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ABSTRACT
When mining a large database, the number of patterns dis-
covered can easily exceed the capabilities of a human user to
identify interesting results. To address this problem, various
techniques have been suggested to reduce and/or order the
patterns prior to presenting them to the user. In this paper,
our focus is on ranking summaries generated from a single
dataset, where attributes can be generalized in many differ-
ent ways and to many levels of granularity according to taxo-
nomic hierarchies. We theoretically and empirically evaluate
twelve diversity measures used as heuristic measures of inter-
estingness for ranking summaries generated from databases.
The twelve diversity measures have previously been utilized
in various disciplines, such as information theory, statistics,
ecology, and economics. We describe five principles that
any measure must satisfy to be considered useful for rank-
ing summaries. Theoretical results show that the proposed
principles define a partial order on the ranked summaries in
most cases, and in some cases, define a total order. Theo-
retical results also show that seven of the twelve diversity
measures satisfy all of the five principles. We empirically
analyze the rank order of the summaries as determined by
each of the twelve measures. These empirical results show
that the measures tend to rank the less complex summaries
as most interesting. Finally, we demonstrate a technique,
based upon our principles, for visualizing the relative inter-
estingness of summaries.

Keywords: data mining, diversity measures, theory of in-
terestingness, statistics and probability, visualization

1. INTRODUCTION
An important problem in the area of data mining is the de-

velopment of effective measures of interestingness for rank-
ing discovered knowledge. In this paper, we focus on the use
of diversity measures as heuristic measures of interesting-
ness for ranking summaries generated from a single dataset,
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where attributes can be generalized in many different ways
and to many levels of granularity according to taxonomic
hierarchies. With diversity measures, the problem that we
are faced with is essentially one of ranking distributions of
populations of objects having some distinguishable charac-
teristics. The problem is common to many disciplines, such
as species diversity in ecology, income/consumption inequal-
ity in economics, linguistic diversity in geography, market
penetration in business, genetic differences in biology, and
others. The common theme is that of classifying some quan-
tity of objects into well-defined categories according to the
aforementioned distinguishable characteristics.

The question that we ultimately ask when comparing two
or more populations is whether one of the categorized pop-
ulations is more or less diverse than another. And the
question is similar, regardless of the discipline in which it
is asked. For example, in ecology, we ask whether a sam-
ple of individuals from a particular habitat is more diverse
than a sample taken from a neighboring or similar habitat.
In economics, we ask whether a sample of individuals in
a particular region has greater equality of income distribu-
tion than a sample of individuals in another region. And
in linguistics, we ask whether the possibility for communi-
cation in a sample of individuals in a geographic region is
more likely than in a sample of individuals from another ge-
ographic region. The above situations are all a specific case
of the general problem that can be described, as follows.
Suppose X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} are
two populations of individuals, where xi and yj are inte-
gers representing the number of individuals classified into
Xi and Yj , respectively. Which of the distributions is more
(less) diverse (or depending on the discipline, concentrated
or uniform or monopolistic or specialized or dispersed)?

We introduced the use of diversity measures for ranking
summaries, as described in the previous paragraph, in [26]
and [27], where well-known diversity measures from infor-
mation theory, statistics, ecology, and economics were pro-
posed as heuristic measures of interestingness. Although
diversity measures are frequently used in these various dis-
ciplines, their use for ranking the interestingness of sum-
maries was a new application area. An empirical analy-
sis found that highly ranked, concise summaries provided
a reasonable starting point for further analysis of discov-
ered knowledge. It was also shown that for selected sample
datasets, the order in which some of the measures rank sum-
maries is highly correlated, but the rank ordering can vary
substantially when different measures are used. In [28], the



notion of a summary was extended to include other well-
known forms of knowledge representation, and we showed
that these other forms are also amenable to ranking using
diversity measures.

We now study twelve diversity measures as heuristic mea-
sures of interestingness for ranking summaries in data min-
ing applications, and propose five principles that any mea-
sure must satisfy to be considered useful for ranking the in-
terestingness of summaries generated from databases. The
five principles provide a foundation for an intuitive under-
standing of the term “interestingness” when used within
this context. We perform a comparative sensitivity anal-
ysis of the twelve diversity measures to identify those that
satisfy the proposed principles. Since each new measure
represents an alternative definition of diversity, the choice
of which measure to use may make a difference. That is,
when choosing any objective candidate interestingness mea-
sure for ranking summaries, determine which of the five prin-
ciples are satisfied, and then using this knowledge, judge the
suitability of the candidate interestingness measure for the
intended application. Essentially, this principled approach
imposes a subjective bias on the objective measures by sug-
gesting principles that objective measures should satisfy.

The remainder of the paper is organized as follows. In
Section 2, we motivate the need for objective measures of
interestingness in data mining systems, in general, and the
need for principles of interestingness, in particular. In Sec-
tion 3, we describe the twelve diversity measures empirically
evaluated as measures of interestingness in this work. In
Section 4, we present the foundation principles for a the-
ory of interestingness for diversity measures used to rank
summaries generated from a single dataset. In Section 5,
we present experimental results from our evaluation of the
twelve diversity measures. In Section 6, we demonstrate the
application of the principles to the visualization of the rela-
tive interestingness of summaries. We conclude in Section 7
with a summary of our work and suggestions for future re-
search.

