially valuable. This stage provides the crucial
foundation for learning and development in later years. Un-
derstanding how this foundation is developed from a com-
putational point of view, i.e., the nature of the major algo-
rithms and organizing principles at play, is very important.
Considering how infants and babies develop, in animals as
well as in humans, one may conclude that:

1. There is massive learning taking place during first months
and years, and

2. It does not involve (explicit) supervision.

We assume the above two statements are true. This massive
learning includes recognizing myriad categories in various
conditions (e.g., physical objects, such as faces), learning
the dynamics of the physical world, and becoming adept at
physical movement. The infant, in the first few months of
its birth, may have indeed mined its world very effectively!

There is much that remains unclear regarding the nature
of this learning stage, i.e., what problems are being solved
and what kind of algorithms are at play. Research on pro-
cesses similar to prediction games is a promising avenue for
pointing to ways on how massive learning of different kinds

may take place in the young brain. The outcome of this
process may ultimately be a system that has developed a
feel or a sense of a world that was once very unfamiliar.

The brain likely implements a variety of algorithms, but it
has also been referred to as a prediction machine. Hawkins
claims that making predictions is central to all of intelligence
[11]. For example, he states that the nature of understand-
ing or knowing may be explained by the ability to predict.
He describes at a high level how predictions may be taking
place by the brain’s circuitry and how the ability may be
aquired and developed [11].

Valiant proposes and explores a network or graph model of
the neocortex with locally programmable elements [18]. He
stresses the importance of paying attention to resource con-
straints, such as limited connectivity and processing speed,
and shows how a number of learning algorithms could be
implemented on his model. The field of bounded rational-
ity [9], in studying human behavior, has also emphasized
the roles of uncertainty, the issues of resource constraints,
and the variety of implicit frequently competing objectives
shaping observed human behavior. In playing prediction
games, a system has to contend with significant resource
constraints and uncertainty. We also expect that achieving
some kind of optimization of the overall prediction objective
is not the best place to put one’s research efforts on. A more
useful goal is in understanding what determines satisfactory
operationality, i.e., prediction capability. As we have men-
tioned, prediction ability involves satisfying the desiderata
of speed/efficiency as well as accuracy in breadth and depth
(how precise the predictions are). Research has found that
considerations of category and feature utility can explain
certain observed phenomena regarding speed of categoriza-
tion and category naming in humans [6].

4.1 Relation to Other Learning Frameworks
Prediction games involve unsupervised learning, and in

particular the outputs of the components may be interpreted
as confidence values or probabilities for random variables
(categories). In this sense, they are akin to density estima-
tion or distribution learning. The use of graphical models
has made density estimation tasks more efficient, due to
the focusing on constraints on the type of relations that the
variables may actually have (e.g., the actual dependencies in
case of Bayes networks). Graphical models may turn out to
be too constraining for learning the myriad categories and
the variety of relations between them, which apriori may not
be anticipated or programmed. On the other hand, graph-
ical models allow powerful types of inference. The benefits
of sophisticated inference versus its computational costs is a
subject under the theme of computation versus information:
the tradeoff between extensive computation on the current
situation, or learning instances accumulated so far, versus
foraging for further information via new learning episodes.

Prediction games involve both supervised tasks and tech-
niques, in the sense of learning connections between predic-
tor features and existing categories, as well as unsupervised
tasks and techniques, in the sense of forming new categories
out of existing ones. The difference with most traditional
clustering would be that the grouping or new category build-
ing should serve the objective of improving predictions. An-
other big difference, as raised in Section 3.1.1, is the require-
ment of scalability. To be most effective, online clustering
algorithms need to be devised. Most existing clustering al-
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gorithms are too costly and were designed with finite data
in mind. Also, the successful clustering techniques may not
be based on similarity between instances, but instead may
rely on techniques such as observing co-occurrence between
existing categories (inside the system, or as observed in the
external world). The discovered categories may not neces-
sarily be constrained to form a structure such as a tree or a
dag. The major condition is that their benefits (improving
prediction) outweigh the costs (memory requirements, time
to recognize).

Supervised learning has enjoyed much success, but the is-
sue of obtaining training data has always been a significant
bottleneck. This has motivated much research on topics such
as query learning, active learning, and semisupervised learn-
ing, in order to reduce the need for human/teacher involve-
ment [1, 5]. Researches have even developed social games
to motivate humans to label [2]. Playing prediction games
involve learning myriad categories and their many relation-
ships. The aim is to learn in the order of billions of variable
values, and beyond. We think that the amount of training
information required to make sophisticated systems makes
classic explicit supervision infeasible.4

Prediction games complement reinforcement learning. Learn-
ing from prediction games can occur at a larger scale than
reinforcement learning, as reinforcement learning requires
taking action and attaining (possibly delayed) rewards. In
the physical world, actions take time and energy. Prediction
games involve mostly observations and information process-
ing. However, from time to time, they also involve informa-
tion seeking actions such as moving the camera. Acquiring
prediction ability serves the goal of familiarization to ones
world, and directly or indirectly is geared towards helping
the intelligent agent predict and obtain rewards, and in gen-
eral avoid bad situations and obtain pleasant ones (for ex-
ample, for a baby, sensing that mom is about to feed her).

For predicting the next word, statistical language mod-
eling uses techniques based on n-gram models [16]. For
each possible length-limited history seen so far (sequence of
words), these techniques keep counts for each of the different
words that occur afterwards. They later use the counts to
compute probabilities. The approach proposed here shifts
the focus from history to the word to be predicted. It treats
each word or phrase as a class to be learned. Statistics on
candidate predicting features are kept for each target word
rather than the history. In this respect, it is akin to the
work of Even-Zohar and Roth [7], who showed that the on-
line classification (discriminative) approach has flexibility in
utilizing diverse and sophisticated features, but focused on
discriminating between a relatively small number of classes.

Learning tasks such as time series prediction and learning
to solve puzzles and to play games such as chess also share
similarities, but differ mainly on the aspect of richness of
the world and objectives.

5. CONCLUSION: LETS PLAY THE GAME!
In this paper we have been concerned with an abstraction

of tasks and processes that would lead to massive learning,
and proposed prediction games for that purpose. In the

4Note that we are making a distinction between super-
vised techniques, which will be utilized in playing predic-
tion games, and explict supervision or training signal via a
human teacher.

process, we raised a number of issues and potential research
directions. At a broad level, a major message of this paper is
stressing the importance of thinking about practical massive
ongoing learning that can be achieved without supervision.

Prediction games are about having much to learn and
plenty to learn from. Domains such as the online text, the
web, and vision provide the richness that would enable play-
ing prediction games in infinitely rich worlds.
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Figure 1. An example of online transaction flows. 
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ABSTRACT 
Utility itemsets are considered as the different values of 
individual items as utilities, and utility mining aims at identifying 
the itemsets with high utilities. The temporal high utility itemsets 
are the itemsets with support larger than a pre-specified threshold 
in current time window of data stream. Discovery of temporal 
high utility itemsets is an important process for mining interesting 
patterns like association rules from data streams. In this paper, we 
propose a novel method, namely THUI (Temporal High Utility 
Itemsets) -Mine, for mining temporal high utility itemsets from 
data streams efficiently and effectively. To our best knowledge, 
this is the first work on mining temporal high utility itemsets from 
data streams. The novel contribution of THUI-Mine is that it can 
effectively identify the temporal high utility itemsets by 
generating fewer temporal high transaction-weighted utilization 
2-itemsets such that the execution time can be reduced 
substantially in mining all high utility itemsets in data streams. In 
this way, the process of discovering all temporal high utility 
itemsets under all time windows of data streams can be achieved 
effectively with limited memory space, less candidate itemsets 
and CPU I/O time. This meets the critical requirements on time 
and space efficiency for mining data streams. The experimental 
results show that THUI-Mine can discover the temporal high 
utility itemsets with higher performance and less candidate 
itemsets compared to other algorithms under various experimental 
conditions.   

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications － data 
mining. 

General Terms 
Algorithms, Design 

Keywords 
utility mining, temporal high utility itemsets, data streams, 
association rules 
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1. INTRODUCTION 
The mining of association rules for finding the relationship 
between data items in large databases is a well studied technique 
in data mining field with representative methods like Apriori [1, 
2]. The problem of mining association rules can be decomposed 
into two steps. The first step involves finding all frequent itemsets 
(or say large itemsets) in databases. Once the frequent itemsets 
are found, generating association rules is straightforward and can 
be accomplished in linear time. 

An important research issue extended from the association rules 
mining is the discovery of temporal association patterns in data 
streams due to the wide applications on various domains. 
Temporal data mining can be defined as the activity of looking for 
interesting correlations or patterns in large sets of temporal data 
accumulated for other purposes [6]. For a database with a 
specified transaction window size, we may use the algorithm like 
Apriori to obtain frequent itemsets from the database. For time-
variant data streams, there is a strong demand to develop an 
efficient and effective method to mine various temporal patterns 
[11]. However, most methods designed for the traditional 
databases cannot be directly applied for mining temporal patterns 
in data streams because of the high complexity. 

In many applications, we would like to mine temporal 
association patterns in data streams for amount of most recent 
data. That is, in the temporal data mining, one has to not only 
include new data (i.e., data in the new hour) into, but also remove 
the old data (i.e., data in the most obsolete hour) from the mining 
process. Without loss of generality, consider a typical market-
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basket application as illustrated in Figure 1 has been considered. 
The transaction flow in such an application is shown in Figure 1 
where transaction data purchased by customers as time advances. 

In Figure 1, for example, data was accumulated with time 
passing by. Old data in the past hours becomes useless for 
reference. People might be most interested in the temporal 
association patterns in the latest three hours (i.e., db3,5) as shown 
in Figure 1. It can be seen that in such a data stream environment 
it is intrinsically difficult to conduct the frequent pattern 
identification due to the constraints of limited time and space. 
Furthermore, it takes considerable time to find temporal frequent 
itemsets in different time windows. However, the frequency of an 
itemset may not be a sufficient indicator of interestingness, 
because it only reflects the number of transactions in the database 
that contain the itemset. It does not reveal the utility of an itemset, 
which can be measured in terms of cost, profit, or other 
expressions of user preference. On the other hand, frequent 
itemsets may only contribute a small portion of the overall profit, 
whereas non-frequent itemsets may contribute a large portion of 
the profit. In reality, a retail business may be interested in 
identifying its most valuable customers (customers who 
contribute a major fraction of the profits to the company). Hence, 
frequency is not sufficient to answer questions, such as whether 
an itemset is highly profitable, or whether an itemset has a strong 
impact. Utility mining is thus useful in a wide range of practical 
applications and was recently studied in [7, 14, 19]. This also 
motivates our research in developing a new scheme for finding 
temporal high utility itemsets (THUI) from data streams. 

 

Table 1. A transaction database and its utility table. 

(a) Transaction table 

ITEM 
TID 

A B C D E

T1 0 0 26 0 1

T2 0 6 0 1 1△一 P1 

T3 12 0 0 1 0

T4 0 1 0 7 0

T5 0 0 12 0 2
P2 
 

T6 1 4 0 0 1

T7 0 10 0 0 1

T8 1 0 1 3 1

db1,3 

D 一 

P3 
 

T9 1 1 27 0 0

T10 0 6 2 0 0

T11 0 3 0 2 0△+ 
P4 
 

T12 0 2 1 0 0

db2,4

 

 

(b) The utility table 

ITEM PROFIT($)(per unit) 

A 3 

B 10 

C 1 

D 6 

E 5 

 

Recently, a utility mining model was defined in [19]. Utility is 
a measure of how “useful” (i. e. “profitable”) an itemset is. The 
definition of utility of an itemset X, u(X), is the sum of the utilities 
of X in all the transactions containing X. The goal of utility 
mining is to identify high utility itemsets which drive a large 
portion of the total utility. Traditional association rules mining 
model assumes that the utility of each item is always 1 and the 
sales quantity is either 0 or 1, thus it is only a special case of 
utility mining, where the utility or the sales quantity of each item 
could be any number. If u(X) is greater than a utility threshold, X 
is a high utility itemset. Otherwise, it is a low utility itemset. 
Table 1 is an example of utility mining in a transaction database. 
The number in each transaction in Table 1(a) is the sales volume 
of each item, and the utility of each item is listed in Table 1(b). 
For example, u({B, D}) = (6×10+1×6) + (1×10+7×6) + 
(3×10+2×6) = 160. {B, D} is a high utility itemset if the utility 
threshold is set at 120. 

However, a high utility itemset may consist of some low utility 
items. Another attempt is to adopt the level-wise searching 
schema that exists in fast algorithms, such as Apriori [3]. 
However, this algorithm doesn’t apply to the utility mining model. 
For example, u(D) = 84 < 120, D is a low utility item, but its 
superset {B, D} is a high utility itemset. If using Apriori to find 
high utility itemset, all the combinations of all the items must be 
generated. Moreover, to discover a long pattern, the number of 
candidates is exorbitantly large. The cost of either computation 
time or memory is intolerable, regardless of what implementation 
is applied. The challenge of utility mining is not only in 
restricting the size of the candidate set but simplifying the 
computation for calculating the utility. Another challenge of 
utility mining is how to find temporal high utility itemsets from 
data streams as time advances.  

In this paper, we explore the issue of efficiently mining high 
utility itemsets in temporal databases like data streams. We 
propose an algorithm named THUI-Mine that can discover 
temporal high utility itemsets from data streams efficiently and 
effectively. The underlying idea of THUI-Mine algorithm is to 
integrate the advantages of Two-Phase algorithm [14] and SWF 
algorithm [12] and augment with the incremental mining 
techniques for mining temporal high utility itemsets efficiently. 
The novel contribution of THUI-Mine is that it can efficiently 
identify the utility itemsets in data streams so that the execution 
time for mining high utility itemsets can be substantially reduced. 
That is, THUI-Mine can discover the temporal high utility 
itemsets in current time window and also discover the temporal 
high utility itemsets in the next time window with limited 
memory space and less computation time by sliding window filter 
method. In this way, the process of discovering all temporal high 
utility itemsets under all time windows of data streams can be 
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achieved effectively under limited memory space, less candidate 
itemsets and CPU I/O. This meets the critical requirements of 
time and space efficiency for mining data streams. Through 
experimental evaluation, THUI-Mine is shown to produce fewer 
candidate itemsets in finding the temporal high utility itemsets, so 
it outperforms other methods in terms of execution efficiency. 
Moreover, it also achieves high scalability in dealing with large 
databases. To our best knowledge, this is the first work on mining 
temporal high utility itemsets from data streams. 

The rest of this paper is organized as follows: Section 2 
overviews the related work. Section 3 describes the proposed 
approach, THUI-Mine, for finding the temporal high utility 
itemsets. In section 4, we describe the experimental results for 
evaluating the proposed method. The conclusion of the paper is 
provided in Section 5. 

2. RELATED WORK 
In association rules mining, Apriori [3], DHP [15], and partition-
based ones [13, 16] were proposed to find frequent itemsets. 
Many important applications have called for the need of 
incremental mining. This is due to the increasing use of the 
record-based databases whose data are being continuously added. 
Many algorithms like FUP [8], FUP2 [9] and UWEP [4, 5] are 
proposed to solve incremental database for finding frequent 
itemsets. The FUP algorithm updates the association rules in a 
database when new transactions are added to the database. 
Algorithm FUP is based on the framework of Apriori and is 
designed to discover the new frequent itemsets iteratively. The 
idea is to store the counts of all the frequent itemsets found in a 
previous mining operation. Using these stored counts and 
examining the newly added transactions, the overall count of 
these candidate itemsets are then obtained by scanning the 
original database. An extension to the work in [8] was reported in 
[9] where the authors propose an algorithm FUP2 for updating the 
existing association rules when transactions are added to and 
deleted from the database. UWEP (Update With Early Pruning) is 
an efficient incremental algorithm, that counts the original 
database at most once, and the increment exactly once. In addition 
the number of candidates generated and counted is minimum. 

In recent years, processing data from data streams is a very 
popular topic in data mining. Many algorithms like FTP-DS [17] 
and RAM-DS [18] are proposed to process data in data streams. 
FTP-DS is a regression-based algorithm to mine frequent 
temporal patterns for data streams. A wavelet-based algorithm, 
called algorithm RAM-DS, to perform pattern mining tasks for 
data streams by exploring both temporal and support count 
granularities. 

Some algorithms like SWF [12] and Moment [10] were 
proposed to find frequent itemsets over a stream sliding window. 
By partitioning a transaction database into several partitions, 
algorithm SWF employs a filtering threshold in each partition to 
deal with the candidate itemset generation. Moment algorithm use 
the closed enumeration tree (CET), to maintain a dynamically 
selected set of itemsets over a sliding window. 

A formal definition of utility mining and theoretical model was 
proposed in [19], namely MEU, where the utility is defined as the 
combination of utility information in each transaction and 
additional resources. Since this model cannot rely on downward 

closure property of Apriori to restrict the number of itemsets to be 
examined, a heuristics is used to predict whether an itemset 
should be added to the candidate set. However, the prediction 
usually overestimates, especially at the beginning stages, where 
the number of candidates approaches the number of all the 
combinations of items. The examination of all the combinations is 
impractical, either in computation cost or in memory space cost, 
whenever the number of items is large or the utility threshold is 
low. Although this algorithm is not efficient or scalable, it is by 
far the best to solve this specific problem.  

Another algorithm named Two-Phase was proposed in [14], 
which is based on the definition in [19] and achieves for finding 
high utility itemsets. It presented a Two-Phase algorithm to prune 
down the number of candidates and can obtain the complete set of 
high utility itemsets. In the first phase, a model that applies the 
“transaction-weighted downward closure property” on the search 
space to expedite the identification of candidates. In the second 
phase, one extra database scan is performed to identify the high 
utility itemsets. However, this algorithm must rescan the whole 
database when added new transactions from data streams. It need 
more times on processing I/O and CPU cost for finding high 
utility itemsets. Hence, Two-Phase algorithm is just only focused 
on traditional databases and is not suited for data streams.  

Although there existed numerous studies on high utility 
itemsets mining and data stream analysis as described above, 
there is no algorithm proposed for finding temporal high utility 
itemsets in data streams. This motivates our exploration on the 
issue of efficiently mining high utility itemsets in temporal 
databases like data streams in this research. 

3. PROPOSED METHOD: THUI-MINE 
The goal of utility mining is to discover all the itemsets whose 
utility values are beyond a user specified threshold in a 
transaction database. Utility mining is to find all the high utility 
itemsets in [19]. An itemset X is a high utility itemset if u(X) ≥ε, 
where X ⊆  I and ε is the minimum utility threshold, otherwise, it 
is a low utility itemset. For example, in Table 1, u(A, T8) = 1×3 = 
3, u({A, C}, T8) = u(A, T8) + u(C, T8) = 1×3 + 1×1 = 4, and u({A, 
C}) = u({A, C}, T8) + u({A, C}, T9) = 4 + 30 = 34. If ε = 120, {A, 
C} is a low utility itemset. However, if an item is a low utility 
item, its superset may be a high utility itemset. For example, u(D) 
= 84 < 120, D is a low utility item, but its superset {B, D} is a 
high utility itemset because of u({B, D}) = 160 > 120. Hence, all 
the combinations of all items should be processed so that it never 
loses any high utility itemset. But the cost of either computation 
time or memory is intolerable.  

Liu et al [14] proposed Two-Phase algorithm for pruning 
candidate itemsets and simplify the calculation of utility. First, 
Phase I overestimates some low utility itemsets, but it never 
underestimates any itemsets. For the example in Table 1, the 
transaction utility of transaction Tq, denoted as tu(Tq), is the sum 
of the utilities of all items in Tq and the transaction-weighted 
utilization of an itemset X, denoted as twu(X), is the sum of the 
transaction utilities of all the transactions containing X, then  
twu(A) = tu(T3) + tu(T6) + tu(T8) + tu(T9) = 42 + 48 + 27 + 40 = 
157 and twu({D, E}) = tu(T2) + tu(T8) = 71 + 27 = 98. In fact, u(A) 
= u({A}, T3) + u({A}, T6) + u({A}, T8)+ u({A}, T9)=36 + 3 + 3 + 
3 = 45 and u({D, E}) = u({D, E}, T2) +  u({D, E}, T8)= 11 + 23 = 
34. So Phase I overestimates some low utility itemsets, it never 
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underestimates any itemsets. Table 2 gives the transaction utility 
for each transaction in Table 1. Second, one extra database scan is 
performed to filter the overestimated itemsets in phase II. For 
example, twu(A) = 157 > 120 but u(A) = 45 < 120. Then item {A} 
is pruned. Otherwise, it is a high utility itemset. Finally, all of 
high utility itemsets are discovered by this way.  

 

Table 2. Transaction utility of the transaction database. 

TID Transaction Utility TID Transaction Utility 

T1 31 T7 105 

T2 71 T8 27 

T3 42 T9 40 

T4 52 T10 62 

T5 22 T11 42 

T6 48 T12 21 

 

Our algorithm THUI-Mine is based on the principle of Two-
Phase algorithm [14], and we extend it with the sliding-window-
filtering technique and focus on utilizing incremental methods to 
improve the response time with fewer candidate itemsets and 
CPU I/O. In essence, by partitioning a transaction database into 
several partitions from data streams, algorithm THUI-Mine 
employs a filtering threshold in each partition to deal with the 
transaction-weighted utilization itemsets generation. The 
cumulative information in the prior phases is selectively carried 
over toward the generation of transaction-weighted utilization 
itemsets in the subsequent phases by THUI-Mine. In the 
processing of a partition, a progressive transaction-weighted 
utilization set of itemsets is generated by THUI-Mine. Explicitly, 
a progressive transaction-weighted utilization set of itemsets is 
composed of the following two types of transaction-weighted 
utilization itemsets, i.e., (1) the transaction-weighted utilization 
itemsets that were carried over from the previous progressive 
candidate set in the previous phase and remain as transaction-
weighted utilization itemsets after the current partition is taken 
into consideration and (2) the transaction-weighted utilization 
itemsets that were not in the progressive candidate set in the 
previous phase but are newly selected after only taking the current 
data partition into account As such, after the processing of a phase, 
algorithm THUI-Mine outputs a cumulative filter, denoted by CF, 
which consists of a progressive transaction-weighted utilization 
set of itemsets, their occurrence counts and the corresponding 
partial support required. With these design considerations, 
algorithm THUI-Mine is shown to have very good performance 
for mining temporal high utility itemsets from data streams. In 
Section 3.1, we give an example for mining temporal high utility 
itemsets from data stream. The proposed algorithm, THUI-Mine, 
is described in details in Section 3.2. 

3.1 An Example for Mining Temporal High 
Utility Itemsets 
The proposed THUI-Mine algorithm can be best understood by 
the illustrative transaction database in Table 1 and Figure 2 where 

a scenario of generating high utility itemsets from data streams 
for mining temporal high utility itemsets is given. We set the 
utility threshold as 120 with nine transactions. Without loss of 
generality, the temporal mining problem can be decomposed into 
two procedures:  

1. Preprocessing procedure: This procedure deals with mining on 
the original transaction database.  

2. Incremental procedure: The procedure deals with the update of 
the high utility itemsets form data streams. 

The preprocessing procedure is only utilized for the initial 
utility mining in the original database, e.g., db1,n. For the 
generation of mining high utility itemsets in db2,n+1, db3,n+2, dbi,j, 
and so on, the incremental procedure is employed. Consider the 
database in Table 1. Assume that the original transaction database 
db1,3 is segmented into three partitions, i.e., {P1, P2, P3}, in the pre 
processing procedure. Each partition is scanned sequentially for 
the generation of candidate 2-itemsets in the first scan of the 
database db1,3. After scanning the first segment of 3 transactions, 
i.e., partition P1, 2-itemsets {AB, AD AE, BD, BE, DE} are 
generated as shown in Figure 2. In addition, each potential 
candidate itemset c ∈  C2 has two attributes: (1) c.start which 
contains the identity of the starting partition when c was added to 
C2, and (2) transaction-weighted utility which is the sum of the 
transaction utilities of all the transactions containing c since c was 
added to C2. Since there are three partitions, the utility threshold 
of each partition is 120 / 3 = 40. Such a partial utility threshold is 
called the filtering threshold in this paper. Itemsets whose 
transaction-weighted utility are below the filtering threshold are 
removed. Then, as shown in Figure 2, only {AD, BD, BE, DE}, 
marked by “◎”, remain as temporal high transaction-weighted 
utilization 2-itemsets whose information is then carried over to 
the next phase of processing. Similarly, after scanning partition P2, 
the temporal high transaction-weighted utilization 2-itemsets are 
recorded.  

From Figure 2, it is noted that since there are also 3 
transactions in P2, the filtering threshold of those itemsets carried 
out from the previous phase is 40 + 40 = 80 and that of newly 
identified candidate itemsets is 40. It can be seen from Figure 2 
that we have 4 temporal high transaction-weighted utilization 2-
itemsets in C2 after the processing of partition P2, and 2 of them 
are carried from P1 to P2 and 2 of them are newly identified in P2. 
Finally, partition P3 is processed by algorithm THUI-Mine. The 
resulting temporal high transaction-weighted utilization 2-
itemsets are {AB, AC, BC, BD, BE} as shown in Figure 2. Note 
that though appearing in the previous phase P2, itemset {AE} is 
removed from temporal high transaction-weighted utilization 2-
itemsets once P3 is taken into account since its transaction-
weighted utility does not meet the filtering threshold then, i.e., 75 
< 120. However, we do have two new itemset, i.e., AC and BC, 
which join the C2 as temporal high transaction-weighted 
utilization 2-itemsets. Consequently, we have 5 temporal high 
transaction-weighted utilization 2-itemsets generated by THUI-
Mine, and 2 of them are carried from P1 to P3, 1 of them is carried 
from P2 to P3 and 2 of them are newly identified in P3. Note that 
instead of 10 candidate itemsets that would be generated if Two-
Phase algorithm were used, only 5 temporal high transaction-
weighted utilization 2-itemsets are generated by THUI-Mine. 
After processing P1 to P3, those temporal high transaction-
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weighted utilization itemsets in db1,3 are {A, B, C, D, E, AB, AC, 
BC, BD, BE}. 

After generating temporal high transaction-weighted utilization 
2-itemsets from the first scan of database db1,3, we employ the 
scan reduction technique and use temporal high transaction-
weighted utilization 2-itemsets to generate Ck (k = 3, 4, ..., n), 
where Cn is the candidate last itemsets. It can be verified that 
temporal high transaction-weighted utilization 2-itemsets 
generated by THUI-Mine can be used to generate the candidate 3-
itemsets. Clearly, a C3 generated from temporal high transaction-
weighted utilization 2-itemsets. For example, 3-candidate itemset 
{ABC} is generated from temporal high transaction-weighted 
utilization 2-itemsets {AB, AC, BC} in db1,3. However, the 
temporal high transaction-weighted utilization 2-itemsets 
generated by THUI-Mine is very close to the high utility itemsets. 
Similarly, all Ck can be stored in main memory, and we can find 
temporal high utility itemsets together when the second scan of 
the database db1,3 is performed. Thus, only two scans of the 
original database db1,3 are required in the preprocessing step. The 
resulting temporal high utility itemsets are {B} and {BE} because 
u(B) = 330 >120 and u({B, E}) = 215 > 120 . 

One important merit of THUI-Mine mainly lies in its 
incremental procedure. As depicted in Figure 2, the mining 
database will be moved from db1,3 to db2,4. Thus, some 
transactions, i.e., T1, T2, and T3, are deleted from the mining 
database and other transactions, i.e., T10, T11, and T12, are added. 
To illustrate more clearly, this incremental step can also be 
divided into three sub-steps: (1) generating temporal high 
transaction-weighted utilization 2-itemsets in D− = db1,3 − ∆−, (2) 
generating temporal high transaction-weighted utilization 2-
itemsets in db2,4 = D− + ∆+ and (3) scanning the database db2,4 
only once for the generation of all temporal high utility itemsets. 
In the first sub-step, db1,3 − ∆− = D−, we check out the pruned 
partition P1, and reduce the value of transaction-weighted utility 
and set c.start = 2 for those temporal transaction-weighted 
utilization 2-itemsets where c.start = 1. It can be seen that itemset 

{BD} were removed. Next, in the second sub-step, we scan the 
incremental transactions in P4. The process in D− + ∆+ = db2,4 is 
similar to the operation of scanning partitions, e.g., P2, in the 
preprocessing step. The new itemset {BD} join the temporal high 
transaction-weighted utilization 2-itemsets after the scan of P4. In 
the third sub-step, we use temporal high transaction-weighted 
utilization 2-itemsets to generate Ck as mentioned above. Finally, 
those temporal high transaction-weighted utilization itemsets in 
db2,4 are {B, C, D, E, BC, BD, BE}. With scanning db2,4 only 
once, THUI-Mine obtains temporal high utility itemsets {B, BC, 
BE} in db2,4. 

