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ABSTRACT 
While most software defects (i.e., bugs) are corrected and tested 
as part of the lengthy software development cycle, enterprise 
software vendors often have to release software products before 
all reported defects are corrected, due to deadlines and limited 
resources. A small number of these defects will be escalated by 
customers and they must be resolved immediately by the software 
vendors at a very high cost. In this paper, we develop an 
Escalation Prediction (EP) system that mines historic defect 
report data and predict the escalation risk of the defects for 
maximum net profit. More specifically, we first describe a simple 
and general framework to convert the maximum net profit 
problem to cost-sensitive learning. We then apply and compare 
several well-known cost-sensitive learning approaches for EP. 
Our experiments suggest that the cost-sensitive decision tree is the 
best method for producing the highest positive net profit and 
comprehensible results. The EP system has been deployed 
successfully in the product group of an enterprise software 
vendor.  

(Note: this paper is accepted by KDD’06) 
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1. INTRODUCTION 
Building large enterprise software is generally a highly complex 
and lengthy process, during which numerous software defects (i.e., 
bugs) are reported and required to be corrected or fixed. However, 

often some of reported defects will not be fixed when the software 
products are released, due to tight deadlines or limited resources 
[7]. After product release a small number of defects become 
“escalated” by customers, whose businesses are seriously 
impacted. Escalations of software defects require software 
vendors’ immediate management attention and senior software 
engineers’ immediate and continuous effort to reduce the business 
or financial loss to the customers. Therefore, software defect 
escalations are highly costly to the software vendors, with the 
associated costs amounting to millions of dollars each year. In 
addition, software defect escalations result in loss of reputation, 
satisfaction, loyalty and repeat revenue of customers, incurring 
extremely high costs in the long run for the enterprise software 
vendors [2, 3]. 

Due to time (i.e., deadlines) and resource limitations, enterprise 
software vendors can only fix a limited number of defects before 
product release. Thus, they must try to identify which reported 
defects have a high risk of escalation, which should be fixed at a 
much lower cost within the product development and testing cycle 
before product release. However, identifying software defects that 
are likely to escalate is a complex and difficult task. Software 
vendors often have in place human-centric processes for 
evaluating defect reports, but such processes are unreliable and 
subjective.    

In this paper we propose a data-mining solution to predict 
escalation risks of defects to assist human experts in the review 
process of software defects. To the best of our knowledge, 
applying data mining for predicting software defect escalations is 
novel in software engineering. More specifically, we build an 
Escalation Prediction (EP) system that learns from history defects 
data and predicts escalation risk using data mining technology [1, 
8, 12]. If the EP system can accurately predict the escalation risk 
of known defect reports, then many escalations will be prevented. 
This would save a huge amount of money for the enterprise 
software vendors [6].  

Indeed, the ultimate business goal of EP (and many industrial 
applications using data mining) is to maximize the “net profit”, 
that is, the difference in the cost before and after introducing the 
data mining solution, as opposed to the usual data-mining 
measures such as accuracy, AUC (area under the ROC curve), lift, 
or recall and precision [14]. However, the net profit is not 
equivalent to any of these standard machine learning measures 
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[5], and we have found little previous work that directly optimizes 
the net profit as the data mining effort.  

We first set up a simple framework in which the problem of 
maximum net profit can be converted to minimum total cost in 
cost-sensitive learning under certain conditions (see Section 2). 
We then apply and compare several well-known cost-sensitive 
learning approaches on a defect report dataset to see how they 
perform, in terms of maximum net profit (Section 5). The EP 
system is shown to be able to improve greatly the net profit in 
software production. The system is currently deployed within the 
product groups of an enterprise software vendor, and it has 
quickly become a popular tool for prioritization defects for fixing. 
EP is one of the successful stories of data mining deployed in 
industry.  

2. MAXIMUM NET PROFIT AND COST-
SENSTITIVE LEARNING 
In this section we will propose a novel method that converts the 
maximum net profit problem to cost-sensitive learning.  

