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ABSTRACT
Data mining models often carry the final objective of max-
imizing profit or minimizing cost. This problem becomes
even more profound in financial applications that can have
multiple constraints, such as interest rate, score cut-off, and
the loan amount to allocate. In this paper, we present a
pricing framework for discovering the total profit from a
probabilistic model, given a benefit function.

1. INTRODUCTION
An important application of data mining in the financial

industry is “scoring” the customers for loans. Credit scoring
methods, typically, apply a cut-off paradigm of accepting or
declining potential customers. The cut-off score is derived
from a model learned on past consumer characteristics, and
influences not only the accept or decline decision but also
the loan amount and accompanying interest rate. Our goal
is to evolve the scoring decision with a pricing scheme that
drives the overall utility of the model. The utility is defined
in terms of the economic benefit or the profit from approving
loan for a customer. We want to able to structure the loan
amount and the interest rate for a customer based on the
propensity to default.

Our work builds upon the cost-sensitive learning litera-
ture [5, 11, 4, 7, 12] and the relevant literature from finance
[10]. Stein [10] extends a cut-off score based approach to a
pricing approach resulting in a more flexible and profitable
model. Using the ROC curve quantities, he formulates the
net present value of taking a lending decision and the cor-
responding benefit of a true negative.

We formulate a pricing framework based on the proba-
bility of default assigned by a scoring model and a benefit
matrix. The benefit matrix specifies the benefit (positive
or negative) from making a prediction. For example, a true
negative will result in higher benefit as it is a positive return
on the investment (a non-defaulting customer is correctly
predicted to be a non-default). The profit from a customer
is conditioned on the propensity to default (or not default).
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Table 1: Benefit Matrix
Actual Non-default Actual Default

Predict Non-default b00 b01

Predict Default b10 b11

We want to be able to construct a pricing scheme that com-
pensates the risk of the customer, and accordingly proposes
an interest rate and a loan amount. Thus, we propose the
interest rate and loan amount that can be assigned to an ap-
proved customer. We illustrate the workings of the pricing
scheme using case dependent benefit functions. We discuss
that the calibration of the model and the resulting quality
of the estimates is more important than the resulting rank-
ordering. We hasten to point out that, while this work serves
as a preliminary proof-of-concept, our ongoing goal with the
work is to demonstrate the applicability of the proposed ap-
proach using multiple simulations. We want to eventually
compare multiple models using ROC curves, probability loss
functions, and profits in dollars.

2. PRICING SCHEME
The key utility of applying data mining in a business

model is the objective of maximizing profit or minimizing
cost. The profit is related to the accuracy of the default
probability predicted by a model and the case dependent
benefit function. A typical benefit matrix can be defined
as in Table 1 [5]. The benefit matrix elements reflect the
benefits from assigning the loan, as per the corresponding
probability of default. Morever, we assume that the bene-
fits can be different for individual customers as they will be
conditioned on the loan amount and the interest rate. The
benefits should be tunable for the different levels of risk as
reflected by the probability of default. This can be achieved
by generating a different pricing function. Furthermore, we
will assume that a customer, k, is accompanied with a prob-
ability of default of Pk. In our empirical analysis, we will
assume that b10 = b11 = 0, since there is no benefit or cost
from not offering a loan to customer.

Then, the profit from predicting a customer as a non-
default (ND) (making the loan offer), can be calculated as:

BND = (1 − Pk)b00 + Pkb01 (1)

and the benefit from predicting the customer as default
(declining the application) can be calculated as:

BD = (1 − Pk)b10 + Pkb11. (2)



To result in a higher profit from issuing the loan than refus-
ing it, we should ideally have BND > BD. This will form
the restricting condition for allocating loan to a customer,
and the basis of our pricing scheme. In a rigid competitive
environment, it is being able to price and accept the BD

customers that gives the critical advantage.

2.1 Making Non-default Prediction Optimal
An ideal pricing scheme will be governed by the condition

that no customer is ever turned down. Rather, a loan prod-
uct is always priced for the customer, in conjunction with
the interest rate, such that the resulting decision leads to
a higher profit. That is the loss given default should not
exceed the benefit ensuing from granting the loan.

