
Maximum Profit Mining and Its Application
in Software Development

Charles X. Ling1, Victor S. Sheng1, Tilmann Bruckhaus2, Nazim H. Madhavji1
1Department of Computer Science, The University of Western Ontario

London, Ontario N6A 5B7, Canada
{cling, ssheng, madhavji}@csd.uwo.ca

2 Numetrics Management Systems
20863 Stevens Creek Blvd, Suite 510, Cupertino, CA

tilmannb@numetrics.com

ABSTRACT
While most software defects (i.e., bugs) are corrected and tested
as part of the lengthy software development cycle, enterprise
software vendors often have to release software products before
all reported defects are corrected, due to deadlines and limited
resources. A small number of these defects will be escalated by
customers and they must be resolved immediately by the software
vendors at a very high cost. In this paper, we develop an
Escalation Prediction (EP) system that mines historic defect
report data and predict the escalation risk of the defects for
maximum net profit. More specifically, we first describe a simple
and general framework to convert the maximum net profit
problem to cost-sensitive learning. We then apply and compare
several well-known cost-sensitive learning approaches for EP.
Our experiments suggest that the cost-sensitive decision tree is the
best method for producing the highest positive net profit and
comprehensible results. The EP system has been deployed
successfully in the product group of an enterprise software
vendor.

(Note: this paper is accepted by KDD’06)

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Management, Performance, Economics

Keywords
Escalation prediction, cost-sensitive learning, data mining

1. INTRODUCTION
Building large enterprise software is generally a highly complex
and lengthy process, during which numerous software defects (i.e.,
bugs) are reported and required to be corrected or fixed. However,

often some of reported defects will not be fixed when the software
products are released, due to tight deadlines or limited resources
[7]. After product release a small number of defects become
“escalated” by customers, whose businesses are seriously
impacted. Escalations of software defects require software
vendors’ immediate management attention and senior software
engineers’ immediate and continuous effort to reduce the business
or financial loss to the customers. Therefore, software defect
escalations are highly costly to the software vendors, with the
associated costs amounting to millions of dollars each year. In
addition, software defect escalations result in loss of reputation,
satisfaction, loyalty and repeat revenue of customers, incurring
extremely high costs in the long run for the enterprise software
vendors [2, 3].

Due to time (i.e., deadlines) and resource limitations, enterprise
software vendors can only fix a limited number of defects before
product release. Thus, they must try to identify which reported
defects have a high risk of escalation, which should be fixed at a
much lower cost within the product development and testing cycle
before product release. However, identifying software defects that
are likely to escalate is a complex and difficult task. Software
vendors often have in place human-centric processes for
evaluating defect reports, but such processes are unreliable and
subjective.

In this paper we propose a data-mining solution to predict
escalation risks of defects to assist human experts in the review
process of software defects. To the best of our knowledge,
applying data mining for predicting software defect escalations is
novel in software engineering. More specifically, we build an
Escalation Prediction (EP) system that learns from history defects
data and predicts escalation risk using data mining technology [1,
8, 12]. If the EP system can accurately predict the escalation risk
of known defect reports, then many escalations will be prevented.
This would save a huge amount of money for the enterprise
software vendors [6].

Indeed, the ultimate business goal of EP (and many industrial
applications using data mining) is to maximize the “net profit”,
that is, the difference in the cost before and after introducing the
data mining solution, as opposed to the usual data-mining
measures such as accuracy, AUC (area under the ROC curve), lift,
or recall and precision [14]. However, the net profit is not
equivalent to any of these standard machine learning measures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UBDM’06, August 20, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-440-5/06/0008…$5.00.

[5], and we have found little previous work that directly optimizes
the net profit as the data mining effort.

We first set up a simple framework in which the problem of
maximum net profit can be converted to minimum total cost in
cost-sensitive learning under certain conditions (see Section 2).
We then apply and compare several well-known cost-sensitive
learning approaches on a defect report dataset to see how they
perform, in terms of maximum net profit (Section 5). The EP
system is shown to be able to improve greatly the net profit in
software production. The system is currently deployed within the
product groups of an enterprise software vendor, and it has
quickly become a popular tool for prioritization defects for fixing.
EP is one of the successful stories of data mining deployed in
industry.