Table 3. Meanings of symbols used. 

dbi,j Partition_database (D) from Pi to Pj 

s Utility threshold in one partition 

| Pk| Number of transactions in partition Pk 

TUPk (I)
Trans. in Pk that contain itemset I with transaction 
utility 

UPk (I) Trans. in Pk that contain itemset I with utility 

| db1,n,(I)| Trans. No. in db1,n that contain itemset I 

Ci,j The progressive candidate sets of dbi,j 

Thtwi,j The progressive temporal high transaction-weighted 
utilization 2-itemsets of dbi,j 

Thui,j The progressive temporal high utility itemsets of dbi,j

∆− The deleted portion of an ongoing database 

D− The unchanged portion of an ongoing database 

∆+ The added portion of an ongoing database 

 

Figure 2. Temporal high utility itemsets generated from data streams by THUI-Mine. 
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3.2  THUI-Mine Algorithm 
For easier illustration, the meanings of various symbols used are 
given in Table 3. The preprocessing procedure and the 
incremental procedure of algorithm THUI-Mine are described in 
Section 3.2.1 and Section 3.2.2, respectively. 

3.2.1 Preprocessing procedure of THUI-Mine 
The preprocessing procedure of Algorithm THUI-Mine is shown 
in Figure 3. Initially, the database db1,n is partitioned into n  
partitions by executing the preprocessing procedure (in Step 2), 
and CF, i.e., cumulative filter, is empty (in Step 3). Let Thtw1,n be 
the set of progressive temporal high transaction-weighted 
utilization 2-itemsets of dbi,j. Algorithm THUI-Mine only records  
Thtw1,n which is generated by the preprocessing procedure to be 
used by the incremental procedure. From Step 4 to Step 16, the 

algorithm processes one partition at a time for all partitions. When 
partition Pi is processed, each potential candidate 2-itemset is read 
and saved to CF. The transaction-weight utility of an itemset I and 
its starting partition are recorded in I.twu and I.start, respectively. 
An itemset, whose I.twu ≥ s, will be kept in CF. Next, we select 

Thtw1,n from I where I∈CF and keep I.twu in main memory for 
the subsequent incremental procedure. With employing the scan 

reduction technique from Step 19 to Step 26, n
hC ,1  (h ≥ 3) are 

generated in main memory. After refreshing I.count = 0 where 
I.twu = 0 where I∈Thtw1,n, we begin the last scan of database for 
the preprocessing procedure from Step 28 to Step 31. Finally, 
those itemsets satisfying the constraint that I.u ≧ s×P.count are 
finally obtained as the temporal high utility itemsets.  

Figure 3. Preprocessing procedure of THUI-Mine. 
Figure 4. Incremental procedure of THUI-Mine. 
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3.2.2 Incremental procedure of THUI-Mine 
As shown in Table 3, D− indicates the unchanged portion of an 
ongoing transaction database. The deleted and added portions of 
an ongoing transaction database are denoted by ∆− and ∆+, 
respectively. It is worth mentioning that the sizes of ∆+ and ∆−, 
i.e., | ∆+ | and | ∆− | respectively, are not required to be the same. 
The incremental procedure of THUI-Mine is devised to maintain 
temporal high utility itemsets efficiently and effectively. This 
procedure is shown in Figure 4. As mentioned before, this 
incremental step can also be divided into three sub-steps: (1) 
generating temporal high transaction-weighted utilization 2-
itemsets in D− = db1,3 − ∆−, (2) generating temporal high 
transaction-weighted utilization 2-itemsets in db2,4 = D− + ∆+ and 
(3) scanning the database db2,4 only once for the generation of all 
temporal high utility itemsets. Initially, after some update 
activities, old transactions ∆− are removed from the database dbm,n  
and new transactions  ∆+ are added (in Step 6). Note that 
∆− ⊂ dbm,n. Denote the updated database as dbi,j. Note that dbi,j = 
dbm,n − ∆− + ∆+. We denote the unchanged transactions by D− = 
dbm,n − ∆−  = dbi,j − ∆+. After loading Thtwm,n of dbm,n into CF 
where I ∈ Thtwm,n, we start the first sub-step, i.e., generating 
temporal high transaction-weighted utilization 2-itemsets in D− = 
dbm,n − ∆−. This sub-step tries to reverse the cumulative 
processing which is described in the preprocessing procedure. 
From Step 8 to Step 16, we prune the occurrences of an itemset I, 
which appeared before partition Pi, by deleting the value I.twu 
where I ∈ CF and I.start < i. Next, from Step 17 to Step 39, 
similarly to the cumulative processing in Section 3.2.1, the second 
sub-step generates generating temporal high transaction-weighted 
utilization 2-itemsets in dbi,j = D− + ∆+ and employs the scan 
reduction technique to generate ji

hC ,
1+ . Finally, to generate 

temporal high utility itemsets, i.e., Thui,j, in the updated database, 
we scan dbi,j for only once in the incremental procedure to find 
temporal high utility itemsets. Note that Thtwi,j is kept in main 
memory for the next generation of incremental mining. 

 

4. EXPERIMENTAL EVALUATION 
To evaluate the performance of THUI-Mine, we conducted 
experiments of using synthetic dataset generated via a randomized 
dataset generator provided by IBM Quest project [3]. However, 
the IBM Quest data generator only generates the quantity of 0 or 
1 for each item in a transaction. In order to fit databases into the 
scenario of utility mining, we randomly generate the quantity of 
each item in each transaction, ranging from 1 to 5, as is similar to 
the model used in [14]. Utility tables are also synthetically created 
by assigning a utility value to each item randomly, ranging from 1 
to 1000. Observed from real world databases that most items are 
in the low profit range, we generate the utility values using a log 
normal distribution, as is similar to the model used in [14]. Figure 
5 shows the utility value distribution of 1000 items.  

The simulation is implemented in C++ and conducted in a 
machine with 2.4GHz CPU and 1G memory. The main 
performance metrices used is execution time. We recorded the 
execution time that THUI-Mine spends in finding temporal high 
utility itemsets. The number of itemsets comparison of THUI-
Mine, Two-Phase and MEU is presented in Section 4.1. Section 
4.2 shows the performance comparison of THUI-Mine and Two-

Phase. Results on scaleup experiments are presented in Section 
4.3.  

 

4.1 Number of Generated Candidates  
In this experiment, we compare the average number of candidates 
generated in the first database scan on the sliding windows and 
incremental transaction number d10K with different support 
values for THUI-Mine, Two-Phase [14] and MEU [19]. Without 
loss of generality, we set |d| = |∆+| = |∆−| for simplicity. Thus, by 
denoting the original database as db1,n and the new mining 
database as dbi,j, we have |dbi,j | = |db1,n − ∆− + ∆+| = |D|, where ∆− 
= db1,i−1 and ∆+ = dbn+1,j . Table 4 and Table 5 show the average 
number of candidates generated by THUI-Mine, Two-Phase and 
MEU. The number of items is set at 1000, and the minimum 
utility threshold varies from 0.2% to 1%. The number of 
candidate itemsets generated by THUI-Mine at the first database 
scan decreases dramatically as the threshold goes up. Especially, 
when utility threshold is set as 1%, the number of candidate 
itemsets is 0 in database T10.I6.D100K.d10K where T denotes the 
average size of the transactions and I the average number of 
frequent itemsets. However, the number of candidates generated 
by Two-Phase is still very large and MEU is always 499,500 
because it needs to process all combinations of 1000 items. THUI-
Mine generates much fewer candidates compared to Two-Phase 
and MEU.  

We obtain similar experimental results for different datasets. 
For example, only 118 candidate itemsets generated by THUI-
Mine, but 183921 and 499500 candidate itemsets generated by 
Two-Phase and MEU when the utility threshold is set as 1% in 
dataset T20.I6.D100K.d10K. In the case of dataset 
T20.I6.D100K.d10K, more candidates are generated, because 
each transaction is longer than that in T10.I6.D100K.d10K. In 
overall, our algorithm THUI-Mine can always generate much 
fewer candidates compared to Two-Phase and MEU for various 
kinds of databases. Hence, THUI-Mine is verified to be very 
effective in pruning candidate itemsets to find temporal high 
utility itemsets. 

 

Figure 5. Utility value distribution in utility table.
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Figure 7. Execution time for Two-Phase and 
THUI on T10.I6.D100K.d10K. 
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Table 4. The average number of candidate itemsets generated 
by THUI-Mine, Two-Phase and MEU after the first scan on 

database T10.I6.D100K.d10K. 

T10.I6.D100K.d10K Databases 
 

Threshold THUI-
Mine 

Two-
Phase MEU 

0.2% 3433 361675 499500 

0.3% 666 303810 499500 

0.4% 161 258840 499500 

0.6% 7 182710 499500 

0.8% 1 129286 499500 

1% 0 91378 499500 
 

Table 5. The average number of candidate itemsets generated 
by THUI-Mine, Two-Phase and MEU after the first scan on 

database T20.I6.D100K.d10K. 

T20.I6.D100K.d10K Databases 
 

Threshold THUI-
Mine 

Two-
Phase MEU 

0.2% 27357 401856 499500 

0.3% 11659 371953 499500 

0.4% 5389 337431 499500 

0.6% 1364 278631 499500 

0.8% 371 229503 499500 

1% 118 183921 499500 
 

4.2 Evaluation of Execution Efficiency  
In this experiment, we show only the relative performance of 
Two-phase and THUI-Mine since MEU spends much higher 
execution time and becomes incomparable. Figure 6 and Figure 7 
show the execution times for the two algorithms as the minimum 

utility threshold is decreased from 1% to 0.2%. It is observed that 
when the minimum utility threshold is high, there are only a 
limited number of high utility itemsets produced. However, as the 
minimum utility threshold decreases, the performance difference 
becomes prominent in that THUI-Mine significantly outperforms 
Two-Phase. As shown in Figure 6 and Figure 7, THUI-Mine leads 
to prominent performance improvement for different average 
sizes of transaction. Explicitly, THUI-Mine is in orders of 
magnitude faster than Two-Phase, and the margin grows as the 
minimum utility threshold decreases. We could observe that 
THUI-Mine spends fewer times than Two-Phase with high 
stability for finding temporal high utility itemsets. This is because 
Two-Phase algorithm produces more candidate itemsets and 
needs more database scans to find high utility itemsets than our 
THUI-Mine algorithm. To measure how much execution time 
could be reduced substantially in using THUI-Mine compared to 
Two-Phase algorithm, we define the Improvement Ratio as 
follows:  

Improvement Ratio = (execution time of Two-Phase － execution 
time of THUI-Mine) / (execution time of Two-Phase) 

From Figure 6, we get that the Improvement Ratio is about 
85.6% with the threshold set as 0.2%. In Figure 7, the average 
improvement is about 67% with minimum utility threshold varied 
from 0.2% to 1%. Obviously, THUI-Mine reduces substantially 
the time in finding high utility itemsets. Moreover, the high utility 
itemsets obtained by Two-Phase are not suitable for applications 
in data streams since Two-Phase needs more database scans and 
execution times in finding high utility itemsets by the time change. 
Hence, THUI-Mine meets the requirements of high efficiency in 
terms of execution time for data stream mining. 

 

4.3 Scaleup on Incremental Mining  
In this experiment, we investigate the effects of varying 
incremental transaction size on the execution time of mining 
results. To further understand the impact of |d| on the relative 
performance of algorithms THUI-Mine and Two-Phase algorithms, 
we conduct the scaleup experiments which is similar in [12] for 
both THUI-Mine and Two-Phase with minimum support 

Figure 6. Execution time for Two-Phase and 
THUI on T20.I6.D100K.d10K. 
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thresholds being varied as 0.2% and 0.4 %, respectively.  Figure 8 
shows the experimental results where the value in y-axis 
corresponds to the ratio of the execution time of THUI-Mine to 
that of Two-Phase. Figure 8 shows the execution-time-ratio for 
different values of |d|. It can be seen that the execution-time ratio 
keeps stable with the growth of the incremental transaction 
number |d| since the size of |d| has little influence on the 
performance of THUI-Mine. Moreover, the execution time ratio of 
the scaleup experiments with minimum support thresholds varied 
from 0.6% to 1% keeps still around 0.4%. This implies that the 
advantage of THUI-Mine over Two-Phase is stable and less 
execution times is taken as the amount of incremental portion 
increases. This result also indicates that THUI-Mine fits for 
mining data streams with large transaction size. 

5. CONCLUSIONS 
In this paper, we addressed the problem of discovering temporal 
high utility itemsets in data streams, i.e., the itemsets that are 
large than threshold in current time window of data stream. We 
propose a new approach, namely THUI-Mine, which can discover 
temporal high utility itemsets from data streams efficiently and 
effectively. The novel contribution of THUI-Mine is that it can 
effectively identify the temporal high utility itemsets with less 
temporal high transaction-weighted utilization 2-itemsets such 
that the execution time can be reduced efficiently in mining all 
high utility itemsets in data streams. In this way, the process of 
discovering all temporal high utility itemsets under all time 
windows of data streams can be achieved effectively with limited 
memory space, less candidate itemsets and CPU I/O. This meets 
the critical requirements of time and space efficiency for mining 
data streams.  

The experimental results show that THUI-Mine can find the 
temporal high utility itemsets with higher performance by 
generating less candidate itemsets compared to other algorithms 
under different experimental conditions. Moreover, it performs 
scalable in terms of execution time under large databases. Hence, 
THUI-Mine is promising for mining temporal high utility itemsets 
in data streams. For future work, we would extend the concepts 
proposed in this work to discover other interesting patterns in data 
streams like utility item with negative profit. 
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ABSTRACT
A pattern is of utility to a person if its use by that per-
son contributes to reaching a goal. Utility based measures
use the utilities of the patterns to reflect the user’s goals. In
this paper, we first review utility based measures for itemset
mining. Then, we present a unified framework for incorpo-
rating several utility based measures into the data mining
process by defining a unified utility function. Next, within
this framework, we summary the mathematical properties
of utility based measures that will allow the time and space
costs of the itemset mining algorithm to be reduced.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining

General Terms
Measures

Keywords
Data Mining, Knowledge Discovery, Interestingness Mea-
sures, Utility Based Measures, Utility Based Data Mining

1. INTRODUCTION
Data mining can be regarded as an algorithmic process that
takes data as input and yields patterns, such as classification
rules, itemsets, association rules, or summaries, as output.
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For example, frequent itemsets can be discovered from mar-
ket basket data and used to derive association rules for pre-
dicting the conditional probability of the purchase of certain
items, given the purchase of other items [1, 2, 9]. An item-
set is a set of items. The goal of frequent itemset mining is
to identify all frequent itemsets, i.e., itemsets that have at
least a specified minimum support, which is the percentage
of transactions containing the itemset. In this paper, we
focus on itemset mining.

Interestingness measures can play an important role in knowl-
edge discovery. These measures are intended for selecting
and ranking patterns according to their potential interest
to the user. For example, itemset mining is based on the
assumption that only itemsets with high support are of in-
terest to users. That is, the support measure uses frequency
as an estimate of the utility of a pattern to a user.

Measuring the interestingness of discovered patterns is an
active and important area of data mining research. A com-
prehensive study of twenty-one measures that were origi-
nally developed in diverse fields such as statistics, social sci-
ence, machine learning, and data mining is presented by
Tan et al. [19]. Hilderman and Hamilton [8] theoretically
and empirically evaluated twelve diversity measures used as
heuristic measures of interestingness for ranking summaries
generated from dataset. Yao et al. [21] presented a simple
and unified framework for the study of quantitative mea-
sures associated with rules. Most research on interestingness
measures has focused on using a statistical or mathematical
method to evaluate the usefulness of rules [10], but such a
method is not trivial for a human expert to understand. In
general, it is not easy for user to choose one of the mea-
sures, because even data mining specialists or practitioners
may not be familiar with all available measures.

In practice, the frequency of occurrence may not express the
semantics of applications, because the user’s interest may
be related to other factors, such as cost, profit, or aesthetic
value. For example, simply choosing the frequent itemsets
does not reflect the impact of any factor except the frequency
of the items. The usefulness of the support measure is re-
duced by problems with the quantity and quality of the min-
ing results. First, a huge number of frequent itemsets that
are not interesting to the user are often generated when the
minimum support is low. For example, there may be thou-
sands of combinations of products that occur in 1% of the
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transactions. If too many uninteresting frequent itemsets
are found, the user is forced to do additional work to select
the rules that are indeed interesting. Second, the quality
problem is that support, as defined based on the frequency
of itemsets, is not necessarily an adequate measure of a typi-
cal user’s interest. A sales manager may not be interested in
frequent itemsets that do not generate significant profit. In
other word, frequent itemsets may only contribute a small
portion of the overall profit, whereas non-frequent itemsets
may contribute a large portion of the profit [12]. The follow-
ing example shows that support based itemset mining may
lead to some high profit itemsets not being discovered due
to their low support.

Example 1. Consider the small transaction dataset shown
in Table 1 and the unit profit for the items shown in Table 2.
Each value in the transaction dataset indicates the quantity
sold of an item. Using Table 1 and 2, the support and profit
for all itemsets can be calculated (see Table 3). For example,
since for the 10 transactions in Table 1, only two transac-
tions, t8 and t9, include both items B and D, the support of
the itemset BD is 2/10 = 20%. Since t8 includes one B and
one D, and t9 includes one B and ten Ds, a total of two Bs
and eleven Ds appear in transactions containing the itemset
BD. Using the Table 2, the profit for each item B is 100 and
the profit for each item D is 1. Thus, the profit of the item-
sets BD could be considered to be 2 × 100 + 11 × 1 = 211.
The profit of the other itemsets in Table 3 can be obtained
in a similar fashion. Supposing that the minimum support
is 40%, the frequent itemsets in Table 3 are D, A, AD, and
C, but the four most profitable itemsets are BD, B, AC,
and CD, all of which are infrequent itemsets.

Transaction ID Item A Item B Item C Item D
t1 4 0 1 0
t2 2 0 0 6
t3 0 0 1 30
t4 3 0 0 5
t5 1 0 0 6
t6 4 0 2 10
t7 2 0 0 8
t8 1 1 1 1
t9 0 1 0 10
t10 5 0 0 9

Table 1: A transaction dataset.

Item Name Profit ($)
Item A 5
Item B 100
Item C 38
Item D 1

Table 2: The profit table for the items.

In general, a pattern that is of interest to one user may not
be of interest to another user, since users have different lev-
els of interest in patterns. The support measure reflects the
frequency of combinations of items, but it does not reflect
their semantic significance. Thus, a user may incur a high
computational cost that is disproportionate to what the user
wants and gets [14]. A natural way for interesting measure

Itemsets Support (%) Profit ($)
A 80 110
B 20 200
C 40 190
D 90 85

AB 10 105
AC 30 197
AD 70 135
BC 10 138
BD 20 211
CD 30 193

ABC 10 143
ABD 10 106
ACD 20 150
BCD 10 139

ABCD 10 144

Table 3: The support, and the profits of all itemsets.

may allow a user to express his or her concern about the
usefulness of results since only the user know his or her in-
formation need. That is, to allow data mining to further
its impact on real-world applications, it is appropriate to
consider user-specified interestingness, which bring more se-
mantics of applications into data mining process and evalu-
ate how user’s expectation affect the data mining process.

To make clear the opportunity for a unified framework, we
survey measures of interestingness for utility based data
mining of itemsets. Utility based data mining refers to al-
lowing a user to conveniently express his or her perspec-
tives concerning the usefulness of patterns as utility values
and then finding patterns with utility values higher than a
threshold [20]. A pattern is of utility to a person if its use
by that person contributes to reaching a goal. People may
have differing goals concerning the knowledge that can be
extracted from a data set. For example, one person may
be interested in finding the sales with the most profit in
a transaction data set. Another person may be interested
in finding the largest increase in gross sales. This kind of
interestingness is based on user-defined utility functions in
addition to the raw data [4, 5, 6, 11, 13, 16, 20]. In fact,
to achieve a user’s goal, two types of utilities for items may
need to be identified. The transaction utility of an item is
directly obtained from the information stored in the trans-
action dataset. For example, the quantity of an item in Ta-
ble 1 is a kind of transaction utility. The external utility of
an item is given by the user. It is based on information not
available in the transaction dataset. For example, a user’s
beliefs about the profit associated with items is expressed
in Table 2. External utility often reflects user preference
and can be represented by a utility table or utility function.
By combining a transaction dataset and a utility table (or
utility function) together, the discovered patterns will bet-
ter match a user’s expectations than by only considering the
transaction dataset itself. To find patterns that conform to
a user’s interests, in this paper, we present a unified frame-
work to show how utility measures are incorporated into
data mining process by defining a unified utility function.
Furthermore, three mathematical properties of this unified
utility function are identified to allow the time and space
costs of the mining algorithms to be reduced.

The remainder of this paper is organized as follows. In Sec-
tion 2, we survey utility based measures for mining itemsets.
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A framework for incorporating these utility measures in the
data mining process is presented in Section 3. In Section 4,
the mathematical properties of utility based measures are
identified. Finally, conclusions are drawn in Section 5.

2. UTILITY BASED MEASURES
Researchers have proposed interestingness measures for var-
ious kinds of patterns, analyzed their theoretical properties,
evaluated them empirically, and proposed strategies for se-
lecting appropriate measures for particular domains and re-
quirements. In data mining research, most interestingness
measures have been proposed for evaluating itemsets and
association rules. In this paper, we concentrate on interest-
ingness measures that depend on the utility (usefulness) of
the itemsets.

We begin by reviewing pertinent notions used for itemset
mining. Adapting from the notation used in the descrip-
tions of other itemset mining approaches [5, 16], we let
I = {i1, . . . , ip, iq, . . . , im} be a set of items, where each item
is associated with an attribute of a transaction dataset T .
Each transaction tq in T is a subset of I. An itemset S is a
subset of I, i.e., S ⊆ I. To simplify notation, we sometimes
write an itemset {i1, . . . , ik} as i1 . . . ik; e.g., ABCD repre-
sents itemset {A, B, C, D}. We denote the support value of
itemset S as s(S) and the utility value of itemset S as u(S).

Definition 1. The transaction set of an itemset S, de-
noted TS , is the set of transactions that contain itemset
S, i.e., TS = {tq | S ⊆ tq, tq ∈ T}.

For instance, consider the transaction dataset shown in Ta-
ble 1, supposing itemset S is S = AD. By definition,
TS = {t2, t4, t5, t6, t7, t8, t10}.

A utility based measure is a measure that takes into con-
sideration not only the statistical aspects of the raw data,
but also the utility of the mined patterns. Motivated by the
decision theory, Shen et al. stated that the ”interestingness
of a pattern = probability + utility” [17]. Based on the
user’s specific objectives and the utility of the mined pat-
terns, utility-based mining approaches may be more useful
in real applications, especially in decision making problems.

In this section, we review utility based measures for item-
sets. Since we use a unified notation for all methods, some
representations differ from those used in the original papers.

The simplest method to incorporate utility is called weighted
itemset mining, which assigns each item a weight represent-
ing its importance [5, 11]. For example, the weights may
correspond the profitability of different items; e.g., a com-
puter (item A) may be more important than a phone (item
B) in terms of profit. Weights assigned to items are also
called horizontal weights [13]. The weights can represent
the price or profit of a commodity. In this scenario, two
measures are proposed to replace support. The first one is
called weighted support, which is defined as

supportw(S) = (
X
ip∈S

wp)s(S), (1)

where wp denotes the weight of item ip.

The first factor of the weighted support measure has a bias
towards the rules with more items. When the number of
the items is large, even if all the weights are small, the to-
tal weight may be large. The second measure, normalized
weighted support, is proposed to reduce this bias and is de-
fined as

supportnw(S) =
1

|S| (
X
ip∈S

wp)s(S), (2)

where |S| is the number of items in the itemset S.

The traditional support measure is a special case of normal-
ized weighted support, because when all weights for items
are equal to 1, the normalized weighted support is identi-
cal to support. The Weighted Items (WI) approach [5] and
the Value Added Mining (VAM) approach [11] use weighted
items to capture the semantic significance of itemsets at the
item level. Unlike frequent itemset mining, which treats all
items uniformly, both of these approaches assume that items
in a transaction dataset (columns in the table) have different
weights to reflect their importance to the user.

Lu et al. proposed another data model by assigning a weight
to each transaction [13]. The weight represents the signifi-
cance of the transaction in the data set. Weights assigned
to transactions are also called vertical weights [13]. For ex-
ample, the weight can reflect the transaction time, i.e., more
recent transactions can be given greater weights. Based on
this model, vertical weighted support is defined as

supportv(S) =

P
tq∈TS

wqP
t∈T w

, (3)

where wq and w denote the vertical weight for transactions
tq and t, respectively.

The mixed weighted model [13] uses both horizontal and
vertical weights. In this model, each item is assigned a hor-
izontal weight and each transaction is assigned a vertical
weight. Mixed weighted support is defined as

supportm(S) = supportnw(S) · supportv(S). (4)

Both supportv and supportm are extensions of the tradi-
tional support measure. If all vertical and horizontal weights
are set to 1, both supportv and supportm are identical to
support.

Objective oriented utility based association (OOA) mining
allows a user to set objectives for the mining process [17]. In
this method, the attributes are partitioned into two groups,
the target attributes and the non-target attributes. A non-
target attribute (called an nonobjective attribute in [17] is
only permitted to appear in the antecedents of association
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rules. A target attribute (called an objective attribute in [17])
is only permitted to appear in the consequents of rules. The
target attribute-value pairs are assigned utility values. The
mining problem is to find frequent itemsets of non-target
attributes, such that the utility values of their correspond-
ing target attribute-value pairs are above a threshold. For
example, in Table 4 obtained from [17], Treatment is a non-
target attribute, while Effectiveness and Side-effect are two
target attributes. The goal of the mining problem is to find
treatments with high effectiveness and mild side effects. The
utility measure is defined as

u(S) =
1

s(S)

X
tq∈TS

u(tq), (5)

where S is the non-target itemsets to be mined (the Treat-
ment attribute-value pairs in the example) and u(tq) denotes
the utility of transaction tq. The function u(tq) is defined
as

u(tq) =
X

ip∈Cq

f(ip), (6)

where Cq denotes the set of target items in transaction tq

and f(ip) is the utility function of item ip, which denotes
the utility associated with ip. If there is only one target
attribute and its weight equals to 1,

P
tq∈TS

u(tq) is identical

to s(S), and hence u(S) equals to 1.

Continuing the example, we assign the utility values to the
target attribute-value pairs shown in Table 5 and accord-
ingly obtain the utility values for the treatments shown in
Table 6. For example, Treatment 5 has the greatest util-
ity value 1.2, and therefore, it best meets the user specified
target.

TID Treatment Effectiveness Side-effect
t1 1 2 4
t2 2 4 2
t3 2 4 2
t4 2 2 3
t5 2 1 3
t6 3 4 2
t7 3 4 2
t8 3 1 4
t9 4 5 2
t10 4 4 2
t11 4 4 2
t12 4 3 1
t13 5 4 1
t14 5 4 1
t15 5 1 1
t16 5 3 1

Table 4: A medical dataset.

The approach of Lu et al. [13] and OOA mining approach
[6, 17] both capture the semantic significance of itemsets
at the transaction level. They assume that transactions in
a dataset (rows in the table) have associated utility values
that reflect their importance to the user.

Effectiveness Side-effect
Value Meaning Utility Value Meaning Utility

5 Much better 1 4 Very serious -0.8
4 Better 0.8 3 Serious -0.4
3 No effect 0 2 A little 0
2 Worse -0.8 1 Normal 0.6
1 Much worse -1

Table 5: Utility values for Effectiveness and Side-
effect.