The benefits are obviously example dependent. They are
functions of the loan amount (x). The benefits (or losses)
for true negatives and false negatives can be defined as a
function of x: b00(x) and b01(x). The benefits for false posi-
tives and true positives typically are regarded as constants:
b10 and b11. Since we want BND > BD, for an optimal non-
default prediction, the price b00(k, x) asked for a randomly
chosen customer scoring S(k), should be

(1 − Pk)b00(k, x) > (1 − Pk)b10 + Pkb11 − Pkb01(x). (3)

The above formulation, arising from equations 1 and 2, com-
pensates for the default risk — the benefit from accepting
a customer should be greater than the chance of losing due
to the default. Hence, to grant the loan of x for a customer
k, the resulting benefit should be:

b00(k, x) >
(1 − Pk)b10 + Pkb11 − Pkb01(x)

(1 − Pk)
. (4)

To do further analysis, we made some simple assumptions:
we suppose that the benefit from a non-defaulting customer
(true negative) is a function of the loan amount x, the inter-
est rate r and the risk premium g(x) (b00(x) = g(x) + rx),
particularly we assume that g(x) = ax, here a is a very small
constant (for example, a = 0.005)); while the loss from a
false negative is b01 = cx, where c is also a constant and
−1 < c < 0, and a reasonable guess for the value of c could
be -0.35 [10]. Then, the interest rate asked for a specific
customer can be derived from equation 4 as follows

r >
(1 − Pk)b10 + Pkb11 − Pkcx

(1 − Pk)x
− a, (r ≥ 0) (5)

This above equation is a limiting condition for making the
loan offer an optimal choice. Figure 1 shows the interest
rate asked for the customers to appropriately compensate
the default risk that the bank has taken with the assump-
tions: b10 = b11 = 0, c = −0.35, and a = 0.005. This result
indicates that for any customer we could generate the in-
terest level corresponding to the default rate. But for high
default rate customers, we find out that the interest rate
is too high to be realistic, so a limit for the interest rate
becomes necessary. Now if we define the maximum interest
rate rmax allowed in the real practices, then the interest rate
asked for any customer should satisfying

r ≤ rmax. (6)

Note that rmax can be fixed prior, depending on the bank
practices and the risk appetite. In practice, the following
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Figure 1: Interest level asked for compensating the
default risk (b10 = b11 = 0, c = −0.35, and a = 0.005).

equation should be satisfiable:

rmax >
(1 − Pk)b10 + Pkb11 − Pkcx

(1 − Pk)x
− a, (7)

Rearranging the above equation, we have

((a + rmax)(1 − Pk) + Pkc)x > (1 − Pk)b10 + Pkb11. (8)

We can now define the range of the loan amount x at differ-
ent values of Pk, while charging the customer at the possible
maximum interest rate rmax.

• if Pk > rmax+a
rmax+a−c

,

x <
(1 − Pk)b10 + Pkb11

(rmax + a)(1 − Pk) + Pkc
, (9)

• if Pk < rmax+a
rmax+a−c

,

x >
(1 − Pk)b10 + Pkb11

(rmax + a)(1 − Pk) + Pkc
. (10)

Based on the above analysis, for a specific customer, we
can decide not only the amount of money to loan but also
the interest rate. Note that these values are derived using
both the probability of default and the benefit matrix.

2.1.1 Making Non-negative Profit
We have discussed conditions to make non-default predic-

tion to be optimal under various circumstances. However,
these will not guarantee a positive profit, when BD < 0. To
ensure non-negative profit from each customer, BND ≥ 0
is also necessary. So the true non-default prediction benefit
function b00(k, x) should satisfy

(1 − PK)b00(k, x) ≥ −Pkb01(x). (11)

From equation 8, we can derive the following conditions: if
Pk = 1 (see equation 8), we should have b01(x) ≥ 0, which
derives (x ≤ 0) implying that no money should be loaned;



when Pk = 0, the above equation 11 is always true, so always
pass the loan at a minimal interest rate; and for 0 < pk < 1,
the required interest rate should be

r(k, x) ≥ −Pkc

1 − Pk
− a. (12)

Again if there exists a maximum interest rate rmax allowed,
then it should satisfy

rmax ≥ r(k, x) ≥ −Pkc

1 − Pk
− a. (13)

So, Pk = rmax+a
rmax+a−c

will lead to zero profit with rmax. Pk >
rmax+a

rmax+a−c
will lead to negative profit even with rmax, thus

implying that the loan request should be declined. We can
gain non-negative profit, only for the following condition:
Pk < rmax+a

rmax+a−c
, with an interest rate r > −Pkc

1−Pk
− a.