2. MAXIMUM NET PROFIT AND COST-
SENSTITIVE LEARNING
In this section we will propose a novel method that converts the
maximum net profit problem to cost-sensitive learning.

As discussed in the Section 1, correcting defects after an
escalation occurs at the customer site is much more expensive
than correcting them before product release. However, deadlines
and limited resources usually allow only a small number of
defects to be fixed at a lower cost before product release. If we
treat escalated defects as positive examples and non-escalated
defects as negative examples, then false negative, or FN, is when
EP predicts negative (non-escalation) but the defect is actually
positive (becomes escalated after product release). Thus, the cost
of FN (correcting an escalated defect) is relatively high. On the
other hand, false positive, or FP, is when EP predicts positive
(escalation defects) but the defect is actually negative (non-
escalation). Thus, the cost of FP (correcting a non-escalated
defect) is relatively low (and is the same as the cost of true
positive, TP, or fixing an escalated defect). The cost of true
negative, TN, is zero.

We assume that the cost FN is 7 times as the cost of FP. Further,
we assume that FN = $7,000, and FP = $1,000 (we did not use the
actual numbers here for confidentiality reasons but the actual cost
figures are some constant factor of the numbers used here). Then
the cost metric can be represented in Table 1. As the cost metric
is known, this would seem to be a straightforward cost-sensitive
learning problem, in which the weighted misclassification cost is
minimized.

Table 1: Cost metric.

 Actual Negative Actual Positive
Predict Negative 0 7,000
Predict Positive 1,000 1,000

The problem is not that simple. The goal of the EP (Escalation
Prediction) system (and many other real-world data mining
applications) is to maximize the net profit after data mining is
deployed. That is, we want to maximize the gain (or difference)
with the data-mining effort compared to the previous, default
practice. That is, we want to compare the cost (or profit) after
data-mining based EP is deployed to some default policy before
EP is deployed.

Let us first establish the formula for the net profit, which is the
difference of the total costs before and after deploying EP. Let us
first calculate the cost after deploying EP (“gross profit”). If the
software vendor follows faithfully the EP’s predictions, it will fix
all defects predicted positively, and ignore all defects predicted
negatively. The cost of correcting all defects predicted positively
by EP is thus the multiplication of the number of defects
predicated positively and the cost of correcting such a defect; that
is, (tp+fp)×FP. (Note that we use small letters, such as tp, to
represent the number of true positive cases, and capital letters,
such as TP, to represent the cost of true positive cases. Similar
notations are used for other cases.)

After the software is released, the would-be escalated defects
predicted negatively by EP (i.e., false negatives) will escalate and
must be fixed at a much higher cost of fn×FN. Thus, the total cost
after deploying EP is the sum of the two costs described above,
plus the cost of the data mining effort (such as the cost of the tool,
computer and human cost of using the tool, etc). If we ignore the
cost of the data mining effort now, then the total cost of deploying
EP is:

(tp+fp)×FP+ fn×FN. (1)

Assume that the default policy (before deploying EP) is to ignore
all defect reports before software release, and then correct all
escalated defects after release. Then using the same notation, the
cost of this default policy is simply the cost of correcting all
escalated defects. That is:

(tp+fn)×FN. (2)

Thus, the net profit is to subtract (1) from (2). That is:

Net profit = tp× (FN–FP)–fp×FP = 6000×tp–1000×fp. (3)

On the other hand, if the default policy is to correct all of the
defects (which rarely happens due to deadlines and scarce
resource), the cost would be (tp+fp+tn+fn)×FP. Subtracting (1)
from the cost of the correcting-all policy above, the net profit
would be: 1000×tn –6000×fn. Thus, in general, the net profit
varies with the default policy.

We propose a novel and simple approach to convert a formula of
maximum net profit (such as (3) above) to cost-sensitive learning
under certain conditions. Cost sensitive learning basically
attempts to minimize the weighted cost, which can be expressed
as:

tp×TP + fp×FP + tn×TN + fn×FN. (4)

Therefore, as long as the net profit, such as (3), can be expressed
as a linear formula of tp, fp, tn, and fn, we can negate its
coefficients in the linear formula, and re-assign the cost metric by
the negated coefficients. For example, the cost metric for the net
profit (3) can be converted and represented in Table 2. In the rest
of the paper, we will study EP under this cost metric.