Itemset Utility
Treatment =1 -1.6
Treatment =2 -0.25
Treatment =3 -0.066
Treatment =4 0.8
Treatment =5 1.2

Table 6: Utilities of the items.

Hilderman et al. proposed the Itemset Share framework that
takes into account weights on both attributes and attribute-
value pairs [7]. The precise impact of the purchase of an
itemset can be measured by the itemset share, the frac-
tion of some overall numerical value, such as the total value
of all items sold. For example, in a transaction data set,
the weight on an attribute could represent the price of a
commodity, and the weight on an attribute-value pair could
represent the quantity of the commodity in a transaction.
Based on this model, in the Itemset Share framework, sup-
port is generalized. The count support for itemset S is de-
fined as

count sup(S) =

P
tq∈TS

P
ip∈S w(ip, tq)P

t∈T

P
i∈I w(i, t)

, (7)

where w(ip, tq) denotes the weight of attribute ip for trans-
action tq and w(ip, tq) > 0.

Similarly, the amount support is defined as

amount sup(S) =

P
tq∈TS

P
ip∈S w(ip, tq)w(ip)

P
t∈T

P
i∈I w(i, t)w(i)

, (8)

where w(ip) is the weight for attribute ip and w(ip) > 0.

Based on the data model in [7], Yao et al. proposed another
utility measure [20], defined as

u(S) =
X

tq∈TS

X
ip∈S

w(ip, tq)w(ip), (9)

where w(ip, tq) denotes the utility value of attribute ip for
transaction tq, w(ip) denotes the utility value of attribute
ip, w(ip, tq) > 0 and w(ip) > 0.

This utility function is similar to amount support, except
that it represents a utility value, such as the profit in dollars,
rather than a fraction of the total weight of all transactions
in the data set.
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The Itemset Share (IS) approach [4] and the approach of
Yao et al. [20] capture the semantic significance of numerical
values that are typically associated with the individual items
in a transaction dataset (cells in the table).

Table 7 summarizes the utility measures discussed in this
section by listing the name of each measure and its data
model. The data model describes how the information rel-
evant to the utility is organized in the data set. All these
measures are extensions of the support and confidence mea-
sures. No single utility measure is suitable for every applica-
tion, because applications have different objectives and data
models. Given a data set, one could choose a utility mea-
sure by examining the data models for the utility measures
given in Table 7. For example, if one has a data set with
weights for each row, then one might choose the vertical
weighted support measure. By checking Table 7 carefully,
we find that the difference among these models are: (1)
different levels of granularity (item level, transaction level,
and cell level) are used to specify the semantic significance of
itemsets, and (2) different pruning strategies are developed
according to the properties of these measure functions. For
(1), we present a unified framework for utility base mea-
sures that incorporates existing utility based measures into
data mining process in Section 3. For (2), we summarize the
mathematical properties of the unified framework for utility
base measures in Section 4.

3. A UNIFIED FRAMEWORK FOR UTIL-
ITY BASED MEASURES

During the knowledge discovery process, utility based mea-
sures can be used in three ways, which we call the roles
of the utility based measures. Figure 1 shows these three
roles. First, measures can be used to prune uninterest-
ing patterns during the data mining process to narrow the
search space and thus improve the mining efficiency. For
example, a threshold for support can be used to filter out
patterns with low support during the mining process and
thus improve efficiency [2]. Similarly, a utility threshold can
be defined and used for pruning patterns with low utility
values [20]. Secondly, measures can be used to rank the pat-
terns according to the order of their interestingness scores.
Thirdly, measures can be used during post processing to se-
lect the interesting patterns. For example, after the data
mining process, we can use the chi-square test to select the
rules that have significant correlations [3]. The second and
third approaches can also be combined by first filtering the
patterns and then ranking them. For the second or third ap-
proach, utility based measures need not be incorporated into
the data mining algorithm. In this paper, we concentrate on
first method since it can improve the mining efficiency by
reducing the time and space costs of the mining algorithm.

Now, formal definitions of key terms used in our unified
utility framework for utility measures for mining itemsets
are presented.

We denote the utility value of an itemset S as u(S), which
will be described in more detail shortly.

Definition 2. The utility constraint is a constraint of the
form u(S) ≥ minutil.

Definition 3. An itemset S is a high utility pattern if u(S) ≥
minutil, where minutil is the threshold defined by the user.
Otherwise, S is a low utility itemset.

Based on the utility constraint, the unified utility framework
for utility measures is defined as follows.

Definition 4. The utility based itemset mining problem is
to discover the set H of all high utility itemsets, i.e.,

H = {S | S ⊆ I, u(S) ≥ minutil}. (10)

For example, consider the itemsets in Table 3. If u(S) is
the profit of an itemset S and minutil = 150, then H =
{B, C, AC, BD, CD, ACD}.

According to the survey presented in Section 2, u(S) plays
a key role in specifying utility based data mining problems.
Different utility measures use different formulas for u(S).

Now, we show how to define u(S) in terms of a user defined
utility function f . In Example 1, the profit of an item-
set reflects a store manager’s goal of discovering itemsets
producing significant profit (e.g., minutil = 150). A user
judges BD to be useful, since the profit of itemset BD is
greater than minutil. We observe that the semantic mean-
ing of profit can be captured by a function f(x, y), where
x is the quantity sold of an item and y is the unit profit of
an item. The usefulness of an itemset is quantified as the
product of x and y, namely, f(x, y) = x · y. The value of x
can be obtained from the transaction dataset and depends
only on the underlying dataset [18]. On the other hand,
the value of y is often not available in a transaction dataset
and may depend on the user who examines the pattern [18].
Thus, in this case, the significance of an item is measured
by two parts. One is the statistical significance of the item
measured by parameter x, which is an objective term inde-
pendent of its intended application. The other part is the
semantic significance of the item measured by parameter
y, which is a subjective term dependent on the application
and the user. As a result, f(x, y) combines objective and
subjective measures of an item together. The combination
captures the significance of the itemset for this application,
which reflects not only the statistical significance but also
the semantic significance of the itemset.

Definition 5. The transaction utility value of an item, de-
noted xpq, is the value of an attribute associated with an
item ip in a transaction tq.

For example, in Table 1, the quantity sold values in the
transactions are the transaction utility values. If i4 = D,
then x43 = 30 is the transaction utility value of item D in
transaction t3.

In this paper, we restrict transaction utility variable values
to numerical values, because, typically, transaction utility
information can be represented in this form.
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Measures Data models Extension of
Weighted support Weights for items Support
Normalized weighted support Weights for items Support
Vertical weighted support Weights for transactions Support
Mixed weighted support Weights for both items and transactions Support
OOA Target and non-target attributes Weights on transaction for target attributes Support
Count support Weights for items and cells in data set Support
Amount support Weights for items and cells in data set Support
Count confidence Weights for items and cells in data set Confidence
Amount confidence Weights for items and cells in data set Confidence
Yao et al.’s Weights for items and cells in data set Support

Table 7: Utility based interestingness measures.
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Figure 1: Roles of utility based measures.

Definition 6. The external utility value of an item, de-
noted yp, is a real number assigned by the user such that
for any two items ip and iq, yp is greater than yq iff the user
prefers item ip to item iq.

The definition indicates that a external utility value is asso-
ciated with a specific value in a domain to express user pref-
erence. In practice, the value of yp is assigned by the user
according to his interpretation of domain specific knowledge
measured by some utility factors, such as cost, profit, or aes-
thetic value. For example, let i1 = A and i2 = B. Using
the Table 2, we have y1 = 5 and y2 = 100. The inequality
y2 > y1 reveals that the store manager prefers item B to
item A, since each item B earns more profit than each item
A.

By obtaining the transaction utility value xpq from a trans-
action dataset and the external utility value yp from the
user, a utility function to express the significance of an item-
set can be defined as a two dimensional function f(x, y).

Definition 7. A utility function f is a function f(x, y) :
(R, R) → R, where R is the set of real numbers.

Example 2. Consider the transaction dataset in Table 1
and the profit table in Table 2. Let items i1, i2, i3, and i4 be
items A, B, C, and D, respectively. Suppose that the user
defines utility function f(xpq, yp) as f(xpq, yp) = xpq · yp,
where xpq is the quantity sold of an item ip in a transaction
tq, and yp is the unit price of the item ip. Then f(x11, y1) =
4×5 = 20, which indicates that the supermarket earns $20 by
selling four As in transaction t1. Similarly, f(x21, y2) = 0,
f(x31, y3) = 1× 38 = 38, and f(x41, y4) = 0.

The utility value of an item is the sum of the values of the
utility function for each transaction.

Definition 8. The utility value of an item ip in an itemset
S, denoted l(ip, S), is the sum of the values of the utility
function f(xpq, yp) for each transaction tq in TS , i.e.,

l(ip, S) =
X

tq∈TS

f(xpq, yp). (11)

For example, consider the transaction dataset in Table 1
with the profit table in the Table 2. If S = ACD, then
TS = {t6, t8}, thus l(A, S) = 4× 5 + 1× 5 = 25.

The utility value of an itemset is represented by the sum of
the utility values of every item in the itemset.

Definition 9. The utility value of an itemset S, denoted
u(S), is the sum of the utility value of each item in S, i.e.,

u(S) =
X
ip∈S

l(ip, S). (12)

By substituting Equation 11 into Equation 12, we obtain

u(S) =
X
ip∈S

X
tq∈TS

f(xpq, yp). (13)

For example, given f(xpq, yp) = xpq · yp, for itemset S =
ACD, we have TS = {t6, t8}, then u(S) = l(A, S)+l(C, S)+
l(D, S) = 5× 5 + 3× 38 + 11× 1 = 150.
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Equation 13 indicates that user plays an important role in
utility based itemset mining process since a user can mea-
sure the semantic significance of the itemset by using his
own utility function f(x, y). Therefore, an itemset that is of
interest to one user, may be of no interest to another user,
since users have different levels of interest in itemsets, as
expressed by their utility functions. In other word, different
itemsets may be discovered for two users according to their
interests, as expressed by their utility functions.

Based on the utility formulation of an itemset (Equation (13)),
an efficient algorithm, called UMining [20], has been devel-
oped to find the high profit itemsets from a dataset.

Now we show that the utility function f(x, y) is a unified
utility function. Let c be a constant. Table 8 summarizes the
semantic significance of this unified utility function at the
item level, the transaction level, and the cell level. Table 9
shows how to use our unified utility function to represent
all existing utility based measures described in Section 2. In
this framework, by defining deferent f(x, y), several existing
utility based measures can be obtained.

4. MATHEMATICAL PROPERTIES OF UTIL-
ITY BASED MEASURES

In this section, we analyze the mathematical properties of
the utility function f(x, y) to facilitate the design of efficient
mining algorithms that will reduce the time and space costs
of the mining process.

Three important mathematical properties of utility based
measures, namely, the anti-monotone (or monotone) prop-
erty, the convertible property, and the upper bound prop-
erty, have been identified and used in existing utility based
measures [1, 2, 5, 6, 13, 9, 16, 20].

Definition 10. [15]. A constraint C is anti-monotone iff
whenever an itemset S violates a constraint C, so does any
superset of S. A constraint C is monotone iff whenever an
itemset S satisfies a constraint C, so does any superset of
S.

By definition, the Apriori property [2] that applied to the
support measure is a special case of the anti-monotone prop-
erty that focuses only on the support constraint.

Definition 11. [15]. An itemset S1 = i1 . . . , im is a prefix
itemset of itemset S2 = i1 . . . , in if the items in S1 and S2

are listed in the same order and m ≤ n.

For example, suppose we are given an itemset ABCD. By
Definition 11, itemsets A, AB, and ABC are prefix itemsets
of ABCD with respect to the order 〈A, B, C, D〉

Based on the prefix itemsets of an itemset, the convertible
property of the itemset is defined as follows.

Definition 12. [15]. A constraint C is convertible anti-
monotone w.r.t. an order O on items if and only if whenever

an itemset S satisfies property P , so do any prefix itemsets
of S. A constraint C is convertible monotone w.r.t. an
O on items if and only if whenever an itemset S violates
property P , so do any prefix itemsets of S. A constraint C
is convertible w.r.t. an order O if and only if it is convertible
anti-monotone or convertible monotone w.r.t. the order O.

The following example shows a constraint that is convertible.

Example 3. Consider the profit table for the items shown
in Table 2. Let avg(S) ≥ 30 be a constraint on the av-
erage profit of the itemset S. We have avg(ABCD) =
(5 + 100 + 38 + 1)/4 = 36. If the items are sorted in unit
profit descending order, we get 〈B, C, A, D〉. The itemset
BCAD has BCA, BC, and B as its prefix itemsets w.r.t.
the order 〈B, C, A, D〉. Then we have avg(BCA) = 47.67,
avg(BC) = 69, and avg(B) = 100. The average profit of the
itemset BCAD is greater than 30, as are the average profits
for its all prefix itemsets according to the order 〈B, C, A, D〉.
By definition, the constraint avg(ABCD) ≥ 30 is convert-
ible anti-monotone w.r.t. the order 〈B, C, A, D〉. Thus, it is
convertible w.r.t. the order 〈B, C, A, D〉.

Definition 13. [15]. (Prefix monotone functions) Given
an order O over a set of items I, a function f : 2I → R is
a prefix (monotonically) increasing function w.r.t. O if and
only if for every itemset S and its prefix S′ w.r.t. O, f(S′) ≤
f(S). A function g: 2I → R is a prefix (monotonically)
decreasing function w.r.t. O if and only if for every itemset
S and its prefix S′ w.r.t. O, g(S′) ≥ g(S).

Theorem 1. [15]. A constraint u(S) ≥ v (resp. u(S) ≤ v)
is convertible anti-monotone (resp., monotone) if and only if
u is a prefix decreasing function. Similarly, u(S) ≥ v (resp.
u(S) ≤ v) is convertible monotone (resp., anti-monotone) if
and only if u is a prefix increasing function.

Before defining an upper bound property for utility based
measures, we first introduce some more terminology.

Definition 14. A k−itemset, denoted as Sk, is an itemset
of k distinct items.

Definition 15. The set of all (k − 1)−itemsets of a k-
itemset Sk, denoted Lk−1, is the set {Sk−1 | Sk−1 ⊂ Sk}

For the 4-itemset S4 = ABCD, by Definition 15, we have
L3 = {ACD, ABD, ABC, BCD}.

Definition 16. A nonnegative utility function f is a func-
tion f(x, y) : (R, R) → R+, where R is the set of real num-
bers, and R+ is the set of nonnegative real numbers.

A function f1(x, y) with range [−n, m], where n, m ≥ 0, can
be transformed to a nonnegative function by adding n to
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Semantic Significance Utility Function f(xpq, yp) Utility Value u(S)

no semantic significance
∑

ip∈S f(xpq, yp) = 1 u(S) = s(S)

semantic significance on item
∑

tq∈TS
f(xpq, yp) = s(S) u(S) =

∑
ip∈S f(ip) · s(S)

semantic significance on transaction
∑

ip∈S f(xpq, yp) = c u(S) = c ·∑tq∈TS
f(tq)

semantic significance on cell
∑

ip∈S

∑
tq∈TS

f(xpq, yp) ≥ 0 u(S) =
∑

ip∈S

∑
tq∈TS

f(xpq, yp)

Table 8: Semantic significance of utility function.

Measures Unified Utility Function f(xpq, yp)

Support
∑

ip∈S f(xpq, yp) = 1

Weighted support
∑

ip∈S f(xpq, yp) = wp

Normalized weighted support
∑

ip∈S f(xpq, yp) = wp/|S|
Vertical weighted support

∑
tq∈TS

f(xpq, yp) = wq/c

Mixed weighted support f(xpq, yp) = wp · wq/c
OOA Target and non-target attributes

∑
ip∈S f(xpq, yp) = uq(S)

Count support f(xpq, yp) = w(ip, tq)/c
Amount support f(xpq, yp) = w(ip, tq) · w(ip)/c
Yao et al.’s f(xpq, yp) = w(ip, tq) · w(ip)

Table 9: Utility based interestingness measures.

all values. Also a nonpositive function f2(x, y) ≤ 0 can be
transformed to its absolute value, namely |f2(x, y)| such that
|f2(x, y)| ≥ 0. Thus, all results obtained for nonnegative
utility function can also be applied to function f1 or f2. Note
that f could be a monotone, a non monotone, a convertible,
or non convertible function.

Using Definitions 14-16, an upper bound on the utility value
of the itemset Sk can be obtained as follows.

Theorem 2. (Utility Upper Bound Property) [20]. Let u(Sk)
be the utility value of a k−itemset Sk defined according
to Equation(13) based on a nonnegative utility function f .
Then the following property holds

u(Sk) ≤
P

Sk−1∈Lk−1 u(Sk−1)

k − 1
(14)

Example 4. For a 4-itemset S4 = ABCD, by Defini-
tion 15, we obtain L3 = {ACD, ABD, ABC, BCD}. Thus,
by Theorem 2, we have

u(ABCD) ≤ u(ABC) + u(ACD) + u(ABD) + u(BCD)

3
.

It is important to realize that Theorem 2 indicates that the
utility value of itemset Sk is limited by the utilities of all its
subset of itemsets of size (k − 1).

By exploiting the anti-monotone (or monotone) property,
the convertible property, and the upper bound property, ef-
ficient algorithms have been developed. More precisely, the
Apriori algorithm [2] is based on the anti-monotone prop-
erty. The FICA algorithm suggested by Pei et al. [16] is
based on the convertible anti-monotone property, and the
FICM algorithm suggested by Pei et al. [16] is based on the
convertible monotone property. The UMining algorithm [20]
is based on the upper bound property. All these algorithms
reduced the number of the mined results by exploiting one
of the properties of utility based measures.

Now, we consider the mathematical properties of the util-
ity based measures discussed in Section 2. The Weighted
Items approach [5] and the Value Added Mining approach
[11] reflect the semantic significance of itemsets at the item
level by defining different weights on items. Since there is
always a decreasing order based on the weights of all items, a
prefix monotone function can be defined as

P
ip∈S f(ip) for

itemset S w.r.t. the descending order of the weights of the
items, where f(ip) is the weight of the item ip. The Vertical
Weighted Support approach [13] and the OOA approach [6]
capture the semantic significance of itemsets at the transac-
tion level. Since there is always a decreasing order based on
the weights of all transactions, a prefix monotone function
is defined as

P
tq∈TS

f(tq) for itemset S w.r.t. the descend-

ing order on the weights of the transactions, where f(tq) is
the weight of transaction tq. Thus, the utility functions of
the Weighted Items measure, the Value Added Mining, the
Vertical Weighted Support measure, and the OOA measure
satisfy the convertible property. The Mixed Weighted Sup-
port approach [13], the Itemset Share approach [4, 20] and
Yao et al. [20] capture the semantic significance of itemsets
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at the cell level. Since these three approaches use a nonneg-
ative utility function, by Theorem 2, the utility function of
the Mixed Weighted Support measures, the Itemset Share
measures (count sup amount sup), and Yao et al. satisfy
the upper bound property. Table 10 summaries the math-
ematical properties of the utility based measures discussed
in Section 2.

Utility Measures Mathematical Property
Support anti-monotone property
Weighted support convertible property
Normalized weighted support convertible property
Vertical weighted support convertible property
Mixed weighted support upper bound property
OOA non-target attributes convertible property
Count support upper bound property
Amount support upper bound property
Yao et al.’s upper bound property

Table 10: Mathematical properties of utility based
measures.

Theorem 3. The mathematical properties of utility mea-
sures shown in Table 10 are correct.

Proof : For the support measure, Agrawal et al. [2] showed
that it satisfies the anti-monotone property. Now, we prove
that Equations (1), (2), (3), and (5) satisfy the convert-
ible property. For Equations(1) and (2), a prefix monotone
function can be defined w.r.t. the descending order of the
weights of the items. By Theorem 1, they satisfy the con-
vertible property. Similarly, for Equations (3) and (5), a
prefix monotone function can be defined w.r.t. the descend-
ing order of the weights of the transactions. By Theorem 1,
they also satisfy the convertible property. Now we prove
that Equations (4), (7), (8) and (9) satisfy upper bound
property. For Equations (4), wp > 0. For Equations(7), (8)
and (9), w(ip, tq) > 0 and w(ip) > 0. Thus, Equations (4),
(7), (8) and (9) are nonnegative functions. By Theorem 2,
they satisfy upper bound property. 2

Theorem 3 indicates that we can design an efficient prun-
ing strategy for these utility measures by using the identified
mathematical properties. In other words, it is possible to in-
corporate these properties into the algorithms used for these
utility measures.

5. CONCLUSIONS
This paper formalizes all existing utility measures for item-
set mining that are known to the authors. We provide three
research contributions towards utility based itemset mining
in this paper.

First, we formalize the semantic significance of utility mea-
sures. Existing utility based measures employ various rep-
resentations for the semantics significance of applications
for the same dataset, which lead to different measures and
procedures for determining interestingness. Based on the se-
mantics of applications, we classified the utility based mea-
sures into three categories, namely, item level, transaction
level, and cell level.

The second contribution is that we defined a unified util-
ity function to represent all existing utility based measures,
as shown in Table 9. According to our classification, the
transaction utility and the external utility of an itemset is
defined, and then a general unified framework was developed
to define a unifying view of the utility based measures for
itemset mining. That is, existing utility based measures can
be represented by this unified utility function.

The third contribution is that the mathematical properties
of the utility based measures were identified and analyzed.
These properties can facilitate the design of efficient pruning
strategies for utility based itemset mining and help current
itemest algorithms to reflect the different utilities by using
different pruning strategies.

Future research could consider a method for automating the
elicitation of different itemset utilities, and then incorporat-
ing these different utilities into current itemset mining algo-
rithms [2, 20]. In addition, to make our utility function more
practicable, the unified utility function could be extend to
a fuzzy utility function for fuzzy utility values.
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ABSTRACT
When mining a large database, the number of patterns dis-
covered can easily exceed the capabilities of a human user to
identify interesting results. To address this problem, various
techniques have been suggested to reduce and/or order the
patterns prior to presenting them to the user. In this paper,
our focus is on ranking summaries generated from a single
dataset, where attributes can be generalized in many differ-
ent ways and to many levels of granularity according to taxo-
nomic hierarchies. We theoretically and empirically evaluate
twelve diversity measures used as heuristic measures of inter-
estingness for ranking summaries generated from databases.
The twelve diversity measures have previously been utilized
in various disciplines, such as information theory, statistics,
ecology, and economics. We describe five principles that
any measure must satisfy to be considered useful for rank-
ing summaries. Theoretical results show that the proposed
principles define a partial order on the ranked summaries in
most cases, and in some cases, define a total order. Theo-
retical results also show that seven of the twelve diversity
measures satisfy all of the five principles. We empirically
analyze the rank order of the summaries as determined by
each of the twelve measures. These empirical results show
that the measures tend to rank the less complex summaries
as most interesting. Finally, we demonstrate a technique,
based upon our principles, for visualizing the relative inter-
estingness of summaries.

Keywords: data mining, diversity measures, theory of in-
terestingness, statistics and probability, visualization

1. INTRODUCTION
An important problem in the area of data mining is the de-

velopment of effective measures of interestingness for rank-
ing discovered knowledge. In this paper, we focus on the use
of diversity measures as heuristic measures of interesting-
ness for ranking summaries generated from a single dataset,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UBDM’06, August 20, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-440-5/06/0008 ...$5.00.

where attributes can be generalized in many different ways
and to many levels of granularity according to taxonomic
hierarchies. With diversity measures, the problem that we
are faced with is essentially one of ranking distributions of
populations of objects having some distinguishable charac-
teristics. The problem is common to many disciplines, such
as species diversity in ecology, income/consumption inequal-
ity in economics, linguistic diversity in geography, market
penetration in business, genetic differences in biology, and
others. The common theme is that of classifying some quan-
tity of objects into well-defined categories according to the
aforementioned distinguishable characteristics.

The question that we ultimately ask when comparing two
or more populations is whether one of the categorized pop-
ulations is more or less diverse than another. And the
question is similar, regardless of the discipline in which it
is asked. For example, in ecology, we ask whether a sam-
ple of individuals from a particular habitat is more diverse
than a sample taken from a neighboring or similar habitat.
In economics, we ask whether a sample of individuals in
a particular region has greater equality of income distribu-
tion than a sample of individuals in another region. And
in linguistics, we ask whether the possibility for communi-
cation in a sample of individuals in a geographic region is
more likely than in a sample of individuals from another ge-
ographic region. The above situations are all a specific case
of the general problem that can be described, as follows.
Suppose X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} are
two populations of individuals, where xi and yj are inte-
gers representing the number of individuals classified into
Xi and Yj , respectively. Which of the distributions is more
(less) diverse (or depending on the discipline, concentrated
or uniform or monopolistic or specialized or dispersed)?

We introduced the use of diversity measures for ranking
summaries, as described in the previous paragraph, in [26]
and [27], where well-known diversity measures from infor-
mation theory, statistics, ecology, and economics were pro-
posed as heuristic measures of interestingness. Although
diversity measures are frequently used in these various dis-
ciplines, their use for ranking the interestingness of sum-
maries was a new application area. An empirical analy-
sis found that highly ranked, concise summaries provided
a reasonable starting point for further analysis of discov-
ered knowledge. It was also shown that for selected sample
datasets, the order in which some of the measures rank sum-
maries is highly correlated, but the rank ordering can vary
substantially when different measures are used. In [28], the
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notion of a summary was extended to include other well-
known forms of knowledge representation, and we showed
that these other forms are also amenable to ranking using
diversity measures.

We now study twelve diversity measures as heuristic mea-
sures of interestingness for ranking summaries in data min-
ing applications, and propose five principles that any mea-
sure must satisfy to be considered useful for ranking the in-
terestingness of summaries generated from databases. The
five principles provide a foundation for an intuitive under-
standing of the term “interestingness” when used within
this context. We perform a comparative sensitivity anal-
ysis of the twelve diversity measures to identify those that
satisfy the proposed principles. Since each new measure
represents an alternative definition of diversity, the choice
of which measure to use may make a difference. That is,
when choosing any objective candidate interestingness mea-
sure for ranking summaries, determine which of the five prin-
ciples are satisfied, and then using this knowledge, judge the
suitability of the candidate interestingness measure for the
intended application. Essentially, this principled approach
imposes a subjective bias on the objective measures by sug-
gesting principles that objective measures should satisfy.

The remainder of the paper is organized as follows. In
Section 2, we motivate the need for objective measures of
interestingness in data mining systems, in general, and the
need for principles of interestingness, in particular. In Sec-
tion 3, we describe the twelve diversity measures empirically
evaluated as measures of interestingness in this work. In
Section 4, we present the foundation principles for a the-
ory of interestingness for diversity measures used to rank
summaries generated from a single dataset. In Section 5,
we present experimental results from our evaluation of the
twelve diversity measures. In Section 6, we demonstrate the
application of the principles to the visualization of the rela-
tive interestingness of summaries. We conclude in Section 7
with a summary of our work and suggestions for future re-
search.

2. MOTIVATION
In this section, we describe a data mining example where

the task is description by summarization, the representa-
tion language is generalized relations, and the method for
searching is the Multi-Attribute Generalization algorithm
[31]. The problem is described, as follows. Let a sum-
mary S be a relation defined on the columns {(A1, D1),
(A2, D2), . . . , (An, Dn)}, where each (Ai, Di) is an attribute-
domain pair. Also, let {(A1, vi1), (A2, vi2), . . . , (An, vin)},
i = 1, 2, . . . , m, be a set of m unique tuples, where each
(Aj , vij) is an attribute-value pair and e ach vij is a value
from the domain Dj associated with attribute Aj . One at-
tribute Ak is a derived attribute, called Count, whose do-
main Dk is the set of positive integers, and whose value
vik for each attribute-value pair (Ak, vik) is equal to the
number of tuples which have been aggregated from the base
relation (i.e., the unconditioned data present in the original
database).