As discussed in the Section 1, correcting defects after an 
escalation occurs at the customer site is much more expensive 
than correcting them before product release. However, deadlines 
and limited resources usually allow only a small number of 
defects to be fixed at a lower cost before product release. If we 
treat escalated defects as positive examples and non-escalated 
defects as negative examples, then false negative, or FN, is when 
EP predicts negative (non-escalation) but the defect is actually 
positive (becomes escalated after product release). Thus, the cost 
of FN (correcting an escalated defect) is relatively high. On the 
other hand, false positive, or FP, is when EP predicts positive 
(escalation defects) but the defect is actually negative (non-
escalation). Thus, the cost of FP (correcting a non-escalated 
defect) is relatively low (and is the same as the cost of true 
positive, TP, or fixing an escalated defect). The cost of true 
negative, TN, is zero.  

We assume that the cost FN is 7 times as the cost of FP. Further, 
we assume that FN = $7,000, and FP = $1,000 (we did not use the 
actual numbers here for confidentiality reasons but the actual cost 
figures are some constant factor of the numbers used here). Then 
the cost metric can be represented in Table 1.  As the cost metric 
is known, this would seem to be a straightforward cost-sensitive 
learning problem, in which the weighted misclassification cost is 
minimized. 

Table 1: Cost metric. 

 Actual Negative Actual Positive
Predict Negative 0 7,000 
Predict Positive 1,000 1,000 

 

The problem is not that simple. The goal of the EP (Escalation 
Prediction) system (and many other real-world data mining 
applications) is to maximize the net profit after data mining is 
deployed. That is, we want to maximize the gain (or difference) 
with the data-mining effort compared to the previous, default 
practice. That is, we want to compare the cost (or profit) after 
data-mining based EP is deployed to some default policy before 
EP is deployed.  

Let us first establish the formula for the net profit, which is the 
difference of the total costs before and after deploying EP. Let us 
first calculate the cost after deploying EP (“gross profit”). If the 
software vendor follows faithfully the EP’s predictions, it will fix 
all defects predicted positively, and ignore all defects predicted 
negatively. The cost of correcting all defects predicted positively 
by EP is thus the multiplication of the number of defects 
predicated positively and the cost of correcting such a defect; that 
is, (tp+fp)×FP. (Note that we use small letters, such as tp, to 
represent the number of true positive cases, and capital letters, 
such as TP, to represent the cost of true positive cases. Similar 
notations are used for other cases. ) 

After the software is released, the would-be escalated defects 
predicted negatively by EP (i.e., false negatives) will escalate and 
must be fixed at a much higher cost of fn×FN. Thus, the total cost 
after deploying EP is the sum of the two costs described above, 
plus the cost of the data mining effort (such as the cost of the tool, 
computer and human cost of using the tool, etc). If we ignore the 
cost of the data mining effort now, then the total cost of deploying 
EP is:   

(tp+fp)×FP+ fn×FN.   (1) 

Assume that the default policy (before deploying EP) is to ignore 
all defect reports before software release, and then correct all 
escalated defects after release. Then using the same notation, the 
cost of this default policy is simply the cost of correcting all 
escalated defects. That is:  

(tp+fn)×FN.   (2) 

Thus, the net profit is to subtract (1) from (2). That is: 

Net profit = tp× (FN–FP)–fp×FP = 6000×tp–1000×fp.   (3) 

On the other hand, if the default policy is to correct all of the 
defects (which rarely happens due to deadlines and scarce 
resource), the cost would be (tp+fp+tn+fn)×FP. Subtracting (1) 
from the cost of the correcting-all policy above, the net profit 
would be: 1000×tn –6000×fn. Thus, in general, the net profit 
varies with the default policy. 

We propose a novel and simple approach to convert a formula of 
maximum net profit (such as (3) above) to cost-sensitive learning 
under certain conditions. Cost sensitive learning basically 
attempts to minimize the weighted cost, which can be expressed 
as: 

tp×TP + fp×FP + tn×TN + fn×FN.  (4) 

Therefore, as long as the net profit, such as (3), can be expressed 
as a linear formula of tp, fp, tn, and fn, we can negate its 
coefficients in the linear formula, and re-assign the cost metric by 
the negated coefficients. For example, the cost metric for the net 
profit (3) can be converted and represented in Table 2. In the rest 
of the paper, we will study EP under this cost metric.  