2. MOTIVATION
In this section, we describe a data mining example where

the task is description by summarization, the representa-
tion language is generalized relations, and the method for
searching is the Multi-Attribute Generalization algorithm
[31]. The problem is described, as follows. Let a sum-
mary S be a relation defined on the columns {(A1, D1),
(A2, D2), . . . , (An, Dn)}, where each (Ai, Di) is an attribute-
domain pair. Also, let {(A1, vi1), (A2, vi2), . . . , (An, vin)},
i = 1, 2, . . . , m, be a set of m unique tuples, where each
(Aj , vij) is an attribute-value pair and e ach vij is a value
from the domain Dj associated with attribute Aj . One at-
tribute Ak is a derived attribute, called Count, whose do-
main Dk is the set of positive integers, and whose value
vik for each attribute-value pair (Ak, vik) is equal to the
number of tuples which have been aggregated from the base
relation (i.e., the unconditioned data present in the original
database).

A summary, such as the one shown in Table 1, can be
generated from a database, such as the one shown in Ta-
ble 2, using domain generalization graphs (DGGs) [30, 33],
such as the one shown in Figure 1. For example, the DGG
in Figure 1 is associated with the Office attribute in the
database of Table 2. In Figure 1, the domain for the Of-

Table 1: A sample summary

Office Quantity Amount Count

West 8 $200.00 4
East 11 $275.00 3

Table 2: A sales transaction database

Office Quantity Amount

2 2 $50.00
5 3 $75.00
3 1 $25.00
7 4 $100.00
1 3 $75.00
6 4 $100.00
4 2 $50.00

West --> ANY
East --> ANY

Vancouver   --> West
Los Angeles --> West
New York    --> East

1 --> Vancouver
2 --> Vancouver
3 --> Los Angeles
4 --> Los Angeles
5 --> New York
6 --> New York
7 --> New York

Office

City

Division

ANY

Figure 1: A DGG for the Office attribute

fice attribute is represented by the Office node. Increasingly
general descriptions of the domain values are represented
by the City, Division, and ANY nodes. A user-defined tax-
onomy in the form of a table is associated with every arc
between the nodes in the DGG and describes a generaliza-
tion relation from one domain to another in a process called
attribute-oriented generalization (AOG) [20] (other general-
ization relations besides table lookups are possible, but we
restrict our discussion for the sake of simplicity and clar-
ity). The table associated with the arc between the Office
and City nodes defines the mapping of the domain values
of the Office node to the domain values of the City node
(e.g., 1 and 2 map to Vancouver, 3 and 4 map to Los An-
geles, and 5 to 7 map to New York). The table associated
with the arc between the City and Division nodes can be
described similarly. The table associated with the arc be-
tween the Division and ANY nodes maps all values in the
Division domain to the special value ANY. The summary in
Table 1 corresponds to the Division node of the Office DGG,
where the corresponding values in the Quantity and Amount
attributes from Table 2 are also aggregated accordingly.

When there are DGGs associated with multiple attributes,
then more complex summaries can be generated (known as
multi-attribute generalization ). For example, a DGG for the
Quantity attribute is shown in Figure 2, where the general-
ization space consists of three nodes. The set of all possible
combinations of domains from the DGGs associated with
the Office and Quantity attributes defines the generalization
space for the many summaries that can be generated from
Table 2. Thus, the generalization space consists of the 12
nodes shown in Figure 3 (i.e., 4 nodes in the Office DGG ×



3 nodes in the Quantity DGG), and each node corresponds
to a unique summary. For example, the Division/Quantity
node corresponds to the summary generated by generaliz-
ing the Office attribute to the level of the Division node in
the Office DGG, while the Quantity attribute remains un-
generalized (this summary is equivalent to the summary in
Table 1). Similarly, the City/Status node corresponds to the
summary shown in Table 3, and is generated by generalizing
the Office and Quantity attributes to the level of the City
and Status nodes, respectively. Naturally, the general tech-
nique is applicable to more than two attributes and should
now be clear.

No Discount --> ANY
Discount    --> ANY

1-2 --> No Discount
3-4 --> Discount

Status

Quantity

ANY

Figure 2: A DGG for the Quantity attribute

Office/Quantity

City/Quantity

Office/Status

City/Status

Office/ANY

City/ANY

Division/Quantity

ANY/Quantity ANY/Status

Division/Status

ANY/ANY

Division/ANY

Figure 3: The generalization space defined by the
Office and Quantity DGGs

Table 3: The City/Status summary

Office Quantity Amount Count

Los Angeles No Discount $75.00 2
New York Discount $275.00 3
Vancouver No Discount $50.00 1
Vancouver Discount $75.00 1

Up to this point, we have only discussed summaries gen-
erated from databases using AOG and DGGs. However,
alternative methods could be used to guide the generation
of summaries. These include Galois lattices [17], conceptual
graphs [7], or formal concept analysis [50]. Similarly, sum-
maries could more generally include views generated from
databases, characterized/generalized association rules gen-
erated from itemsets, or summary tables (i.e., data cubes)
generated from data warehouses [28].