A summary, such as the one shown in Table 1, can be
generated from a database, such as the one shown in Ta-
ble 2, using domain generalization graphs (DGGs) [30, 33],
such as the one shown in Figure 1. For example, the DGG
in Figure 1 is associated with the Office attribute in the
database of Table 2. In Figure 1, the domain for the Of-

Table 1: A sample summary

Office Quantity Amount Count

West 8 $200.00 4
East 11 $275.00 3

Table 2: A sales transaction database

Office Quantity Amount

2 2 $50.00
5 3 $75.00
3 1 $25.00
7 4 $100.00
1 3 $75.00
6 4 $100.00
4 2 $50.00

West --> ANY
East --> ANY

Vancouver   --> West
Los Angeles --> West
New York    --> East

1 --> Vancouver
2 --> Vancouver
3 --> Los Angeles
4 --> Los Angeles
5 --> New York
6 --> New York
7 --> New York

Office

City

Division

ANY

Figure 1: A DGG for the Office attribute

fice attribute is represented by the Office node. Increasingly
general descriptions of the domain values are represented
by the City, Division, and ANY nodes. A user-defined tax-
onomy in the form of a table is associated with every arc
between the nodes in the DGG and describes a generaliza-
tion relation from one domain to another in a process called
attribute-oriented generalization (AOG) [20] (other general-
ization relations besides table lookups are possible, but we
restrict our discussion for the sake of simplicity and clar-
ity). The table associated with the arc between the Office
and City nodes defines the mapping of the domain values
of the Office node to the domain values of the City node
(e.g., 1 and 2 map to Vancouver, 3 and 4 map to Los An-
geles, and 5 to 7 map to New York). The table associated
with the arc between the City and Division nodes can be
described similarly. The table associated with the arc be-
tween the Division and ANY nodes maps all values in the
Division domain to the special value ANY. The summary in
Table 1 corresponds to the Division node of the Office DGG,
where the corresponding values in the Quantity and Amount
attributes from Table 2 are also aggregated accordingly.

When there are DGGs associated with multiple attributes,
then more complex summaries can be generated (known as
multi-attribute generalization ). For example, a DGG for the
Quantity attribute is shown in Figure 2, where the general-
ization space consists of three nodes. The set of all possible
combinations of domains from the DGGs associated with
the Office and Quantity attributes defines the generalization
space for the many summaries that can be generated from
Table 2. Thus, the generalization space consists of the 12
nodes shown in Figure 3 (i.e., 4 nodes in the Office DGG ×
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3 nodes in the Quantity DGG), and each node corresponds
to a unique summary. For example, the Division/Quantity
node corresponds to the summary generated by generaliz-
ing the Office attribute to the level of the Division node in
the Office DGG, while the Quantity attribute remains un-
generalized (this summary is equivalent to the summary in
Table 1). Similarly, the City/Status node corresponds to the
summary shown in Table 3, and is generated by generalizing
the Office and Quantity attributes to the level of the City
and Status nodes, respectively. Naturally, the general tech-
nique is applicable to more than two attributes and should
now be clear.

No Discount --> ANY
Discount    --> ANY

1-2 --> No Discount
3-4 --> Discount

Status

Quantity

ANY

Figure 2: A DGG for the Quantity attribute

Office/Quantity

City/Quantity

Office/Status

City/Status

Office/ANY

City/ANY

Division/Quantity

ANY/Quantity ANY/Status

Division/Status

ANY/ANY

Division/ANY

Figure 3: The generalization space defined by the
Office and Quantity DGGs

Table 3: The City/Status summary

Office Quantity Amount Count

Los Angeles No Discount $75.00 2
New York Discount $275.00 3
Vancouver No Discount $50.00 1
Vancouver Discount $75.00 1

Up to this point, we have only discussed summaries gen-
erated from databases using AOG and DGGs. However,
alternative methods could be used to guide the generation
of summaries. These include Galois lattices [17], conceptual
graphs [7], or formal concept analysis [50]. Similarly, sum-
maries could more generally include views generated from
databases, characterized/generalized association rules gen-
erated from itemsets, or summary tables (i.e., data cubes)
generated from data warehouses [28].

3. MEASURING INTERESTINGNESS
The tuples in a summary are unique, and therefore, can

be considered to be a population with a structure that can
be described by some frequency or probability distribution.
Here, we review twelve diversity measures that consider the

frequency or probability distribution of the values in the de-
rived Count attribute (or some other similar numeric mea-
sure attribute) to assign a single real-valued index that rep-
resents its interestingness relative to other summaries.

3.1 Background
Diversity is an important concept that has seen exten-

sive use in several different areas of research. However, al-
though diversity is used in many disparate areas, it is widely
claimed that diversity is a difficult concept to define [1, 2,
40, 44, 52]. The difficulty in defining diversity arises because
it actually encompasses two separate components: the num-
ber of classes (also referred to in the literature as richness,
abundance, or density) and the proportional distribution of
the population among the classes (also referred to in the
literature as relative abundance, heterogeneity, or evenness).
Within the context of ranking the interestingness of a sum-
mary, the number of classes is simply the number of tuples
in the summary; the proportional distribution is simply the
actual probability distribution of the classes based upon the
values contained in the derived Count attribute.

In a typical diversity measure, the two components are
combined to characterize the variability of a population by
a single value. This concept of a dual-component diversity
measure was first introduced in [49]. The diversity measures
considered to be most useful, and those most frequently
referenced in the literature, are dual-component measures.
Yet, despite the widespread acceptance and use of diversity
measures, there is no single mathematical definition of diver-
sity which has been widely accepted as the de facto standard
and which has been shown to be superior to all others [1,
40, 44]. There is some general agreement, however, that a
population is considered to have high diversity when it has
many classes and the proportional distribution is fairly even.
Similarly, a population is considered to have low diversity
when it has few classes and the proportional distribution
is uneven. Unfortunately, this leaves considerable room for
ambiguity in measuring diversity because a population with
few classes and a fairly even proportional distribution could
have the same or nearly the same diversity as a population
with many classes and an uneven proportional distribution.

Although there are some problems related to a precise and
universally accepted definition for diversity, there are numer-
ous research areas where the concept of diversity has been
considered useful, such as ecology [1, 8, 9, 41, 42], economics
[2, 4, 14, 47], genetics [36], linguistics [18, 37], business [5,
22, 23, 34], epidemiology [35], bibliometrics [45], software
engineering [43], and the measurement of scientific produc-
tivity [2]. More general treatments attempt to define the
concept of diversity and develop a related theory of diver-
sity measurement [44, 52].

Here we apply twelve diversity measures to a new ap-
plication area, that of ranking the interestingness of sum-
maries generated from databases. They share three impor-
tant properties. First, each measure depends only on the
frequency or probability distribution of the values in the de-
rived Count attribute of the summary to which it is being ap-
plied. Second, each measure allows a value to be generated
with at most one pass through the summary. And third,
each measure is independent of any specific units. Utilizing
these heuristics for ranking the interestingness of summaries
generated from databases is a natural and useful extension
for these diversity measures into a new application domain.
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3.2 Notation
The variables used to describe the diversity measures are

now defined. Let m be the total number of tuples in a sum-
mary. Let ni be the value contained in the derived Count
attribute for tuple ti. Let N =

∑m

i=1
ni be the total count.

Let p be the actual probability distribution of the tuples
based upon the values ni. Let pi = ni/N be the actual
probability for tuple ti. Let q be a uniform probability dis-
tribution of the tuples. Let ū = N/m be the count for
tuple ti, i = 1, 2, . . . , m according to the uniform distribu-
tion q. Let q̄ = 1/m be the probability for tuple ti, for all
i = 1, 2, . . . , m according to the uniform distribution q. Let
r be the probability distribution obtained by combining the
values ni and ū. Let ri = (ni + ū)/2N , be the probability
for tuples ti, for all i = 1, 2, . . . , m according to the distri-
bution r. For example, given the sample summary shown in
Table 4, we have m = 4, n1 = 3, n2 = 2, n3 = 1, n4 = 1,
N = 7, p1 = 0.429, p2 = 0.286, p3 = 0.143, p4 = 0.143,
ū = 1.75, q̄ = 0.25, r1 = 0.339, r2 = 0.268, r3 = 0.196, and
r4 = 0.196.

Table 4: Another sample summary

Colour Shape Count

red round 3
green round 2
red square 1
blue square 1

3.3 Diversity Measures
We now describe the twelve diversity measures. Due to

space limitations, examples are omitted. The interested
reader is encouraged to work examples of each measure based
upon the sample summary shown in Table 4.

IVariance: Based upon sample variance from classical statis-
tics, measures the weighted average of the squared devi-
ations of the probabilities pi from the mean probability q̄,
where the weight assigned to each squared deviation is 1/(m−
1). We use sample variance because we assume the summary
may not contain all possible combinations of attribute val-
ues, meaning we are not observing all of the possible tuples.
The sample variance is given by

IV ariance =

∑m

i=1
(pi − q̄)2

m − 1
.

ISimpson: A variance-like measure based upon the Simp-
son index [49], measures the extent to which the counts are
distributed over the tuples in a summary, rather than being
concentrated in any single one of them. The concentration
is given by

ISimpson =

m
∑

i=1

p2

i .

Let each tuple i be represented by a “commonness value”
(i.e., the probability of occurrence pi). If an individual is
drawn at random from the population, the probability that
it will belong to tuple i is pi, and if it does, its commonness
value is also pi. Thus, the expected commonness values
for tuple i is p2

i , and for all tuples i = 1, . . . , n is
∑m

1
p2

i .
Equivalently, this can be viewed as the average commonness

value that would be obtained if the experiment of drawing
an individual at random were repeated many times.

IShannon: Based upon a relative entropy measure from
information theory (known as the Shannon index) [48], mea-
sures the average information content in the tuples of a sum-
mary. The average information content, in bits per tuple, is
given by

IShannon = −
m
∑

i=1

pi log
2
pi.

Say there are ni individuals summarized in a tuple i, out of
a possible N individuals. The probability of drawing one of
the individuals in tuple i is ni/N , or pi. The information
conveyed by announcing the result of drawing a particular
individual in tuple i is − log

2
pi. The total contribution of

these ni individuals to the overall average information con-
veyed by announcing the result is −pi log

2
pi. Summation

over all such cases for all possible individuals is given by
−∑m

i=1
pi log

2
pi.

IMcIntosh: Based upon a heterogeneity index from ecol-
ogy [41], views the counts in a summary as the coordinates
of a point in a multidimensional space and measures the
modified Euclidean distance from this point to the origin.
The modified Euclidean distance is given by

IMcIntosh =
N −

√
∑m

i=1
n2

i

N −
√

N
.

The value
√
∑m

i=1
n2

i is just the Pythagorean Theorem. Since
√
∑m

i=1
n2

i is a measure of concentration, the N-complement

N −
√
∑m

i=1
n2

i is a measure of diversity. The value N −
√

N
makes it a diversity measure independent of N . The greater
the count in a particular class, the further that class will
be from the origin. If the count is reduced, or the count is
spread more evenly between class, the distance from the ori-
gin will be reduced. IMcIntosh relates the distance between
a class and the origin to the range of possible values as de-
termined by the number of tuples in the original relation.

ILorenz: Based upon the Lorenz curve from statistics, eco-
nomics, and social science [51], measures the average value
of the Lorenz curve derived from the probabilities pi asso-
ciated with the tuples in a summary. The average value of
the Lorenz curve is given by

ILorenz = q̄
m
∑

i=1

(m − i + 1)pi.

The Lorenz curve is a series of straight lines in a square of
unit length, starting from the origin and going successively
to points (p1, q1), (p1 + p2, q1 + q2), . . .. When the pi’s are
all equal, the Lorenz curve coincides with the diagonal that
cuts the unit square into equal halves. When the pi’s are
not all equal, the Lorenz curve is below the diagonal.

IGini: Based upon the Gini coefficient [51], which is itself
defined in terms of the Lorenz curve, measures the ratio of
the area between the diagonal (i.e., the line of equality) and
the Lorenz curve, and the total area below the diagonal.
The Gini coefficient is given by

IGini =
q̄
∑m

i=1

∑m

j=1
|pi − pj |

2
.
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IBerger: Based upon a dominance index from ecology [6],
measures the proportional dominance of the tuple in a sum-
mary with the highest probability pi. The proportional dom-
inance is given by

IBerger = max(pi).

Say a sample of individuals is taken from some population of
species in a particular habitat. The number of individuals
taken from each species is assumed to represent the pro-
portional distribution of species in the actual population.
IBerger is called a dominance index because the index of di-
versity that it assigns to the sampled population is simply
the proportional distribution of the most dominant species
(i.e., the species with the highest proportional distribution).

ISchutz: Based upon an inequality measure from eco-
nomics and social science [47], measures the relative mean
deviation of the actual distribution of the counts in a sum-
mary from a uniform distribution of the counts. The relative
mean deviation is given by

ISchutz =

∑m

i=1
|pi − q̄|
2

.

IBray: Based upon community similarity indices from
ecology [8], measures the percentage of similarity between
the actual distribution of the counts in a summary and a
uniform distribution of the counts. The percentage of simi-
larity is given by

IBray =

∑m

i=1
min(ni, ū)

N
.

IMacArthur: Based upon the Shannon index from infor-
mation theory [39], combines two summaries and then mea-
sures the difference between the amount of information con-
tained in the combined distribution and the amount con-
tained in the average of the two original distributions. The
difference, in bits, is given by

IMacArthur =

(

−
m
∑

i=1

ri log
2
ri

)

−
(

(−∑m

i=1
pi log

2
pi) + log

2
m

2

)

.

ITheil: Based upon a distance measure from information
theory [51], measures the distance between the actual dis-
tribution of the counts in a summary and a uniform distri-
bution of the counts. The distance, in bits, is given by

ITheil =

∑m

i=1
|pi log

2
pi − q̄ log

2
q̄|

mq̄
.

IAtkinson: Based upon a measure of inequality from eco-
nomics [4], measures the percentage to which the population
in a summary would have to be increased to achieve the
same level of interestingness if the counts in the summary
were uniformly distributed. The percentage increase is given
by

IAtkinson = 1 −
(

m
∏

i=1

pi

q̄

)q̄

.

Lower values of IAtkinson mean that the distribution of counts
in a summary are fairly equal, or near uniform. Higher val-
ues mean the distribution is fairly uneven. As an example,
say IAtkinson = 0.105, as shown in the example below. This
value means that if the counts of the tuples were uniformly
distributed, then we would need only approximately 90% of
the current total count to realize the same level of interest-
ingness.

4. PRINCIPLES OF INTERESTINGNESS
We now describe a theory of interestingness against which

the utility of candidate interestingness measures can be as-
sessed. We do this through the mathematical formulation of
five principles that we believe must be satisfied by any ac-
ceptable diversity measure for ranking the interestingness of
summaries generated from databases using our, or a similar,
technique. Through the development of these five principles,
we have established some basic criteria for the measurement
of interestingness within this context which provide the ba-
sis for a theoretical foundation in identifying appropriate
diversity measures for ranking summaries.

Through the mathematical formulation of the five prin-
ciples, we study functions f of m variables, f(n1, . . . , nm),
where f denotes a general measure of diversity, m and each
ni are as defined in the previous section, and (n1, . . . , nm)
is a vector corresponding to the values in the derived Count
attribute (or numeric measure attribute) for some arbitrary
summary whose values are arranged in descending order
such that n1 ≥ . . . ≥ nm (except for discussions regard-
ing ILorenz, which requires that the values be arranged in
ascending order). Since the principles presented here are
for ranking the interestingness of summaries generated from
a single dataset, we assume that N is fixed. We begin by
specifying two fundamental principles.

Minimum Value Principle (P1). Given a vector (n1, . . . ,
nm), where ni = nj , for all i, j, f(n1, . . . , nm) attains its
minimum value.

P1 specifies that the minimum interestingness should be
attained when the tuple counts are all equal (i.e., uniformly
distributed). For example, given the vectors (2, 2), (50, 50, 50),
and (1000, 1000, 1000, 1000), we require that the index value
generated by f be the minimum possible for the respective
values of m and N .

Maximum Value Principle (P2). Given a vector (n1, . . . ,
nm), where n1 = N − m + 1, ni = 1, i = 2, . . . , m, and
N > m, f(n1, . . . , nm) attains its maximum value.

P2 specifies that the maximum interestingness should be
attained when the tuple counts are distributed as unevenly
as possible. For example, given the vectors (3, 1), (148, 1, 1),
and (3997, 1, 1, 1), where m = 2, 3, and 4, respectively, and
N = 4, 150, and 4000, respectively, we require that the in-
dex value generated by f be the maximum possible for the
respective values of m and N .

The behaviour of a measure relative to satisfying both P1
and P2 is significant because it reveals an important char-
acteristic about its fundamental nature as a measure of di-
versity. A measure of diversity can generally be considered
either a measure of concentration or a measure of dispersion.
A measure of concentration can be viewed as the opposite
of a measure of dispersion, and we can convert one to the
other via simple transformations. For example, if g corre-
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sponds to a measure of dispersion, then we can convert it
to a measure of concentration f , where f = max(g) − g.
Here we only consider measures of concentration. A mea-
sure was considered to be a measure of concentration if it
satisfied P1 and P2 without transformation. A measure was
considered to be a measure of dispersion if it satisfied P1
and P2 following transformation. All measures of disper-
sion were transformed into measures of concentration prior
to our analysis.

Permutation Invariance Principle (P3). Given a vec-
tor (n1, . . . , nm) and any permutation (i1, . . . , im) of (1, . . . ,
m), f(n1, . . . , nm) = f(ni1 , . . . , nim ).

P3 specifies that every permutation of a given distribution
of tuple counts should be equally interesting. That is, inter-
estingness is not a labeled property, it is only determined by
the distribution of the counts. For example, given the vector
(2, 4, 6), we require that f(2, 4, 6) = f(4, 2, 6) = f(4, 6, 2) =
f(2, 6, 4) = f(6, 2, 4) = f(6, 4, 2).

Transfer Principle (P4). Given a vector (n1, . . . , nm),
ni ≥ nj , i < j, and 0 < c ≤ nj , f(n1, . . . , ni + c, . . . , nj −
c, . . . , nm) > f(n1, . . . , ni, . . . , nj , . . . , nm).

P4, adopted from [14], specifies that when a strictly posi-
tive transfer is made from the count of one tuple to another
tuple whose count is greater, then interestingness increases.
For example, given the vectors (10, 7, 5, 4) and (10, 9, 5, 2),
we require that f(10, 9, 5, 2) > f(10, 7, 5, 4).

Majorization Principle (P5). Given vectors (n1, . . . , nm)

and (n
′

1, . . . , n
′

m), whenever f(n
′

1, . . . , n
′

m) > f(n1, . . . , nm),

then (n
′

1, . . . , n
′

m) � (n1, . . . , nm), read (n
′

1, . . . , n
′

m) ma-
jorizes (n1, . . . , nm).

The majorization operator, �, is based upon the Lorenz
dominance order. The Lorenze dominance order [21] com-
pares vectors with different distributions and says for any

two vectors (n1, . . . , nm) and (n
′

1, . . . , n
′

m), that (n
′

1, . . . , n
′

m)
� (n1, . . . , nm) if the following fours conditions are true:

1. n1 ≥ . . . ≥ nm.

2. n
′

1 ≥ . . . ≥ n
′

m.

3.
∑j

i=1
n

′

i ≥
∑j

i=1
ni, for every j = 1, . . . , m.

4.
∑m

i=1
n

′

i =
∑m

i=1
ni.

An important property of the Lorenz dominance order
is that it defines a partial order on the set of all possible
vectors, a property useful and important for ranking sum-
maries.

Those measures that satisfy the principles of interesting-
ness are shown in Table 5. In Table 5, the P1 to P5 columns
describe the proposed principles, and a measure that satis-
fies a principle is indicated by the bullet symbol (i.e., •).

Mathematical proofs were derived for each measure satis-
fying principles P1 to P5 in Table 5. However, due to space
limitations, the proofs are omitted. The interested reader is
referred to [29] for the complete proofs.

5. EXPERIMENTAL RESULTS
A series of experiments were run using DGG-Interest, an

extension to DB-Discover, a research data mining tool de-
veloped at the University of Regina [12]. DB-Discover gen-
erates summaries from databases according to DGGs asso-
ciated with attributes and the AOG technique described in

Table 5: Measures satisfying the proposed principles

Measure P1 P2 P3 P4 P5

IV ariance • • • • •

ISimpson • • • • •

IShannon • • • • •

IMcIntosh • • • • •

ILorenz • • • •

IGini • • • • •

IBerger • • •

ISchutz • • •

IBray • • •

IMacArthur • • • • •

IT heil • •

IAtkinson • • • • •

Section 2. DGG-Interest evaluates and ranks the summaries
generated using the twelve diversity measures described in
Section 3.

Input data for the experiments was supplied by the NSERC
Research Awards database, freely available in the public do-
main, and the Customer Accounts database, a confiden-
tial database provided by a commercial research partner
in the telecommunications industry. The NSERC Research
Awards database contains records of Canadian government
funding provided to academic and industrial researchers in
the natural sciences and engineering, and has been frequently
used in previous data mining research [10, 11, 19, 38]. It
consists of 10,000 tuples in six tables describing a total of
22 attributes. The Customer Accounts database has also
been frequently used in previous data mining research [13,
24, 32, 25]. It consists of over 8,000,000 tuples in 22 tables
describing a total of 56 attributes. The largest table con-
tains over 3,300,000 tuples representing the account activity
for over 500,000 customer accounts and over 2,200 products
and services. In the discovery tasks run against the NSERC
database, from two to four attributes were selected for dis-
covery, and in those run against the Customer Accounts
database, from two to five attributes were selected. We re-
fer to the NSERC discovery tasks containing two, three,
and four attributes as as N-2, N-3, and N-4, respectively,
and the Customer Accounts discovery tasks containing two,
three, four, and five attributes as C-2, C-3, C-4, and C-5,
respectively.

Within the context of discovery tasks that generate sum-
maries, the discovery tasks run against the Customer Ac-
counts database are considered large. For example, the char-
acteristics of the DGG’s associated with each attribute are
shown in Table 6. In Table 6, the No. of Paths column de-
scribes the number of unique paths through the DGG, the
No. of Nodes column describes the number of nodes in the
DGG, and the Avg. Path Length describes the average path
length of the unique paths. The number of summaries to be
generated by a discovery task (i.e., the size of the general-
ization space) is determined by multiplying the values in the
No. of Nodes column. For example, C-5 selected attributes
C, D, E, F, and G, generating a generalization space contain-
ing 102,816 nodes (i.e., 12× 17× 8× 3× 21). Many of these
nodes correspond to summaries that are duplicates (i.e., the
count vectors are identical). Dulplicates can either occur
by chance, or when the generalization of an attribute to a
higher node in the associated DGG does not result in any
tuples being aggregated, and this can occur quite frequently.
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Since the diversity measures used to rank the vectors can-
not differentiate these summaries, they are considered to be
of equal interest. Consequently, the number of summaries
(i.e., count vectors) actually ranked is considerably less in
practice. For example, of the 102,816 summaries generated
by C-5, there were only 493 unique vectors, but the entire
generalization space still needs to be traversed to find them.

Table 6: Characteristics of the DGGs associated
with the selected attributes

No. of No. of Avg. Path
Attribute Paths Nodes Length

A 5 20 4.0
B 4 17 4.3
C 3 12 4.0
D 4 17 4.3
E 2 8 4.0
F 1 3 3.0
G 5 21 4.2

We now discuss the complexity of the summaries ranked
by the various measures. In analyzing a summary, whether
it be a two-dimensional spreadsheet or a multi-dimensional
data cube, one metric that determines how easily the in-
formation it contains may be to understand by a domain
expert, is simply its physical size in terms of the number of
cells (i.e., where a cell is commonly understood to be the
piece of information referenced by a unique combination of
labels corresponding to the data items associated with each
dimension). So, for this analysis, we define the complexity
of a summary as simply the product of the number of tu-
ples and the number of non-ANY attributes contained in
the summary. One could ask, then, why use diversity mea-
sures to rank summaries at all if complexity, as defined, is
a suitable metric for comparing summaries? That is, why
not simply rank the least complex summaries as most in-
teresting? The answer to this, of course, is that complexity
ignores both the number of tuples in a summary and the the
proportional distribution of the tuples, while diversity mea-
sures do not. However, complexity is still a useful measure
because it is easy to understand at an intuitive level, and a
good indicator of the amount of information contained in a
summary.

Now, in a previous study, domain experts suggested that
more information is better than less, provided that the most
interesting summaries are not too complex and remain rel-
atively easy to understand [19]. This implies that useful
summaries are those that are complex enough to inform,
yet not so complex as to overwhelm. That is, the knowl-
edge contained in a summary should be non-trivial, yet un-
derstandable with reasonable effort by the domain expert.
Consequently, we believe a desirable property of any rank-
ing function be that it tend to rank summaries with low
complexity as more interesting. However, although we want
to rank summaries with low complexity as more interesting,
we do not want to lose the meaning or context of the data
by presenting summaries that are either too complex or too
simple.

In this experiment, we analyze the measures and evaluate
whether they satisfy the complexity guidelines of our do-
main experts. The relative complexity of summaries ranked
by each measure when grouped according to a three-tier
scale of relative complexity (i.e., H=High, M=Moderate,

L=Low). High, moderate, and low complexity summaries
were considered to be the top, middle, and bottom 20%, re-
spectively, of summaries as ranked by each measure. The
N-2, N-3, and N-4 discovery tasks generated sets contain-
ing 22, 70, and 214 summaries, respectively, while the C-2,
C-3, C-4, and C-5 discovery tasks generated sets contain-
ing 43, 91, 155, and 493 summaries, respectively. Thus, the
complexity of the summaries from the N-2, N-3, and N-4
discovery tasks is based upon the top four, 14, and 43 sum-
maries, respectively, while the complexity of the summaries
from the C-2, C-3, C-4, and C-5 discovery tasks is based
upon nine, 18, 31, and 97 summaries, respectively.

A graphical comparison of the complexity of the sum-
maries ranked by the twelve measures from the N-2, N-3,
and N-4 discovery tasks and the C-2, C-3, C-4, and C-5
discovery tasks is shown in the graphs of Figures 4 and 5,
respectively. In Figures 4 and 5, the horizontal and vertical
axes describe the measures and the complexity, respectively.
Each horizontal row of bars corresponds to the complexity
of the most interesting summaries from a particular discov-
ery task. The backmost horizontal row of bars corresponds
to the average complexity for a particular measure. Both
figures show a maximum complexity on the vertical axes of
60.0, although the complexity of the most interesting sum-
maries ranked by ILorenz, ISchutz, IBray, IMacArthur, and
IAtkinson in N-4 exceed this value (i.e., 133.6, 289.8, 289.8,
249.5, and 531.1, respectively). When the measures are or-
dered by complexity, from lowest to highest, they are or-
dered according to Figure 4, as follows (position in the order-
ing is shown in parentheses): IMax (1), ITotal (2), IGini (3),
IShannon and IKullback (4), ITheil (5), IV ariance (6), ISimpson

and IMcIntosh (7), IBerger (8), ILorenz (9), IMacArthur (10),
ISchutz and IBray (11), and IAtkinson (12). They are or-
dered according to Figure 5, as follows: ITotal (1), IMax (2),
IBerger (3), IV ariance, ISimpson, IShannon, IMcIntosh, and
IGini (4), IKullback (5), ILorenz (6), IMacArthur (7), IAtkinson

(8), ISchutz and IBray (9).

6. VISUALIZING INTERESTINGNESS
We now demonstrate the application of the five princi-

ples of Section 4 to the ranking of summaries. Here we use
the results generated by the N-3 discovery task described in
Section 5 as the basis for the extended example as these are
representative of the results obtained for all discovery tasks.

An important implication of P5 is that if X � Y , then
all measures satisfying P5 will order the vectors X and Y
in the same way. However, it is important to note that
even when two measures order the vectors X and Y in the
same way, they may not agree on the extent to which X is
more concentrated than Y due to the differing range and
distribution of the possible values, as described in Section 5.
Consequently, the results we discuss here are valid for all of
IV ariance, ISimpson, IShannon, IMcIntosh, IGini, IMacArthur,
and IAtkinson.

