
 

Figure 1. An example of online transaction flows. 

 Efficient Mining of Temporal High Utility Itemsets  
from Data streams 

Vincent S. Tseng 
Dept. Computer Science and 

Information Engineering  
National Cheng Kung University, 

Taiwan, ROC 

tsengsm@mail.ncku.edu.tw 

Chun-Jung Chu 
Dept. of Computer Science 

National Chiao Tung University, 
Taiwan, ROC 

cjchu@cis.nctu.edu.tw 

Tyne Liang 
Dept. of Computer Science 

National Chiao Tung University, 
Taiwan, ROC 

tliang@cis.nctu.edu.tw 
 
 

ABSTRACT 
Utility itemsets are considered as the different values of 
individual items as utilities, and utility mining aims at identifying 
the itemsets with high utilities. The temporal high utility itemsets 
are the itemsets with support larger than a pre-specified threshold 
in current time window of data stream. Discovery of temporal 
high utility itemsets is an important process for mining interesting 
patterns like association rules from data streams. In this paper, we 
propose a novel method, namely THUI (Temporal High Utility 
Itemsets) -Mine, for mining temporal high utility itemsets from 
data streams efficiently and effectively. To our best knowledge, 
this is the first work on mining temporal high utility itemsets from 
data streams. The novel contribution of THUI-Mine is that it can 
effectively identify the temporal high utility itemsets by 
generating fewer temporal high transaction-weighted utilization 
2-itemsets such that the execution time can be reduced 
substantially in mining all high utility itemsets in data streams. In 
this way, the process of discovering all temporal high utility 
itemsets under all time windows of data streams can be achieved 
effectively with limited memory space, less candidate itemsets 
and CPU I/O time. This meets the critical requirements on time 
and space efficiency for mining data streams. The experimental 
results show that THUI-Mine can discover the temporal high 
utility itemsets with higher performance and less candidate 
itemsets compared to other algorithms under various experimental 
conditions.   

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications － data 
mining. 

General Terms 
Algorithms, Design 

Keywords 
utility mining, temporal high utility itemsets, data streams, 
association rules 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee.   
UBDM'06, August 20, 2006, Philadelphia, Pennsylvania, USA.  
Copyright 2006 ACM 1-59593-440-5/06/0008...$5.00. 

1. INTRODUCTION 
The mining of association rules for finding the relationship 
between data items in large databases is a well studied technique 
in data mining field with representative methods like Apriori [1, 
2]. The problem of mining association rules can be decomposed 
into two steps. The first step involves finding all frequent itemsets 
(or say large itemsets) in databases. Once the frequent itemsets 
are found, generating association rules is straightforward and can 
be accomplished in linear time. 

An important research issue extended from the association rules 
mining is the discovery of temporal association patterns in data 
streams due to the wide applications on various domains. 
Temporal data mining can be defined as the activity of looking for 
interesting correlations or patterns in large sets of temporal data 
accumulated for other purposes [6]. For a database with a 
specified transaction window size, we may use the algorithm like 
Apriori to obtain frequent itemsets from the database. For time-
variant data streams, there is a strong demand to develop an 
efficient and effective method to mine various temporal patterns 
[11]. However, most methods designed for the traditional 
databases cannot be directly applied for mining temporal patterns 
in data streams because of the high complexity. 

In many applications, we would like to mine temporal 
association patterns in data streams for amount of most recent 
data. That is, in the temporal data mining, one has to not only 
include new data (i.e., data in the new hour) into, but also remove 
the old data (i.e., data in the most obsolete hour) from the mining 
process. Without loss of generality, consider a typical market-



 

basket application as illustrated in Figure 1 has been considered. 
The transaction flow in such an application is shown in Figure 1 
where transaction data purchased by customers as time advances. 

In Figure 1, for example, data was accumulated with time 
passing by. Old data in the past hours becomes useless for 
reference. People might be most interested in the temporal 
association patterns in the latest three hours (i.e., db3,5) as shown 
in Figure 1. It can be seen that in such a data stream environment 
it is intrinsically difficult to conduct the frequent pattern 
identification due to the constraints of limited time and space. 
Furthermore, it takes considerable time to find temporal frequent 
itemsets in different time windows. However, the frequency of an 
itemset may not be a sufficient indicator of interestingness, 
because it only reflects the number of transactions in the database 
that contain the itemset. It does not reveal the utility of an itemset, 
which can be measured in terms of cost, profit, or other 
expressions of user preference. On the other hand, frequent 
itemsets may only contribute a small portion of the overall profit, 
whereas non-frequent itemsets may contribute a large portion of 
the profit. In reality, a retail business may be interested in 
identifying its most valuable customers (customers who 
contribute a major fraction of the profits to the company). Hence, 
frequency is not sufficient to answer questions, such as whether 
an itemset is highly profitable, or whether an itemset has a strong 
impact. Utility mining is thus useful in a wide range of practical 
applications and was recently studied in [7, 14, 19]. This also 
motivates our research in developing a new scheme for finding 
temporal high utility itemsets (THUI) from data streams. 

 

Table 1. A transaction database and its utility table. 