3. MEASURING INTERESTINGNESS
The tuples in a summary are unique, and therefore, can

be considered to be a population with a structure that can
be described by some frequency or probability distribution.
Here, we review twelve diversity measures that consider the

frequency or probability distribution of the values in the de-
rived Count attribute (or some other similar numeric mea-
sure attribute) to assign a single real-valued index that rep-
resents its interestingness relative to other summaries.

3.1 Background
Diversity is an important concept that has seen exten-

sive use in several different areas of research. However, al-
though diversity is used in many disparate areas, it is widely
claimed that diversity is a difficult concept to define [1, 2,
40, 44, 52]. The difficulty in defining diversity arises because
it actually encompasses two separate components: the num-
ber of classes (also referred to in the literature as richness,
abundance, or density) and the proportional distribution of
the population among the classes (also referred to in the
literature as relative abundance, heterogeneity, or evenness).
Within the context of ranking the interestingness of a sum-
mary, the number of classes is simply the number of tuples
in the summary; the proportional distribution is simply the
actual probability distribution of the classes based upon the
values contained in the derived Count attribute.

In a typical diversity measure, the two components are
combined to characterize the variability of a population by
a single value. This concept of a dual-component diversity
measure was first introduced in [49]. The diversity measures
considered to be most useful, and those most frequently
referenced in the literature, are dual-component measures.
Yet, despite the widespread acceptance and use of diversity
measures, there is no single mathematical definition of diver-
sity which has been widely accepted as the de facto standard
and which has been shown to be superior to all others [1,
40, 44]. There is some general agreement, however, that a
population is considered to have high diversity when it has
many classes and the proportional distribution is fairly even.
Similarly, a population is considered to have low diversity
when it has few classes and the proportional distribution
is uneven. Unfortunately, this leaves considerable room for
ambiguity in measuring diversity because a population with
few classes and a fairly even proportional distribution could
have the same or nearly the same diversity as a population
with many classes and an uneven proportional distribution.

Although there are some problems related to a precise and
universally accepted definition for diversity, there are numer-
ous research areas where the concept of diversity has been
considered useful, such as ecology [1, 8, 9, 41, 42], economics
[2, 4, 14, 47], genetics [36], linguistics [18, 37], business [5,
22, 23, 34], epidemiology [35], bibliometrics [45], software
engineering [43], and the measurement of scientific produc-
tivity [2]. More general treatments attempt to define the
concept of diversity and develop a related theory of diver-
sity measurement [44, 52].

Here we apply twelve diversity measures to a new ap-
plication area, that of ranking the interestingness of sum-
maries generated from databases. They share three impor-
tant properties. First, each measure depends only on the
frequency or probability distribution of the values in the de-
rived Count attribute of the summary to which it is being ap-
plied. Second, each measure allows a value to be generated
with at most one pass through the summary. And third,
each measure is independent of any specific units. Utilizing
these heuristics for ranking the interestingness of summaries
generated from databases is a natural and useful extension
for these diversity measures into a new application domain.



3.2 Notation
The variables used to describe the diversity measures are

now defined. Let m be the total number of tuples in a sum-
mary. Let ni be the value contained in the derived Count
attribute for tuple ti. Let N =

∑m

i=1
ni be the total count.

Let p be the actual probability distribution of the tuples
based upon the values ni. Let pi = ni/N be the actual
probability for tuple ti. Let q be a uniform probability dis-
tribution of the tuples. Let ū = N/m be the count for
tuple ti, i = 1, 2, . . . , m according to the uniform distribu-
tion q. Let q̄ = 1/m be the probability for tuple ti, for all
i = 1, 2, . . . , m according to the uniform distribution q. Let
r be the probability distribution obtained by combining the
values ni and ū. Let ri = (ni + ū)/2N , be the probability
for tuples ti, for all i = 1, 2, . . . , m according to the distri-
bution r. For example, given the sample summary shown in
Table 4, we have m = 4, n1 = 3, n2 = 2, n3 = 1, n4 = 1,
N = 7, p1 = 0.429, p2 = 0.286, p3 = 0.143, p4 = 0.143,
ū = 1.75, q̄ = 0.25, r1 = 0.339, r2 = 0.268, r3 = 0.196, and
r4 = 0.196.

Table 4: Another sample summary

Colour Shape Count

red round 3
green round 2
red square 1
blue square 1

3.3 Diversity Measures
We now describe the twelve diversity measures. Due to

space limitations, examples are omitted. The interested
reader is encouraged to work examples of each measure based
upon the sample summary shown in Table 4.

IVariance: Based upon sample variance from classical statis-
tics, measures the weighted average of the squared devi-
ations of the probabilities pi from the mean probability q̄,
where the weight assigned to each squared deviation is 1/(m−
1). We use sample variance because we assume the summary
may not contain all possible combinations of attribute val-
ues, meaning we are not observing all of the possible tuples.
The sample variance is given by

IV ariance =

∑m

i=1
(pi − q̄)2

m − 1
.