For this example, we used an extension of DGG-Interest
to prune the number of summaries generated by N-3 from 70
down to 27. This extension of DGG-Interest utilizes the chi-
squared test for independence to consider only those sum-
maries in which the attributes are associated. These sum-
maries and their Lorenz dominance order are shown in Ta-
ble 7. In Table 7, the ID column describes the unique identi-
fiers associated with each of the 27 summaries, the numbered
columns describe those summaries that are majorized by the
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Figure 4: Relative complexity of the most interesting NSERC summaries

0

15

30

45

60

C
om

pl
ex

ity

IV
aria

nce

IS
im

pson

IS
ha

nnon

IM
cIntos

h

ILore
nz

IG
ini

IB
erger

IS
chu

tz
IB

ray

IM
acArth

ur
IT

heil

IA
tkinso

n

C-2
C-3

C-4
C-5

Average

Interestingness Measures
Figure 5: Relative complexity of the most interesting Customer summaries

corresponding summary in the ID column, and a summary
that is majorized is indicated by the bullet symbol (i.e., •).
Summaries whose count vectors were identical (i.e., identi-
cal number of tuples and identical probability distributions)
are grouped together and treated as a single summary for
this analysis (because if vector X = Y , then X � Y and
Y � X, so the vectors are indistinguishable according to
the Lorenz dominance order). For example, in the second
row, it is shown that summary 8 majorizes 11, 12, 33, 34,
80, 83, and 84 (equivalently 8 � {11, 12, 33, 34, 80, 83, 84}).
Since we consider majorization to be equivalent to interest-
ingness, then essentially we consider summary 8 to be more
interesting than 11, 12, 33, 34, 80, 83, and 84. Summaries
33, 34, and 84 are examples of summaries that do not ma-
jorize any other summaries.

Taking advantage of the transitive property of the Lorenz
dominance order, we can discover all of the majorization
relationships described in Table 7. For example, consider
summary 7 in the first row. We see that 7 � 8. Moving
to the row beginning with summary 8, we see that 8 � 11.
Moving to the row beginning with summary 11, we see that
11 � 12. Moving to the row beginning with summary 12,
we see that 12 � 84. Moving to the row beginning with
summary 84, we see that 84 does not majorize any other
summary. Thus, we can summarize the discovered relation-
ship as the partial order 7 � 8 � 11 � 12 � 84. Note that
although we know from the first row that 7 � {8, 11, 12, 84},
the first row does not tell us anything about the relation-
ships between 8, 11, 12, and 84. We had to examine the
rows corresponding to 8, 11, 12, and 84 to discover these
relationships.

Table 7 actually describes 33332 possible partial orders.
Using another extension to DGG-Interest, 96 rules were gen-
erated for consolidating these partial orders into the concise
graph of Figure 6. In Figure 6, the majorization relation-
ship of the 27 summaries can be easily determined. The
shaded nodes with a bold border indicate summaries that
are not majorized by any others, and are start points for
traversing the graph. For example, starting at node 17/18,
we can follow a path that includes nodes 7, 21/22, 11, and
33/34. Node 33/34 is a shaded node without a bold border,
and indicates a stop point (i.e., 33/34 majorizes no other
summaries). Similarly, starting at node 17/18, we can fol-
low a path that includes 16, 79, 8, 80, and 33/34. Note that
while summary 17/18 majorizes both summaries 7 and 16,
there is no path between 16 and 7, so we cannot say any-
thing definitive about the relative interestingness of these
two summaries. However, we do know that 17/18 is more
interesting than both 16 and 7.

7. CONCLUSION
The use of diversity measures for ranking the interesting-

ness of summaries generated from databases is a new ap-
plication area. Here we described twelve diversity measures
used as heuristic measures of interestingness, and proposed
five principles that diversity measures must satisfy to be
considered useful for ranking summaries generated from a
single dataset. Theoretical results show that seven mea-
sures satisfy all of the proposed principles. These include
IV ariance, ISimpson, IShannon, IMcIntosh, IGini, IMacArthur,
and IAtkinson. The five remaining measures did not perform
as well, failing to satisfy at least one of the proposed prin-
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Table 7: Summaries and their Lorenz dominance order

ID 7 8 11 12 16 17/18 21/22 27 28 29/30 33/34 52 53/54 57/58 79 80 83 84 99 100 123

7 • • • • • • • • • • • • • •

8 • • • • • •

11 • • • •

12 •

16 • • • • • • • • • • • • • • •

17/18 • • • • • • • • • • • • • • • • • •

21/22 • • • • • •

27 • • • • • • • • • • • •

28 • • • •

29/30 • • • • • •

33/34

52 • • • • • • • • • • • •

53/54 • • • • • • • • • • • • • • •

57/58 • • • •

79 • • • • • • •

80 • • • •

83 • •

84

99 • • • • • •

100 • •

123 • • • • • • • • • • • • • • •

17/18 7 21/22 11 33/34

10029/30

99

84

28

52

1283

53/54

80
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8
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27

7916

Figure 6: A graph summarizing the Lorenz domi-
nance order

ciples. Experimental results showed that the partial order
described by the Lorenze dominance order can be used to
generate a graph summarizing the relative interestingness of
summaries.

Considerable research remains to be done in the appli-
cation of diversity measures to the problem of ranking the
interestingness of summaries generated from databases. We
see two major areas for future research. First, other diversity
measures need to be evaluated to determine their suitability
for ranking the interestingness of summaries generated from
databases. There is certainly no shortage of possible candi-
dates in the literature [45, 46, 16, 3, 15, 15]. And finally,
principles of interestingness for comparing summaries gen-
erated from different databases need to be developed and
evaluated.
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ABSTRACT
Privacy becomes a more and more serious concern in applications
involving microdata. Recently, efficient anonymization has attracted
much research work. Most of the previous methods use global re-
coding, which maps the domains of the quasi-identifier attributes to
generalized or changed values. However, global recoding may not
always achieve effective anonymization in terms of discernability
and query answering accuracy using the anonymized data. More-
over, anonymized data is often used for analysis. As well accepted
in many analytical applications, different attributes in a data set
may have different utility in the analysis. The utility of attributes
has not been considered in the previous methods.

In this paper, we study the problem of utility-based anonymiza-
tion. First, we propose a simple framework to specify utility of at-
tributes. The framework covers both numeric and categorical data.
Second, we develop two simple yet efficient heuristic local recod-
ing methods for utility-based anonymization. Our extensive perfor-
mance study using both real data sets and synthetic data sets shows
that our methods outperform the state-of-the-art multidimensional
global recoding methods in both discernability and query answer-
ing accuracy. Furthermore, our utility-based method can boost the
quality of analysis using the anonymized data.
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1. INTRODUCTION
Recently, privacy becomes a more and more serious concern in

applications involving microdata, which refers to data published in
its raw, non-aggregated form [17]. One important type of privacy
attack is re-identifying individuals by joining multiple public data
sources. For example, according to [15], more than 85% of the
population of the United States can be uniquely identified using
their zipcode, gender, and date of birth.

To protect privacy against this type of attacks, k-anonymity was
proposed [12, 15]. A data set is k-anonymous (k ≥ 1) if each
record in the data set is indistinguishable from at least (k − 1)
other records within the same data set. The larger the value of k,
the better the privacy is protected.

Since the concept of k-anonymity has been proposed, efficient
methods for anonymization has attracted much research work. A
few k-anonymization algorithms have been developed. We shall re-
view the related work briefly in Section 2. Generally, to achieve k-
anonymity, those methods generalize or suppress the quasi-identifier
attributes, which are the minimal set of attributes in the table that
can be joined with external information to re-identify individual
records.

Information loss is an unfortunate consequence of anonymiza-
tion. In order to make the anonymized data as useful as possible,
it is required to reduce the information loss as much as possible.
A few models have been proposed to measure the usefulness of
anonymized data. For example, the discernability model [4] tries
to minimize the number of tuples that are indistinguishable, as long
as they satisfy the k-anonymity requirement.

In this paper, we study the problem of k-anonymization and fo-
cus on two interesting issues: anonymization using heuristic local
recoding and utility-based anonymization.

1.1 Global and Local Anonymization
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Many recent methods (e.g., [4, 8, 9]) use global recoding, which
maps the domains of the quasi-identifier attributes to generalized or
changed values. In other words, the data space is partitioned into
a set of (non-overlapping) regions. The anonymization maps all
tuples in a region to the same generalized or changed tuple. For ex-
ample, Figures 1(b) demonstrates a 3-anonymization using global
recoding for the table in Figures 1(a), where (age, zipcode) is the
quasi-identifier. Tuples R3 an R4 in Figures 1(a) are identical.
They are mapped to the same generalized tuple in global recoding.

In contrast, local recoding maps (non-distinct) individual tuple to
generalized tuples. For example, Figure 1(c) shows a 3-anonymization
using local recoding of the same table in Figures 1(a). The two
identical tuples, R3 and R4, are mapped to different generalized
tuples in local recoding. Clearly, global recoding can be regarded
as a specific type of local recoding.

Interestingly, from Figure 1, we can observe that local recoding
may achieve a less information loss than global recoding. In our
example, the two generalized tuples in global recoding have the
sizes of intervals 8 and 5 in age, and 1 and 0 in zipcode, respec-
tively. In local recoding, the sizes of intervals are 6 and 2 in age,
and 1 and 2 in zipcode, respectively. By intuition, smaller the sizes
of intervals in the generalized tuples, less information loss in the
anonymization.

Can we use local recoding to achieve less information loss in
anonymization effectively? Generally, optimal k-anonymity is NP-
hard [10, 2]. In this paper, we propose two simple yet efficient
heuristic algorithms using local recoding for k-anonymization. Our
extensive empirical study on both real data sets and synthetic data
sets show that our method outperforms the state-of-the-art global
recoding method in both the discernability and the accuracy of
query answering.

1.2 Utility-Based Anonymization
Anonymized data is often for analysis and data mining. As well

recognized in many data analysis applications, different attributes
may have different utility. For example, consider anonymizing a
data set about patients for disease analysis. Suppose in order to
achieve k-anonymity, we can generalize from a five-digit full zip-
code to a four-digit prefix (e.g., from 53712 to 5371∗). Alterna-
tively, we can also generalize attribute age to age groups (e.g., from
23 to [20, 30]). In many cases, the age information is critical to dis-
ease analysis, while the information loss on the accurate location is
often acceptable (a four digit prefix in fact still identifies a relatively
local region). Thus, the age attribute has more utility than the zip-
code attribute, and should be retained as accurately as possible in
anonymization.

Can we make the anonymization utility aware? Utility of at-
tributes has not been considered by previous anonymization meth-
ods. In this paper, we propose a model for utility-based anonymiza-
tion. We consider both numeric data and categorical data with and
without hierarchies. We present a simple method to specify util-
ity of attributes and push them into the heuristic local recoding
anonymization methods. Our experimental results show that the
utility-based anonymization improves the accuracy in answering
targeted queries substantially.

Paper Organization
The rest of the paper is organized as follows. In section 2, we recall
the notions related to anonymization, and review the related work.
We present our utility specification framework in Section 3. Our

heuristic local recoding methods are developed in Section 4. An
extensive performance study on both real data sets and synthetic
data sets is reported in Section 5. The paper is concluded in Sec-
tion 6.

2. K-ANONYMITY AND RELATED WORK
Consider a table T = (A1, . . . , An). A quasi-identifier is a min-

imal set of attributes (Ai1 , . . . , Ail) (1 ≤ i1 < · · · < il ≤ n) in
T that can be joined with external information to re-identify indi-
vidual records. In this paper, we assume that the quasi-identifier is
specified by the administrator based on the background knowledge.
Thus, we focus on how to anonymize T to satisfy the k-anonymity
requirement.

Formally, given a parameter k and the quasi-identifier (Ai1 , . . . , Ail),
a table T is said k-anonymous if for each tuple t ∈ T , there exist
at least another (k−1) tuples t1, . . . , tk−1 such that those k tuples
have the same projection on the quasi-identifier, i.e., t(Ai1 ,...,Ail

) =
t1(Ai1

,...,Ail
) = · · · = tk−1(Ai1

,...,Ail
) . Tuple t and all other tu-

ples indistinguishable from t on the quasi-identifier form an equiv-
alence class. We call the class the group that t is generalized.

Given a table T with the quasi-identifier and a parameter k, the
problem of k-anonymization is to compute a view T ′ that has the
same attributes as T such that T ′ is k-anonymous and T ′ is as close
to T as possible according to some quality metric. We shall discuss
the quality metrics soon.

Since the attributes not in the quasi-identifier do not need to be
changed, to keep our discussion simple but without loss of general-
ity, hereafter we consider only the attributes in the quasi-identifier.
That is, for table T (A1, . . . , An) in question, we assume (A1, . . . , An)
is the quasi-identifier.

K-anonymization was proposed by Samarati and Sweeney [11,
13, 15, 14]. Generally, data items are recoded in anonymization.
Here, we regard suppression as a specific form of recoding that
recodes a data item to null value (i.e., unknown).

Two types of recoding can be used [17]: global recoding and lo-
cal recoding, as described and demonstrated in Section 1.1. Many
previous methods use global recoding. In [11, 13], full-domain
generalization, a specific type of global recoding, was developed,
which maps the whole domain of each quasi-identifier attribute to a
more general domain in the domain generalization hierachy. Full-
domain generalization guarantees that all values of a particular at-
tribute still belong to the same domain after generalization.

To achieve full-domain generalization, two types of partitioning
can be applied. First, single-dimensional partitioning [4, 7] divides
an attribute into a set of non-overlapping intervals, and each in-
terval will be replaced by a summary value (e.g., the mean, the
median, or the range). On the other hand, (strict) multidimensional
partitioning [9] divides the domain into a set of non-overlapping
multidimensional regions, and each region will be generalized into
a summary tuple.

Generally, anonymization is accompanied by information loss.
Various models have been proposed to measure the information
loss. For example, the discernability model [4] assigns to each tuple
t a penalty based on the size of the group that t is generalized, i.e.,
the number of tuples equivalent to t on the quasi-identifier. That is,

CDM =
X

E∈group-bys on quasi-identifier
|E|2.

Alternatively, the normalized average equivalence class size met-
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Row-id Age Zipcode
R1 24 53712

R2 25 53711

R3 30 53711

R4 30 53711

R5 32 53712

R6 32 53713
(a) The original table.

Row-id Age Zipcode
R1 [24-32] [53712-53713]
R2 [25-30] 53711

R3 [25-30] 53711

R4 [25-30] 53711

R5 [24-32] [53712-53713]
R6 [24-32] [53712-53713]

(b) 3-anonymization by global recoding.

Row-id Age Zipcode
R1 [24-30] [53711-53712]
R2 [24-30] [53711-53712]
R3 [24-30] [53711-53712]
R4 [30-32] [53711-53713]
R5 [30-32] [53711-53713]
R6 [30-32] [53711-53713]

(c) 3-anonymization by local recoding.

Figure 1: Global recoding and local recoding. The row-ids are for reference only and are not released with the data. Thus, the
row-ids are not part of the quasi-identifier.

ric was given in [9]. The intuition of the metric is to measure how
well the partitioning approaches the best case where each tuple is
generalized in a group of k indistinguishable tuples. That is,

CAV G =
number of tuples in the table

number of group-bys on quasi-identifier · k .

The quality of anonymization can also be evaluated based on its
usefulness in data analysis applications, such as classification [6,
16].

The ideal anonymization should minimize the penalty. However,
theoretical analysis [2, 10, 9, 3, 1] indicates that the problem of
optimal anonymization under many non-trivial quality models is
NP-hard. A few approximation methods were developed [3], such
as datafly [14], annealing [18], and Mondrian multidimensional k-
anonymity [9]. Interestingly, some optimal methods [4, 8] with
exponential cost in the worst case were proposed. The experimental
results in those studies show that they are feasible and can achieve
good performance in practice.

3. UTILITY-BASED ANONYMIZATION
Without loss of generality, in this paper we assume that general-

ization is used in anonymization. That is, when a tuple is general-
ized, the ranges of the group of tuples that are generalized are used
to represent the generalization, as illustrated in Figure 1. If other
representations such as mean or median are used, the definitions
can be revised straightforwardly and our methods still work.

3.1 Utility-Based Anonymization: Motivation
In previous methods, the quality metrics, such as the discern-

ability metric and the normalized average equivalence class size
metric discussed in Section 2, mainly focus on the size of groups in
anonymization. In an anonymized table, when each group of tuples
sharing the same projection on the quasi-identifier has k tuples, the
penalty metrics are minimized. However, such metrics may not
lead to high quality anonymization.

EXAMPLE 1 (QUALITY METRICS). Suppose we want to achieve
2-anonymity for the six tuples shown in Figure 2. (X, Y ) is the
quasi-identifier. The six tuples can be anonymized in three groups:
{a, b}, {c, d}, and {e, f}. In this anonymization scheme, both the
discernability metric CDM and the normalized average equivalence
class size metric CAV G are minimized.

Let us consider the utility of the anonymized data. Suppose each
group is generalized using the range of the tuples in the group.
That is, a and b are generalized to ([10, 20], [60, 70]); c and d are
generalized to ([20, 50], [20, 50]); and e and f are generalized to
([50, 60], [10, 15]).

20

20 40

Y

X
ab

ef
O 60

60 c

d
40

Figure 2: The six tuples in Example 1.

In order to measure how well the generalized tuples approximate
the original ones, for each tuple we can use the sum of the inter-
val sizes on all attributes of the generalized tuple to measure the
uncertainty of the generalized tuples. That is, U(a) = U(b) =
10 + 10 = 20. Similarly, we get U(c) = U(d) = 60 and
U(e) = U(f) = 15. The total uncertainty of the anonymized
table is the sum of the uncertainty of all tuples, i.e., U(T ) =P

t∈T U(t) = 20 + 20 + 60 + 60 + 15 + 15 = 190. By in-
tuition, the uncertainty reflects the information loss. The less the
uncertainty, the less information is lost.

On the other hand, we may anonymize the tuples in two groups:
{a, b, c} are generalized to ([10, 20], [50, 70]), and {d, e, f} are
generalized to ([50, 60], [10, 20]). In fact, the data set is 3-anonymous,
which is better than 2-anonymous in terms of privacy preservation.
Moreover, the total uncertainty in this anonymization is 150, lower
than the 2-anonymity scheme.

However, this anonymization scheme has a higher penalty than
the 2-anonymous scheme in both the discernability metric CDM

and the normalized average equivalence class size metric CAV G.
In other words, optimizing the quality metrics on group size may
not always lead to anonymization that minimizes the information
loss.

Can we have a quality metric that can measure the utility of the
anonymized data? Such a utility-based metric should capture the
following two aspects.

• The information loss caused by the anonymization. When a
record is anonymized, it is generalized in its quasi-identifier.
The metric should measure the information loss of the gen-
eralization with respect to the original data.

• The importance of attributes. As well accepted in data anal-
ysis such as aggregate queries, different attributes may have
different importance in data analysis. In anonymization, can
we introduce less uncertainty to the important attributes? Such
utility-aware anonymization may help to improve the quality
of analysis afterwards.
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3.2 Weighted Certainty Penalty
We introduce the concept of certainty penalty to capture the un-

certainty caused by generalization.

3.2.1 Numeric Attributes
First, let us consider the case of numeric attributes. Let T be

a table with quasi-identifier (A1, . . . , An), where all attributes are
numeric. Suppose a tuple t = (x1, . . . , xn) is generalized to tuple
t′ = ([y1, z1], . . . , [yn, zn]) such that yi ≤ xi ≤ zi (1 ≤ i ≤ n).
On attribute Ai, the normalized certainty penalty is defined as

NCPAi(t) =
zi − yi

|Ai| ,

where |Ai| = maxt∈T {t.Ai} −mint∈T {t.Ai} is the range of all
tuples on attribute Ai.

Let each attribute Ai be associated with a weight wi to reflect its
utility in the analysis on the anonymized data. Then, the weighted
certainty penalty of a tuple is given by

NCP (t) =

nX
i=1

(wi ·NCPAi(t)) =

nX
i=1

(wi · zi − yi

|Ai| ).

Clearly, when all weights are set to 1 and all attributes have
ranges [0, 1], the weighted certainty penalty is the L1 norm distance
between points (maxt∈G{t.A1}, . . .,
maxt∈G{t.An}) and (mint∈G{t.A1}, . . . , mint∈G{t.An}),
where G is the equivalence group that t belongs to.

Our utility-based metric is given by the total weighted certainty
penalty on the whole table. That is,

NCP (T ) =
X
t∈T

NCP (t).

3.2.2 Categorical Attributes
Distance is often not well defined on categorical attributes, which

makes measuring utility on categorical attributes difficult. In some
previous methods (e.g., [8, 9]), it is assumed that a total order exists
on all values in a categorical attribute. In many applications, such
an order may not exist. For example, sorting all zipcodes in their
numeric order may not reflect the utility properly. Two regions may
be adjacent but their zipcodes may not be consecutive.

More often than not, hierarchies exist in categorical attributes.
For example, zipcodes can be organized into hierarchy of regions,
cities, counties, and states.

Let v1, . . . , vl be a set of leaf nodes in a hierarchy tree. Let u be
the node in the hierarchy on the attribute such that u is an ancestor
of v1, . . . , vl, and u does not have any descendant that is still an
ancestor of v1, . . . , vl. u is called the closest common ancestor of
v1, . . . , vl, denoted by ancestor(v1, . . . , vl). The number of leaf
nodes that are descendants of u is called the size of u, denoted by
size(u).

Can we use the hierarchy information to measure the utility on
categorical attributes?

EXAMPLE 2 (UTILITY ON CATEGORICAL ATTRIBUTES). Consider
a categorical attribute of domain {a, b, c, d, e, f, g}. Suppose a hi-
erarchy exists on the attribute as shown in Figure 3. The values
appear in the leaf nodes in the hierarchy tree.

Intuitively, if we generalize tuples having values b and c, the
anonymized tuples have good utility on this categorical attributes,
since b and c share the same parent in the hierarchy. On the other

2

33

6

7

fe

gdcb

a

Figure 3: A hierarchy on a categorical attribute.

hand, putting a and f into the same generalized group may have
poor utility on the attribute since the common ancestor of a and f
is far away from f .

One may wonder whether the shortest distance between u and v
in the hierarchy tree can be used as the certainty penalty. Unfortu-
nately, it does not work well. Consider Figure 3 again. Intuitively,
generalizing d and e together is better than generalizing a and d
together, since the closest common ancestor of d and e is in a hi-
erarchical level lower than the closest common ancestor of a and
d. However, the shortest distance between d and e is 5, while the
shortest distance between a and d is only 4. If we use the shortest
distance as the guide, then merging a and d is better than merging
d and e. In other words, the shortest distance may be misleading.

To measure the utility of merging two values x and y into the
same generalized group, we can observe that the critical factor is
for the closest common ancestor u of x and y, how many other
values are also the descendants of u. The smaller the number, the
smaller the uncertainty introduced by the generalization.

Based on the observation in Example 2, we define the certainty
penalty on categorical attributes as follows.

Suppose a tuple t has value v on a categorical attribute A. When
it is generalized in anonymization, the value will be replaced by a
set of values {v1, . . . , vl}, where v1, . . . , vl are the values of tu-
ples on the attribute in the same generalized group. We define the
normalized certainty penalty of t as follows.

NCPA(t) =
size(u)

|A| ,

where |A| is the number of distinct values on attribute A. Here,
we assume that each leaf node is of the same importance. The def-
inition can be straightforwardly extended by assigning weights to
internal nodes to capture the more important leaf nodes and internal
hierarchical structures. Limited by space, we omit the details here.

EXAMPLE 3. Let us consider the cases discussed in Example 2
again. Putting a and d together in a group has penalty 1, and putting
d and e together in a group has penalty 6

7
only, which is smaller than

the case of a and d.

Putting things together, for a table consisting of both numeric
and categorical attributes, the total weighted normalized certainty
penalty is the sum of the weighted normalized certainty penalty of
all tuples. That is,

NCP (T ) =
X
t∈T

nX
i=1

(wi ·NCPAi(t)),
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where NCPAi(t) should be computed according to whether Ai is
a numeric or categorical attribute.

Given a table T , a parameter k, the weights of attributes and the
hierarchies on categorical attributes, the problem of optimal utility-
based anonymization is to compute a k-anonymous table T ′ such
that the weighted normalized certainty penalty on T ′ is minimized.

3.3 Complexity
The previous studies show that the problem of optimal k-anonymity

is NP-hard under various quality models. The utility-based model
we propose here is a generalization of the suppression model. We
have the following results on the complexity.

LEMMA 1 (CATEGORICAL ATTRIBUTES). Suppose the
quasi-identifier has only categorical attributes. The problem of op-
timal utility-based k-anonymization is NP-hard for k ≥ 2.
Proof sketch. We can show that the suppression model used in [2]
is a special case of the weighted normalized certainty penalty de-
fined here, where all weights are set to 1 and all hierarchies have
only two levels: the detailed values and suppression. The lemma
follows from the result in [2].

Following from the lemma, we have the following result.

THEOREM 1 (COMPLEXITY). The problem of optimal
utility-based anonymization is NP-hard.

In fact, for a table consisting of only numeric attributes, the prob-
lem is still NP-hard. Limited by space, we omit the details here.

4. GREEDY METHODS
In this section, we develop heuristic methods for utility-based

anonymization. We propose two greedy algorithms. The first method
conducts a bottom-up search, while the second one works top-
down.

4.1 The Bottom-Up Method
To maximize the utility of the anonymization of a tuple, we

may “cluster” the tuples locally according to the weighted certainty
penalty. Those compact clusters having at least k tuples can be gen-
eralized. This idea leads to our bottom-up method.

At the beginning, we treat each tuple as an individual group. In
each iteration, for each group whose population is less than k, we
merge the group with the other group such that the combined group
has the smallest weighted certainty penalty. The iteration goes on
until every group has at least k tuples. The algorithm is shown in
Figure 4.

The bottom-up algorithm is a greedy method. In each round, it
merges groups such that the resulted weighted certainty penalty is
locally minimized. In one iteration, if one group is merged with
multiple groups, it is possible that the group becomes larger than k.
In order to avoid over-generalization, if a group has more than 2k
tuples, then the group should be split. It is guaranteed that in the
resulted table, each group has up to (2k − 1) tuples.

Please note that, unlike many previous methods that try to mini-
mize the average number of tuples per group, our algorithms try to
reduce the weighted certainty penalty, which reflects the utility of
the anonymized data. At the same time, they also keep the number
of tuples per group small.

Input: a table T , parameter k, weights of attributes, and
hierarchies on categorical attributes;

Output: a k-anonymous table T ′;
Method:
1: Initialization: create a group for each tuple;
2: WHILE there exists some group G such that |G| < k DO {
3: FOR each group G such that |G| < k DO {
4: scan all other groups once to find group G′ such

that NCP (G ∪G′) is minimized;
5: merge groups G and G′;

}
6: FOR each group G such that |G| ≥ 2k DO

7: split the group into b |G|
k
c groups such that each

group has at least k tuples;
}

8: generalize and output the surviving groups;

Figure 4: The bottom-up algorithm.

EXAMPLE 4 (ADVANTAGES OF THE BOTTOM-UP METHOD).
To understand the difference between our method and the previous
methods, let us check the case in Figure 2. The bottom-up method
generates two groups: {a, b, c} and {d, e, f}, as expected in Ex-
ample 1. Although it does not minimize the average group size, it
optimizes the utility of the anonymized data – the information loss
is better than any 2-anonymous scheme in this example. Moreover,
as a byproduct, the result is 3-anonymous, which means a stronger
protection of privacy.

After the k-th round, the number of tuples in a group is at least
2k. Therefore, by at most dlog2 ke iterations, each group has at
least k tuples, and thus the generalized groups satisfy the k-anonymity
requirement. The complexity of the algorithm is O(dlog2 ke|T |2)
on table T .

The bottom-up method is a local recoding method. It does not
split the domain. Instead, it only searches the tuples. Different
groups may have overlapping ranges. Moreover, in the step of split-
ting, several tuples with the identical quasi-identifier may be split
into different groups.

4.2 A Top-Down Approach
The major cost in the bottom-up method is to search for the clos-

est groups (Step 4 in Figure 4). In the bottom-up method, we have
to use a two-level loop to conduct the search. We observe, if we
can partition the data properly so that the tuples in each partition
are local, then the search of the nearest neighbors can be sped up.
Motivated by this observation, we develop the top-down approach.