(a) Transaction table 

ITEM 
TID 

A B C D E

T1 0 0 26 0 1

T2 0 6 0 1 1△一 P1 

T3 12 0 0 1 0

T4 0 1 0 7 0

T5 0 0 12 0 2
P2 
 

T6 1 4 0 0 1

T7 0 10 0 0 1

T8 1 0 1 3 1

db1,3 

D 一 

P3 
 

T9 1 1 27 0 0

T10 0 6 2 0 0

T11 0 3 0 2 0△+ 
P4 
 

T12 0 2 1 0 0

db2,4

 

 

(b) The utility table 

ITEM PROFIT($)(per unit) 

A 3 

B 10 

C 1 

D 6 

E 5 

 

Recently, a utility mining model was defined in [19]. Utility is 
a measure of how “useful” (i. e. “profitable”) an itemset is. The 
definition of utility of an itemset X, u(X), is the sum of the utilities 
of X in all the transactions containing X. The goal of utility 
mining is to identify high utility itemsets which drive a large 
portion of the total utility. Traditional association rules mining 
model assumes that the utility of each item is always 1 and the 
sales quantity is either 0 or 1, thus it is only a special case of 
utility mining, where the utility or the sales quantity of each item 
could be any number. If u(X) is greater than a utility threshold, X 
is a high utility itemset. Otherwise, it is a low utility itemset. 
Table 1 is an example of utility mining in a transaction database. 
The number in each transaction in Table 1(a) is the sales volume 
of each item, and the utility of each item is listed in Table 1(b). 
For example, u({B, D}) = (6×10+1×6) + (1×10+7×6) + 
(3×10+2×6) = 160. {B, D} is a high utility itemset if the utility 
threshold is set at 120. 

However, a high utility itemset may consist of some low utility 
items. Another attempt is to adopt the level-wise searching 
schema that exists in fast algorithms, such as Apriori [3]. 
However, this algorithm doesn’t apply to the utility mining model. 
For example, u(D) = 84 < 120, D is a low utility item, but its 
superset {B, D} is a high utility itemset. If using Apriori to find 
high utility itemset, all the combinations of all the items must be 
generated. Moreover, to discover a long pattern, the number of 
candidates is exorbitantly large. The cost of either computation 
time or memory is intolerable, regardless of what implementation 
is applied. The challenge of utility mining is not only in 
restricting the size of the candidate set but simplifying the 
computation for calculating the utility. Another challenge of 
utility mining is how to find temporal high utility itemsets from 
data streams as time advances.  

In this paper, we explore the issue of efficiently mining high 
utility itemsets in temporal databases like data streams. We 
propose an algorithm named THUI-Mine that can discover 
temporal high utility itemsets from data streams efficiently and 
effectively. The underlying idea of THUI-Mine algorithm is to 
integrate the advantages of Two-Phase algorithm [14] and SWF 
algorithm [12] and augment with the incremental mining 
techniques for mining temporal high utility itemsets efficiently. 
The novel contribution of THUI-Mine is that it can efficiently 
identify the utility itemsets in data streams so that the execution 
time for mining high utility itemsets can be substantially reduced. 
That is, THUI-Mine can discover the temporal high utility 
itemsets in current time window and also discover the temporal 
high utility itemsets in the next time window with limited 
memory space and less computation time by sliding window filter 
method. In this way, the process of discovering all temporal high 
utility itemsets under all time windows of data streams can be 



 

achieved effectively under limited memory space, less candidate 
itemsets and CPU I/O. This meets the critical requirements of 
time and space efficiency for mining data streams. Through 
experimental evaluation, THUI-Mine is shown to produce fewer 
candidate itemsets in finding the temporal high utility itemsets, so 
it outperforms other methods in terms of execution efficiency. 
Moreover, it also achieves high scalability in dealing with large 
databases. To our best knowledge, this is the first work on mining 
temporal high utility itemsets from data streams. 

The rest of this paper is organized as follows: Section 2 
overviews the related work. Section 3 describes the proposed 
approach, THUI-Mine, for finding the temporal high utility 
itemsets. In section 4, we describe the experimental results for 
evaluating the proposed method. The conclusion of the paper is 
provided in Section 5. 

2. RELATED WORK 
In association rules mining, Apriori [3], DHP [15], and partition-
based ones [13, 16] were proposed to find frequent itemsets. 
Many important applications have called for the need of 
incremental mining. This is due to the increasing use of the 
record-based databases whose data are being continuously added. 
Many algorithms like FUP [8], FUP2 [9] and UWEP [4, 5] are 
proposed to solve incremental database for finding frequent 
itemsets. The FUP algorithm updates the association rules in a 
database when new transactions are added to the database. 
Algorithm FUP is based on the framework of Apriori and is 
designed to discover the new frequent itemsets iteratively. The 
idea is to store the counts of all the frequent itemsets found in a 
previous mining operation. Using these stored counts and 
examining the newly added transactions, the overall count of 
these candidate itemsets are then obtained by scanning the 
original database. An extension to the work in [8] was reported in 
[9] where the authors propose an algorithm FUP2 for updating the 
existing association rules when transactions are added to and 
deleted from the database. UWEP (Update With Early Pruning) is 
an efficient incremental algorithm, that counts the original 
database at most once, and the increment exactly once. In addition 
the number of candidates generated and counted is minimum. 

In recent years, processing data from data streams is a very 
popular topic in data mining. Many algorithms like FTP-DS [17] 
and RAM-DS [18] are proposed to process data in data streams. 
FTP-DS is a regression-based algorithm to mine frequent 
temporal patterns for data streams. A wavelet-based algorithm, 
called algorithm RAM-DS, to perform pattern mining tasks for 
data streams by exploring both temporal and support count 
granularities. 