ISimpson: A variance-like measure based upon the Simp-
son index [49], measures the extent to which the counts are
distributed over the tuples in a summary, rather than being
concentrated in any single one of them. The concentration
is given by

ISimpson =

m
∑

i=1

p2

i .

Let each tuple i be represented by a “commonness value”
(i.e., the probability of occurrence pi). If an individual is
drawn at random from the population, the probability that
it will belong to tuple i is pi, and if it does, its commonness
value is also pi. Thus, the expected commonness values
for tuple i is p2

i , and for all tuples i = 1, . . . , n is
∑m

1
p2

i .
Equivalently, this can be viewed as the average commonness

value that would be obtained if the experiment of drawing
an individual at random were repeated many times.

IShannon: Based upon a relative entropy measure from
information theory (known as the Shannon index) [48], mea-
sures the average information content in the tuples of a sum-
mary. The average information content, in bits per tuple, is
given by

IShannon = −
m
∑

i=1

pi log
2
pi.

Say there are ni individuals summarized in a tuple i, out of
a possible N individuals. The probability of drawing one of
the individuals in tuple i is ni/N , or pi. The information
conveyed by announcing the result of drawing a particular
individual in tuple i is − log

2
pi. The total contribution of

these ni individuals to the overall average information con-
veyed by announcing the result is −pi log

2
pi. Summation

over all such cases for all possible individuals is given by
−∑m

i=1
pi log

2
pi.

IMcIntosh: Based upon a heterogeneity index from ecol-
ogy [41], views the counts in a summary as the coordinates
of a point in a multidimensional space and measures the
modified Euclidean distance from this point to the origin.
The modified Euclidean distance is given by

IMcIntosh =
N −

√
∑m

i=1
n2

i

N −
√

N
.

The value
√
∑m

i=1
n2

i is just the Pythagorean Theorem. Since
√
∑m

i=1
n2

i is a measure of concentration, the N-complement

N −
√
∑m

i=1
n2

i is a measure of diversity. The value N −
√

N
makes it a diversity measure independent of N . The greater
the count in a particular class, the further that class will
be from the origin. If the count is reduced, or the count is
spread more evenly between class, the distance from the ori-
gin will be reduced. IMcIntosh relates the distance between
a class and the origin to the range of possible values as de-
termined by the number of tuples in the original relation.

ILorenz: Based upon the Lorenz curve from statistics, eco-
nomics, and social science [51], measures the average value
of the Lorenz curve derived from the probabilities pi asso-
ciated with the tuples in a summary. The average value of
the Lorenz curve is given by

ILorenz = q̄
m
∑

i=1

(m − i + 1)pi.

The Lorenz curve is a series of straight lines in a square of
unit length, starting from the origin and going successively
to points (p1, q1), (p1 + p2, q1 + q2), . . .. When the pi’s are
all equal, the Lorenz curve coincides with the diagonal that
cuts the unit square into equal halves. When the pi’s are
not all equal, the Lorenz curve is below the diagonal.

IGini: Based upon the Gini coefficient [51], which is itself
defined in terms of the Lorenz curve, measures the ratio of
the area between the diagonal (i.e., the line of equality) and
the Lorenz curve, and the total area below the diagonal.
The Gini coefficient is given by

IGini =
q̄
∑m

i=1

∑m

j=1
|pi − pj |

2
.



IBerger: Based upon a dominance index from ecology [6],
measures the proportional dominance of the tuple in a sum-
mary with the highest probability pi. The proportional dom-
inance is given by

IBerger = max(pi).

Say a sample of individuals is taken from some population of
species in a particular habitat. The number of individuals
taken from each species is assumed to represent the pro-
portional distribution of species in the actual population.
IBerger is called a dominance index because the index of di-
versity that it assigns to the sampled population is simply
the proportional distribution of the most dominant species
(i.e., the species with the highest proportional distribution).

ISchutz: Based upon an inequality measure from eco-
nomics and social science [47], measures the relative mean
deviation of the actual distribution of the counts in a sum-
mary from a uniform distribution of the counts. The relative
mean deviation is given by

ISchutz =

∑m

i=1
|pi − q̄|
2

.

IBray: Based upon community similarity indices from
ecology [8], measures the percentage of similarity between
the actual distribution of the counts in a summary and a
uniform distribution of the counts. The percentage of simi-
larity is given by

IBray =

∑m

i=1
min(ni, ū)

N
.

IMacArthur: Based upon the Shannon index from infor-
mation theory [39], combines two summaries and then mea-
sures the difference between the amount of information con-
tained in the combined distribution and the amount con-
tained in the average of the two original distributions. The
difference, in bits, is given by

IMacArthur =

(

−
m
∑

i=1

ri log
2
ri

)

−
(

(−∑m

i=1
pi log

2
pi) + log

2
m

2

)

.

ITheil: Based upon a distance measure from information
theory [51], measures the distance between the actual dis-
tribution of the counts in a summary and a uniform distri-
bution of the counts. The distance, in bits, is given by

ITheil =

∑m

i=1
|pi log

2
pi − q̄ log

2
q̄|

mq̄
.

