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ABSTRACT 
Classification is a well-studied problem in machine learning and 
data mining. Classifier performance was originally gauged almost 
exclusively using predictive accuracy. However, as work in the 
field progressed, more sophisticated measures of classifier utility 
that better represented the value of the induced knowledge were 
introduced. Nonetheless, most work still ignored the cost of ac-
quiring training examples, even though this affects the overall 
utility of a classifier. In this paper we consider the costs of acquir-
ing the training examples in the data mining process; we analyze 
the impact of the cost of training data on learning, identify the 
optimal training set size for a given data set, and analyze the per-
formance of several progressive sampling schemes, which, given 
the cost of the training data, will generate classifiers that come 
close to maximizing the overall utility.   

Categories and Subject Descriptors 
I2.6 [Artificial Intelligence]: Learning – induction. 
H2.8 [Database Management]: Database Applications – data min-
ing. 

General Terms 
Algorithms, Performance, Economics 

Keywords 
Data mining, machine learning, induction, decision trees, utility-
based data mining, cost-sensitive learning, active learning 

1. INTRODUCTION 
Classification is an important application area for data mining. 
The quality of a classifier is almost always measured exclusively 
by its performance on new examples. Originally only simple 
measures like predictive accuracy were used. However, as the 
field advanced and more complex problems were addressed, more 
sophisticated performance measures were introduced—measures 

that more accurately reflect how the classifier will be used in its 
target environment. Thus, it is now not uncommon for misclassi-
fication cost information to be considered when evaluating classi-
fier performance or for profit/loss metrics to be used. 
The ultimate goal of utility-based data mining [12] is to consider 
all utility considerations in the data mining process and maximize 
the utility of this entire process. In the case of classification, this 
translates to considering the costs associated with building the 
classifier and the costs/benefits associated with applying the clas-
sifier. As just mentioned, there has been a substantial amount of 
work in properly measuring the costs and benefits of applying the 
classifier. However, with the exception of some work from the 
active learning community, the costs associated with building the 
classifier are often ignored. This is a mistake, since the cost of 
building a classifier can be quite substantial. These costs may 
include the cost of acquiring the training cases, the cost of clean-
ing and preparing the training data, the cost of labeling the train-
ing data and the CPU time and hardware costs associated with 
building the classification model. These costs are described in 
more detail in Section 2. 
In this paper we focus on the cost of acquiring complete, usable, 
training cases, where one has no control over which specific train-
ing examples can be acquired (this differentiates our work from 
the work on active learning). Thus, the value/utility of a classifier 
is the value associated with using the classifier minus the cost of 
the training data used to build the classifier. With this notion of 
utility, if classifier A performs only slightly worse than classifier 
B but is much less costly to generate, classifier A will be consid-
ered the better classifier. In Section 3.3 we formalize this notion 
of total utility so that we can precisely determine when one classi-
fier is “better” than another. The main contribution of this paper is 
that we analyze the trade-off of between acquiring more training 
data (and the concomitant increase in predictive accuracy) and the 
cost of acquiring this data. We show that for each data set and 
learner there is an optimal training set size that maximizes the 
overall utility of the classifier. We then propose two progressive 
sampling schemes and demonstrate that they can be used to gen-
erate classifiers with near optimal overall utility.  
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2. THE COST OF TRAINING DATA 
This paper focuses on the cost of training data and how it impacts 
the overall learning/data mining process. In this section we de-
scribe in some detail what we mean by the cost of training data. 
We then motivate this research by describing three data mining 
scenarios.  