Some algorithms like SWF [12] and Moment [10] were 
proposed to find frequent itemsets over a stream sliding window. 
By partitioning a transaction database into several partitions, 
algorithm SWF employs a filtering threshold in each partition to 
deal with the candidate itemset generation. Moment algorithm use 
the closed enumeration tree (CET), to maintain a dynamically 
selected set of itemsets over a sliding window. 

A formal definition of utility mining and theoretical model was 
proposed in [19], namely MEU, where the utility is defined as the 
combination of utility information in each transaction and 
additional resources. Since this model cannot rely on downward 

closure property of Apriori to restrict the number of itemsets to be 
examined, a heuristics is used to predict whether an itemset 
should be added to the candidate set. However, the prediction 
usually overestimates, especially at the beginning stages, where 
the number of candidates approaches the number of all the 
combinations of items. The examination of all the combinations is 
impractical, either in computation cost or in memory space cost, 
whenever the number of items is large or the utility threshold is 
low. Although this algorithm is not efficient or scalable, it is by 
far the best to solve this specific problem.  

Another algorithm named Two-Phase was proposed in [14], 
which is based on the definition in [19] and achieves for finding 
high utility itemsets. It presented a Two-Phase algorithm to prune 
down the number of candidates and can obtain the complete set of 
high utility itemsets. In the first phase, a model that applies the 
“transaction-weighted downward closure property” on the search 
space to expedite the identification of candidates. In the second 
phase, one extra database scan is performed to identify the high 
utility itemsets. However, this algorithm must rescan the whole 
database when added new transactions from data streams. It need 
more times on processing I/O and CPU cost for finding high 
utility itemsets. Hence, Two-Phase algorithm is just only focused 
on traditional databases and is not suited for data streams.  

Although there existed numerous studies on high utility 
itemsets mining and data stream analysis as described above, 
there is no algorithm proposed for finding temporal high utility 
itemsets in data streams. This motivates our exploration on the 
issue of efficiently mining high utility itemsets in temporal 
databases like data streams in this research. 

3. PROPOSED METHOD: THUI-MINE 
The goal of utility mining is to discover all the itemsets whose 
utility values are beyond a user specified threshold in a 
transaction database. Utility mining is to find all the high utility 
itemsets in [19]. An itemset X is a high utility itemset if u(X) ≥ε, 
where X ⊆  I and ε is the minimum utility threshold, otherwise, it 
is a low utility itemset. For example, in Table 1, u(A, T8) = 1×3 = 
3, u({A, C}, T8) = u(A, T8) + u(C, T8) = 1×3 + 1×1 = 4, and u({A, 
C}) = u({A, C}, T8) + u({A, C}, T9) = 4 + 30 = 34. If ε = 120, {A, 
C} is a low utility itemset. However, if an item is a low utility 
item, its superset may be a high utility itemset. For example, u(D) 
= 84 < 120, D is a low utility item, but its superset {B, D} is a 
high utility itemset because of u({B, D}) = 160 > 120. Hence, all 
the combinations of all items should be processed so that it never 
loses any high utility itemset. But the cost of either computation 
time or memory is intolerable.  

Liu et al [14] proposed Two-Phase algorithm for pruning 
candidate itemsets and simplify the calculation of utility. First, 
Phase I overestimates some low utility itemsets, but it never 
underestimates any itemsets. For the example in Table 1, the 
transaction utility of transaction Tq, denoted as tu(Tq), is the sum 
of the utilities of all items in Tq and the transaction-weighted 
utilization of an itemset X, denoted as twu(X), is the sum of the 
transaction utilities of all the transactions containing X, then  
twu(A) = tu(T3) + tu(T6) + tu(T8) + tu(T9) = 42 + 48 + 27 + 40 = 
157 and twu({D, E}) = tu(T2) + tu(T8) = 71 + 27 = 98. In fact, u(A) 
= u({A}, T3) + u({A}, T6) + u({A}, T8)+ u({A}, T9)=36 + 3 + 3 + 
3 = 45 and u({D, E}) = u({D, E}, T2) +  u({D, E}, T8)= 11 + 23 = 
34. So Phase I overestimates some low utility itemsets, it never 



 

underestimates any itemsets. Table 2 gives the transaction utility 
for each transaction in Table 1. Second, one extra database scan is 
performed to filter the overestimated itemsets in phase II. For 
example, twu(A) = 157 > 120 but u(A) = 45 < 120. Then item {A} 
is pruned. Otherwise, it is a high utility itemset. Finally, all of 
high utility itemsets are discovered by this way.  

 

Table 2. Transaction utility of the transaction database. 

TID Transaction Utility TID Transaction Utility 

T1 31 T7 105 

T2 71 T8 27 

T3 42 T9 40 

T4 52 T10 62 

T5 22 T11 42 

T6 48 T12 21 

 