IAtkinson: Based upon a measure of inequality from eco-
nomics [4], measures the percentage to which the population
in a summary would have to be increased to achieve the
same level of interestingness if the counts in the summary
were uniformly distributed. The percentage increase is given
by

IAtkinson = 1 −
(

m
∏

i=1

pi

q̄

)q̄

.

Lower values of IAtkinson mean that the distribution of counts
in a summary are fairly equal, or near uniform. Higher val-
ues mean the distribution is fairly uneven. As an example,
say IAtkinson = 0.105, as shown in the example below. This
value means that if the counts of the tuples were uniformly
distributed, then we would need only approximately 90% of
the current total count to realize the same level of interest-
ingness.

4. PRINCIPLES OF INTERESTINGNESS
We now describe a theory of interestingness against which

the utility of candidate interestingness measures can be as-
sessed. We do this through the mathematical formulation of
five principles that we believe must be satisfied by any ac-
ceptable diversity measure for ranking the interestingness of
summaries generated from databases using our, or a similar,
technique. Through the development of these five principles,
we have established some basic criteria for the measurement
of interestingness within this context which provide the ba-
sis for a theoretical foundation in identifying appropriate
diversity measures for ranking summaries.

Through the mathematical formulation of the five prin-
ciples, we study functions f of m variables, f(n1, . . . , nm),
where f denotes a general measure of diversity, m and each
ni are as defined in the previous section, and (n1, . . . , nm)
is a vector corresponding to the values in the derived Count
attribute (or numeric measure attribute) for some arbitrary
summary whose values are arranged in descending order
such that n1 ≥ . . . ≥ nm (except for discussions regard-
ing ILorenz, which requires that the values be arranged in
ascending order). Since the principles presented here are
for ranking the interestingness of summaries generated from
a single dataset, we assume that N is fixed. We begin by
specifying two fundamental principles.

Minimum Value Principle (P1). Given a vector (n1, . . . ,
nm), where ni = nj , for all i, j, f(n1, . . . , nm) attains its
minimum value.

P1 specifies that the minimum interestingness should be
attained when the tuple counts are all equal (i.e., uniformly
distributed). For example, given the vectors (2, 2), (50, 50, 50),
and (1000, 1000, 1000, 1000), we require that the index value
generated by f be the minimum possible for the respective
values of m and N .

Maximum Value Principle (P2). Given a vector (n1, . . . ,
nm), where n1 = N − m + 1, ni = 1, i = 2, . . . , m, and
N > m, f(n1, . . . , nm) attains its maximum value.

P2 specifies that the maximum interestingness should be
attained when the tuple counts are distributed as unevenly
as possible. For example, given the vectors (3, 1), (148, 1, 1),
and (3997, 1, 1, 1), where m = 2, 3, and 4, respectively, and
N = 4, 150, and 4000, respectively, we require that the in-
dex value generated by f be the maximum possible for the
respective values of m and N .

The behaviour of a measure relative to satisfying both P1
and P2 is significant because it reveals an important char-
acteristic about its fundamental nature as a measure of di-
versity. A measure of diversity can generally be considered
either a measure of concentration or a measure of dispersion.
A measure of concentration can be viewed as the opposite
of a measure of dispersion, and we can convert one to the
other via simple transformations. For example, if g corre-



sponds to a measure of dispersion, then we can convert it
to a measure of concentration f , where f = max(g) − g.
Here we only consider measures of concentration. A mea-
sure was considered to be a measure of concentration if it
satisfied P1 and P2 without transformation. A measure was
considered to be a measure of dispersion if it satisfied P1
and P2 following transformation. All measures of disper-
sion were transformed into measures of concentration prior
to our analysis.

Permutation Invariance Principle (P3). Given a vec-
tor (n1, . . . , nm) and any permutation (i1, . . . , im) of (1, . . . ,
m), f(n1, . . . , nm) = f(ni1 , . . . , nim ).

P3 specifies that every permutation of a given distribution
of tuple counts should be equally interesting. That is, inter-
estingness is not a labeled property, it is only determined by
the distribution of the counts. For example, given the vector
(2, 4, 6), we require that f(2, 4, 6) = f(4, 2, 6) = f(4, 6, 2) =
f(2, 6, 4) = f(6, 2, 4) = f(6, 4, 2).

Transfer Principle (P4). Given a vector (n1, . . . , nm),
ni ≥ nj , i < j, and 0 < c ≤ nj , f(n1, . . . , ni + c, . . . , nj −
c, . . . , nm) > f(n1, . . . , ni, . . . , nj , . . . , nm).

P4, adopted from [14], specifies that when a strictly posi-
tive transfer is made from the count of one tuple to another
tuple whose count is greater, then interestingness increases.
For example, given the vectors (10, 7, 5, 4) and (10, 9, 5, 2),
we require that f(10, 9, 5, 2) > f(10, 7, 5, 4).