The general idea is as follows. We partition the table iteratively.
A set of tuples is partitioned into subsets if each subset is more
local. That is, likely they can be further partitioned into smaller
groups that reduce the weighted certainty penalty. After the parti-
tioning, we merge the groups that are smaller than k to honor the
k-anonymity requirement.

To keep the algorithm simple, we consider binary partitioning.
That is, in each round, we partition a set of tuples into two subsets.
The algorithm framework is shown in Figure 5.

Now, the problem becomes how we can partition a set of tuples
into two subsets so that they are compact and likely lead to small
weighted certainty penalty. We adopt the following heuristic. We
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Input: a table T , parameter k, weights of attributes,
hierarchies on categorical attributes;

Output: a k-anonymous table T ′;
Method:
1: IF |T | ≤ k THEN RETURN;
2: ELSE {
3: partition T into two exclusive subsets T1 and T2 such

that T1 and T2 are more local than T , and either T1

or T2 have at least k tuples;
4: IF |T1| > k THEN recursively partition T1;
5: IF |T2| > k THEN recursively partition T2;

}
6: adjust the groups so that each group has at least k tuples;

Figure 5: The framework of the top-down greedy search
method.

form two groups using the two seed tuples that cause the highest
certainty penalty if they are put into the same group, and assign the
other tuples into the two groups according to the two seed tuples.

Technically, we want to find tuples u, v ∈ T that maximize
NCP (u, v). u and v become the seed tuple of groups Gu and
Gv , respectively.

The cost of finding u, v such that NCP (u, v) is maximized is
O(|T |2). To reduce the cost, we propose a heuristic method here.
We randomly pick a tuple u1. By scanning all tuples once, we
can find tuple v1 that maximizes NCP (u1, v1). Then, we scan all
tuples again, find tuple u2 that maximizes NCP (u2, v1). The iter-
ation goes on a few rounds until NCP (u, v) does not increase sub-
stantially. Our experimental results on both the real data sets and
the synthetic data sets show that the maximal weighted certainty
penalty converges quickly. By up to 3 rounds, we can achieve 97%
of the maximal penalty. By up to 6 rounds, we can achieve more
than 98.75% of the maximal penalty. In practice, we can choose a
small integer as the number of rounds to find the seed tuples.

Once the two seed tuples are determined, two groups Gu and Gv

are created. Then, we assign other tuples to the two groups one by
one in a random order. For tuple w, the assignment depends on
NCP (Gu, w) and NCP (Gv, w), where Gu, Gv are the groups
formed so far. Tuple w is assign to the group that leads to lower
uncertainty penalty.

If at least one group has k or more tuples, then the partitioning
is conducted. The top-down method is recursively applied to those
groups having at least k tuples.

We have a postprocessing step to adjust for those groups with
less than k tuples. If one group G has less than k tuples, we ap-
ply the local greedy adjustment similar to the bottom-up approach.
That is, we consider two alternatives. First, we can find a set G′ of
(k−|G|) tuples in some other group that has more than (2k−|G|)
tuples such that NCP (G∪G′) is minimized. Second, we compute
the increase of penalty by merging G with the nearest neighbor
group of G. By comparing the two penalty measures, we decide
whether G′ is moved to G or G is combined with its nearest neigh-
bor group. Such adjustments should be done until every group has
at least k tuples, i.e., the k-anonymity requirement is satisfied.

In worst case, the partition depth is bounded by O(|T |). In each
step of partition, it takes O(m) time cost to partition the m tuples
in the current set into two subsets. Thus, the overall partitioning

cost is O(|T |2). After the top-down partitioning, in the worst case,
we may have to adjust b |T |

2k
c groups each having less than k tuples.

Thus, the cost of adjustment is O(|T |2) in the worst case. However,
in practice, the number of groups that are smaller than k is much
less than the worst case. As shown in our experiments, the top-
down method is clearly faster than the bottom-up method.

The top-down method is also a local recoding method, since in
the adjustment step, similar to the bottom-up method, two tuples
identical in the quasi-identifier may be assigned to two different
groups.

5. EXPERIMENTAL RESULTS
To evaluate the two heuristic methods proposed in this paper, we

conducted an extensive empirical study using both real data sets
and synthetic data sets.

5.1 Settings and Evaluation Criteria
We compare three methods: the mondarian multidimensional

k-anonymization method [9], the bottom-up method and the top-
down method developed in this paper. According to [9], the mon-
darian multidimensional k-anonymization method (called Multi-
Dim for short hereafter) is so far the best method in both quality
(measured by the discernability penalty) and efficiency. The gen-
eral idea of the method is a top-down greedy search that is similar
to building kd-trees [5]. At each step, it chooses a dimension to
split the data set at the median of the dimension. Heuristically, the
dimension with the widest normalized range of values is chosen.

We measure the quality of the anonymization using three crite-
ria: the certainty penalty, the discernability penalty, and the error
rate in query answering. The certainty penalty proposed in this pa-
per measures the utility of the anonymization. The discernability
penalty is a de facto standard measure on anonymization quality
used in many previous studies. The error rate measures how effec-
tive the anonymized data sets are in query answering.

All our experiments were conducted on a PC with a Pentium P4
2.0 GHz CPU and 512 MB main memory, running Microsoft Win-
dows XP. All the algorithms were implemented by us in Microsoft
Visual C++ version 6.0.

5.2 Results on Real Data Set Adults
The Adults census data set from the UC Irvine machine learning

repository has become a de facto benchmark for k-anonymization.
The data set was configured as described in [4]. The salary class
attribute was dropped, and the tuples with missing values were re-
moved. The resulting data set contains 30, 162 tuples.

Since the MultiDim method does not handle hierarchies on cat-
egorical attributes but treats a categorical attribute as a discrete nu-
meric attribute, we configured the data set for MultiDim as it was
used in [9]. For the bottom-up method and the top-down method
proposed in this paper, we used age and education levels as numeric
data, and use the other attributes as categorical attributes. We used
the two hierarchies in Figure 6 on attributes work-class and marital-
status. On other categorical attributes, a simple two-level hierarchy
is applied: the values are the leaf nodes and the root is ALL (i.e.,
suppression). All weights were set to 1.

Figure 7 shows the certainty penalty of the anonymization of the
three methods with respect to different k values. As expected, since
the bottom-up method and the top-down method focus on the cer-
tainty penalty, but the MultiDim method does not, the anonymiza-
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Figure 6: The hierarchies on attributes work-class and marital-status.
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Figure 7: Certainty penalty on data set
Adults.
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Figure 8: Discernability penalty on data
set Adults.
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Figure 9: Query answering error rate on
data set Adults.

tion generated by the bottom-up method and the top-down method
has a clearly lower certainty penalty. The gap is stable, about
2× 104.

Figure 8 compares the discernability penalty of the anonymiza-
tion generated by the three methods with respect to different values
of k. Interestingly, although the bottom-up and the top-down meth-
ods do not explicitly focus on reducing the discernability penalty,
they outperform the MultiDim method. Please note that the dis-
cernability penalty in the figure is drawn in the logarithmic scale.
The results show that optimizing the utility and the reducing the
discernability are not conflicting with each other. In fact, the two
methods also try to keep the size of groups same when they reduce
the certainty penalty. Grouping tuples locally can bring us ben-
efit on reducing both the certainty penalty and the discernability
penalty.

Interestingly, the anonymized data sets generated by the bottom-
up method and the top-down method are comparable in both the
certainty penalty and the discernability. This is not unexpected
since the two methods greedily group tuples locally to achieve k-
anonymity.

To test the effectiveness of query answering using the anonymized
data, we generate workloads using SUM and COUNT aggregate queries,
respectively. Each workload has 1, 000 random queries. Each
COUNT query involves all the attributes, and each SUM query in-
volves all but the age attribute that is used to compute the sum. The
ranges of the attributes are selected randomly. For a categorical at-
tribute, a query carries either a random categorical value, or a set
of values that are summarized by an internal node in the hierarchy
as the range. This is consistent with the settings in [9].

Figure 9 shows the results on two workloads of aggregate func-
tions COUNT and SUM, respectively, with respect to different k val-
ues. Clearly, the bottom-up method and the top-down method out-
perform the MultiDim method substantially. The results can be ex-

2 5 10 25 50 100
10

0

10
1

10
2

10
3

10
4

k

T
im

e(
s)

MultiDim
BottomUp
TopDown

Figure 10: Runtime with respect to k on data set Adults.

plained in two aspects. First, the utility-driven anonymization put
tuples that are similar to each other into groups. Thus, the general-
ized groups often have small ranges, and can answer queries more
accurately. Second, our methods handle categorical attributes bet-
ter than the MultiDim method. The hierarchies are considered in
the anonymization. This contributes to the query answering quality
strongly.

Figure 10 shows the runtime of the three methods. As the trade-
off, the bottom-up and the top-down methods consumes more run-
time than the MultiDim method. The top-down method is about 5-6
times slower than MultiDim, and is much faster than the bottom-up
method. The runtime of the three methods is not sensitive to k. The
difference in the efficiency can be explained by their complexity.
While the MultiDim method has the complexity O(|T | log |T |), the
bottom-up and the top-down methods have complexity O(|T |2).

5.3 Results on Synthetic Data Sets
To test the performance of the three methods more thoroughly,
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Figure 11: Certainty penalty with respect
to k, on synthetic data sets with uniform
distribution (dimensionality = 4).
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Figure 12: Certainty penalty with respect
to k, on synthetic data sets with Gaussian
distribution (dimensionality = 4, σ = 1.0).
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Figure 13: Certainty penalty with respect
to σ, on synthetic data sets with Gaussian
distribution (dimensionality=4, k = 10).
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Figure 14: Certainty penalty with respect
to dimensionality, on synthetic data sets
with Gaussian distribution (σ = 1.0, k =
10).
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Figure 15: Discernability penalty with re-
spect to k, on synthetic data sets with uni-
form distribution (dimensionality = 4).
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Figure 16: Discernability penalty with re-
spect to k, on synthetic data sets with
Gaussian distribution (dimensionality = 4,
σ = 1.0).

we generated synthetic data sets in two types of distributions: uni-
form distribution and Gaussian distribution. The dimensionality
and the number of tuples may vary according to the needs of exper-
iments. By default, a data set has 10, 000 tuples and each attribute
is in the domain of integer with range [1, 16]. Again, by default the
weights are set to 1.

5.3.1 Anonymization Quality
Figures 11 and 12 show the certainty penalty with respect to k

on the synthetic data sets with uniformly distribution and Gaussian
distribution, respectively. In the uniform distributed data, the Mul-
tiDim method and the top-down method are comparable, and the
top-down method is better when k is small. The bottom-up method
performs poorly. The reason is that with uniform distribution, the
kd-tree like construction in the MultiDim method can partition the
data set evenly into groups with hyper-rectangle bounding boxes
so that each group is balanced and achieves low penalty. The same
happens to the top-down method as well. In the bottom up method,
the groups formed by merging may be in irregular shape and thus
may lead to high certainty penalty.

In data sets with Gaussian distribution, both the top-down method
and the bottom-up method work better than the MultiDim method.
The advantage is clear. With bias data, local search and local re-
coding may have good chance to find local clusters that lead to low
certainty penalty.

It is interesting to test the certainty penalty with respect to the

degree of bias in data. Figure 13 shows the results. The top-down
method is consistently the best. When the data is severely biased,
the MultiDim method performs poorly. But when the data becomes
less biased, the MultiDim method catches up with and even outpe-
forms the bottom-up method, but is still worse than the top-down
method.

Figure 14 shows the certainty penalty with respect to various di-
mensionality. The top-down method and the bottom-up method
are comparable, and the top-down method is slightly better. The
MultiDim method has a high certainty penalty in high dimensional
data. Please note that, as the dimensionality increases, the certainty
penalty generally increases accordingly since each attribute con-
tributes to the certainty penalty. The bottom-up and the top-down
methods try to reduce the penalty in the anonymization procedure
and thus may achieve good results.

We also test the quality of the anonymization using the discern-
ability penalty measure. Figures 15, 16, 17, and 18 show the results
on the cases in Figures 11, 12, 13, and 14, respectively. The results
using the discernability penalty measure are consistent with the re-
sults reported in [9].

From the results, we can observe that the bottom-up method and
the top-down method have similar performance, and achieve less
discernability penalty than the MultiDim method in all cases. This
is consistent with the results on the real Adults data set.

From this set of experiments, we conclude that the bottom-up
and the top-down methods often have similar performance in anonymiza-
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Figure 17: Discernability penalty with re-
spect to σ, on synthetic data sets with
Gaussian distribution (dimensionality=4,
k = 10).
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Figure 18: Discernability penalty with re-
spect to dimensionality, on synthetic data
sets with Gaussian distribution (σ = 1.0,
k = 10).
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Figure 19: Utility in query answering, on
synthetic data sets with uniform distribu-
tion (dimensionality=4, k = 10).
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Figure 20: Query answering error rate,
on synthetic data sets with Gaussian
distribution (dimensionality=4, σ = 1.0).
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Figure 22: The effectiveness of the seed
tuple choice heuristic in the top-down
method, on real data set Adults, and syn-
thetic data sets with uniform and Gaussian
distribution (dimensionality=4).

tion quality, measured by both the certainty penalty and the dis-
cernability. The anonymization quality using those two methods
are often better than the MultiDim method.

5.3.2 Utility and Query Answering
To test the utility in query answering, we use a uniformly dis-

tributed data set with 4 attributes, and set k = 10. We assign
weights 8, 4, 2, and 1 to attributes A1, A2, A3, and A4, respec-
tively. That is, the information loss in attribute A1 is strongly un-
desirable.

We generate 4 groups of random queries on attribute combina-
tions A1, A1A2, A1A2A3, and A1A2A3A4, respectively. The av-
erage error rates of the queries in each group is shown in Figure 19.
For comparison, we also conduct the same queries on anonymiza-
tion that do not consider the weights.

As can be seen, the effect of utility-based anonymization is sig-
nificant. The anonymization using the weighted top-down or bottom-
up methods answers the queries on A1, A1A2, and A1A2A3 more
accurately than the non-weighted methods. When all attributes are
involved in a query, the weighted methods may lose some accuracy
as the trade-off.

We also test the average error rates using the anonymized data
to answer aggregate queries. Figure 20 shows the results. In this

experiment, we assign the default weight 1 to every attribute, and
test two aggregate functions SUM and COUNT. The average error
rate is computed from 1, 000 random queries. The methodology is
the same as the experiment reported in Figure 9 and the experiments
reported in [9].

The results show that both the bottom-up and the top-down meth-
ods achieve lower error rate than the MultiDim method when k is
not large, since local recoding often groups tuples with small cer-
tainty penalty. When k is large, the top-down method has the best
performance, and is clearly better than the other two methods.

5.3.3 Efficiency and Scalability
The advantages of the bottom-up and the top-down methods in

anonymization quality do not come for free. The trade-off is the
longer computation time. Figure 21 shows the results on scalability.
The complexity of the MultiDim method is O(|T | log |T |), lower
than that of the bottom-up and the top-down methods. Thus, the
MultiDim method is more scalable. However, since anonymiza-
tion is typically an offline, one-time task, quality can be a more
important concern than the runtime. On the other hand, the dif-
ference between the top-down method and the MultiDim method
is not dramatic. In our experiments, even when the data set scales
up to 100, 000 tuples, the runtime of the top-down approach is just
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less than 6 times slower than that of the MultiDim method.
The top-down method is substantially faster than the bottom-up

method. As analyzed in Section 4, splitting in the top-down method
is much faster than merging in the bottom-up method.

A critical step in the top-down method is to choose two seed
tuples. We used a heuristic method as described in Section 4. Fig-
ure 22 shows the effectiveness of the heuristic. We used a thorough
method to compute the pair of tuples of the largest certainty penalty.
Then, we used the heuristic method to compute seed tuples that are
far away, and compare their certainty penalty with the maximum.
As shown, with a small number of iterations, our heuristic gives
very good approximation to the maximum. Thus, in our implemen-
tation, we conduct 3 iterations to obtain the seed tuples.

Summary
The extensive experiments using both real data sets and synthetic
data sets show that, in terms of utility and discernability, the bottom-
up method and the top-down method developed in this paper often
achieve better anonymization in quality than the MultiDim method,
the state-of-the-art approach. The top-down method is better than
the bottom-up method.

The trad-off of high anonymization quality is the runtime. The
MultiDim method is more efficient. However, the runtime of the
top-down method is not far away from that of the MultiDim method
in practice. Moreover, for anonymization, the computation time is
often a secondary consideration yielding to the quality.

6. CONCLUSIONS
As privacy becomes a more and more serious concern in applica-

tions involving microdata, good anonymization is important. In this
paper, we showed that global recoding, which is often used in pre-
vious methods, may not achieve effective anonymization in terms
of discernability and query answering accuracy. Moreover, the util-
ity of attributes has not been considered in the previous methods.
Consequently, we study the problem of utility-based anonymiza-
tion. A simple framework was given to specify utility of attributes,
and two simple yet efficient heuristic local recoding methods for
utility-based anonymization were developed. Our extensive perfor-
mance study using both real data sets and synthetic data sets shows
that our methods outperform the state-of-the-art multidimensional
global recoding methods in both discernability and query answer-
ing accuracy. Furthermore, our utility-based method can boost the
quality of analysis using the anonymized data.
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ABSTRACT
Classification has been commonly used in many data mining
projects in the financial service industry. For instance, to
predict collectability of accounts receivable, a binary class la-
bel is created based on whether a payment is received within
a certain period. However, optimization of the classifier does
not necessarily lead to maximization of return on investment
(ROI), since maximization of the true positive rate is often
different from maximization of the collectable amount which
determines the ROI under a fixed budget constraint. The
typical cost sensitive learning does not solve this problem
either since it involves an unknown opportunity cost due
to the budget constraint. Learning the ranks of collectable
amount would ultimately solve the problem, but it tries to
tackle an unnecessarily difficult problem and often results in
poorer results for our specific target. We propose a new al-
gorithm that uses gradient descent to directly optimize the
related monetary measure under the budget constraint and
thus maximizes the ROI. By comparison with several classi-
fication, regression, and ranking algorithms, we demonstrate
the new algorithm’s substantial improvement of the finan-
cial impact on our clients in the financial service industry.
The proposed algorithm can also be applied to several other
areas such as maximizing average returns of stock selection
and identifying tax auditing targets of highest values.

Categories and Subject Descriptors
H.4 [Database Management]: Database Applications -
Data Mining; I.2.6 [Artificial Intelligence]: Learning; I.5.2
[Pattern Recognition]: Design Methodology - classifier
design and evaluation

General Terms
Algorithms
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return on investment, neural networks, constrained opti-
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mization

1. INTRODUCTION
Classification has been commonly used in many data min-

ing projects in the financial service industry. We have used
a classifier to predict defection of mutual fund accounts for
a major US mutual fund company [9], where the positive
samples are defined as those accounts with a net redemp-
tion amount (redemption minus purchase) of 35% or more
of the account balance within a two-month window. We set
up a control group for the project to evaluate the model’s
accuracy. Table 1 shows the real-world evaluation results for
the control group over a four-month window, which consists
of two levels of defection risk and three segments based on
account values.

Higher risk
Def. rate Avg. net redem.

Segment 1 4.8% -$5,145
Segment 2 10.5% $14,494
Segment 3 5.7% $2,733

Lower risk
Def. rate Avg. net redem.

Segment 1 1.9% $2,494
Segment 2 1.6% $13,864
Segment 3 2.4% $2,686

Table 1: Defection rate and average net redemption
amount for the control group for a US mutual fund
company.

We can see that the model was successful at predicting
defecting accounts as evidenced by the higher defection rate
in the higher risk groups for all the three segments. How-
ever, the average net redemption amounts in the higher risk
groups were not significantly higher than those in the lower
risk groups. Especially, for Segment 1, even though the
higher risk group had a much higher defection rate than the
lower risk group, the negative net redemption amount in the
higher risk group indicates a positive net purchase. This
model can be used to reduce defection rate, but it would
not be the best model used to prevent the highest redemp-
tion amount. For a fixed budget, the return on investment
(ROI) of the project is determined by the amount of redemp-
tions prevented (rather than by the reduction of defection
rate). There are many significant factors other than the
model affecting the retained amount, but simply classifying
the accounts as defection or non-defection does not enable
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the mutual fund company to reach out to those accounts
with the highest redemption amount.

As another example, a classifier can be used to predict col-
lectability of delinquent accounts receivable for credit card
issuers using credit, demographic, and account data, where
a binary class label is created based on whether a payment
for an account is received within a certain period since the
account was placed into the collection process. Typically,
the budget restricts how many accounts can be placed into
a specific collection process. While the true positive rate
among those accounts in the collection process is a mean-
ingful measure of classification accuracy, maximization of
the true positive rate is often different from maximization
of the collectable amount for the specific collection process.
It is the collection amount rather than the true positive rate
that determines the ROI under the fixed budget.

Note that we are always addressing a budget constraint,
which determines, among other things, how many mutual
fund accounts the customer service team can reach out ev-
ery month and how many accounts receivable can be placed
into a specific collection process. In our applications we
represent the budget constraint by the pull rate r which is
the percentage of accounts to pull out for a specific inter-
vention/collection process. Let us denote x as the target
monetary measure, e.g., collection amount, which directly
determines the ROI. Then the goal is to find a function
y(e), where e is the independent variables such as credit,
demographic, and account data, so that the accounts in the
top r% by y correspond to those in the top r% by the target
x. Thus the problem of maximizing the ROI can be formally
defined as

Max
∑

y(ei)∈Top r%

xi, (1)

where i = 0, 1, . . . , n − 1, and n is the total number of ac-
counts.

1.1 Related work
One might immediately suggest cost-sensitive learning,

e.g., [4], and ranking, e.g., [2], [3], would solve the above
problem. For cost-sensitive learning, we have the cost ma-
trix in Table 2. Assuming c00 = 0 and c11 = 0, a typical
sensitive learning algorithm tries to minimize the cost

C =
∑
i∈P

(1− qi)c01 +
∑
j∈N

qjc10 (2)

over the training set, where P , N are the sets of positive and
negative samples, respectively, and qi, qj are both posterior
probabilities of belonging to the positive class. In our appli-
cation, the actual positives are those accounts which are in
the top r% of x, and predicted positives are those accounts
which have a score y in the top r%. It is straightforward
that c01 = x, since if an actual positive is placed out of the
top r% (a predicted negative), the company will not be able
to collect $x or retain the net redemption of $x. If an actual
negative is placed among the top r%, the company will lose
the opportunity to reach out to one of the accounts with a
larger x in the top r%, since the number of accounts to be
contacted is pre-determined by the pull rate r. Thus, c10

is an opportunity cost that is not a constant and unknown.
One might still try to train a classifier with sample weights
intuitively based on x. In Sections 3 and 4, we compare our
algorithm’s results with such a classifier’s.

actual negative actual positive
predicted negative c00 c01

predicted positive c10 c11

Table 2: A cost matrix for cost-sensitive learning.

If we can learn a regression model so that y(ei) = xi, i =
0, . . . , n−1, or a ranking model so that y(ei) > y(ej) for any
(i, j) ∈ {(i, j)|xi > xj , i, j = 0, . . . , n − 1}, ∑

y(ei)∈Top r% xi

would be optimized for each r. However, both regression
and ranking try to solve an unnecessarily difficult problem,
and often lead to poorer results for our specific target at pull
rate r. Maximization of

∑
y(ei)∈Top r% xi requires only the

correct ranking between the Top r% and the others. The
ranking within the Top r% or the others is not necessary,
neither is the estimate of x itself by regression. In Sections
3 and 4, we compare our model with a regression and a
ranking model, which uses the algorithm in [2].

We present the new algorithm in the next section, where
we also describe the several classification, regression, and
ranking algorithms which we compare with in our projects.
In Section 3, we use the proposed algorithm to predict col-
lectibility of accounts receivable for delinquent consumer
loan accounts from several US financial institutions. In Sec-
tion 4, the new algorithm is applied to predicting defection
of mutual fund accounts for a major US mutual fund com-
pany. Finally, we discuss several algorithmic and applied
extensions of the proposed algorithm in Section 5.

2. CONSTRAINED OPTIMIZATION OF
THE ROI

For a model with 0 ≤ y ≤ 11, assume that the specified
pull rate r can be achieved at a decision threshold β (0 <
β < 1), i.e., the accounts in the pull are those with an output
larger than β. In this case, maximization of

∑
yi∈Top r% xi

can be solved by the following constrained optimization over
yi, i = 0, . . . , n− 1, and β:

Max

n−1∑
i=0

xi · I(yi, β), (3)

subject to
∑n−1

i=0 I(yi, β)

n
= r, (4)

where

I(yi, β) =

{
1 : yi > β
0 : otherwise

. (5)

When the constraint
∑n−1

i=0 I(yi,β)

n
= r is satisfied, the num-

ber of accounts with the model output yi > β will be ex-
actly r% of n. The difficulty here is that I(yi, β) is non-
differentiable, and gradient based optimization cannot be
used to optimize Eq. 8.

In [8], [9], we demonstrate that the sigmoid function

σ(yi, β) =
1

1 + e−κ(yi−β)
, (6)

where κ > 0, does not provide a good differentiable approx-
imation to I(yi, β) when −1 ≤ yi − β ≤ 1. Instead, we have

1For simplicity, we’ll omit the independent variable e and
use yi for y(ei).
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proposed the following differentiable approximation

f(yi, β + γ) =

{
(yi − β − γ)p : yi > β + γ

0 : otherwise
, (7)

where p > 1 and 0 ≤ γ < 1. A small but positive γ is often
helpful for a better generalization performance over the test
set. Now Eq. 3 becomes

Max

n−1∑
i=0

xi · f(yi, β + γ). (8)

However,
∑n−1

i=0 f(yi,β)

n
is not a good approximation to

∑n−1
i=0 I(yi,β)

n
, since f(yi, β) is often not close to 1. As in

[9], rather than trying to use a differentiable approximation
to r, we approximate a related ratio r

1−r
by the following

differentiable function:
∑n−1

i=0 f(yi, β)∑n−1
i=0 g(yi, β)

, (9)

where

g(yi, β) =

{
(β − yi)

p : yi < β
0 : otherwise

(10)

with p > 1. g(yi, β) is a differentiable approximation to the
following step function

Ip(yi, β) =

{
1 : yi < β
0 : otherwise

. (11)

Since the optimization often moves most yi close to β in the
end, we will see that Eq. 9 can provide a close approximation
to r

1−r
.

Now we convert the constrained optimization into an un-
constrained optimization problem by minimizing the follow-
ing Lagrangian:

L = − 1

n

n−1∑
i=0

xi · f(yi, β + γ) +
1

µ
(

∑n−1
i=0 f(yi, β)∑n−1
i=0 g(yi, β)

− r

1− r
)2.

(12)
During the training iterations, µ is gradually decreased un-

til convergence of the constraint (
∑n−1

i=0 f(yi,β)
∑n−1

i=0 g(yi,β)
− r

1−r
)2 is

achieved. In practice, we have found that mapping xi in
Eq. 12 to a value between -1 and 1 by

θ(xi) =
1− e−xi

1 + e−xi
(13)

typically obtains improved results.
In the Appendix, we derive the derivatives for yi. These

derivatives together with the chain rule can then be applied
to any parametric model, for which one can optimize the dif-
ferentiable objective function with respect to the parameters
using gradient based methods.2 In our projects, we apply
the proposed algorithms to a typical multilayer perceptron
(MLP) network with softmax outputs between 0 and 1, and
with a single hidden layer and direct connection between the
input and output layers. β can also be optimized with the
model parameters, but we have found that fixing β at 0.5
achieves almost the same results over our data sets.

2We use the limited memory BFGS method in [6].

2.1 Comparing methods
In Sections 3 and 4, we apply the new algorithm to pre-

dicting collectibility of accounts receivable and predicting
defection of mutual fund accounts, and compare the re-
sults of the proposed algorithm with the following four al-
gorithms’.

• Classification An ensemble of MLP classifiers is trained
by mean squared error based on the defined class label.
Since the class prior is typically low, each individual
classifier in the ensemble has a modified prior to com-
pensate for the imbalanced data sets [10].