Our algorithm THUI-Mine is based on the principle of Two-
Phase algorithm [14], and we extend it with the sliding-window-
filtering technique and focus on utilizing incremental methods to 
improve the response time with fewer candidate itemsets and 
CPU I/O. In essence, by partitioning a transaction database into 
several partitions from data streams, algorithm THUI-Mine 
employs a filtering threshold in each partition to deal with the 
transaction-weighted utilization itemsets generation. The 
cumulative information in the prior phases is selectively carried 
over toward the generation of transaction-weighted utilization 
itemsets in the subsequent phases by THUI-Mine. In the 
processing of a partition, a progressive transaction-weighted 
utilization set of itemsets is generated by THUI-Mine. Explicitly, 
a progressive transaction-weighted utilization set of itemsets is 
composed of the following two types of transaction-weighted 
utilization itemsets, i.e., (1) the transaction-weighted utilization 
itemsets that were carried over from the previous progressive 
candidate set in the previous phase and remain as transaction-
weighted utilization itemsets after the current partition is taken 
into consideration and (2) the transaction-weighted utilization 
itemsets that were not in the progressive candidate set in the 
previous phase but are newly selected after only taking the current 
data partition into account As such, after the processing of a phase, 
algorithm THUI-Mine outputs a cumulative filter, denoted by CF, 
which consists of a progressive transaction-weighted utilization 
set of itemsets, their occurrence counts and the corresponding 
partial support required. With these design considerations, 
algorithm THUI-Mine is shown to have very good performance 
for mining temporal high utility itemsets from data streams. In 
Section 3.1, we give an example for mining temporal high utility 
itemsets from data stream. The proposed algorithm, THUI-Mine, 
is described in details in Section 3.2. 

3.1 An Example for Mining Temporal High 
Utility Itemsets 
The proposed THUI-Mine algorithm can be best understood by 
the illustrative transaction database in Table 1 and Figure 2 where 

a scenario of generating high utility itemsets from data streams 
for mining temporal high utility itemsets is given. We set the 
utility threshold as 120 with nine transactions. Without loss of 
generality, the temporal mining problem can be decomposed into 
two procedures:  

1. Preprocessing procedure: This procedure deals with mining on 
the original transaction database.  

2. Incremental procedure: The procedure deals with the update of 
the high utility itemsets form data streams. 

The preprocessing procedure is only utilized for the initial 
utility mining in the original database, e.g., db1,n. For the 
generation of mining high utility itemsets in db2,n+1, db3,n+2, dbi,j, 
and so on, the incremental procedure is employed. Consider the 
database in Table 1. Assume that the original transaction database 
db1,3 is segmented into three partitions, i.e., {P1, P2, P3}, in the pre 
processing procedure. Each partition is scanned sequentially for 
the generation of candidate 2-itemsets in the first scan of the 
database db1,3. After scanning the first segment of 3 transactions, 
i.e., partition P1, 2-itemsets {AB, AD AE, BD, BE, DE} are 
generated as shown in Figure 2. In addition, each potential 
candidate itemset c ∈  C2 has two attributes: (1) c.start which 
contains the identity of the starting partition when c was added to 
C2, and (2) transaction-weighted utility which is the sum of the 
transaction utilities of all the transactions containing c since c was 
added to C2. Since there are three partitions, the utility threshold 
of each partition is 120 / 3 = 40. Such a partial utility threshold is 
called the filtering threshold in this paper. Itemsets whose 
transaction-weighted utility are below the filtering threshold are 
removed. Then, as shown in Figure 2, only {AD, BD, BE, DE}, 
marked by “◎”, remain as temporal high transaction-weighted 
utilization 2-itemsets whose information is then carried over to 
the next phase of processing. Similarly, after scanning partition P2, 
the temporal high transaction-weighted utilization 2-itemsets are 
recorded.  

From Figure 2, it is noted that since there are also 3 
transactions in P2, the filtering threshold of those itemsets carried 
out from the previous phase is 40 + 40 = 80 and that of newly 
identified candidate itemsets is 40. It can be seen from Figure 2 
that we have 4 temporal high transaction-weighted utilization 2-
itemsets in C2 after the processing of partition P2, and 2 of them 
are carried from P1 to P2 and 2 of them are newly identified in P2. 
Finally, partition P3 is processed by algorithm THUI-Mine. The 
resulting temporal high transaction-weighted utilization 2-
itemsets are {AB, AC, BC, BD, BE} as shown in Figure 2. Note 
that though appearing in the previous phase P2, itemset {AE} is 
removed from temporal high transaction-weighted utilization 2-
itemsets once P3 is taken into account since its transaction-
weighted utility does not meet the filtering threshold then, i.e., 75 
< 120. However, we do have two new itemset, i.e., AC and BC, 
which join the C2 as temporal high transaction-weighted 
utilization 2-itemsets. Consequently, we have 5 temporal high 
transaction-weighted utilization 2-itemsets generated by THUI-
Mine, and 2 of them are carried from P1 to P3, 1 of them is carried 
from P2 to P3 and 2 of them are newly identified in P3. Note that 
instead of 10 candidate itemsets that would be generated if Two-
Phase algorithm were used, only 5 temporal high transaction-
weighted utilization 2-itemsets are generated by THUI-Mine. 
After processing P1 to P3, those temporal high transaction-



 

weighted utilization itemsets in db1,3 are {A, B, C, D, E, AB, AC, 
BC, BD, BE}. 

After generating temporal high transaction-weighted utilization 
2-itemsets from the first scan of database db1,3, we employ the 
scan reduction technique and use temporal high transaction-
weighted utilization 2-itemsets to generate Ck (k = 3, 4, ..., n), 
where Cn is the candidate last itemsets. It can be verified that 
temporal high transaction-weighted utilization 2-itemsets 
generated by THUI-Mine can be used to generate the candidate 3-
itemsets. Clearly, a C3 generated from temporal high transaction-
weighted utilization 2-itemsets. For example, 3-candidate itemset 
{ABC} is generated from temporal high transaction-weighted 
utilization 2-itemsets {AB, AC, BC} in db1,3. However, the 
temporal high transaction-weighted utilization 2-itemsets 
generated by THUI-Mine is very close to the high utility itemsets. 
Similarly, all Ck can be stored in main memory, and we can find 
temporal high utility itemsets together when the second scan of 
the database db1,3 is performed. Thus, only two scans of the 
original database db1,3 are required in the preprocessing step. The 
resulting temporal high utility itemsets are {B} and {BE} because 
u(B) = 330 >120 and u({B, E}) = 215 > 120 . 