Majorization Principle (P5). Given vectors (n1, . . . , nm)

and (n
′

1, . . . , n
′

m), whenever f(n
′

1, . . . , n
′

m) > f(n1, . . . , nm),

then (n
′

1, . . . , n
′

m) � (n1, . . . , nm), read (n
′

1, . . . , n
′

m) ma-
jorizes (n1, . . . , nm).

The majorization operator, �, is based upon the Lorenz
dominance order. The Lorenze dominance order [21] com-
pares vectors with different distributions and says for any

two vectors (n1, . . . , nm) and (n
′

1, . . . , n
′

m), that (n
′

1, . . . , n
′

m)
� (n1, . . . , nm) if the following fours conditions are true:

1. n1 ≥ . . . ≥ nm.

2. n
′

1 ≥ . . . ≥ n
′

m.

3.
∑j

i=1
n

′

i ≥
∑j

i=1
ni, for every j = 1, . . . , m.

4.
∑m

i=1
n

′

i =
∑m

i=1
ni.

An important property of the Lorenz dominance order
is that it defines a partial order on the set of all possible
vectors, a property useful and important for ranking sum-
maries.

Those measures that satisfy the principles of interesting-
ness are shown in Table 5. In Table 5, the P1 to P5 columns
describe the proposed principles, and a measure that satis-
fies a principle is indicated by the bullet symbol (i.e., •).

Mathematical proofs were derived for each measure satis-
fying principles P1 to P5 in Table 5. However, due to space
limitations, the proofs are omitted. The interested reader is
referred to [29] for the complete proofs.

5. EXPERIMENTAL RESULTS
A series of experiments were run using DGG-Interest, an

extension to DB-Discover, a research data mining tool de-
veloped at the University of Regina [12]. DB-Discover gen-
erates summaries from databases according to DGGs asso-
ciated with attributes and the AOG technique described in

Table 5: Measures satisfying the proposed principles

Measure P1 P2 P3 P4 P5

IV ariance • • • • •

ISimpson • • • • •

IShannon • • • • •

IMcIntosh • • • • •

ILorenz • • • •

IGini • • • • •

IBerger • • •

ISchutz • • •

IBray • • •

IMacArthur • • • • •

IT heil • •

IAtkinson • • • • •

Section 2. DGG-Interest evaluates and ranks the summaries
generated using the twelve diversity measures described in
Section 3.

Input data for the experiments was supplied by the NSERC
Research Awards database, freely available in the public do-
main, and the Customer Accounts database, a confiden-
tial database provided by a commercial research partner
in the telecommunications industry. The NSERC Research
Awards database contains records of Canadian government
funding provided to academic and industrial researchers in
the natural sciences and engineering, and has been frequently
used in previous data mining research [10, 11, 19, 38]. It
consists of 10,000 tuples in six tables describing a total of
22 attributes. The Customer Accounts database has also
been frequently used in previous data mining research [13,
24, 32, 25]. It consists of over 8,000,000 tuples in 22 tables
describing a total of 56 attributes. The largest table con-
tains over 3,300,000 tuples representing the account activity
for over 500,000 customer accounts and over 2,200 products
and services. In the discovery tasks run against the NSERC
database, from two to four attributes were selected for dis-
covery, and in those run against the Customer Accounts
database, from two to five attributes were selected. We re-
fer to the NSERC discovery tasks containing two, three,
and four attributes as as N-2, N-3, and N-4, respectively,
and the Customer Accounts discovery tasks containing two,
three, four, and five attributes as C-2, C-3, C-4, and C-5,
respectively.

Within the context of discovery tasks that generate sum-
maries, the discovery tasks run against the Customer Ac-
counts database are considered large. For example, the char-
acteristics of the DGG’s associated with each attribute are
shown in Table 6. In Table 6, the No. of Paths column de-
scribes the number of unique paths through the DGG, the
No. of Nodes column describes the number of nodes in the
DGG, and the Avg. Path Length describes the average path
length of the unique paths. The number of summaries to be
generated by a discovery task (i.e., the size of the general-
ization space) is determined by multiplying the values in the
No. of Nodes column. For example, C-5 selected attributes
C, D, E, F, and G, generating a generalization space contain-
ing 102,816 nodes (i.e., 12× 17× 8× 3× 21). Many of these
nodes correspond to summaries that are duplicates (i.e., the
count vectors are identical). Dulplicates can either occur
by chance, or when the generalization of an attribute to a
higher node in the associated DGG does not result in any
tuples being aggregated, and this can occur quite frequently.



Since the diversity measures used to rank the vectors can-
not differentiate these summaries, they are considered to be
of equal interest. Consequently, the number of summaries
(i.e., count vectors) actually ranked is considerably less in
practice. For example, of the 102,816 summaries generated
by C-5, there were only 493 unique vectors, but the entire
generalization space still needs to be traversed to find them.

