Reinforcement Learning and Utility-Based Decisions

Michael L. Littman
Rutgers University
Department of Computer Science
Rutgers Laboratory for Real-Life Reinforcement Learning

Outline
• One view of utility-based data mining
• Parallels with PAC reinforcement learning
• Survey of PAC RL results
• Lame attempt to relate UBDM and RL
What is Utility as it relates to Data Mining?

- In the context of data mining, utility refers to total utility derived from the entire data mining process.
 - It factors in utilities from 3 stages of data mining:
 1. Costs of acquiring the data \((U_1 \text{ or } C_1) \)
 2. Costs of mining the data \((U_2 \text{ or } C_2) \)
 3. Benefits of using the mined knowledge \((U_3 \text{ or } B) \)

\[
\text{Utility}_{DM} = U_1 + U_2 + U_3 \quad (U_1, U_2 \leq 0; U_3 \geq 0)
\]
\[
= B - (C_1 + C_2)
\]

Note the definition of data mining refers only to \(U_3 \), "potentially useful patterns" copied from Gary Weiss.

Two Problems

- **UBDM**: Act so as to maximize the total benefit of using the mined knowledge minus the costs of acquiring and mining the data.

- **Reinforcement learning**: Act to maximize the utility of behavior, while minimizing experience and computational costs.
k-Armed Bandits

- Perhaps the simplest possible RL problem.

- k bandits.
- each step t, agent chooses an arm/action a_t
- receives payoff r_t
- expected value of r_t is $R(a_t)$
- optimal behavior is $a_t = \arg\max_a R(a)$
- $R(a)$ unknown; some experimentation needed

Relaxations of the Utility Problem

- **UBDM**: Act so as to maximize the total benefit of using the mined knowledge minus the costs of acquiring and mining the data.
- **Reinforcement learning**: Act to maximize the utility of behavior, while minimizing experience and computational costs.
- Joint minimality intractable. Instead, satisficing:
 - near-optimal utility
 - polynomial-bounded experience
 - polynomial-bounded computation
PAC Version* of Bandit

- Given $\epsilon > 0$, $\delta > 0$, k arms.
- We say a strategy makes a mistake each timestep t it selects an action in which $R(a_t) < \max_a R(a) - \epsilon$.
- Let m be a bound on the number of mistakes that holds with probability $1-\delta$.
- We want m to be polynomial in k, $1/\epsilon$, $1/\delta$.
- Each decision should be similarly bounded.
* There are many equivalent definitions!

utility of behavior
experience
computational

A PAC Algorithm

- Naïve (Round Robin!)
 - Select each arm c times.
 - Average resulting rewards to estimate $R(a)$.
 - Choose $\max_a r(a)$ (where $r(a)$ is the estimate).
- Analysis
 - Hoeffding bound shows how to set c so $r(a)$s accurate with sufficient prob. ($\approx k \ln(1/\delta)/\epsilon^2$).
- All explore, all exploit.
More Elegant PAC Algorithm

• Interval estimation (IE, Kaelbling 93)
 - Estimate mean and confidence interval of arms.
 - Choose \(\max_a (r(a) + \text{interval}(a)) \)
 (where \(r(a) \) is the mean and \(\text{interval}(a) \) is the CI).

• Analysis (Fong 95)
 - Chooses an arm if known good or unknown.
 - No worse than Naïve .

• Blends explore/exploit.

• Strategy: “Best of all possible worlds”

Markov Decision Processes

• Brings sequentiality to bandits (Bellman 57).

• \(n \) states, \(k \) actions

• step \(t \), agent informed state is \(s_t \), chooses \(a_t \)

• receives payoff \(r_t \); expected value is \(R(s_t, a_t) \)

• probability that next state is \(s' \) is \(T(s_t, a_t, s') \)

\[
Q(s,a) = R(s,a) + \gamma \sum_{s'} T(s,a,s') \max_{a'} Q(s',a')
\]

• Optimal behavior is \(a_t = \arg\max_a Q(s_t,a) \)

• \(R, T \) unknown; some experimentation needed
Find the Ball: MDP Example

- Actions: rotate left/right
- States: orientation
- Reward: +1 for facing ball, 0 otherwise

Find The Ball

Learn:
- which way to turn
- to minimize time
- to see goal (ball)
- from camera input
- given experience.
Flavors of RL Algorithms

Model-based
- Estimate T, R; solve approximate MDP.
- Prioritized sweeping, Dyna

Value-function-based
- Use observed transitions to modify Q itself.
- Q-learning, SARSA