One important merit of THUI-Mine mainly lies in its 
incremental procedure. As depicted in Figure 2, the mining 
database will be moved from db1,3 to db2,4. Thus, some 
transactions, i.e., T1, T2, and T3, are deleted from the mining 
database and other transactions, i.e., T10, T11, and T12, are added. 
To illustrate more clearly, this incremental step can also be 
divided into three sub-steps: (1) generating temporal high 
transaction-weighted utilization 2-itemsets in D− = db1,3 − ∆−, (2) 
generating temporal high transaction-weighted utilization 2-
itemsets in db2,4 = D− + ∆+ and (3) scanning the database db2,4 
only once for the generation of all temporal high utility itemsets. 
In the first sub-step, db1,3 − ∆− = D−, we check out the pruned 
partition P1, and reduce the value of transaction-weighted utility 
and set c.start = 2 for those temporal transaction-weighted 
utilization 2-itemsets where c.start = 1. It can be seen that itemset 

{BD} were removed. Next, in the second sub-step, we scan the 
incremental transactions in P4. The process in D− + ∆+ = db2,4 is 
similar to the operation of scanning partitions, e.g., P2, in the 
preprocessing step. The new itemset {BD} join the temporal high 
transaction-weighted utilization 2-itemsets after the scan of P4. In 
the third sub-step, we use temporal high transaction-weighted 
utilization 2-itemsets to generate Ck as mentioned above. Finally, 
those temporal high transaction-weighted utilization itemsets in 
db2,4 are {B, C, D, E, BC, BD, BE}. With scanning db2,4 only 
once, THUI-Mine obtains temporal high utility itemsets {B, BC, 
BE} in db2,4. 

Table 3. Meanings of symbols used. 

dbi,j Partition_database (D) from Pi to Pj 

s Utility threshold in one partition 

| Pk| Number of transactions in partition Pk 

TUPk (I)
Trans. in Pk that contain itemset I with transaction 
utility 

UPk (I) Trans. in Pk that contain itemset I with utility 

| db1,n,(I)| Trans. No. in db1,n that contain itemset I 

Ci,j The progressive candidate sets of dbi,j 

Thtwi,j The progressive temporal high transaction-weighted 
utilization 2-itemsets of dbi,j 

Thui,j The progressive temporal high utility itemsets of dbi,j

∆− The deleted portion of an ongoing database 

D− The unchanged portion of an ongoing database 

∆+ The added portion of an ongoing database 

 

Figure 2. Temporal high utility itemsets generated from data streams by THUI-Mine. 



 

3.2  THUI-Mine Algorithm 
For easier illustration, the meanings of various symbols used are 
given in Table 3. The preprocessing procedure and the 
incremental procedure of algorithm THUI-Mine are described in 
Section 3.2.1 and Section 3.2.2, respectively. 

3.2.1 Preprocessing procedure of THUI-Mine 
The preprocessing procedure of Algorithm THUI-Mine is shown 
in Figure 3. Initially, the database db1,n is partitioned into n  
partitions by executing the preprocessing procedure (in Step 2), 
and CF, i.e., cumulative filter, is empty (in Step 3). Let Thtw1,n be 
the set of progressive temporal high transaction-weighted 
utilization 2-itemsets of dbi,j. Algorithm THUI-Mine only records  
Thtw1,n which is generated by the preprocessing procedure to be 
used by the incremental procedure. From Step 4 to Step 16, the 

algorithm processes one partition at a time for all partitions. When 
partition Pi is processed, each potential candidate 2-itemset is read 
and saved to CF. The transaction-weight utility of an itemset I and 
its starting partition are recorded in I.twu and I.start, respectively. 
An itemset, whose I.twu ≥ s, will be kept in CF. Next, we select 

Thtw1,n from I where I∈CF and keep I.twu in main memory for 
the subsequent incremental procedure. With employing the scan 

reduction technique from Step 19 to Step 26, n
hC ,1  (h ≥ 3) are 

generated in main memory. After refreshing I.count = 0 where 
I.twu = 0 where I∈Thtw1,n, we begin the last scan of database for 
the preprocessing procedure from Step 28 to Step 31. Finally, 
those itemsets satisfying the constraint that I.u ≧ s×P.count are 
finally obtained as the temporal high utility itemsets.  

Figure 3. Preprocessing procedure of THUI-Mine. 
Figure 4. Incremental procedure of THUI-Mine. 