2.1 What are the Costs of Training Data? 
In this paper we are concerned with the cost of acquiring labeled 
examples that can be used to train a classifier. In this section we 
describe several of the costs associated with acquiring training 
data. The primary cost we are concerned with is the cost of ac-
quiring the raw, but labeled, training examples. Specifically, we 
assume that a data-mining practitioner can request a batch of b 
examples with some cost c. We assume no restrictions on the 
value of b, although depending on the domain, there may be re-
strictions on b (i.e., you may not have total flexibility in specify-
ing the batch size). We also assume that c does not depend on the 
specific examples, although our analysis is not highly dependent 
on this assumption. Turney [9], who provides a fairly comprehen-
sive list of costs associated with classifier learning, refers to this 
cost as the “cost of cases.” 
Training data often needs to be prepared before it can be used for 
learning. Data preparation may include cleaning the data, remov-
ing outliers and transforming the data into a format suitable for 
mining. These data preparations steps often have a cost associated 
with them—especially if some manual effort is required. Thus, 
even if training cases are free, there still may be a cost for gener-
ating usable training cases. Thus the research described in this 
paper is relevant when there are data preparation costs. 
In many situations unlabeled training cases may be freely avail-
able but there may be a cost for labeling them. Turney refers to 
this as the “cost of teacher” [9]. Our research is also relevant in 
this situation. However, when there is a cost of teacher one may 
selectively label examples, which is an example of active learning 
[1]. Because we assume that the user has no control of the exam-
ples that are requested, we do not cover active learning in this 
paper and hence our work does not apply for situations where 
active learning is used. Nonetheless, in practice active learning is 
not always utilized when there is a cost of teacher. Active learn-
ing can also be used when there is a cost associated with measur-
ing specific feature values. We do not consider this type of cost. 
In summary, our work differs from the work on active learning in 
that we focus on the cost of acquiring complete cases (cost of 
cases), in which one has little or no control over which specific 
cases are acquired. 

2.2 Motivating Examples 
We believe that for many domains there are costs associated with 
acquiring training data and, just as importantly, one has some 
choice in the number of training examples that can be acquired. In 
these situations, it is essential to consider the cost of data acquisi-
tion if one is to maximize the overall utility of the classifier. 
Three examples are provided in this section. 
Based on past experience in industry, we know that it is quite 
common to acquire training data from an external vendor, whose 
business relies on selling information. For example, in order to 
build classification models to classify businesses, we acquired 
summary business data from D&B and detailed survey data from 
Ziff Davis. Companies that sell data typically do not require their 
customers to buy either “all or nothing.” Depending on the com-
pany, a customer may be allowed to choose a number of records 
and pay based on that number or choose from a set of predeter-
mined levels of data coverage and pay based on that level of cov-
erage. 

A second example comes from the task of classifying a phone line 
as belonging to a residential or business customer based on the 
pattern of phone usage. Information describing every phone call is 
recorded as a call-detail record, which is generated in real-time 
and stored sequentially. Because the classification task requires 
examples to be at the phone-line level, all of the call detail re-
cords associated with each phone number must be aggregated. 
Given that billions of call-detail records are generated every 
month and because the aggregation step requires sorting all of 
these records, this data preparation step is very expensive in terms 
of both disk space and CPU time. Thus, in this domain the train-
ing examples were expensive even though the raw data was essen-
tially free. 
The third example comes from the domain of game playing. If our 
goal is to learn something about an opponent so that we can de-
sign a game-playing strategy tailored to this opponent, the train-
ing data will usually be costly, in terms of time or in money if 
betting is involved. For example, if you want to learn something 
about an opponent in poker “you may play only 50 or 100 hands 
against a given opponent and want to quickly learn how to exploit 
them” [3]. 
We hope that the descriptions of the various costs and these two 
simple examples motivate the need to factor in the training data 
costs when building a classifier. It is interesting to note, however, 
that except for the work on active learning, as described in more 
detail in Section 6, very little research has addressed this issue. 
Specifically, past research does not address the “cost of cases” at 
all. This is true even though learning curves, which describe the 
relationship between training set size and classifier performance, 
are well known and frequently studied—they are just rarely used 
in practice. 

3. DESCRIPTION OF EXPERIMENTS 
The experiments in this paper vary the training set size and then 
track the accuracy of the induced classifier. This performance 
information is then combined with cost information in order to 
determine the overall utility of the classifier. We outline our ex-
perimental methodology in Section 3.1, summarize the data sets 
we analyze in Section 3.2 and discuss how we measure total util-
ity in Section 3.3. 