Comparing the two cost metrics in Tables 1 and 2, we can see that
one can be converted into the other when the first row is
subtracted to the second row [11]. However, even though the
optimal prediction for minimal total cost remains the same after

such conversions, the actual value of the total cost (4) would
certainly be changed. That is, the software vendors not only want
to know what predictions will produce the maximum net profit,
but also the actual value of the net profit, as it reflects how much
gain it may actually obtain after the data-mining based EP is
deployed. Indeed, it is possible that the maximum net profit is
negative (see Table 3 later in Section 5), indicating that it may be
counter-productive to deploy the data mining system. In addition,
as we have omitted the cost of the data mining effort (such as the
tool cost, computer and human cost), the software vendor must
obtain a positive net profit with a value that is large enough to
offset other costs involved and decide if EP is a worthwhile
endeavor or not.

To conclude, different default policies often result in different net
profit calculations. However, under the condition that the net
profit can be represented linearly by tp, fp, tn, and fn, we show
that a simple and novel method can convert the maximum net
profit to a new cost metric. Thus, the maximum net profit problem
can now be solved by cost-sensitive learning. The result obtained
(actual net profit value) will be useful for the software vendor to
decide the overall benefit of deploying the data-mining system.

Table 2: Cost metric converted from (3). This cost metric will
be used in the rest of the paper.

 Actual Negative Actual Positive
Predict Negative 0 0
Predict Positive 1,000 –6,000

3. COST-SENSITIVE LEARNING
Cost-sensitive learning algorithms can be broadly categorized into
two types. One is to design a wrapper that converts existing cost-
insensitive (or cost-blind) base learning algorithms into cost-
sensitive. The wrapper method is also called cost-sensitive meta-
learning. The other is to design cost-sensitive learning algorithms
directly [19, 10, 15]. In this section we will discuss briefly several
well-known cost-sensitive learning approaches, including a
method of our own (CSTree, described later) and several new
improvements. Due to space limitation we will not provide full
details of each method; instead, only highlights are given. The
first four approaches belong to the wrapper method; they apply
sampling etc. on cost-blind base algorithms to make them cost-
sensitive. The last method is cost-sensitive by nature. These
approaches will be compared experimentally in the next section to
see which one(s) can reliably obtain the maximum net profit in
Escalation Prediction.

The first popular approach, called “Undersampling” in this paper,
is to rebalance the training data by sampling the data sets.
Previous work (see, e.g., [10]) has indicated that over-sampling
the minority class can cause overfitting, and may not be helpful to
improve predictive performance. Other research [20] shows that
keeping all examples of the rare class, and under-sampling the
majority class to be about the same as the rare class performs well
measured by AUC. Thus, we will use this simple strategy. That is,
we keep all positive examples (escalated defects), and randomly
sample without replacement the negative examples such that the
two classes are balanced.

However, as the positive examples occupy only about 1% of the
original training and test sets (see Section 4), the balanced dataset

contains only about 2% of the original training set, which is very
small. Therefore, we apply bagging [4] to Undersampling, as
bagging has been shown to be effective in improving predictive
accuracy and probability estimation measured by AUC. Bagging
is also applied to other methods (see later).

As Undersampling itself is not cost-sensitive, the class label
produced cannot be used directly in predicting escalation for
maximum net profit. As the base learning algorithms used also
produce probability estimates for the labels, testing cases can be
ranked. To accurately calculate the maximum net profit, the
threshold method is used: a separate validation set is used to find
the best threshold on the probability estimates to classify the
validation cases that would produce the maximum net profit (on
the validation set), and this best threshold is then applied to the
test set to classify the test cases into positive (if the predicted
probability is larger than or equal to the threshold) or negative (if
the predicted probability is less than the threshold). The net profit
on the test set can then be calculated and obtained.

The second approach, called “Costing”, is an advanced sampling
which weighs examples according to the cost, producing cost-
sensitivity with a provable performance guarantee [22]. The
advanced sampling used is rejection sampling, in which each
example in the original training set is drawn once, and is accepted
into the sample with the probability proportional to its
“importance”. The size of the re-sampled dataset is smaller than
the original set. With bagging, the method is shown to outperform
other methods measured by the maximum total profit in two real-
world datasets [22].

The third approach, called “Relabeling”, relabels the classes of
instances by applying the minimum expected cost criterion [9].
MetaCost [9] belongs to this approach. MetaCost uses bagging as
the ensemble method.