Comparing the two cost metrics in Tables 1 and 2, we can see that 
one can be converted into the other when the first row is 
subtracted to the second row [11]. However, even though the 
optimal prediction for minimal total cost remains the same after 



such conversions, the actual value of the total cost (4) would 
certainly be changed. That is, the software vendors not only want 
to know what predictions will produce the maximum net profit, 
but also the actual value of the net profit, as it reflects how much 
gain it may actually obtain after the data-mining based EP is 
deployed. Indeed, it is possible that the maximum net profit is 
negative (see Table 3 later in Section 5), indicating that it may be 
counter-productive to deploy the data mining system. In addition, 
as we have omitted the cost of the data mining effort (such as the 
tool cost, computer and human cost), the software vendor must 
obtain a positive net profit with a value that is large enough to 
offset other costs involved and decide if EP is a worthwhile 
endeavor or not.    

To conclude, different default policies often result in different net 
profit calculations. However, under the condition that the net 
profit can be represented linearly by tp, fp, tn, and fn, we show 
that a simple and novel method can convert the maximum net 
profit to a new cost metric. Thus, the maximum net profit problem 
can now be solved by cost-sensitive learning. The result obtained 
(actual net profit value) will be useful for the software vendor to 
decide the overall benefit of deploying the data-mining system.   

Table 2: Cost metric converted from (3). This cost metric will 
be used in the rest of the paper. 

 Actual Negative Actual Positive
Predict Negative 0 0 
Predict Positive 1,000 –6,000 

3. COST-SENSITIVE LEARNING  
Cost-sensitive learning algorithms can be broadly categorized into 
two types. One is to design a wrapper that converts existing cost-
insensitive (or cost-blind) base learning algorithms into cost-
sensitive. The wrapper method is also called cost-sensitive meta-
learning. The other is to design cost-sensitive learning algorithms 
directly [19, 10, 15]. In this section we will discuss briefly several 
well-known cost-sensitive learning approaches, including a 
method of our own (CSTree, described later) and several new 
improvements. Due to space limitation we will not provide full 
details of each method; instead, only highlights are given. The 
first four approaches belong to the wrapper method; they apply 
sampling etc. on cost-blind base algorithms to make them cost-
sensitive. The last method is cost-sensitive by nature. These 
approaches will be compared experimentally in the next section to 
see which one(s) can reliably obtain the maximum net profit in 
Escalation Prediction. 

The first popular approach, called “Undersampling” in this paper, 
is to rebalance the training data by sampling the data sets. 
Previous work (see, e.g., [10]) has indicated that over-sampling 
the minority class can cause overfitting, and may not be helpful to 
improve predictive performance. Other research [20] shows that 
keeping all examples of the rare class, and under-sampling the 
majority class to be about the same as the rare class performs well 
measured by AUC. Thus, we will use this simple strategy. That is, 
we keep all positive examples (escalated defects), and randomly 
sample without replacement the negative examples such that the 
two classes are balanced.  

However, as the positive examples occupy only about 1% of the 
original training and test sets (see Section 4), the balanced dataset 

contains only about 2% of the original training set, which is very 
small. Therefore, we apply bagging [4] to Undersampling, as 
bagging has been shown to be effective in improving predictive 
accuracy and probability estimation measured by AUC. Bagging 
is also applied to other methods (see later).  

As Undersampling itself is not cost-sensitive, the class label 
produced cannot be used directly in predicting escalation for 
maximum net profit. As the base learning algorithms used also 
produce probability estimates for the labels, testing cases can be 
ranked. To accurately calculate the maximum net profit, the 
threshold method is used: a separate validation set is used to find 
the best threshold on the probability estimates to classify the 
validation cases that would produce the maximum net profit (on 
the validation set), and this best threshold is then applied to the 
test set to classify the test cases into positive (if the predicted 
probability is larger than or equal to the threshold) or negative (if 
the predicted probability is less than the threshold). The net profit 
on the test set can then be calculated and obtained.  

The second approach, called “Costing”, is an advanced sampling 
which weighs examples according to the cost, producing cost-
sensitivity with a provable performance guarantee [22]. The 
advanced sampling used is rejection sampling, in which each 
example in the original training set is drawn once, and is accepted 
into the sample with the probability proportional to its 
“importance”. The size of the re-sampled dataset is smaller than 
the original set. With bagging, the method is shown to outperform 
other methods measured by the maximum total profit in two real-
world datasets [22].  