Combining the results we have now, we get the following
conditions for making non-negative profit from each cus-
tomer:

• For customers with Pk = 1, always decline the appli-
cation.

• For customers with Pk = 0, always accept the appli-
cation.

• For customers with 0 < Pk < 1, the interest rate
should satisfy equation 4 and 11 simultaneously.

– if rmax+a
rmax+a−c

< Pk < 1: results negative profit,
decline the application.

– if Pk = rmax+a
rmax+a−c

: zero profit, decline or accept
decision can be taken on the basis of profit from
resulting underwriting charges, etc.

– if 0 < Pk < rmax+a
rmax+a−c

, decide the interest rate by
equation 5 and 6 for the loan, or determine the
amount of money should be lent by equation 10.

We would like to point out that similar analysis can be
easily conducted for any changes in benefit functions, thus
becoming a useful tool for loan practices.

3. SIMULATIONS AND RESULTS
At this point, we have only conducted preliminary experi-

ments on publicly available UCI datasets [1] — the covtype,
and pima dataset. Since, we did not have a financial dataset
readily available, we chose to use a moderately unbalanced
datasets from the UCI repository. We randomly divided
the dataset into 70% for training and 30% for testing. We
used four different classifiers: C4.5 decision trees [9] (J48),
NBTree [6], Bagging with J48, and Bagging with NBtree.
Our eventual goal is to utilize multiple learning algorithms
with a variety of datasets to validate the proposed pricing
scheme. We believe that the ROC curve analysis is limiting
for pricing schemes, as it does not allow one to evaluate the
quality of PK . Hence, we also use different loss measures
that capture the quality of the probability estimates. The
actual total profit is a function of:

�

i

(I(y = ND)b00(ki, xi) + I(y = D)b01(xi)) (14)

in which ki is the corresponding percentile for the ith cus-
tomer, y is the actual class of the instance (ki, xi), and I(·) is
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Figure 2: ROC curves for Covtype dataset from J48
(-solid), NBtree (dotted), BaggingJ48(dashed), and
BaggingNBtree( dash-dotted)
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Figure 3: ROC curves for Pima dataset from J48
(-solid), NBtree (dotted), BaggingJ48(dashed), and
BaggingNBtree(dash-dotted)



Table 2: Profit from Different Models (rmax = 0.1)
Dataset Probability Loss Profit

and Model average NCE average brier simulation 1 simulation 2 simulation 3
Covtype 1.0e + 5∗ 1.0e + 6∗ 1.0e + 5∗

J48 0.0268 0.0295 4.9074 0.5061 4.7703
NBtree 0.0369 0.0369 4.5403 0.4740 4.4527
BagJ48 0.0180 0.0203 6.6351 0.6815 6.7984

BagNBtree 0.0177 0.0204 9.7745 1.0131 9.8566
Pima 1.0e + 4∗

J48 0.2380 0.3479 3.6396 0.9603 1.6686
NBtree 0.1924 0.2855 3.0532 0.7739 2.0492
BagJ48 0.1992 0.2950 3.2529 1.1815 1.6608

BagNBtree 0.1844 0.2724 4.7752 2.7599 2.9511

Table 3: Profit from Different Models (rmax = 1/3)
Dataset Probability Loss Profit

and Model average NCE average Brier simulation 1 simulation 2 simulation 3
Covtype 1.0e + 5∗

J48 0.0268 0.0295 5.1169 5.0477 5.0875
NBtree 0.0369 0.0369 5.9022 5.8350 6.3156
BagJ48 0.0180 0.0203 6.8557 7.0939 7.0119

BagNBtree 0.0177 0.0204 9.7755 9.9511 9.8868
Pima 1.0e + 4∗

J48 0.2380 0.3479 5.8322 3.0318 3.0332
NBtree 0.1924 0.2855 6.2662 5.2977 2.8935
BagJ48 0.1992 0.2950 7.0204 3.9391 3.0269

BagNBtree 0.1844 0.2724 7.3293 5.5422 4.5443

the indicator function that has value 1 in case the argument
is true and 0 otherwise (ND= Non-Default, D=Default).