 

3.2.2 Incremental procedure of THUI-Mine 
As shown in Table 3, D− indicates the unchanged portion of an 
ongoing transaction database. The deleted and added portions of 
an ongoing transaction database are denoted by ∆− and ∆+, 
respectively. It is worth mentioning that the sizes of ∆+ and ∆−, 
i.e., | ∆+ | and | ∆− | respectively, are not required to be the same. 
The incremental procedure of THUI-Mine is devised to maintain 
temporal high utility itemsets efficiently and effectively. This 
procedure is shown in Figure 4. As mentioned before, this 
incremental step can also be divided into three sub-steps: (1) 
generating temporal high transaction-weighted utilization 2-
itemsets in D− = db1,3 − ∆−, (2) generating temporal high 
transaction-weighted utilization 2-itemsets in db2,4 = D− + ∆+ and 
(3) scanning the database db2,4 only once for the generation of all 
temporal high utility itemsets. Initially, after some update 
activities, old transactions ∆− are removed from the database dbm,n  
and new transactions  ∆+ are added (in Step 6). Note that 
∆− ⊂ dbm,n. Denote the updated database as dbi,j. Note that dbi,j = 
dbm,n − ∆− + ∆+. We denote the unchanged transactions by D− = 
dbm,n − ∆−  = dbi,j − ∆+. After loading Thtwm,n of dbm,n into CF 
where I ∈ Thtwm,n, we start the first sub-step, i.e., generating 
temporal high transaction-weighted utilization 2-itemsets in D− = 
dbm,n − ∆−. This sub-step tries to reverse the cumulative 
processing which is described in the preprocessing procedure. 
From Step 8 to Step 16, we prune the occurrences of an itemset I, 
which appeared before partition Pi, by deleting the value I.twu 
where I ∈ CF and I.start < i. Next, from Step 17 to Step 39, 
similarly to the cumulative processing in Section 3.2.1, the second 
sub-step generates generating temporal high transaction-weighted 
utilization 2-itemsets in dbi,j = D− + ∆+ and employs the scan 
reduction technique to generate ji

hC ,
1+ . Finally, to generate 

temporal high utility itemsets, i.e., Thui,j, in the updated database, 
we scan dbi,j for only once in the incremental procedure to find 
temporal high utility itemsets. Note that Thtwi,j is kept in main 
memory for the next generation of incremental mining. 

 

4. EXPERIMENTAL EVALUATION 
To evaluate the performance of THUI-Mine, we conducted 
experiments of using synthetic dataset generated via a randomized 
dataset generator provided by IBM Quest project [3]. However, 
the IBM Quest data generator only generates the quantity of 0 or 
1 for each item in a transaction. In order to fit databases into the 
scenario of utility mining, we randomly generate the quantity of 
each item in each transaction, ranging from 1 to 5, as is similar to 
the model used in [14]. Utility tables are also synthetically created 
by assigning a utility value to each item randomly, ranging from 1 
to 1000. Observed from real world databases that most items are 
in the low profit range, we generate the utility values using a log 
normal distribution, as is similar to the model used in [14]. Figure 
5 shows the utility value distribution of 1000 items.  

The simulation is implemented in C++ and conducted in a 
machine with 2.4GHz CPU and 1G memory. The main 
performance metrices used is execution time. We recorded the 
execution time that THUI-Mine spends in finding temporal high 
utility itemsets. The number of itemsets comparison of THUI-
Mine, Two-Phase and MEU is presented in Section 4.1. Section 
4.2 shows the performance comparison of THUI-Mine and Two-

Phase. Results on scaleup experiments are presented in Section 
4.3.  

 

4.1 Number of Generated Candidates  
In this experiment, we compare the average number of candidates 
generated in the first database scan on the sliding windows and 
incremental transaction number d10K with different support 
values for THUI-Mine, Two-Phase [14] and MEU [19]. Without 
loss of generality, we set |d| = |∆+| = |∆−| for simplicity. Thus, by 
denoting the original database as db1,n and the new mining 
database as dbi,j, we have |dbi,j | = |db1,n − ∆− + ∆+| = |D|, where ∆− 
= db1,i−1 and ∆+ = dbn+1,j . Table 4 and Table 5 show the average 
number of candidates generated by THUI-Mine, Two-Phase and 
MEU. The number of items is set at 1000, and the minimum 
utility threshold varies from 0.2% to 1%. The number of 
candidate itemsets generated by THUI-Mine at the first database 
scan decreases dramatically as the threshold goes up. Especially, 
when utility threshold is set as 1%, the number of candidate 
itemsets is 0 in database T10.I6.D100K.d10K where T denotes the 
average size of the transactions and I the average number of 
frequent itemsets. However, the number of candidates generated 
by Two-Phase is still very large and MEU is always 499,500 
because it needs to process all combinations of 1000 items. THUI-
Mine generates much fewer candidates compared to Two-Phase 
and MEU.  

We obtain similar experimental results for different datasets. 
For example, only 118 candidate itemsets generated by THUI-
Mine, but 183921 and 499500 candidate itemsets generated by 
Two-Phase and MEU when the utility threshold is set as 1% in 
dataset T20.I6.D100K.d10K. In the case of dataset 
T20.I6.D100K.d10K, more candidates are generated, because 
each transaction is longer than that in T10.I6.D100K.d10K. In 
overall, our algorithm THUI-Mine can always generate much 
fewer candidates compared to Two-Phase and MEU for various 
kinds of databases. Hence, THUI-Mine is verified to be very 
effective in pruning candidate itemsets to find temporal high 
utility itemsets. 

 

Figure 5. Utility value distribution in utility table.

Utility Value Distribution

0

20

40

60

80

100

120

140

160

180

0 200 400 600 800 1000

utility value

nu
m
be
r 
of
 i
te
m
s



 

Figure 7. Execution time for Two-Phase and 
THUI on T10.I6.D100K.d10K. 