The third approach, called “Relabeling”, relabels the classes of 
instances by applying the minimum expected cost criterion [9]. 
MetaCost [9] belongs to this approach. MetaCost uses bagging as 
the ensemble method.  

The forth approach, called “Weighting” [18], induces cost-
sensitivity by integrating the instances’ weights directly into the 
classifier building process. It works when the base learners can 
accept weights directly. This method does not rely on bagging. 
However, to compare with other cost-sensitive methods, we also 
apply bagging to this method.   

The fifth approach, called “CSTree”, is a recently proposed cost-
sensitive decision-tree algorithm that uses the total cost directly as 
a split criterion [15]. That is, instead of minimizing entropy in the 
tree building process, the split criterion simply minimizes the total 
misclassification cost given a cost metric. CSTree is, by nature, 
truly cost-sensitive, and thus, the result of classifying the test 
cases is used directly in the calculation of the maximum net 
profit.  

Several improvements have been made in the CSTree for the EP 
application. First of all, compared to [15], the costs for true 
positive (TP) and true negative (TN) may not be zero here. 
Second, expected total cost reduction is used during tree building. 
That is, an attribute may be selected as a root if the expected cost 
reduction is maximum (among other attributes), and is greater 
than 0. More specifically, for a given set of cases without split, if 
CP (= tp×TP + fp×FP) is the total cost of labeling a leaf 
positively, and CN (= tn×TN + fn×FN) is the total cost of 
labeling a leaf negatively, then the probability of a positive 
outcome is first estimated by the relative cost of CP and CN  as 
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expected cost reduction splitting on A. During tree construction, 
an attribute with the maximum expected cost reduction is chosen, 
and if the value is greater than 0, then the attribute is chosen to 
split the training examples; if not, a leaf node is formed.  

The last improvement is tree pruning. The original method did not 
incorporate pruning. We have found that without pruning, the tree 
overfits the training examples. This means that a larger tree (that 
fits the training examples better) predicts worse compared to a 
small tree. We have implemented post pruning similar to the post-
pruning in C4.5 [17] in our cost-sensitive decision tree (but our 
post-pruning is guided by minimum total misclassification cost).   

The CSTree has two distinctive advantages. The first one is that 
there is no need for sampling in the training data. The original 
training data can be used directly in building the decision tree. 
That is, CSTree can naturally utilize all information in the 
training data. Second, CSTree does not rely on bagging for the 
final outcome. This implies that the final results can be 
comprehensible by domain experts. 

4. THE DATASETS 
Our dataset consists of historical defect reports from industry 
software projects of an enterprise software vendor. Defect reports 
change over time and so there is an opportunity to learn from 
multiple different versions of a single defect report. Additionally, 
the same defect can be reported several times by different parties. 
Therefore, numerous data records in the dataset may belong to 
only one defect.  Confidentiality of the data only allows us to give 
a brief description of the data. The data was collected in a period 
of 2004, and contains a total of about 165,000 records (defect 
report observations). Note that the class labels of this dataset have 
all been verified by real escalations of the software products, thus 
this dataset contains much less noise than the one used in our 
previous work [16]. The total number of attributes is 53, most of 
which are numerical attributes (including dates), and a few are 
nominal (such as product name). The system uses three types of 
inputs: 1) raw inputs which correspond to field values which are 
reported by users and stored in the defect tracking database, 2) 
row-level transformations of raw values, such as concatenating 
two string-valued raw inputs into a derived new string-valued 
input, and 3) statistical inputs which are derived from statistical 

analyses of all rows which fall into a given time period, such as a 
fiscal quarter. 

Statistical inputs were particularly useful for string valued raw 
inputs because string-valued data is typically difficult to use for 
machine learning.  For example, a raw input for 
"CUSTOMER_NAME" may have 20,000 possible customer 
name values. Therefore, the system calculates statistics for string-
valued inputs.  These statistics include counts (number of defects 
submitted by customer "abc", and number of escalations raised by 
customer "abc"), means (number of escalations over number of 
defects submitted for hardware platform "xyz"), and the 
probability of an escalation, and so on. Further analysis of these 
inputs and their utility for prediction is of great interest but 
beyond the scope of this paper.   

The target attribute is binary (escalation or no escalation). The 
whole dataset is split up into training and test sets according to the 
defect report date. The training set contains about two thirds of 
the records (before a certain date), and the test set contains one 
third of the records (after that date). The dataset is very 
imbalanced, with slightly less than 1% of the positive examples 
(escalated defects).  