• Weighted classification An MLP classifier is trained
by mean squared error based on either the defined
class label, e.g., whether the net redemption amount
is above or below 35% of the account balance, or the
ranks of the training samples. Using the ranks to de-
termine the class label is an intuitive idea: labeling
those samples in the top r% of x as positive and the
others as negative. When r is the same as the prior of
the defined class, these two approaches are the same.
During training, the samples are weighted by x or a
function of x. To avoid the dominance of those sam-
ples with an extreme value of x, we typically use the
sigmoid function of x to smooth out the weights.

• Ranking Burges et al. propose a ranking algorithm
using gradient descent [2]. We apply this algorithm to
train an MLP model which ranks x in our applications.
The algorithm tries to minimize the cross entropy func-
tion

∑

(i,j)∈S

−P̄ij log Pij − (1− P̄ij) log(1− Pij), (14)

where S = {(i, j)|xi ≥ xj , i, j = 0, . . . , n− 1}, and P̄ij

is the target probability of xi > xj . Pij is the model’s

estimate of P̄ij in the form Pij = e
yi−yj

1+e
yi−yj

. Then the

cost function becomes
∑

(i,j)∈S

−P̄ij(yi − yj) + log(1 + eyi−yj ). (15)

In our experiments, we choose P̄ij = 1 if xi > xj and
P̄ij = 0.5 if xi = xj .

• Regression An MLP regressor is trained by mean
squared error against x. We map x to a value between
0 and 1 using the sigmoid function.

3. PREDICTING COLLECTIBILITY OF AC-
COUNTS RECEIVABLE

Accounts receivable are unpaid customer invoices, and any
other money owed to a company by its customers. From
credit card issuers to banks, from local retail stores and
service businesses, to the federal, state and local govern-
ments, if the business or government unit extends credit,
offers payment installment plans, or makes assessments, it
has accounts receivable. The collection industry serves an
important role in the U.S. economy by recovering billions
in revenue from charged-off or delinquent accounts receiv-
able for U.S. companies. By returning this money to U.S.
companies, the collection industry saves American families
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Figure 1: This figure shows convergence of pull rates
achieved by the threshold β during the optimization.
Line 1 is for the training set, and Line 2 shows the
pull rate change over the test set.

on average $331 a year in money they otherwise would have
spent if businesses raised their prices to cover losses to bad
debt [1].

The portfolio of accounts receivable we worked on consists
of consumer loan accounts from several US financial service
institutions. The portfolio includes several types of accounts
in terms of account history. For example, some are the so-
called Prime accounts which are newly charged off accounts,
and some are Seconds which had already gone through a col-
lection process. Our goal is to develop a generic predictive
model which can be used to guide the agents’ collection ef-
forts. In particular, we would like to identify a high value
segment which consists of 11% of the whole portfolio. The
11% is chosen since the payer rate (percentage of paid ac-
counts in the first six months) is 11%. It is clear that the
return on investment is determined by the collection amount
from the identified 11% accounts in the segment.

The data set includes 684,600 accounts. We randomly
split the data set into a training set and a test set of equal
size. In addition to the account history and general de-
mographic information, several hundred data fields from a
credit score provider about the account owner are also avail-
able. The domain experts guided the feature selection, and
30 data fields are used in the final model.3 Missing values for
continuous variables are simply imputed by the mean with
an added binary column indicating missingness for this vari-
able. Most of the data fields are categorical. For categorical
variables with missing values, the sets of distinct values are
augmented by another value ‘missing’. We encode the cat-
egorical variable C = {c1, c2, . . . , ck} by replacing ci with
the conditional mean E(x|ci) and conditional standard de-
viation σ(x|ci), i = 1, 2, . . . , k.

We set r = 11% and fix β at 0.5 for the new algorithm,
trying to maximize the average collection amount among the
top 11% accounts. We choose γ and p in Eq. 12 so that the
number of training samples with the model output y > β is
close to r% and the average collection amount among the

3While we are still working on several feature selection al-
gorithms trying to reveal more useful data features, up to
now we have only achieved marginal improvement by adding
more data fields.
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Figure 2: This figure shows the improving average
collection amount among the top 11% accounts dur-
ing the optimization. Line 1 is for the training set,
and Line 2 is over the test set.

top r% in the training set is the largest. Here we chose
γ = 0.01 and p = 2 4, and the number of hidden units is
5.5 In Figures 1 and 2, we show the optimization process
along with iterations of µ, which is initialized at 100, and is
updated by µt+1 = 0.75µt during the optimization, where t
is the iteration index. Figure 1 shows that the optimization
converged when the number of training samples with y > β
reached 12%, which is quite close to the target pull rate 11%.
We can see that the pull rate over the test set, achieved by
the same threshold β, is also very close to the target 11%.
This demonstrates that Eq. 9 provides a good approximation
to r

1−r
. In Figure 2, with the iterations, a steadily improving

average collection amount among the top 11% is observed for
both the training and test sets. We rarely observe obvious
overfitting, and this justifies the use of the training set to
choose γ and p.

Table 3 presents the average collection amount in the top
11% accounts over the test set for five different models. The
classification model is an ensemble of 25 MLP networks with
a modified class prior between 0.02 and 0.5 [10]. For the
model of weighted classification, during training the samples
are weighted by σ(x) = 1

1+e−x , which is also the target vari-
able for the regression model. For ranking, most accounts
(89%) have a tied collection amount of zero. We can see
that the new algorithm is clearly exceeding all other algo-
rithms. Comparing with the classification model, the ROI is
improved by 25%. Note that the average collection amount
over the whole portfolio is $36 only.

new model class. weighted class. ranking regress.
$157 $126 $106 $61 $116

Table 3: The average collection amount in the top
11% accounts over the test set for five different mod-
els.

4In some cases, by choosing different p values in Eq. 8 and
Eq. 9, better results over the training set can be achieved.
5We have observed that the number of hidden units, varying
from 0 to 10, does not have a significant effect on the results
over our large data sets. Therefore all the MLP structures
in the paper have 5 hidden units.
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4. PREDICTING DEFECTION OF MUTUAL
FUND ACCOUNTS

Worldwide the mutual fund industry houses 15 trillion US
dollars – about 8 trillion from US investors and another 7
trillion from investors in other countries. Today, the US
mutual fund industry holds about 18% of all households’
financial assets and about 22% of all outstanding US cor-
porate stock [5]. However, in the end of 2003 the industry
wide redemption rate stood at 24.2%, implying that the in-
vestor base completely turns over in 4 (1/0.242) years. To
illustrate the magnitude of redemptions in the mutual fund
industry, the Investment Company Institute estimated that
in 2003 1.086 trillion new dollars flowed into equity funds
but, over the exact same measurement interval, 934 billion
(86%) flowed back out [5]. The costs associated with keep-
ing track of this flowing river of money, adding and deleting
client information to databases, filing required tax forms
with federal, state and local taxing authorities as well as
simply cutting checks to redeeming clients is an enormous
drain on any funds’ expense ratio, not mentioning the rev-
enue drop of fund companies because of the decreased assets
under management (AUM) due to redemption. In recent
years, more and more mutual fund companies have recog-
nized the importance of early identification of investors at
risk of redeeming their assets (i.e., defectors), so that proac-
tive client service and educational programs could be initi-
ated to “plug” the outflow of assets.

We have developed a model to predict account defection
for a major US mutual fund company. In order to pro-
vide early identification of defectors, there is a two month
gap between the end of the independent variable (IV) win-
dow and the beginning of the two-month dependent vari-
able (DV) window. For example, at the end of February,
we would like to predict which accounts will defect in the
time period of May and June. The two-month leading time
allows the mutual fund company to act on the predicted
potential defectors in March and April. For classification
purpose, a defector is defined by the domain experts as an
account which had a net redemption amount (redemption
minus purchase) of at least 35% of the account balance in a
two month window. As the training set, we received about
184,000 accounts, each of which had an account balance of
at least $100,000. For training, the IV window is a one-
year period ending on May 31, and the DV window is a
two-month period of August and September. Based on the
definition of defection, the defection rate is below 1% in the
two month window. Regardless of the defection definition,
the average net redemption amount in the two months over
the whole training set was about -$3,000, where the nega-
tive sign means that, on average, the account balance had
a net increase. We used a forward time-shifted test set of
around 434,000 accounts, which had the one-year IV win-
dow ending on September 30 and the DV window consisting
of December and January.

The data for each account is a mixture of continuous and
categorical variables, including basic account information,
asset data, transactions, demographic information, bench-
mark performance data, and customer service records. There
are about 2,000 raw data fields, but the final model uses 123
data fields after conducting feature selection and time series
transformation [9]. The mutual fund company set r = 10%
based on the predetermined budget. We will discuss the
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Figure 3: This figure shows convergence of pull rates
achieved by the threshold β during the optimization.
Line 1 is for the training set, and Line 2 shows the
pull rate change over the test set.

savability issue in the next section. Until then let us assume
that the return on investment is primarily dependent on the
net redemption amount identified among the top 10%.

Again we fix β at 0.5 for the new algorithm and try to
maximize the average net redemption amount in the top
10%. We chose γ = 0 and p = 2 since, with these param-
eters, the number of training samples with y > β is close
to 10% and the average collection amount among the top
10% in the training set is the largest. We have seen that
these two goals are often quite consistent, i.e., when a set of
parameters results in the largest average collection amount,
it also brings the number of training samples with y > β
close to the target pull rate. We show the optimization pro-
cess along with iterations of µ in Figures 3 and 4. Again
we can see that the optimization converged when the num-
ber of training samples with y > β reached 11%, which is
quite close to the target pull rate 10%. Over the test set,
the number of samples with y > β reached 12%, 2% higher
than the target rate. Figure 4 shows a quite large difference
of the average net redemption amount between the training
and test sets. This is due to the overall net redemption is
changed in the test set’s DV window, which is four months
apart from the training set DV window. The average net re-
demption amount over all the accounts is now about -$3,400,
comparing with -$670 over the training set.

In Table 4, the classification model is an ensemble of 25
MLP networks trained with modified priors based on the
defection definition of 35% or more redemption. However,
the weighted classification model is trained by class labels
based on the ranking, i.e., the samples with the top 10%
of net redemption amount are positives and the others are
negatives. The training samples are weighted by 1

1+e−|x| ,

which gives larger weights to samples with a larger (posi-
tive or negative) net redemption amount. The regression
model is trained against σ(x) = 1

1+e−x . Note that in Table
4 a negative net redemption amount means a positive net
purchase. Though the classification model achieves a 39%
true positive rate (the new model has a true positive rate of
14%), it cannot effectively identify those accounts with the
highest redemption amount.
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Figure 4: This figure shows the average net redemp-
tion amount change among the top 10% accounts
during the optimization. Line 1 is for the training
set, and Line 2 is over the test set.

new model class. weighted class. ranking regress.
$1,236 -$6,723 -$18,968 -$9,923 $671

Table 4: The average net redemption amount in the
top 10% accounts over the test set for five different
models.

5. DISCUSSIONS
We have proposed a new learning algorithm which focuses

on maximizing the monetary measure under a fixed budget
constraint. The two applications demonstrate the substan-
tial improvement of financial impact by the new algorithm.
In this section, we discuss several related practical issues
and some algorithmic and application extensions.

• Savability There is no doubt that maximizing the
collection amount for the top r% accounts also max-
imizes the ROI of the collection efforts which reach
out to a predetermined r%. However, it is arguable
that maximizing the net redemption amount in the top
r% accounts would maximize the retained redemption
amount and thus the ROI. Another important factor
determining the ROI is the savability of the predicted
net redemption amount. It is reasonable to assume
that it might be more difficult to retain a substan-
tial redemption amount of a large account, since the
redemption rate against the balance might be insignif-
icant and the redemption is just some normal cash
flow activity. To model ‘savability’ directly appears
not feasible since ‘being savable’ is not observable and
cannot be defined correctly. However, we have tried
to model savability from the other aspect – ‘being un-
savable’, which can be partially defined, i.e., if an ac-
count was predicted to defect and was contacted for
retention but still became defected, this account was
unsavable. Here we implicitly assume retention efforts
do not cause originally non-defecting accounts to de-
fect. We have developed such a savability model for
a US mutual fund company. However, we have not
been able to combine the savability model with scores
from the model by the new algorithm in a principled
way, since the score is only a ranking indicator rather

than a probabilistic estimate of x. An empirical way
to consider savability is to increase the predetermined
r by a certain percentage, and to exclude those ac-
counts with a savability score below an empirically de-
termined threshold.

• Valuable false positives The model trained using the
new algorithm does not classify accounts into positive
and negative samples defined separately, e.g., by the
redemption rate of 35%. We have observed that the
model achieving the highest average net redemption
amount can have a very low true positive rate based
on the defection definition. Some companies will not
feel comfortable to see a low true positive rate based on
the defection definition given by their domain experts.
It would be most desirable to achieve both a high true
positive rate and a higher average redemption amount
among the false positives. We call these false positives
valuable false positives since they may have substantial
net redemption too. We have tried to simply add an
item, which approximates the true positive rate in [9],
into Eq. 12 and to minimize the Lagrangian:

L = − 1

n

n−1∑
i=0

xi · f(yi, β + γ)− 1

m

∑
i∈P

f(yi, β + γ)

+
1

µ
(

∑n−1
i=0 f(yi, β)∑n−1
i=0 g(yi, β)

− r

1− r
)2, (16)

where m = |P |, the number of positive samples. How-
ever, this intuitive approach does not appear to work
well.

• No budget constraint In some cases, there is no fixed
budget constraint and r is not predetermined. For
example, for the collection industry, the goal might
be loosely stated as collecting as much as possible by
contacting as less accounts as possible. For this goal
one might be tempted to minimize the following La-
grangian:

L = − 1

n

n−1∑
i=0

xi · f(yi, β + γ) +
1

µ

∑n−1
i=0 f(yi, β)∑n−1
i=0 g(yi, β)

. (17)

This approach does not work since it always tries to get
to a contact rate close to zero. In theory, the maximum
profit or ROI is achieved when the marginal collection
cost equals to marginal revenue (collection amount).
Typically, we can assume the marginal collection cost
is a constant. By searching over different r values, for
each of which a model needs to be trained by mini-
mizing Eq. 12, the optimum r can be found so that
the marginal collection cost is equal to the marginal
revenue and the ROI is maximized.

• Other applications The new algorithm can also be
applied to several other areas. For example, maxi-
mizing average returns of stock selection, identifying
tax auditing targets of highest values, and identifying
fundraising targets with the highest contributions – all
these tasks involve a predetermined budget and only
concern the related average monetary value in the top
r% determined by the budget. Even in the typical
customer relationship management area, e.g., churn
prediction for wireless service providers [10], since the
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ultimate concern is the loss of revenue due to service
disconnection, we can apply this algorithm to iden-
tify those accounts with the highest revenue losses.
It would be interesting to compare this approach to
another approach which combines an estimate of cus-
tomer value with a predicted churn probability [7].
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APPENDIX

Derivatives for minimizing Eq. 12
The following partial derivatives with the chain rule together
form the basis to minimize Eq. 12 against the model param-
eters, e.g., the weights of an MLP structure.

Let

F =

n−1∑
i=0

f(yi, β) (18)

and

G =

n−1∑
i=0

g(yi, β). (19)

For i ∈ {i|f(yi, β+γ) ≤ 0, i = 0, . . . , n−1}, we have ∂L
∂yi

= 0.

For i ∈ {i|f(yi, β + γ) > 0, i = 0, . . . , n − 1}, we have the
following two cases:

• When f(yi, β) > 0,

∂L

∂yi
= − p

n
xi(yi − β − γ)p−1

+
2p

µ
(
F

G
− r

1− r
)
1

G
(yi − β)p−1. (20)

• When g(yi, β) > 0,

∂L

∂yi
= − p

n
xi(yi − β − γ)p−1

+
2p

µ
(
F

G
− r

1− r
)

F

G2
(β − yi)

p−1. (21)
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ABSTRACT
Data mining models often carry the final objective of max-
imizing profit or minimizing cost. This problem becomes
even more profound in financial applications that can have
multiple constraints, such as interest rate, score cut-off, and
the loan amount to allocate. In this paper, we present a
pricing framework for discovering the total profit from a
probabilistic model, given a benefit function.

1. INTRODUCTION
An important application of data mining in the financial

industry is “scoring” the customers for loans. Credit scoring
methods, typically, apply a cut-off paradigm of accepting or
declining potential customers. The cut-off score is derived
from a model learned on past consumer characteristics, and
influences not only the accept or decline decision but also
the loan amount and accompanying interest rate. Our goal
is to evolve the scoring decision with a pricing scheme that
drives the overall utility of the model. The utility is defined
in terms of the economic benefit or the profit from approving
loan for a customer. We want to able to structure the loan
amount and the interest rate for a customer based on the
propensity to default.

Our work builds upon the cost-sensitive learning litera-
ture [5, 11, 4, 7, 12] and the relevant literature from finance
[10]. Stein [10] extends a cut-off score based approach to a
pricing approach resulting in a more flexible and profitable
model. Using the ROC curve quantities, he formulates the
net present value of taking a lending decision and the cor-
responding benefit of a true negative.

We formulate a pricing framework based on the proba-
bility of default assigned by a scoring model and a benefit
matrix. The benefit matrix specifies the benefit (positive
or negative) from making a prediction. For example, a true
negative will result in higher benefit as it is a positive return
on the investment (a non-defaulting customer is correctly
predicted to be a non-default). The profit from a customer
is conditioned on the propensity to default (or not default).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UBDM’06 August 20 2006, Philadelphia, Pennsylvania, USA
Copyright 2006 ACM 1-59593-440-5/06/0008 ...$5.00.

Table 1: Benefit Matrix
Actual Non-default Actual Default

Predict Non-default b00 b01

Predict Default b10 b11

We want to be able to construct a pricing scheme that com-
pensates the risk of the customer, and accordingly proposes
an interest rate and a loan amount. Thus, we propose the
interest rate and loan amount that can be assigned to an ap-
proved customer. We illustrate the workings of the pricing
scheme using case dependent benefit functions. We discuss
that the calibration of the model and the resulting quality
of the estimates is more important than the resulting rank-
ordering. We hasten to point out that, while this work serves
as a preliminary proof-of-concept, our ongoing goal with the
work is to demonstrate the applicability of the proposed ap-
proach using multiple simulations. We want to eventually
compare multiple models using ROC curves, probability loss
functions, and profits in dollars.

2. PRICING SCHEME
The key utility of applying data mining in a business

model is the objective of maximizing profit or minimizing
cost. The profit is related to the accuracy of the default
probability predicted by a model and the case dependent
benefit function. A typical benefit matrix can be defined
as in Table 1 [5]. The benefit matrix elements reflect the
benefits from assigning the loan, as per the corresponding
probability of default. Morever, we assume that the bene-
fits can be different for individual customers as they will be
conditioned on the loan amount and the interest rate. The
benefits should be tunable for the different levels of risk as
reflected by the probability of default. This can be achieved
by generating a different pricing function. Furthermore, we
will assume that a customer, k, is accompanied with a prob-
ability of default of Pk. In our empirical analysis, we will
assume that b10 = b11 = 0, since there is no benefit or cost
from not offering a loan to customer.

Then, the profit from predicting a customer as a non-
default (ND) (making the loan offer), can be calculated as:

BND = (1 − Pk)b00 + Pkb01 (1)

and the benefit from predicting the customer as default
(declining the application) can be calculated as:

BD = (1 − Pk)b10 + Pkb11. (2)
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To result in a higher profit from issuing the loan than refus-
ing it, we should ideally have BND > BD. This will form
the restricting condition for allocating loan to a customer,
and the basis of our pricing scheme. In a rigid competitive
environment, it is being able to price and accept the BD

customers, gives the critical advantage.

2.1 Making Non-default Prediction Optimal
An ideal pricing scheme will be governed by the condition

that no customer is ever turned down. Rather, a loan prod-
uct is always priced for the customer, in conjunction with
the interest rate, such that the resulting decision leads to
a higher profit. That is the loss given default should not
exceed the benefit ensuing from granting the loan.

The benefits are obviously example dependent. They are
functions of the loan amount (x). The benefits (or losses)
for true negatives and false negatives can be defined as a
function of x: b00(x) and b01(x). The benefits for false posi-
tives and true positives typically are regarded as constants:
b10 and b11. Since we want BND > BD, for an optimal non-
default prediction, the price b00(k, x) asked for a randomly
chosen customer scoring S(k), should be

(1 − Pk)b00(k, x) > (1 − Pk)b10 + Pkb11 − Pkb01(x). (3)

The above formulation, arising from equations 1 and 2, com-
pensates for the default risk — the benefit from accepting
a customer should be greater than the chance of losing due
to the default. Hence, to grant the loan of x for a customer
k, the resulting benefit should be:

b00(k, x) >
(1 − Pk)b10 + Pkb11 − Pkb01(x)

(1 − Pk)
. (4)

To do further analysis, we made some simple assumptions:
we suppose that the benefit from a non-defaulting customer
(true negative) is a function of the loan amount x, the inter-
est rate r and the risk premium g(x) (b00(x) = g(x) + rx),
particularly we assume that g(x) = ax, here a is a very small
constant (for example, a = 0.005)); while the loss from a
false negative is b01 = cx, where c is also a constant and
−1 < c < 0, and a reasonable guess for the value of c could
be -0.35 [10]. Then, the interest rate asked for a specific
customer can be derived from equation 4 as follows

r >
(1 − Pk)b10 + Pkb11 − Pkcx

(1 − Pk)x
− a, (r ≥ 0) (5)

This above equation is a limiting condition for making the
loan offer an optimal choice. Figure 1 shows the interest
rate asked for the customers to appropriately compensate
the default risk that the bank has taken with the assump-
tions: b10 = b11 = 0, c = −0.35, and a = 0.005. This result
indicates that for any customer we could generate the in-
terest level corresponding to the default rate. But for high
default rate customers, we find out that the interest rate
is too high to be realistic, so a limit for the interest rate
becomes necessary. Now if we define the maximum interest
rate rmax allowed in the real practices, then the interest rate
asked for any customer should satisfying

r ≤ rmax. (6)

Note that rmax can be fixed prior, depending on the bank
practices and the risk appetite. In practice, the following
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Figure 1: Interest level asked for compensating the
default risk (b10 = b11 = 0, c = −0.35, and a = 0.005).

equation should be satisfiable:

rmax >
(1 − Pk)b10 + Pkb11 − Pkcx

(1 − Pk)x
− a, (7)

Rearranging the above equation, we have

((a + rmax)(1 − Pk) + Pkc)x > (1 − Pk)b10 + Pkb11. (8)

We can now define the range of the loan amount x at differ-
ent values of Pk, while charging the customer at the possible
maximum interest rate rmax.

• if Pk > rmax+a
rmax+a−c

,

x <
(1 − Pk)b10 + Pkb11

(rmax + a)(1 − Pk) + Pkc
, (9)

• if Pk < rmax+a
rmax+a−c

,

x >
(1 − Pk)b10 + Pkb11

(rmax + a)(1 − Pk) + Pkc
. (10)

Based on the above analysis, for a specific customer, we
can decide not only the amount of money to loan but also
the interest rate. Note that these values are derived using
both the probability of default and the benefit matrix.

2.1.1 Making Non-negative Profit
We have discussed conditions to make non-default predic-

tion to be optimal under various circumstances. However,
these will not guarantee a positive profit, when BD < 0. To
ensure non-negative profit from each customer, BND ≥ 0
is also necessary. So the true non-default prediction benefit
function b00(k, x) should satisfy

(1 − PK)b00(k, x) ≥ −Pkb01(x). (11)

From equation 8, we can derive the following conditions: if
Pk = 1 (see equation 8), we should have b01(x) ≥ 0, which
derives (x ≤ 0) implying that no money should be loaned;
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when Pk = 0, the above equation 11 is always true, so always
pass the loan at a minimal interest rate; and for 0 < pk < 1,
the required interest rate should be

r(k, x) ≥ −Pkc

1 − Pk
− a. (12)

Again if there exists a maximum interest rate rmax allowed,
then it should satisfy

rmax ≥ r(k, x) ≥ −Pkc

1 − Pk
− a. (13)

So, Pk = rmax+a
rmax+a−c

will lead to zero profit with rmax. Pk >
rmax+a

rmax+a−c
will lead to negative profit even with rmax, thus

implying that the loan request should be declined. We can
gain non-negative profit, only for the following condition:
Pk < rmax+a

rmax+a−c
, with an interest rate r > −Pkc

1−Pk
− a.

Combining the results we have now, we get the following
conditions for making non-negative profit from each cus-
tomer:

• For customers with Pk = 1, always decline the appli-
cation.

• For customers with Pk = 0, always accept the appli-
cation.

• For customers with 0 < Pk < 1, the interest rate
should satisfy equation 4 and 11 simultaneously.

– if rmax+a
rmax+a−c

< Pk < 1: results negative profit,
decline the application.

– if Pk = rmax+a
rmax+a−c

: zero profit, decline or accept
decision can be taken on the basis of profit from
resulting underwriting charges, etc.

– if 0 < Pk < rmax+a
rmax+a−c

, decide the interest rate by
equation 5 and 6 for the loan, or determine the
amount of money should be lent by equation 10.

We would like to point out that similar analysis can be
easily conducted for any changes in benefit functions, thus
becoming a useful tool for loan practices.

3. SIMULATIONS AND RESULTS
At this point, we have only conducted preliminary experi-

ments on publicly available UCI datasets [1] — the covtype,
and pima dataset. We randomly divided the dataset into
70% for training and 30% for testing. We used for different
classifiers four different models: C4.5 decision trees [9] (J48),
NBTree [6], Bagging with J48, and Bagging with NBtree.
Our eventual goal is to utilize multiple learning algorithms
with a variety of datasets to validate the proposed pricing
scheme. We believe that the ROC curve analysis is limiting
for pricing schemes, as it does not allow one to evaluate the
quality of PK . Hence, we also use different loss measures
that capture the quality of the probability estimates. The
actual total profit is a function of:

�

i

(I(y = ND)b00(ki, xi) + I(y = D)b01(xi)) (14)

in which ki is the corresponding percentile for the ith cus-
tomer, y is the actual class of the instance (ki, xi), and I(·) is
the indicator function that has value 1 in case the argument
is true and 0 otherwise (ND= Non-Default, D=Default).
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Figure 2: ROC curves for Covtype dataset from J48
(-solid), NBtree (dotted), BaggingJ48(dashed), and
BaggingNBtree( dash-dotted)
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Figure 3: ROC curves for Pima dataset from J48
(-solid), NBtree (dotted), BaggingJ48(dashed), and
BaggingNBtree(dash-dotted)
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Table 2: Profit from Different Models (rmax = 0.1)
Dataset Probability Loss Profit

and Model average NCE average brier simulation 1 simulation 2 simulation 3
Covtype 1.0e + 5∗ 1.0e + 6∗ 1.0e + 5∗

J48 0.0268 0.0295 4.9074 0.5061 4.7703
NBtree 0.0369 0.0369 4.5403 0.4740 4.4527
BagJ48 0.0180 0.0203 6.6351 0.6815 6.7984

BagNBtree 0.0177 0.0204 9.7745 1.0131 9.8566
Pima 1.0e + 4∗

J48 0.2380 0.3479 3.6396 0.9603 1.6686
NBtree 0.1924 0.2855 3.0532 0.7739 2.0492
BagJ48 0.1992 0.2950 3.2529 1.1815 1.6608

BagNBtree 0.1844 0.2724 4.7752 2.7599 2.9511

Table 3: Profit from Different Models (rmax = 1/3)
Dataset Probability Loss Profit

and Model average NCE average Brier simulation 1 simulation 2 simulation 3
Covtype 1.0e + 5∗

J48 0.0268 0.0295 5.1169 5.0477 5.0875
NBtree 0.0369 0.0369 5.9022 5.8350 6.3156
BagJ48 0.0180 0.0203 6.8557 7.0939 7.0119

BagNBtree 0.0177 0.0204 9.7755 9.9511 9.8868
Pima 1.0e + 4∗

J48 0.2380 0.3479 5.8322 3.0318 3.0332
NBtree 0.1924 0.2855 6.2662 5.2977 2.8935
BagJ48 0.1992 0.2950 7.0204 3.9391 3.0269

BagNBtree 0.1844 0.2724 7.3293 5.5422 4.5443

The profit derived from an individual consumer can po-
tentially be negative, due to bad loaning decisions, but the
model ideally should result in aggregated positive profit.
The weighted benefit of true negative should overcome the
cost of false negative.