The forth approach, called “Weighting” [18], induces cost-
sensitivity by integrating the instances’ weights directly into the
classifier building process. It works when the base learners can
accept weights directly. This method does not rely on bagging.
However, to compare with other cost-sensitive methods, we also
apply bagging to this method.

The fifth approach, called “CSTree”, is a recently proposed cost-
sensitive decision-tree algorithm that uses the total cost directly as
a split criterion [15]. That is, instead of minimizing entropy in the
tree building process, the split criterion simply minimizes the total
misclassification cost given a cost metric. CSTree is, by nature,
truly cost-sensitive, and thus, the result of classifying the test
cases is used directly in the calculation of the maximum net
profit.

Several improvements have been made in the CSTree for the EP
application. First of all, compared to [15], the costs for true
positive (TP) and true negative (TN) may not be zero here.
Second, expected total cost reduction is used during tree building.
That is, an attribute may be selected as a root if the expected cost
reduction is maximum (among other attributes), and is greater
than 0. More specifically, for a given set of cases without split, if
CP (= tp×TP + fp×FP) is the total cost of labeling a leaf
positively, and CN (= tn×TN + fn×FN) is the total cost of
labeling a leaf negatively, then the probability of a positive
outcome is first estimated by the relative cost of CP and CN as

NP

N

NP

P

CC
C

CC
C

+
=

+
−1 . (The smaller the cost CP, the larger the

probability of being positive, as minimum cost is sought). The
expected misclassification cost of being positive is thus:

P
NP

N
P C

CC
CE ×
+

= . Similarly, the probability of a negative

outcome is
NP

P

CC
C
+

, and the expected misclassification cost of

being negative is: N
NP

P
N C

CC
CE ×
+

= . Therefore, without splitting,

the expected total misclassification cost of a given set of

examples is:
NP

NP
NP CC

CCEEE
+
××

=+=
2

. If an attribute A has k

branches, then the expected total misclassification cost after
splitting on A is:

ii

ii

NP

NP
k

i
A CC

CC
E

+

×
×= ∑

=1
2 . Thus, (E – EA) is the

expected cost reduction splitting on A. During tree construction,
an attribute with the maximum expected cost reduction is chosen,
and if the value is greater than 0, then the attribute is chosen to
split the training examples; if not, a leaf node is formed.

The last improvement is tree pruning. The original method did not
incorporate pruning. We have found that without pruning, the tree
overfits the training examples. This means that a larger tree (that
fits the training examples better) predicts worse compared to a
small tree. We have implemented post pruning similar to the post-
pruning in C4.5 [17] in our cost-sensitive decision tree (but our
post-pruning is guided by minimum total misclassification cost).

The CSTree has two distinctive advantages. The first one is that
there is no need for sampling in the training data. The original
training data can be used directly in building the decision tree.
That is, CSTree can naturally utilize all information in the
training data. Second, CSTree does not rely on bagging for the
final outcome. This implies that the final results can be
comprehensible by domain experts.

4. THE DATASETS
Our dataset consists of historical defect reports from industry
software projects of an enterprise software vendor. Defect reports
change over time and so there is an opportunity to learn from
multiple different versions of a single defect report. Additionally,
the same defect can be reported several times by different parties.
Therefore, numerous data records in the dataset may belong to
only one defect. Confidentiality of the data only allows us to give
a brief description of the data. The data was collected in a period
of 2004, and contains a total of about 165,000 records (defect
report observations). Note that the class labels of this dataset have
all been verified by real escalations of the software products, thus
this dataset contains much less noise than the one used in our
previous work [16]. The total number of attributes is 53, most of
which are numerical attributes (including dates), and a few are
nominal (such as product name). The system uses three types of
inputs: 1) raw inputs which correspond to field values which are
reported by users and stored in the defect tracking database, 2)
row-level transformations of raw values, such as concatenating
two string-valued raw inputs into a derived new string-valued
input, and 3) statistical inputs which are derived from statistical

analyses of all rows which fall into a given time period, such as a
fiscal quarter.