T10.I6.D100K.d10K

0

100

200

300

400

0.2 0.3 0.4 0.6 0.8 1

Minimum Utility Threshold (%)

E
xe
cu
ti
on
 T
im
e 
(S
ec
)

Two-Phase

THUI-Mine

Table 4. The average number of candidate itemsets generated 
by THUI-Mine, Two-Phase and MEU after the first scan on 

database T10.I6.D100K.d10K. 

T10.I6.D100K.d10K Databases 
 

Threshold THUI-
Mine 

Two-
Phase MEU 

0.2% 3433 361675 499500 

0.3% 666 303810 499500 

0.4% 161 258840 499500 

0.6% 7 182710 499500 

0.8% 1 129286 499500 

1% 0 91378 499500 
 

Table 5. The average number of candidate itemsets generated 
by THUI-Mine, Two-Phase and MEU after the first scan on 

database T20.I6.D100K.d10K. 

T20.I6.D100K.d10K Databases 
 

Threshold THUI-
Mine 

Two-
Phase MEU 

0.2% 27357 401856 499500 

0.3% 11659 371953 499500 

0.4% 5389 337431 499500 

0.6% 1364 278631 499500 

0.8% 371 229503 499500 

1% 118 183921 499500 
 

4.2 Evaluation of Execution Efficiency  
In this experiment, we show only the relative performance of 
Two-phase and THUI-Mine since MEU spends much higher 
execution time and becomes incomparable. Figure 6 and Figure 7 
show the execution times for the two algorithms as the minimum 

utility threshold is decreased from 1% to 0.2%. It is observed that 
when the minimum utility threshold is high, there are only a 
limited number of high utility itemsets produced. However, as the 
minimum utility threshold decreases, the performance difference 
becomes prominent in that THUI-Mine significantly outperforms 
Two-Phase. As shown in Figure 6 and Figure 7, THUI-Mine leads 
to prominent performance improvement for different average 
sizes of transaction. Explicitly, THUI-Mine is in orders of 
magnitude faster than Two-Phase, and the margin grows as the 
minimum utility threshold decreases. We could observe that 
THUI-Mine spends fewer times than Two-Phase with high 
stability for finding temporal high utility itemsets. This is because 
Two-Phase algorithm produces more candidate itemsets and 
needs more database scans to find high utility itemsets than our 
THUI-Mine algorithm. To measure how much execution time 
could be reduced substantially in using THUI-Mine compared to 
Two-Phase algorithm, we define the Improvement Ratio as 
follows:  

Improvement Ratio = (execution time of Two-Phase － execution 
time of THUI-Mine) / (execution time of Two-Phase) 

From Figure 6, we get that the Improvement Ratio is about 
85.6% with the threshold set as 0.2%. In Figure 7, the average 
improvement is about 67% with minimum utility threshold varied 
from 0.2% to 1%. Obviously, THUI-Mine reduces substantially 
the time in finding high utility itemsets. Moreover, the high utility 
itemsets obtained by Two-Phase are not suitable for applications 
in data streams since Two-Phase needs more database scans and 
execution times in finding high utility itemsets by the time change. 
Hence, THUI-Mine meets the requirements of high efficiency in 
terms of execution time for data stream mining. 

 

4.3 Scaleup on Incremental Mining  
In this experiment, we investigate the effects of varying 
incremental transaction size on the execution time of mining 
results. To further understand the impact of |d| on the relative 
performance of algorithms THUI-Mine and Two-Phase algorithms, 
we conduct the scaleup experiments which is similar in [12] for 
both THUI-Mine and Two-Phase with minimum support 

Figure 6. Execution time for Two-Phase and 
THUI on T20.I6.D100K.d10K. 

T20.I6.D100K.d10K

0

500

1000

1500

2000

2500

3000

0.2 0.3 0.4 0.6 0.8 1

Minimum Utility Threshold (%)

E
xe
cu
ti
on
 T
im
e 
(S
ec
)

Two-Phase

THUI-Mine



 

thresholds being varied as 0.2% and 0.4 %, respectively.  Figure 8 
shows the experimental results where the value in y-axis 
corresponds to the ratio of the execution time of THUI-Mine to 
that of Two-Phase. Figure 8 shows the execution-time-ratio for 
different values of |d|. It can be seen that the execution-time ratio 
keeps stable with the growth of the incremental transaction 
number |d| since the size of |d| has little influence on the 
performance of THUI-Mine. Moreover, the execution time ratio of 
the scaleup experiments with minimum support thresholds varied 
from 0.6% to 1% keeps still around 0.4%. This implies that the 
advantage of THUI-Mine over Two-Phase is stable and less 
execution times is taken as the amount of incremental portion 
increases. This result also indicates that THUI-Mine fits for 
mining data streams with large transaction size. 

5. CONCLUSIONS 
In this paper, we addressed the problem of discovering temporal 
high utility itemsets in data streams, i.e., the itemsets that are 
large than threshold in current time window of data stream. We 
propose a new approach, namely THUI-Mine, which can discover 
temporal high utility itemsets from data streams efficiently and 
effectively. The novel contribution of THUI-Mine is that it can 
effectively identify the temporal high utility itemsets with less 
temporal high transaction-weighted utilization 2-itemsets such 
that the execution time can be reduced efficiently in mining all 
high utility itemsets in data streams. In this way, the process of 
discovering all temporal high utility itemsets under all time 
windows of data streams can be achieved effectively with limited 
memory space, less candidate itemsets and CPU I/O. This meets 
the critical requirements of time and space efficiency for mining 
data streams.  