Table 6: Characteristics of the DGGs associated
with the selected attributes

No. of No. of Avg. Path
Attribute Paths Nodes Length

A 5 20 4.0
B 4 17 4.3
C 3 12 4.0
D 4 17 4.3
E 2 8 4.0
F 1 3 3.0
G 5 21 4.2

We now discuss the complexity of the summaries ranked
by the various measures. In analyzing a summary, whether
it be a two-dimensional spreadsheet or a multi-dimensional
data cube, one metric that determines how easily the in-
formation it contains may be to understand by a domain
expert, is simply its physical size in terms of the number of
cells (i.e., where a cell is commonly understood to be the
piece of information referenced by a unique combination of
labels corresponding to the data items associated with each
dimension). So, for this analysis, we define the complexity
of a summary as simply the product of the number of tu-
ples and the number of non-ANY attributes contained in
the summary. One could ask, then, why use diversity mea-
sures to rank summaries at all if complexity, as defined, is
a suitable metric for comparing summaries? That is, why
not simply rank the least complex summaries as most in-
teresting? The answer to this, of course, is that complexity
ignores both the number of tuples in a summary and the the
proportional distribution of the tuples, while diversity mea-
sures do not. However, complexity is still a useful measure
because it is easy to understand at an intuitive level, and a
good indicator of the amount of information contained in a
summary.

Now, in a previous study, domain experts suggested that
more information is better than less, provided that the most
interesting summaries are not too complex and remain rel-
atively easy to understand [19]. This implies that useful
summaries are those that are complex enough to inform,
yet not so complex as to overwhelm. That is, the knowl-
edge contained in a summary should be non-trivial, yet un-
derstandable with reasonable effort by the domain expert.
Consequently, we believe a desirable property of any rank-
ing function be that it tend to rank summaries with low
complexity as more interesting. However, although we want
to rank summaries with low complexity as more interesting,
we do not want to lose the meaning or context of the data
by presenting summaries that are either too complex or too
simple.

In this experiment, we analyze the measures and evaluate
whether they satisfy the complexity guidelines of our do-
main experts. The relative complexity of summaries ranked
by each measure when grouped according to a three-tier
scale of relative complexity (i.e., H=High, M=Moderate,

L=Low). High, moderate, and low complexity summaries
were considered to be the top, middle, and bottom 20%, re-
spectively, of summaries as ranked by each measure. The
N-2, N-3, and N-4 discovery tasks generated sets contain-
ing 22, 70, and 214 summaries, respectively, while the C-2,
C-3, C-4, and C-5 discovery tasks generated sets contain-
ing 43, 91, 155, and 493 summaries, respectively. Thus, the
complexity of the summaries from the N-2, N-3, and N-4
discovery tasks is based upon the top four, 14, and 43 sum-
maries, respectively, while the complexity of the summaries
from the C-2, C-3, C-4, and C-5 discovery tasks is based
upon nine, 18, 31, and 97 summaries, respectively.

A graphical comparison of the complexity of the sum-
maries ranked by the twelve measures from the N-2, N-3,
and N-4 discovery tasks and the C-2, C-3, C-4, and C-5
discovery tasks is shown in the graphs of Figures 4 and 5,
respectively. In Figures 4 and 5, the horizontal and vertical
axes describe the measures and the complexity, respectively.
Each horizontal row of bars corresponds to the complexity
of the most interesting summaries from a particular discov-
ery task. The backmost horizontal row of bars corresponds
to the average complexity for a particular measure. Both
figures show a maximum complexity on the vertical axes of
60.0, although the complexity of the most interesting sum-
maries ranked by ILorenz, ISchutz, IBray, IMacArthur, and
IAtkinson in N-4 exceed this value (i.e., 133.6, 289.8, 289.8,
249.5, and 531.1, respectively). When the measures are or-
dered by complexity, from lowest to highest, they are or-
dered according to Figure 4, as follows (position in the order-
ing is shown in parentheses): IMax (1), ITotal (2), IGini (3),
IShannon and IKullback (4), ITheil (5), IV ariance (6), ISimpson

and IMcIntosh (7), IBerger (8), ILorenz (9), IMacArthur (10),
ISchutz and IBray (11), and IAtkinson (12). They are or-
dered according to Figure 5, as follows: ITotal (1), IMax (2),
IBerger (3), IV ariance, ISimpson, IShannon, IMcIntosh, and
IGini (4), IKullback (5), ILorenz (6), IMacArthur (7), IAtkinson

(8), ISchutz and IBray (9).

6. VISUALIZING INTERESTINGNESS
We now demonstrate the application of the five princi-

ples of Section 4 to the ranking of summaries. Here we use
the results generated by the N-3 discovery task described in
Section 5 as the basis for the extended example as these are
representative of the results obtained for all discovery tasks.

An important implication of P5 is that if X � Y , then
all measures satisfying P5 will order the vectors X and Y
in the same way. However, it is important to note that
even when two measures order the vectors X and Y in the
same way, they may not agree on the extent to which X is
more concentrated than Y due to the differing range and
distribution of the possible values, as described in Section 5.
Consequently, the results we discuss here are valid for all of
IV ariance, ISimpson, IShannon, IMcIntosh, IGini, IMacArthur,
and IAtkinson.