5. COMPARING COST-SENSITIVE 
LEARNING APPROACHES FOR EP 
In this section we compare the five cost-sensitive learning 
approaches (Undersampling, Costing, Relabeling, Weighting, and 
CSTree) discussed in Section 3 on the latest dataset we have 
obtained. Again the latest dataset contains much less noise than 
the dataset used in our previous work [16], thus the results 
reported here are different (but the general conclusion is still the 
same). In addition, more base learning algorithms are included in 
the current study (see later).     

Again the first four approaches are wrappers or meta cost-
sensitive learning methods, as they apply to any cost-blind base 
learning algorithms to make them cost-sensitive. We choose four 
popular learning algorithms, naïve Bayes, the decision tree 
algorithm C4.5 [17], decision stump [13], and REPTree [21] as 
their base learners, due to their popularity and high efficiency. 
The fifth method (CSTree) is also a decision tree but it is cost-
sensitive in nature. It would be interesting to compare various 
wrapper methods applying to cost-blind C4.5 to the cost-sensitive 
decision tree (CSTree).  

To make the net profit result comparable with different 
approaches, we use “unit” net profit, defined as the net profit 
divided by the number of records in the test sets in our 
comparison. Note that even if a data mining method obtains a unit 
net profit of $1, the saving to the enterprise software vendors can 
be quite significant. If we assume that 1 unit represents $50 in 
reality (a reasonable figure), then with 1,000 software defect 
reports in a software product to be released, a total saving with 
EP’s prediction would be 1,000×50 = $50,000 for a typical 
customer. Alternatively, assuming a unit cost of $250 and 50,000 
defect reports the total savings amount to $12.5 million. 

Bagging is applied to all methods. The maximum unit net profit, 
when the bagging iteration is set to 1 (no bagging), 10, and 100 
are shown in Table 3.   



Table 3: Comparing unit net profit using five different cost-
sensitive approaches. 

Bagging Iterations Cost-sensitive Approaches 
1 10 100 

Naïve Bayes 0.00 0.43 1.85 
C4.5 -0.05 0.01 3.52 

REPTree 0.00 6.97 10.80

Undersampling 

DecisionStump 0.00 0.00 0.00 
Naïve Bayes -6.60 -5.45 -5.26

C4.5 11.87 13.85 13.99
REPTree 9.63 11.31 13.34

Costing 

DecisionStump 0.00 0.00 0.00 
Naïve Bayes -16.49 -17.56 -18.01

C4.5 0.00 0.00 0.00 
REPTree 8.00 12.83 11.15

Relabeling 
(MetaCost) 

DecisionStump 0.00 0.00 0.00 
Naïve Bayes -5.69 -6.10 -6.93

C4.5 9.10 11.38 11.47
REPTree 12.96 14.16 14.39

Weighting 

DecisionStump 0.00 0.00 0.00 
CSTree NA 14.72 14.15 14.07

 

From the results in the table, we can draw several interesting 
conclusions.  

First, in terms of performance of the five different cost-sensitive 
learning algorithms, we can see that they perform quite differently, 
even when they use the same base learning algorithms. This 
means that some trial-and-error is needed to choose the best 
performing cost-sensitive approach in EP (and other real-world 
applications). For meta-learning approaches (the first four 
approaches), different base learners also yield very different 
performance. In general, C4.5 and REPTree perform better than 
other base learning algorithms. The fifth method, CSTree, is the 
best. Decision tree models (such as C4.5 and REPTree) with no 
bagging (bagging iteration is 1) also produce comprehensible 
results that can provide insights to the software vendors as to why 
certain defects are highly likely to escalate.  

Second, compared to no bagging (bagging iteration is 1), bagging 
(with 10 or 100 iterations) generally improves the result when the 
maximum unit net profit is positive. However, CSTree achieves 
an excellent result without bagging (with the highest unit net 
profit of 14.72). Again without the need of bagging, a single tree 
has the advantage of producing comprehensible results for domain 
experts to exam the outcome of data mining.  