The experimental results show that THUI-Mine can find the 
temporal high utility itemsets with higher performance by 
generating less candidate itemsets compared to other algorithms 
under different experimental conditions. Moreover, it performs 
scalable in terms of execution time under large databases. Hence, 
THUI-Mine is promising for mining temporal high utility itemsets 
in data streams. For future work, we would extend the concepts 
proposed in this work to discover other interesting patterns in data 
streams like utility item with negative profit. 

ACKNOWLEDGMENTS 
This research was supported in part by Ministry of 
Economic Affairs, R.O.C., under grant no. 92-EC-17-A-
02-S1-024. 

 

REFERENCES 
[1] Agrawal, R., Imielinski, T., and Swami, A. Mining 

association rules between sets of items in large databases. In 
Proceedings of 1993 ACM SIGMOD Intl. Conf. on 
Management of Data, pages 207--216, Washington, D. C., 
May 1993. 

[2] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and 
Verkamo, A. I. Fast discovery of association rules. In book 
Advances in Knowledge Discovery and Data Mining, pages 
307--328. AAAI/MIT Press, 1996.  

[3] Agrawal, R., and Srikant, R. Mining Sequential Patterns. 
Proceedings of the 11th International Conference on Data 
Engineering, pages 3-14, March 1995. 

[4] Ayn, N.F., Tansel, A.U., and Arun, E. An efficient algorithm 
to update large itemsets with early pruning. Technical Report 
BU-CEIS-9908 Dept of CEIS Bilkent Uniiversity, June 1999. 

[5] Ayn, N.F., Tansel, A.U., and Arun, E. An efficient algorithm 
to update large itemsets with early pruning. Proceedings of 
the Fifth ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, San Diego, August 
1999. 

[6] Bettini, C., Wang, X. S., and Jajodia, S. Testing complex 
temporal relationships involving multiple granularities and 
its application to data mining. In Proc. of the 15th ACM 
SIGACT-SIGMOD-SIGART Symposium on Principles of 
Database Systems, June 3-5, 1996, Montreal, Canada, pages 
68–78. ACM Press, 1996. 

[7] Chan, R., Yang, Q., and Shen, Y. Mining high utility 
Itemsets. Proc. of IEEE ICDM, Florida, 2003. 

[8] Cheung, D., Han, J., Ng, V., and Wong, C.Y. Maintenance 
of Discovered Association Rules in Large Databases: An 
Incremental Updating Technique. Proc. of 1996 Int’l Conf. 
on Data Engineering, pages 106—114, February 1996. 

[9] Cheung, D., Lee, S.D., and Kao. B., A General Incremental 
Technique for Updating Discovered Association Rules. Proc. 
International Conference On Database Systems For 
Advanced Applications, April 1997. 

[10] Chi, Y., Wang, H., Yu, P. S., and Richard, R. Muntz: 
Moment: Maintaining Closed Frequent Itemsets over a 
Stream Sliding Window Proceedings of the 2004 IEEE 
International Conference on Data Mining (ICDM'04). 

[11] Das, G., Lin, K. I., Mannila, H., Renganathan G., and Smyth, 
P. Rule Discovery from Time Series. Proceedings of the 4th 
ACM SIGKDD, pages 16—22, August 1998. 

[12] Lee, C. H., Lin, C. R., and Chen, M. S. Sliding-window 
filtering: An efficient algorithm for incremental mining. In 
Intl. Conf. on Information and Knowledge Management 
(CIKM01), pages 263－270, November 2001. 

Figure 8. Scaleup performance with the execution 
time ratio between THUI and Two-Phase. 

T10.I4.D100K.dnK

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10 12

|d|, incremental transaction number

(K)

  
  
  
 E
xe
cu
ti
on
 T
im
e 
R
at
io

(T
H
U
I-
M
in
e/
T
w
o-
P
ha
se
)

0.2%

0.4%



 

[13] Lin, J. L., and Dunham. M. H. Mining Association Rules: 
Anti-Skew Algorithms. Proc. of 1998 Int’l Conf. on Data 
Engineering, pages 486—493, 1998. 

[14] Liu, Y., Liao, W., and Choudhary, A. A Fast High Utility 
Itemsets Mining Algorithm. In Proceedings of the Utility-
Based Data Mining Workshop, August 2005. 

[15] Park, J. S., Chen, M. S., and Yu. P. S. Using a Hash-Based 
Method with Transaction Trimming for Mining Association 
Rules. IEEE Transactions on Knowledge and Data 
Engineering, 9(5):813—825, October 1997. 

[16] Savasere, A., Omiecinski, E., and Navathe, S. An Efficient 
Algorithm for Mining Association Rules in Large Databases. 
Proc. of the 21th International Conference on Very Large 
Data Bases, pages 432—444, September 1995. 

[17] Teng, W. G., Chen, M. S., and Yu, P. S. A Regression- 
Based Temporal Pattern Mining Scheme for Data Streams. 
Proceedings of the 29th International Conference on Very 
Large Data Bases, pages 93—104, September 2003. 

[18] Teng, W. G., Chen, M. S., and Yu, P. S. Resource-Aware 
Mining with Variable Granularities in Data Streams. SDM 
2004. 

[19] Yao, H., Hamilton, H. J., and Butz, C. J. A Foundational 
Approach to Mining Itemset Utilities from Databases. Proc. 
of the4th SIAM International Conference on Data Mining, 
Florida, USA, 2004. 

 
 

 