Statistical inputs were particularly useful for string valued raw
inputs because string-valued data is typically difficult to use for
machine learning. For example, a raw input for
"CUSTOMER_NAME" may have 20,000 possible customer
name values. Therefore, the system calculates statistics for string-
valued inputs. These statistics include counts (number of defects
submitted by customer "abc", and number of escalations raised by
customer "abc"), means (number of escalations over number of
defects submitted for hardware platform "xyz"), and the
probability of an escalation, and so on. Further analysis of these
inputs and their utility for prediction is of great interest but
beyond the scope of this paper.

The target attribute is binary (escalation or no escalation). The
whole dataset is split up into training and test sets according to the
defect report date. The training set contains about two thirds of
the records (before a certain date), and the test set contains one
third of the records (after that date). The dataset is very
imbalanced, with slightly less than 1% of the positive examples
(escalated defects).

5. COMPARING COST-SENSITIVE
LEARNING APPROACHES FOR EP
In this section we compare the five cost-sensitive learning
approaches (Undersampling, Costing, Relabeling, Weighting, and
CSTree) discussed in Section 3 on the latest dataset we have
obtained. Again the latest dataset contains much less noise than
the dataset used in our previous work [16], thus the results
reported here are different (but the general conclusion is still the
same). In addition, more base learning algorithms are included in
the current study (see later).

Again the first four approaches are wrappers or meta cost-
sensitive learning methods, as they apply to any cost-blind base
learning algorithms to make them cost-sensitive. We choose four
popular learning algorithms, naïve Bayes, the decision tree
algorithm C4.5 [17], decision stump [13], and REPTree [21] as
their base learners, due to their popularity and high efficiency.
The fifth method (CSTree) is also a decision tree but it is cost-
sensitive in nature. It would be interesting to compare various
wrapper methods applying to cost-blind C4.5 to the cost-sensitive
decision tree (CSTree).

To make the net profit result comparable with different
approaches, we use “unit” net profit, defined as the net profit
divided by the number of records in the test sets in our
comparison. Note that even if a data mining method obtains a unit
net profit of $1, the saving to the enterprise software vendors can
be quite significant. If we assume that 1 unit represents $50 in
reality (a reasonable figure), then with 1,000 software defect
reports in a software product to be released, a total saving with
EP’s prediction would be 1,000×50 = $50,000 for a typical
customer. Alternatively, assuming a unit cost of $250 and 50,000
defect reports the total savings amount to $12.5 million.

Bagging is applied to all methods. The maximum unit net profit,
when the bagging iteration is set to 1 (no bagging), 10, and 100
are shown in Table 3.

Table 3: Comparing unit net profit using five different cost-
sensitive approaches.

Bagging Iterations Cost-sensitive Approaches
1 10 100

Naïve Bayes 0.00 0.43 1.85
C4.5 -0.05 0.01 3.52

REPTree 0.00 6.97 10.80

Undersampling

DecisionStump 0.00 0.00 0.00
Naïve Bayes -6.60 -5.45 -5.26

C4.5 11.87 13.85 13.99
REPTree 9.63 11.31 13.34

Costing

DecisionStump 0.00 0.00 0.00
Naïve Bayes -16.49 -17.56 -18.01

C4.5 0.00 0.00 0.00
REPTree 8.00 12.83 11.15

Relabeling
(MetaCost)

DecisionStump 0.00 0.00 0.00
Naïve Bayes -5.69 -6.10 -6.93

C4.5 9.10 11.38 11.47
REPTree 12.96 14.16 14.39

Weighting

DecisionStump 0.00 0.00 0.00
CSTree NA 14.72 14.15 14.07

From the results in the table, we can draw several interesting
conclusions.

First, in terms of performance of the five different cost-sensitive
learning algorithms, we can see that they perform quite differently,
even when they use the same base learning algorithms. This
means that some trial-and-error is needed to choose the best
performing cost-sensitive approach in EP (and other real-world
applications). For meta-learning approaches (the first four
approaches), different base learners also yield very different
performance. In general, C4.5 and REPTree perform better than
other base learning algorithms. The fifth method, CSTree, is the
best. Decision tree models (such as C4.5 and REPTree) with no
bagging (bagging iteration is 1) also produce comprehensible
results that can provide insights to the software vendors as to why
certain defects are highly likely to escalate.

Second, compared to no bagging (bagging iteration is 1), bagging
(with 10 or 100 iterations) generally improves the result when the
maximum unit net profit is positive. However, CSTree achieves
an excellent result without bagging (with the highest unit net
profit of 14.72). Again without the need of bagging, a single tree
has the advantage of producing comprehensible results for domain
experts to exam the outcome of data mining.