Third, sometimes cost-sensitive methods produce very negative in 
terms of unit net profit, such as Costing, Relabeling, and 
Weighting with naïve Bayes. As we discussed in Section 2, often 
these absolute values of the unit net profit is important for 
software enterprise vendors to decide if the deployment of data 
mining is profitable or not, and by how much, compared to the 
default strategy. Negative net profit, even though it is a maximal 

value, indicates that it is not worthwhile to deploy the data mining 
effort. Fortunately in our case, we have found clear winners: the 
CSTree, Costing, and Weighting, as they have resulted in large 
positive unit net profit. Deployment of EP with CSTree is 
encouraging. See Section 6 for details.    

To summarize, of all algorithms tested, CSTree performs best for 
the EP task. In Table 4, we rank the five algorithms according to 
their highest unit net profit, and the average unit net profit 
(averaging over the four base learners for the meta cost-sensitive 
learning methods). Both rankings indicate that CSTree performs 
the best, followed by Costing or Weighting, and followed by 
Undersampling or Relabeling.  

Table 4: The rankings of the five cost-sensitive methods in 
comparison. Numbers in parentheses are the unit net profit. 

 

Clearly CSTree without bagging is the most appropriate choice 
for deployment in the software development cycle, due to its 
superior performance and comprehensibility. We will discuss the 
deployment of EP in the next section. 

6. DEPLOYMENT 
Our EP system has been in deployment for many months in the 
product group of an enterprise software vendor where the dataset 
comes from. It has been used to make suggestions on current 
defect reports with high risks of escalation. As the software 
vendor must wait to see which defect reports are actually 
escalated after the product is released, and the would-be 
escalations will not happen after they are accurately predicted by 
EP and corrected before software release, the final evaluation 
cannot be obtained until the software has been released and has 
been in use by customers for some period of time (in the order of 
one or more quarters).  

We have evaluated EP using the defect reports submitted or 
updated during the most recent three weeks in the test set. Any 
records corresponding to defect reports which had already been 
escalated at the time of preparing the data set were also removed. 
After EP makes its predictions, the results are compared to the 
actual escalations happened up to date. The EP prediction 
performance is quite good. The lift chart of EP’s prediction is 
well above the random diagonal line: at top 10 percentile (among 
top 10% of the most likely predicted escalations), about 70% of 
the actual escalations are predicted; at 20 percentile about 85%; 
and at 30 percentile about 90%. These results are of significant 
business value to the software vendor. In addition, the product 
group has provided positive feedback on the performance of the 
EP system, citing that it “catches” defect reports that, after 
thorough evaluation by specialist, are considered likely candidates 
for future escalations. For instance, some defect reports have been 
found to have been assigned a lower than appropriate priority. 
After a prediction of high escalation risk becomes available such 
a defect report can be upgraded to a higher priority which will 
lead to expedited evaluation and resolution.  

 1 (best) 2 3 4 5 

Ranked by 
highest profit

CSTree
(14.72)

Weighting
(14.39) 

Costing 
(13.99) 

Relabeling 
(12.83) 

Undersampling
(10.80) 

Ranked by 
average profit

CSTree
(14.31)

Costing 
(4.72) 

Weighting 
(4.56) 

Undersampling
(1.96) 

Relabeling 
(-1.67) 



7. CONCLUSIONS 
Enterprise software development is an extremely complex process 
with hundreds or even thousands of defects that need to be 
prioritized and resolved, preventing them from escalation by 
customers and incurring a very high cost to the software vendors. 
In this paper, we present a successful case for predicting 
escalation risks mined from known product defect reports. The 
enterprise software vendors can proactively resolve these defects 
with the greatest risk of escalation at a much lower cost. This can 
save software vendors an enormous amount of software 
maintenance cost. An escalation prediction (EP) system based on 
data-mining for the maximum net profit has been proposed and 
tested, and is currently deployed at an enterprise software vendor. 
Results provide strong evidence that we can indeed make useful 
predictions about the escalation risk of product defects.  

More specifically, we establish a general framework in which the 
maximum net profit problem can be converted to cost-sensitive 
learning. We then evaluate and compare five major cost-sensitive 
learning methods for their effectiveness for EP. We find that the 
CSTree (with novel improvements) can produce large positive 
unit net profit, as well as comprehensible results. This is often 
important for deploying data mining solutions in industry.  

In our future work, we plan to continue to improve the 
effectiveness of the EP system and track its results from the 
software vendors.  
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