The profit derived from an individual consumer can po-
tentially be negative, due to bad loaning decisions, but the
model ideally should result in aggregated positive profit.
The weighted benefit of true negative should overcome the
cost of false negative.

To compare the performance from different models, the
benefit function b11 and b10 are assumed to be zero, the loan
amount x asked by the customer is generated by -raylrand(n)
in matlab, which generates random numbers with Rayleigh
distribution, with n = 10, 000. But the actual loan amount
granted is determined by discussion in previous sections.
We ran three different simulations with the random loan
amounts generated from the Rayleigh distribution. We also
report the losses on the probability estimates using the neg-
ative cross entropy (NCE) and brier score measures [3, 2].

NCE = − 1

n
{(
�

i|y=1

log(p(y = 1|xi))

+
�

i|y=0

log(1 − p(y = 1|xi)))}

Brier =
1

n

n�

i=1

(yi − pi)
2

The limit of interest rate is set to be rmax = 1/10 and
rmax = 1/3. Tables 2 and 3 show the results including the
loss measures and overall profit for three different set of sim-
ulations and at different maximum interest rates. We notice

that the quality of the estimates as indicated by the NCE
or Brier score, particularly the NCE, agrees with the overall
profit. This is not surprising as the benefit is weighted on
the probability. Figures 2 to 3 show the ROC curves. We
see that the ROC curves overlap for a large region of the
ROC space. However, if we were to fit the ROC convex hull
[8], it would potentially capture the models that result in
maximal profits. For instance, bagged NBTree model has
the highest profit for both covtype and pima.

We would like to point out that ROC curves are certainly
limited in their evaluation of the quality of probability es-
timates. A classifier can achieve a high rank-ordering, but
that is not necessarily indicative of the underlying calibra-
tion of the model [3]. Moreover, the benefit function is de-
pendent on the quality of probability estimate. A weakly
calibrated model can result in less economic utility, as evi-
dent from our results too. We advocate the use of appropri-
ate loss measures, indicative of the calibration of the model
for evaluating models utilizing a pricing scheme for loan de-
cisions.

The empirical results are limited to be able to draw con-
vincing observations. Nevertheless, there are strong trends
that spell out. There is a strong relationship between qual-
ity of the probability estimates and the resulting profit from
the model. Figure 4 shows the negative cross entropy com-
puted per test example and the corresponding profit for the
two dataset. It is clear that as the negative cross entropy
increases, indicating poor quality of estimates, the profits
decrease.

4. CONCLUSION
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0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

1400

1600

NCE

P
ro

fit

0 1 2 3 4 5 6
−12000

−10000

−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

NCE

P
ro

fit

Figure 4: NCE vs Profit Plots

We discussed a pricing scheme for loan practice based
on credit scoring models (classifiers) and benefit matrix.
The framework enables pricing the loan for each individ-
ual customer conditioned on the loan amount and the cor-
responding interest rate. The two important conditions for
the scheme are: 1. granting loans is more profitable than
declining it; 2. ensuring a non-negative profit from loans.
The theoretical framework can be encompassed to utilize
the different policies as set by the bank. One factor that we
did not explicitly consider is the amount of downpayment
made by a consumer. That is a potential risk mitigator and
can influence the interest rate.

As part of future work, we are investigating applications
of the proposed scheme to other domains that require the
parameterization of costs and benefits. The parameters are
replaceable by the domain specifics. One application that
comes to mind is medical informatics. For example, con-
sider the case of diagnosing a patient with a disease. There
are obvious benefits and costs associated with that domain.
The benefits include correctly diagnosing and predicting the
patient with disease, and the losses include the costs from
mis-diagnosis.
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