Third, sometimes cost-sensitive methods produce very negative in
terms of unit net profit, such as Costing, Relabeling, and
Weighting with naïve Bayes. As we discussed in Section 2, often
these absolute values of the unit net profit is important for
software enterprise vendors to decide if the deployment of data
mining is profitable or not, and by how much, compared to the
default strategy. Negative net profit, even though it is a maximal

value, indicates that it is not worthwhile to deploy the data mining
effort. Fortunately in our case, we have found clear winners: the
CSTree, Costing, and Weighting, as they have resulted in large
positive unit net profit. Deployment of EP with CSTree is
encouraging. See Section 6 for details.

To summarize, of all algorithms tested, CSTree performs best for
the EP task. In Table 4, we rank the five algorithms according to
their highest unit net profit, and the average unit net profit
(averaging over the four base learners for the meta cost-sensitive
learning methods). Both rankings indicate that CSTree performs
the best, followed by Costing or Weighting, and followed by
Undersampling or Relabeling.

Table 4: The rankings of the five cost-sensitive methods in
comparison. Numbers in parentheses are the unit net profit.

Clearly CSTree without bagging is the most appropriate choice
for deployment in the software development cycle, due to its
superior performance and comprehensibility. We will discuss the
deployment of EP in the next section.

6. DEPLOYMENT
Our EP system has been in deployment for many months in the
product group of an enterprise software vendor where the dataset
comes from. It has been used to make suggestions on current
defect reports with high risks of escalation. As the software
vendor must wait to see which defect reports are actually
escalated after the product is released, and the would-be
escalations will not happen after they are accurately predicted by
EP and corrected before software release, the final evaluation
cannot be obtained until the software has been released and has
been in use by customers for some period of time (in the order of
one or more quarters).

We have evaluated EP using the defect reports submitted or
updated during the most recent three weeks in the test set. Any
records corresponding to defect reports which had already been
escalated at the time of preparing the data set were also removed.
After EP makes its predictions, the results are compared to the
actual escalations happened up to date. The EP prediction
performance is quite good. The lift chart of EP’s prediction is
well above the random diagonal line: at top 10 percentile (among
top 10% of the most likely predicted escalations), about 70% of
the actual escalations are predicted; at 20 percentile about 85%;
and at 30 percentile about 90%. These results are of significant
business value to the software vendor. In addition, the product
group has provided positive feedback on the performance of the
EP system, citing that it “catches” defect reports that, after
thorough evaluation by specialist, are considered likely candidates
for future escalations. For instance, some defect reports have been
found to have been assigned a lower than appropriate priority.
After a prediction of high escalation risk becomes available such
a defect report can be upgraded to a higher priority which will
lead to expedited evaluation and resolution.

 1 (best) 2 3 4 5

Ranked by
highest profit

CSTree
(14.72)

Weighting
(14.39)

Costing
(13.99)

Relabeling
(12.83)

Undersampling
(10.80)

Ranked by
average profit

CSTree
(14.31)

Costing
(4.72)

Weighting
(4.56)

Undersampling
(1.96)

Relabeling
(-1.67)

7. CONCLUSIONS
Enterprise software development is an extremely complex process
with hundreds or even thousands of defects that need to be
prioritized and resolved, preventing them from escalation by
customers and incurring a very high cost to the software vendors.
In this paper, we present a successful case for predicting
escalation risks mined from known product defect reports. The
enterprise software vendors can proactively resolve these defects
with the greatest risk of escalation at a much lower cost. This can
save software vendors an enormous amount of software
maintenance cost. An escalation prediction (EP) system based on
data-mining for the maximum net profit has been proposed and
tested, and is currently deployed at an enterprise software vendor.
Results provide strong evidence that we can indeed make useful
predictions about the escalation risk of product defects.

More specifically, we establish a general framework in which the
maximum net profit problem can be converted to cost-sensitive
learning. We then evaluate and compare five major cost-sensitive
learning methods for their effectiveness for EP. We find that the
CSTree (with novel improvements) can produce large positive
unit net profit, as well as comprehensible results. This is often
important for deploying data mining solutions in industry.