To compare the performance from different models, the
benefit function b11 and b10 are assumed to be zero, the loan
amount x asked by the customer is generated by -raylrand(n)
in matlab, which generates random numbers with Rayleigh
distribution, with n = 10, 000. But the actual loan amount
granted is determined by discussion in previous sections.
We ran three different simulations with the random loan
amounts generated from the Rayleigh distribution. We also
report the losses on the probability estimates using the neg-
ative cross entropy (NCE) and brier score measures [3, 2].

NCE = − 1

n
{(
�

i|y=1

log(p(y = 1|xi))

+
�

i|y=0

log(1 − p(y = 1|xi)))}

Brier =
1

n

n�

i=1

(yi − pi)
2

The limit of interest rate is set to be rmax = 1/10 and
rmax = 1/3. Tables 2 and 3 show the results including the
loss measures and overall profit for three different set of sim-
ulations and at different maximum interest rates. We notice
that the quality of the estimates as indicated by the NCE
or Brier score, particularly the NCE, agrees with the overall

profit. This is not surprising as the benefit is weighted on
the probability. Figures 2 to 3 show the ROC curves. We
see that the ROC curves overlap for a large region of the
ROC space. However, if we were to fit the ROC convex hull
[8], it would potentially capture the models that result in
maximal profits. For instance, bagged NBTree model has
the highest profit for both covtype and pima.

We would like to point out that ROC curves are certainly
limited in their evaluation of the quality of probability es-
timates. A classifier can achieve a high rank-ordering, but
that is not necessarily indicative of the underlying calibra-
tion of the model [3]. Moreover, the benefit function is de-
pendent on the quality of probability estimate. A weakly
calibrated model can result in less economic utility, as evi-
dent from our results too. We advocate the use of appropri-
ate loss measures, indicative of the calibration of the model
for evaluating models utilizing a pricing scheme for loan de-
cisions.

The empirical results are limited to be able to draw con-
vincing observations. Nevetheless, there are strong trends
that spell out. There is a strong relationship between qual-
ity of the probability estimates and the resulting profit from
the model. Figure 4 shows the negative cross entropy com-
puted per test example and the corresponding profit for the
two dataset. It is clear that as the negative cross entropy
increases, indicating poor quality of estimates, the profits
decrease.

4. CONCLUSION
We discussed a pricing scheme for loan practice based

on credit scoring models (classifiers) and benefit matrix.
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Figure 4: NCE vs Profit Plots

The framework enables pricing the loan for each individ-
ual customer conditioned on the loan amount and the cor-
responding interest rate. The two important conditions for
the scheme are: 1. granting loans is more profitable than
declining it; 2. ensuring a non-negative profit from loans.
The theoretical framework can be encompassed to utilize
the different policies as set by the bank. One factor that we
did not explicitly consider is the amount of downpayment
made by a consumer. That is a potential risk mitigator and
can influence the interest rate.

As part of future work, we are investigating applications
of the proposed scheme to other domains that require the
parameterization of costs and benefits. The parameters are
replaceable by the domain specifics. One application that
comes to mind is medical informatics. For example, con-
sider the case of diagnosing a patient with a disease. There
are obvious benefits and costs associated with that domain.
The benefits include correctly diagnosing and predicting the
patient with disease, and the losses include the costs from
mis-diagnosis.
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ABSTRACT 
While most software defects (i.e., bugs) are corrected and tested 
as part of the lengthy software development cycle, enterprise 
software vendors often have to release software products before 
all reported defects are corrected, due to deadlines and limited 
resources. A small number of these defects will be escalated by 
customers and they must be resolved immediately by the software 
vendors at a very high cost. In this paper, we develop an 
Escalation Prediction (EP) system that mines historic defect 
report data and predict the escalation risk of the defects for 
maximum net profit. More specifically, we first describe a simple 
and general framework to convert the maximum net profit 
problem to cost-sensitive learning. We then apply and compare 
several well-known cost-sensitive learning approaches for EP. 
Our experiments suggest that the cost-sensitive decision tree is the 
best method for producing the highest positive net profit and 
comprehensible results. The EP system has been deployed 
successfully in the product group of an enterprise software 
vendor.  

(Note: this paper is accepted by KDD’06) 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning 

General Terms 
Algorithms, Management, Performance, Economics 

Keywords 
Escalation prediction, cost-sensitive learning, data mining 

1. INTRODUCTION 
Building large enterprise software is generally a highly complex 
and lengthy process, during which numerous software defects (i.e., 
bugs) are reported and required to be corrected or fixed. However, 

often some of reported defects will not be fixed when the software 
products are released, due to tight deadlines or limited resources 
[7]. After product release a small number of defects become 
“escalated” by customers, whose businesses are seriously 
impacted. Escalations of software defects require software 
vendors’ immediate management attention and senior software 
engineers’ immediate and continuous effort to reduce the business 
or financial loss to the customers. Therefore, software defect 
escalations are highly costly to the software vendors, with the 
associated costs amounting to millions of dollars each year. In 
addition, software defect escalations result in loss of reputation, 
satisfaction, loyalty and repeat revenue of customers, incurring 
extremely high costs in the long run for the enterprise software 
vendors [2, 3]. 

Due to time (i.e., deadlines) and resource limitations, enterprise 
software vendors can only fix a limited number of defects before 
product release. Thus, they must try to identify which reported 
defects have a high risk of escalation, which should be fixed at a 
much lower cost within the product development and testing cycle 
before product release. However, identifying software defects that 
are likely to escalate is a complex and difficult task. Software 
vendors often have in place human-centric processes for 
evaluating defect reports, but such processes are unreliable and 
subjective.    

In this paper we propose a data-mining solution to predict 
escalation risks of defects to assist human experts in the review 
process of software defects. To the best of our knowledge, 
applying data mining for predicting software defect escalations is 
novel in software engineering. More specifically, we build an 
Escalation Prediction (EP) system that learns from history defects 
data and predicts escalation risk using data mining technology [1, 
8, 12]. If the EP system can accurately predict the escalation risk 
of known defect reports, then many escalations will be prevented. 
This would save a huge amount of money for the enterprise 
software vendors [6].  

Indeed, the ultimate business goal of EP (and many industrial 
applications using data mining) is to maximize the “net profit”, 
that is, the difference in the cost before and after introducing the 
data mining solution, as opposed to the usual data-mining 
measures such as accuracy, AUC (area under the ROC curve), lift, 
or recall and precision [14]. However, the net profit is not 
equivalent to any of these standard machine learning measures 
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[5], and we have found little previous work that directly optimizes 
the net profit as the data mining effort.  

We first set up a simple framework in which the problem of 
maximum net profit can be converted to minimum total cost in 
cost-sensitive learning under certain conditions (see Section 2). 
We then apply and compare several well-known cost-sensitive 
learning approaches on a defect report dataset to see how they 
perform, in terms of maximum net profit (Section 5). The EP 
system is shown to be able to improve greatly the net profit in 
software production. The system is currently deployed within the 
product groups of an enterprise software vendor, and it has 
quickly become a popular tool for prioritization defects for fixing. 
EP is one of the successful stories of data mining deployed in 
industry.  

2. MAXIMUM NET PROFIT AND COST-
SENSTITIVE LEARNING 
In this section we will propose a novel method that converts the 
maximum net profit problem to cost-sensitive learning.  

As discussed in the Section 1, correcting defects after an 
escalation occurs at the customer site is much more expensive 
than correcting them before product release. However, deadlines 
and limited resources usually allow only a small number of 
defects to be fixed at a lower cost before product release. If we 
treat escalated defects as positive examples and non-escalated 
defects as negative examples, then false negative, or FN, is when 
EP predicts negative (non-escalation) but the defect is actually 
positive (becomes escalated after product release). Thus, the cost 
of FN (correcting an escalated defect) is relatively high. On the 
other hand, false positive, or FP, is when EP predicts positive 
(escalation defects) but the defect is actually negative (non-
escalation). Thus, the cost of FP (correcting a non-escalated 
defect) is relatively low (and is the same as the cost of true 
positive, TP, or fixing an escalated defect). The cost of true 
negative, TN, is zero.  

We assume that the cost FN is 7 times as the cost of FP. Further, 
we assume that FN = $7,000, and FP = $1,000 (we did not use the 
actual numbers here for confidentiality reasons but the actual cost 
figures are some constant factor of the numbers used here). Then 
the cost metric can be represented in Table 1.  As the cost metric 
is known, this would seem to be a straightforward cost-sensitive 
learning problem, in which the weighted misclassification cost is 
minimized. 

Table 1: Cost metric. 

 Actual Negative Actual Positive
Predict Negative 0 7,000 
Predict Positive 1,000 1,000 

 

The problem is not that simple. The goal of the EP (Escalation 
Prediction) system (and many other real-world data mining 
applications) is to maximize the net profit after data mining is 
deployed. That is, we want to maximize the gain (or difference) 
with the data-mining effort compared to the previous, default 
practice. That is, we want to compare the cost (or profit) after 
data-mining based EP is deployed to some default policy before 
EP is deployed.  

Let us first establish the formula for the net profit, which is the 
difference of the total costs before and after deploying EP. Let us 
first calculate the cost after deploying EP (“gross profit”). If the 
software vendor follows faithfully the EP’s predictions, it will fix 
all defects predicted positively, and ignore all defects predicted 
negatively. The cost of correcting all defects predicted positively 
by EP is thus the multiplication of the number of defects 
predicated positively and the cost of correcting such a defect; that 
is, (tp+fp)×FP. (Note that we use small letters, such as tp, to 
represent the number of true positive cases, and capital letters, 
such as TP, to represent the cost of true positive cases. Similar 
notations are used for other cases. ) 

After the software is released, the would-be escalated defects 
predicted negatively by EP (i.e., false negatives) will escalate and 
must be fixed at a much higher cost of fn×FN. Thus, the total cost 
after deploying EP is the sum of the two costs described above, 
plus the cost of the data mining effort (such as the cost of the tool, 
computer and human cost of using the tool, etc). If we ignore the 
cost of the data mining effort now, then the total cost of deploying 
EP is:   

(tp+fp)×FP+ fn×FN.   (1) 

Assume that the default policy (before deploying EP) is to ignore 
all defect reports before software release, and then correct all 
escalated defects after release. Then using the same notation, the 
cost of this default policy is simply the cost of correcting all 
escalated defects. That is:  

(tp+fn)×FN.   (2) 

Thus, the net profit is to subtract (1) from (2). That is: 

Net profit = tp× (FN–FP)–fp×FP = 6000×tp–1000×fp.   (3) 

On the other hand, if the default policy is to correct all of the 
defects (which rarely happens due to deadlines and scarce 
resource), the cost would be (tp+fp+tn+fn)×FP. Subtracting (1) 
from the cost of the correcting-all policy above, the net profit 
would be: 1000×tn –6000×fn. Thus, in general, the net profit 
varies with the default policy. 

We propose a novel and simple approach to convert a formula of 
maximum net profit (such as (3) above) to cost-sensitive learning 
under certain conditions. Cost sensitive learning basically 
attempts to minimize the weighted cost, which can be expressed 
as: 

tp×TP + fp×FP + tn×TN + fn×FN.  (4) 

Therefore, as long as the net profit, such as (3), can be expressed 
as a linear formula of tp, fp, tn, and fn, we can negate its 
coefficients in the linear formula, and re-assign the cost metric by 
the negated coefficients. For example, the cost metric for the net 
profit (3) can be converted and represented in Table 2. In the rest 
of the paper, we will study EP under this cost metric.  

Comparing the two cost metrics in Tables 1 and 2, we can see that 
one can be converted into the other when the first row is 
subtracted to the second row [11]. However, even though the 
optimal prediction for minimal total cost remains the same after 
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such conversions, the actual value of the total cost (4) would 
certainly be changed. That is, the software vendors not only want 
to know what predictions will produce the maximum net profit, 
but also the actual value of the net profit, as it reflects how much 
gain it may actually obtain after the data-mining based EP is 
deployed. Indeed, it is possible that the maximum net profit is 
negative (see Table 3 later in Section 5), indicating that it may be 
counter-productive to deploy the data mining system. In addition, 
as we have omitted the cost of the data mining effort (such as the 
tool cost, computer and human cost), the software vendor must 
obtain a positive net profit with a value that is large enough to 
offset other costs involved and decide if EP is a worthwhile 
endeavor or not.    

To conclude, different default policies often result in different net 
profit calculations. However, under the condition that the net 
profit can be represented linearly by tp, fp, tn, and fn, we show 
that a simple and novel method can convert the maximum net 
profit to a new cost metric. Thus, the maximum net profit problem 
can now be solved by cost-sensitive learning. The result obtained 
(actual net profit value) will be useful for the software vendor to 
decide the overall benefit of deploying the data-mining system.   

Table 2: Cost metric converted from (3). This cost metric will 
be used in the rest of the paper. 

 Actual Negative Actual Positive
Predict Negative 0 0 
Predict Positive 1,000 –6,000 

3. COST-SENSITIVE LEARNING  
Cost-sensitive learning algorithms can be broadly categorized into 
two types. One is to design a wrapper that converts existing cost-
insensitive (or cost-blind) base learning algorithms into cost-
sensitive. The wrapper method is also called cost-sensitive meta-
learning. The other is to design cost-sensitive learning algorithms 
directly [19, 10, 15]. In this section we will discuss briefly several 
well-known cost-sensitive learning approaches, including a 
method of our own (CSTree, described later) and several new 
improvements. Due to space limitation we will not provide full 
details of each method; instead, only highlights are given. The 
first four approaches belong to the wrapper method; they apply 
sampling etc. on cost-blind base algorithms to make them cost-
sensitive. The last method is cost-sensitive by nature. These 
approaches will be compared experimentally in the next section to 
see which one(s) can reliably obtain the maximum net profit in 
Escalation Prediction. 

The first popular approach, called “Undersampling” in this paper, 
is to rebalance the training data by sampling the data sets. 
Previous work (see, e.g., [10]) has indicated that over-sampling 
the minority class can cause overfitting, and may not be helpful to 
improve predictive performance. Other research [20] shows that 
keeping all examples of the rare class, and under-sampling the 
majority class to be about the same as the rare class performs well 
measured by AUC. Thus, we will use this simple strategy. That is, 
we keep all positive examples (escalated defects), and randomly 
sample without replacement the negative examples such that the 
two classes are balanced.  

However, as the positive examples occupy only about 1% of the 
original training and test sets (see Section 4), the balanced dataset 

contains only about 2% of the original training set, which is very 
small. Therefore, we apply bagging [4] to Undersampling, as 
bagging has been shown to be effective in improving predictive 
accuracy and probability estimation measured by AUC. Bagging 
is also applied to other methods (see later).  

As Undersampling itself is not cost-sensitive, the class label 
produced cannot be used directly in predicting escalation for 
maximum net profit. As the base learning algorithms used also 
produce probability estimates for the labels, testing cases can be 
ranked. To accurately calculate the maximum net profit, the 
threshold method is used: a separate validation set is used to find 
the best threshold on the probability estimates to classify the 
validation cases that would produce the maximum net profit (on 
the validation set), and this best threshold is then applied to the 
test set to classify the test cases into positive (if the predicted 
probability is larger than or equal to the threshold) or negative (if 
the predicted probability is less than the threshold). The net profit 
on the test set can then be calculated and obtained.  

The second approach, called “Costing”, is an advanced sampling 
which weighs examples according to the cost, producing cost-
sensitivity with a provable performance guarantee [22]. The 
advanced sampling used is rejection sampling, in which each 
example in the original training set is drawn once, and is accepted 
into the sample with the probability proportional to its 
“importance”. The size of the re-sampled dataset is smaller than 
the original set. With bagging, the method is shown to outperform 
other methods measured by the maximum total profit in two real-
world datasets [22].  

The third approach, called “Relabeling”, relabels the classes of 
instances by applying the minimum expected cost criterion [9]. 
MetaCost [9] belongs to this approach. MetaCost uses bagging as 
the ensemble method.  

The forth approach, called “Weighting” [18], induces cost-
sensitivity by integrating the instances’ weights directly into the 
classifier building process. It works when the base learners can 
accept weights directly. This method does not rely on bagging. 
However, to compare with other cost-sensitive methods, we also 
apply bagging to this method.   

The fifth approach, called “CSTree”, is a recently proposed cost-
sensitive decision-tree algorithm that uses the total cost directly as 
a split criterion [15]. That is, instead of minimizing entropy in the 
tree building process, the split criterion simply minimizes the total 
misclassification cost given a cost metric. CSTree is, by nature, 
truly cost-sensitive, and thus, the result of classifying the test 
cases is used directly in the calculation of the maximum net 
profit.  

Several improvements have been made in the CSTree for the EP 
application. First of all, compared to [15], the costs for true 
positive (TP) and true negative (TN) may not be zero here. 
Second, expected total cost reduction is used during tree building. 
That is, an attribute may be selected as a root if the expected cost 
reduction is maximum (among other attributes), and is greater 
than 0. More specifically, for a given set of cases without split, if 
CP (= tp×TP + fp×FP) is the total cost of labeling a leaf 
positively, and CN (= tn×TN + fn×FN) is the total cost of 
labeling a leaf negatively, then the probability of a positive 
outcome is first estimated by the relative cost of CP and CN  as 
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expected cost reduction splitting on A. During tree construction, 
an attribute with the maximum expected cost reduction is chosen, 
and if the value is greater than 0, then the attribute is chosen to 
split the training examples; if not, a leaf node is formed.  

The last improvement is tree pruning. The original method did not 
incorporate pruning. We have found that without pruning, the tree 
overfits the training examples. This means that a larger tree (that 
fits the training examples better) predicts worse compared to a 
small tree. We have implemented post pruning similar to the post-
pruning in C4.5 [17] in our cost-sensitive decision tree (but our 
post-pruning is guided by minimum total misclassification cost).   

The CSTree has two distinctive advantages. The first one is that 
there is no need for sampling in the training data. The original 
training data can be used directly in building the decision tree. 
That is, CSTree can naturally utilize all information in the 
training data. Second, CSTree does not rely on bagging for the 
final outcome. This implies that the final results can be 
comprehensible by domain experts. 

4. THE DATASETS 
Our dataset consists of historical defect reports from industry 
software projects of an enterprise software vendor. Defect reports 
change over time and so there is an opportunity to learn from 
multiple different versions of a single defect report. Additionally, 
the same defect can be reported several times by different parties. 
Therefore, numerous data records in the dataset may belong to 
only one defect.  Confidentiality of the data only allows us to give 
a brief description of the data. The data was collected in a period 
of 2004, and contains a total of about 165,000 records (defect 
report observations). Note that the class labels of this dataset have 
all been verified by real escalations of the software products, thus 
this dataset contains much less noise than the one used in our 
previous work [16]. The total number of attributes is 53, most of 
which are numerical attributes (including dates), and a few are 
nominal (such as product name). The system uses three types of 
inputs: 1) raw inputs which correspond to field values which are 
reported by users and stored in the defect tracking database, 2) 
row-level transformations of raw values, such as concatenating 
two string-valued raw inputs into a derived new string-valued 
input, and 3) statistical inputs which are derived from statistical 

analyses of all rows which fall into a given time period, such as a 
fiscal quarter. 

Statistical inputs were particularly useful for string valued raw 
inputs because string-valued data is typically difficult to use for 
machine learning.  For example, a raw input for 
"CUSTOMER_NAME" may have 20,000 possible customer 
name values. Therefore, the system calculates statistics for string-
valued inputs.  These statistics include counts (number of defects 
submitted by customer "abc", and number of escalations raised by 
customer "abc"), means (number of escalations over number of 
defects submitted for hardware platform "xyz"), and the 
probability of an escalation, and so on. Further analysis of these 
inputs and their utility for prediction is of great interest but 
beyond the scope of this paper.   

The target attribute is binary (escalation or no escalation). The 
whole dataset is split up into training and test sets according to the 
defect report date. The training set contains about two thirds of 
the records (before a certain date), and the test set contains one 
third of the records (after that date). The dataset is very 
imbalanced, with slightly less than 1% of the positive examples 
(escalated defects).  

5. COMPARING COST-SENSITIVE 
LEARNING APPROACHES FOR EP 
In this section we compare the five cost-sensitive learning 
approaches (Undersampling, Costing, Relabeling, Weighting, and 
CSTree) discussed in Section 3 on the latest dataset we have 
obtained. Again the latest dataset contains much less noise than 
the dataset used in our previous work [16], thus the results 
reported here are different (but the general conclusion is still the 
same). In addition, more base learning algorithms are included in 
the current study (see later).     

Again the first four approaches are wrappers or meta cost-
sensitive learning methods, as they apply to any cost-blind base 
learning algorithms to make them cost-sensitive. We choose four 
popular learning algorithms, naïve Bayes, the decision tree 
algorithm C4.5 [17], decision stump [13], and REPTree [21] as 
their base learners, due to their popularity and high efficiency. 
The fifth method (CSTree) is also a decision tree but it is cost-
sensitive in nature. It would be interesting to compare various 
wrapper methods applying to cost-blind C4.5 to the cost-sensitive 
decision tree (CSTree).  

To make the net profit result comparable with different 
approaches, we use “unit” net profit, defined as the net profit 
divided by the number of records in the test sets in our 
comparison. Note that even if a data mining method obtains a unit 
net profit of $1, the saving to the enterprise software vendors can 
be quite significant. If we assume that 1 unit represents $50 in 
reality (a reasonable figure), then with 1,000 software defect 
reports in a software product to be released, a total saving with 
EP’s prediction would be 1,000×50 = $50,000 for a typical 
customer. Alternatively, assuming a unit cost of $250 and 50,000 
defect reports the total savings amount to $12.5 million. 

Bagging is applied to all methods. The maximum unit net profit, 
when the bagging iteration is set to 1 (no bagging), 10, and 100 
are shown in Table 3.   
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Table 3: Comparing unit net profit using five different cost-
sensitive approaches. 

Bagging Iterations Cost-sensitive Approaches 
1 10 100 

Naïve Bayes 0.00 0.43 1.85 
C4.5 -0.05 0.01 3.52 

REPTree 0.00 6.97 10.80

Undersampling 

DecisionStump 0.00 0.00 0.00 
Naïve Bayes -6.60 -5.45 -5.26

C4.5 11.87 13.85 13.99
REPTree 9.63 11.31 13.34

Costing 

DecisionStump 0.00 0.00 0.00 
Naïve Bayes -16.49 -17.56 -18.01

C4.5 0.00 0.00 0.00 
REPTree 8.00 12.83 11.15

Relabeling 
(MetaCost) 

DecisionStump 0.00 0.00 0.00 
Naïve Bayes -5.69 -6.10 -6.93

C4.5 9.10 11.38 11.47
REPTree 12.96 14.16 14.39

Weighting 

DecisionStump 0.00 0.00 0.00 
CSTree NA 14.72 14.15 14.07

 

From the results in the table, we can draw several interesting 
conclusions.  

First, in terms of performance of the five different cost-sensitive 
learning algorithms, we can see that they perform quite differently, 
even when they use the same base learning algorithms. This 
means that some trial-and-error is needed to choose the best 
performing cost-sensitive approach in EP (and other real-world 
applications). For meta-learning approaches (the first four 
approaches), different base learners also yield very different 
performance. In general, C4.5 and REPTree perform better than 
other base learning algorithms. The fifth method, CSTree, is the 
best. Decision tree models (such as C4.5 and REPTree) with no 
bagging (bagging iteration is 1) also produce comprehensible 
results that can provide insights to the software vendors as to why 
certain defects are highly likely to escalate.  

Second, compared to no bagging (bagging iteration is 1), bagging 
(with 10 or 100 iterations) generally improves the result when the 
maximum unit net profit is positive. However, CSTree achieves 
an excellent result without bagging (with the highest unit net 
profit of 14.72). Again without the need of bagging, a single tree 
has the advantage of producing comprehensible results for domain 
experts to exam the outcome of data mining.  

Third, sometimes cost-sensitive methods produce very negative in 
terms of unit net profit, such as Costing, Relabeling, and 
Weighting with naïve Bayes. As we discussed in Section 2, often 
these absolute values of the unit net profit is important for 
software enterprise vendors to decide if the deployment of data 
mining is profitable or not, and by how much, compared to the 
default strategy. Negative net profit, even though it is a maximal 

value, indicates that it is not worthwhile to deploy the data mining 
effort. Fortunately in our case, we have found clear winners: the 
CSTree, Costing, and Weighting, as they have resulted in large 
positive unit net profit. Deployment of EP with CSTree is 
encouraging. See Section 6 for details.    

To summarize, of all algorithms tested, CSTree performs best for 
the EP task. In Table 4, we rank the five algorithms according to 
their highest unit net profit, and the average unit net profit 
(averaging over the four base learners for the meta cost-sensitive 
learning methods). Both rankings indicate that CSTree performs 
the best, followed by Costing or Weighting, and followed by 
Undersampling or Relabeling.  

Table 4: The rankings of the five cost-sensitive methods in 
comparison. Numbers in parentheses are the unit net profit. 

 

Clearly CSTree without bagging is the most appropriate choice 
for deployment in the software development cycle, due to its 
superior performance and comprehensibility. We will discuss the 
deployment of EP in the next section. 

6. DEPLOYMENT 
Our EP system has been in deployment for many months in the 
product group of an enterprise software vendor where the dataset 
comes from. It has been used to make suggestions on current 
defect reports with high risks of escalation. As the software 
vendor must wait to see which defect reports are actually 
escalated after the product is released, and the would-be 
escalations will not happen after they are accurately predicted by 
EP and corrected before software release, the final evaluation 
cannot be obtained until the software has been released and has 
been in use by customers for some period of time (in the order of 
one or more quarters).  

We have evaluated EP using the defect reports submitted or 
updated during the most recent three weeks in the test set. Any 
records corresponding to defect reports which had already been 
escalated at the time of preparing the data set were also removed. 
After EP makes its predictions, the results are compared to the 
actual escalations happened up to date. The EP prediction 
performance is quite good. The lift chart of EP’s prediction is 
well above the random diagonal line: at top 10 percentile (among 
top 10% of the most likely predicted escalations), about 70% of 
the actual escalations are predicted; at 20 percentile about 85%; 
and at 30 percentile about 90%. These results are of significant 
business value to the software vendor. In addition, the product 
group has provided positive feedback on the performance of the 
EP system, citing that it “catches” defect reports that, after 
thorough evaluation by specialist, are considered likely candidates 
for future escalations. For instance, some defect reports have been 
found to have been assigned a lower than appropriate priority. 
After a prediction of high escalation risk becomes available such 
a defect report can be upgraded to a higher priority which will 
lead to expedited evaluation and resolution.  

 1 (best) 2 3 4 5 

Ranked by 
highest profit

CSTree
(14.72)

Weighting
(14.39) 

Costing 
(13.99) 

Relabeling 
(12.83) 

Undersampling
(10.80) 

Ranked by 
average profit

CSTree
(14.31)

Costing 
(4.72) 

Weighting 
(4.56) 

Undersampling
(1.96) 

Relabeling 
(-1.67) 
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7. CONCLUSIONS 
Enterprise software development is an extremely complex process 
with hundreds or even thousands of defects that need to be 
prioritized and resolved, preventing them from escalation by 
customers and incurring a very high cost to the software vendors. 
In this paper, we present a successful case for predicting 
escalation risks mined from known product defect reports. The 
enterprise software vendors can proactively resolve these defects 
with the greatest risk of escalation at a much lower cost. This can 
save software vendors an enormous amount of software 
maintenance cost. An escalation prediction (EP) system based on 
data-mining for the maximum net profit has been proposed and 
tested, and is currently deployed at an enterprise software vendor. 
Results provide strong evidence that we can indeed make useful 
predictions about the escalation risk of product defects.  

More specifically, we establish a general framework in which the 
maximum net profit problem can be converted to cost-sensitive 
learning. We then evaluate and compare five major cost-sensitive 
learning methods for their effectiveness for EP. We find that the 
CSTree (with novel improvements) can produce large positive 
unit net profit, as well as comprehensible results. This is often 
important for deploying data mining solutions in industry.  

In our future work, we plan to continue to improve the 
effectiveness of the EP system and track its results from the 
software vendors.  
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