Policy search
- Try out different policies to find the best.
- policy gradient, genetic approaches

Achieving PAC Bounds

E^3: explicit explore exploit (Kearns & Singh 02)
- Model-based, distinguishes “known/unknown” transitions/rewards (seen c times)
- Plans in approximate model: value of staying in known states, time to “escape”

R_{MAX} (Brafman & Tennenholtz 02)
- Same idea, only simpler
- Unknown transitions assumed to yield maximum reward (R_{MAX})
Model-based Interval Estimation

MBIE (Strehl & Littman, 05, 06)

- R_{MAX} like Naïve algorithm for bandits: must try action c times (in each state) to estimate.
- MBIE like IE: transition has confidence interval; assume best of all possible worlds.
- Polynomially solvable, though expensive.

Exploration Speeds Learning

Task: Exit room using bird’s-eye state representation.

Details: Discretized 15x15 grid x 18 orientation (4050 states); 6 actions. Rewards via R_{MAX} (Brafman & Tennenholtz 02).
Model-Free PAC?

- E^3, R_{MAX}, MBIE all PAC, all model based
- States/actions, sample complexity: $O(n^2 k)$.
- Seems necessary: $T(s,a,s')$ size $n^2 k$.

- Can a model-free approach be PAC?
- Is $O(n k)$ possible?
- Is Q-learning PAC?

- Set out to prove no...

Delayed Q-learning

Sketch:
- Q values initialized high.
- Q-learning updates in batches of c.
- Only if update significantly decreases value.
- Greedy action selection.
- Details to make the proof go through.

$O(nk)$ sample, space, $O(\lg k)$ computation

(Strehl, Li, Wiewiora, Langford, Littman 06).

Appears impractical...
Associative Bandits

• Brings generalization to bandits (Kaelbling 93).

• inputs X, k actions; hypothesis class H

• step t, agent informed input is x_t, chooses a_t

• payoff r_t; expected value is R_i(a_t); i = h_{at}(x_t)

• x_t selected iid from a fixed distribution

• Best choice is a_t = argmax_a R_i(a); i = h_a(x_t)

• h_{at}, R unknown; some experimentation needed

Main Idea: Reductions

• Associative Bandit
 – which arm to pull?

• Associative Prediction
 – estimate each arm, take best (Naïve)

• Cost-sensitive Classification
 – treat prediction as classification with mistake cost
 – right cost gets right classifier, then R is easy

• Classification
 – many classification algs; modifiable for costs
 – few provably PAC, though
Visualization

• Single arm, what’s the payoff at “?”?
• X: rectangle, H: vertical dividers
• Each hypothesis leads to estimated payoffs.
• Right one is that with minimum cost (maximum contrast).
• So, ? = 0.76.

Implemented Example

• Inputs: n-bit patterns (n = 2 to 10).
• Hypothesis class: conjunctions of literal pairs
• k = 2 arms; h1 = h2 = x1 and not(xn).
• \(R_1(1) = .5,\)
\(R_0(1) = .8,\)
\(R_1(2) = .9,\)
\(R_0(2) = .6\)
• m=3000 trials
Robotic Example (Leffler, Littman, Strehl, Walsh 05)

• Input: 18 different locations along a track
• Two underlying classes (flat, up)
• Hypothesis class: all subsets
• Clusters locations based on action outcomes
• Theoretical/experimental advantage over non-generalizing approach

Movie

• Learns to hold consistent speed.
Aside: Closing The Loop

Cost-sensitive classification

• Query an attribute: Cost to learn its value.
• Choose class: Cost for wrong choice.
 – Ends game.

Cost-sensitive fault remediation

• Query an attribute: Cost to learn its value.
• Choose class: Cost to learn its outcome.
 – Ends game if correct, otherwise games continues!

Subtle distinction; opens door for autonomous learning.

CSFR Example

Network repair example (Littman, Ravi, Fenson, Howard 04).

• Recover from corrupted network interface config.
• Minimize time to repair.
• Info. gathering actions: PluggedIn, PingIP, PingLhost, PingGateway, DNSLookup, ...
• Repair actions: RenewLease, UseCachedIP, FixIP.

Additional information helps to make the right choice.

Never know why things failed, just that it’s working.
Learning Network Troubleshooting

Recovery from corrupted network interface configuration.

Java/Windows XP:
Minimize time to repair.

After 95 failure episodes

Conclusion

• Including data collection and computation with the utility of the outcome of learning is admirable.
• Likely to be intractable without relaxing.
• Idea: Instead of jointly minimizing, keep quantities within bounds.
• Practical algorithms, apply idea to UBDM?