In our future work, we plan to continue to improve the
effectiveness of the EP system and track its results from the
software vendors.

8. REFERENCES
[1] Berry, M.J.A., and Linoff, G. 1997. Data Mining

Techniques: For Marketing, Sales, and Customer Support.
John Wiley & Sons.

[2] Boehm, B.W., and Basili, V. 2001. Software Defect
Reduction Top 10 List. Computer 34(1): 135-137.

[3] Boehm, B.W. 1981. Software Engineering Economics.
Prentice-Hall Advances in Computing Science &
Technology Series.

[4] Breiman, L. 1996. Bagging Predictors. Machine Learning
24(2): 123-140.

[5] Bruckhaus, T. 2006 (forthcoming). The Business Impact of
Predictive Analytics. Book chapter in Knowledge Discovery
and Data Mining: Challenges and Realities with Real World
Data. Zhu, Q, and Davidson, I., editors. Idea Group
Publishing, Hershey, PA

[6] Bruckhaus, T., Ling, C.X., Madhavji, N.H., and Sheng, S.
2004. Software Escalation Prediction with Data Mining.
Workshop on Predictive Software Models, A STEP Software
Technology & Engineering Practice.

[7] Chulani, S., and Boehm, B.W. 1997. Modeling Software
Defect Introduction. California Software Symposium, Nov.

[8] Dai, H. (editor). 2003. Proceedings of the International
Workshop on Data Mining for Software Engineering and
Knowledge Engineering.

[9] Domingos, P. 1999. MetaCost: A general method for making
classifiers cost-sensitive. In Proceedings of the Fifth
International Conference on Knowledge Discovery and Data
Mining, 155-164, ACM Press.

[10] Drummond, C., and Holte, R.C. 2003. C4.5, Class
Imbalance, and Cost Sensitivity: Why under-sampling beats
over-sampling. Workshop on Learning from Imbalanced
Datasets II.

[11] Elkan, C. 2001. The Foundations of Cost-Sensitive Learning.
In Proceedings of the International Joint Conference of
Artificial Intelligence, 973-978.

[12] Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., and
Uthurusamy, R. (editors). 1996. Advances in Knowledge
Discovery and Data Mining, AAAI/MIT Press.

[13] Iba, W. and Langley, P. 1992. Induction of One-level
Decision Trees. In Proceedings of the Ninth International
Workshop on Machine Learning, 233-240.

[14] Ling, C.X., and Li, C. 1998. Data Mining for Direct
Marketing: Specific Problems and Solutions. In Proceedings
of the Fourth International Conference on Knowledge
Discovery and Data Mining, 73-79.

[15] Ling, C.X., Yang, Q., Wang, J., and Zhang, S. 2004.
Decision trees with minimal costs. In Proceedings of
International Conference on Machine Learning.

[16] Ling, C.X., Sheng, S. Bruckhaus, T., and Madhavji, N.H.
2005. Predicting Software Escalations with Maximum ROI.
In Proceedings of International Conference of Data Mining.

[17] Quinlan, J.R. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann.

[18] Ting, K.M. 2002. An Instance-Weighting Method to Induce
Cost-Sensitive Trees. IEEE Transactions on Knowledge and
Data Engineering, 14(3):659-665.

[19] Turney, P.D. 1995. Cost-Sensitive Classification: Empirical
Evaluation of a Hybrid Genetic Decision Tree Induction
Algorithm. Journal of Artificial Intelligence Research 2:369-
409.

[20] Weiss, G., and Provost, F. 2003. Learning when Training
Data are Costly: The Effect of Class Distribution on Tree
Induction. Journal of Artificial Intelligence Research 19:
315-354.

[21] Witten, I.H., and Frank, E. 2000. Data Mining: Practical
machine learning tools with Java implementations. Morgan
Kaufmann, San Francisco.

[22] Zadrozny, B., Langford, J., and Abe, N. 2003. Cost-Sensitive
Learning by Cost-Proportionate Example Weighting. In
Proceedings of International Conference of Data Mining.

	INTRODUCTION
	MAXIMUM NET PROFIT AND COST-SENSTITIVE LEARNING
	COST-SENSITIVE LEARNING
	THE DATASETS
	COMPARING COST-SENSITIVE LEARNING APPROACHES FOR EP
	DEPLOYMENT
	CONCLUSIONS
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