For this example, we used an extension of DGG-Interest
to prune the number of summaries generated by N-3 from 70
down to 27. This extension of DGG-Interest utilizes the chi-
squared test for independence to consider only those sum-
maries in which the attributes are associated. These sum-
maries and their Lorenz dominance order are shown in Ta-
ble 7. In Table 7, the ID column describes the unique identi-
fiers associated with each of the 27 summaries, the numbered
columns describe those summaries that are majorized by the
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Figure 4: Relative complexity of the most interesting NSERC summaries
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Figure 5: Relative complexity of the most interesting Customer summaries

corresponding summary in the ID column, and a summary
that is majorized is indicated by the bullet symbol (i.e., •).
Summaries whose count vectors were identical (i.e., identi-
cal number of tuples and identical probability distributions)
are grouped together and treated as a single summary for
this analysis (because if vector X = Y , then X � Y and
Y � X, so the vectors are indistinguishable according to
the Lorenz dominance order). For example, in the second
row, it is shown that summary 8 majorizes 11, 12, 33, 34,
80, 83, and 84 (equivalently 8 � {11, 12, 33, 34, 80, 83, 84}).
Since we consider majorization to be equivalent to interest-
ingness, then essentially we consider summary 8 to be more
interesting than 11, 12, 33, 34, 80, 83, and 84. Summaries
33, 34, and 84 are examples of summaries that do not ma-
jorize any other summaries.

Taking advantage of the transitive property of the Lorenz
dominance order, we can discover all of the majorization
relationships described in Table 7. For example, consider
summary 7 in the first row. We see that 7 � 8. Moving
to the row beginning with summary 8, we see that 8 � 11.
Moving to the row beginning with summary 11, we see that
11 � 12. Moving to the row beginning with summary 12,
we see that 12 � 84. Moving to the row beginning with
summary 84, we see that 84 does not majorize any other
summary. Thus, we can summarize the discovered relation-
ship as the partial order 7 � 8 � 11 � 12 � 84. Note that
although we know from the first row that 7 � {8, 11, 12, 84},
the first row does not tell us anything about the relation-
ships between 8, 11, 12, and 84. We had to examine the
rows corresponding to 8, 11, 12, and 84 to discover these
relationships.

Table 7 actually describes 33332 possible partial orders.
Using another extension to DGG-Interest, 96 rules were gen-
erated for consolidating these partial orders into the concise
graph of Figure 6. In Figure 6, the majorization relation-
ship of the 27 summaries can be easily determined. The
shaded nodes with a bold border indicate summaries that
are not majorized by any others, and are start points for
traversing the graph. For example, starting at node 17/18,
we can follow a path that includes nodes 7, 21/22, 11, and
33/34. Node 33/34 is a shaded node without a bold border,
and indicates a stop point (i.e., 33/34 majorizes no other
summaries). Similarly, starting at node 17/18, we can fol-
low a path that includes 16, 79, 8, 80, and 33/34. Note that
while summary 17/18 majorizes both summaries 7 and 16,
there is no path between 16 and 7, so we cannot say any-
thing definitive about the relative interestingness of these
two summaries. However, we do know that 17/18 is more
interesting than both 16 and 7.

7. CONCLUSION
The use of diversity measures for ranking the interesting-

ness of summaries generated from databases is a new ap-
plication area. Here we described twelve diversity measures
used as heuristic measures of interestingness, and proposed
five principles that diversity measures must satisfy to be
considered useful for ranking summaries generated from a
single dataset. Theoretical results show that seven mea-
sures satisfy all of the proposed principles. These include
IV ariance, ISimpson, IShannon, IMcIntosh, IGini, IMacArthur,
and IAtkinson. The five remaining measures did not perform
as well, failing to satisfy at least one of the proposed prin-



Table 7: Summaries and their Lorenz dominance order

ID 7 8 11 12 16 17/18 21/22 27 28 29/30 33/34 52 53/54 57/58 79 80 83 84 99 100 123

7 • • • • • • • • • • • • • •

8 • • • • • •

11 • • • •

12 •

16 • • • • • • • • • • • • • • •

17/18 • • • • • • • • • • • • • • • • • •

21/22 • • • • • •

27 • • • • • • • • • • • •

28 • • • •

29/30 • • • • • •

33/34

52 • • • • • • • • • • • •

53/54 • • • • • • • • • • • • • • •

57/58 • • • •

79 • • • • • • •

80 • • • •

83 • •

84

99 • • • • • •

100 • •

123 • • • • • • • • • • • • • • •

17/18 7 21/22 11 33/34

10029/30
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Figure 6: A graph summarizing the Lorenz domi-
nance order

ciples. Experimental results showed that the partial order
described by the Lorenze dominance order can be used to
generate a graph summarizing the relative interestingness of
summaries.

Considerable research remains to be done in the appli-
cation of diversity measures to the problem of ranking the
interestingness of summaries generated from databases. We
see two major areas for future research. First, other diversity
measures need to be evaluated to determine their suitability
for ranking the interestingness of summaries generated from
databases. There is certainly no shortage of possible candi-
dates in the literature [45, 46, 16, 3, 15, 15]. And finally,
principles of interestingness for comparing summaries gen-
erated from different databases need to be developed and
evaluated.
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