3.1 Experimental Methodology 
All of the experiments in this paper use C4.5 [8], a popular deci-
sion tree learner that is a descendant of ID3. In order to determine 
the relationship between training set size and predictive accuracy, 
training sets are generated with a variety of sizes. The data is 
partitioned via random sampling as follows. For each experiment, 
25% of the data is randomly selected and allocated to the test set, 
while the remaining 75% of the data is potentially available for 
training. However, because we want to vary the training set size, 
for most experiments only a portion of this 75% will be assigned 
to the training set (the remainder is not used). All results in this 
paper are based on averages over 20 runs, in order to increase the 
statistical significance of our results. Because it does not take 
much CPU time to build the models for any of the data sets ana-
lyzed in this paper, the use of multiple runs does not seriously 
limit our work. In future work we may investigate the use of sin-
gle runs if the size of the training sets warrants it. 

 



We investigate two simple sampling schedules. Sampling sched-
ule S1 uses the following training set sizes: 10, 50, 100, 500, 
1000, 2000, …, 9000, 10000, 12000, 14000, 16000, etc. Specifi-
cally, after the first five training set sizes the training set size is 
incremented by 1,000 until the training set size reaches 10,000, 
after which the training set size is incremented by 2,000. Our 
second sampling schedule, S2, starts with a training set size of 50 
and then successively doubles the training set size. This geometric 
sampling scheme is motivated by previous work on progressive 
sampling, which shows that given certain assumptions (which do 
not hold in this paper), this schedule is asymptotically optimal [7]. 
This previous work on progressive sampling is described in Sec-
tion 6. For sampling schedules S1 and S2, in addition to evaluat-
ing the training set sizes just described, the largest possible train-
ing set size (i.e., 75% of the data set size) is also evaluated. For 
some of the plots in our results section, Section 4, some additional 
training set sizes were evaluated in order to improve the granular-
ity of our results. These additional training set sizes were not used 
in Section 5, where we discuss a progressive sampling strategy. 

3.2 Data Sets 
We analyze the ten data sets described in Table 1. In order to 
improve the presentation of our results, the data sets are parti-
tioned into two groupings based on their relative sizes: large and 
small. Table 1 also lists the total number of examples in each data 
set. The data sets were obtained from the UCI Machine Learning 
Repository [6], except for those marked with an asterisk, which 
were originally made available from researchers at AT&T (these 
data sets are available from the author). 

Large Data Sets Small Data Sets 
adult 21,281 kr-vs-kp 3,196 
coding* 20,000 move* 3,029 
blackjack* 15,000 german 1,000 
boa1* 11,000 breast-wisc 699 
network1* 3,577 crx 690 

Table 1: Description of Data Sets 

3.3 Measuring Total Utility 
We evaluate the performance of the induced classifiers based on 
total utility because we need to take the cost of training data into 
consideration. Thus, our utility metric must take into account the 
cost of training data (data cost) and the cost of classification er-
rors (error cost). We do not include other possible costs, such as 
the CPU time cost associated with training the classifier, although 
we do record these CPU times and comment on their potential 
impact on total utility. In future work we plan to consider these 
and other costs in the utility metric. Total cost is defined below in 
equation 1. 

Total Cost = Data Cost + Error Cost        [1] 

Before we can understand the error cost term, some background is 
required. For our experiments, a classifier is built from training 
data and its accuracy is evaluated using separate test data. The 
purpose of any classifier is to classify new, unlabeled, exam-
ples—not the test set. We thus assume the existence of a score 
data set, S, which the user will apply the classifier to, over some 
period of time. The error cost will be based on the number of 

errors we expect to get when classifying the score data set, which 
can be estimated as the error rate on the test set multiplied by the 
size of S, denoted |S|. Thus error cost is directly proportional to 
|S|. Although we do not know the value of |S| for any of the data 
sets in this paper, a domain expert should be able to estimate its 
value, although this may not always be a simple task (e.g., it may 
depend on how long the classifier is used, how successful it is, 
etc.). 
For each experiment we know the number of training examples, n, 
and the estimated error rate, e, based on the performance of the 
classifier on the test set. We assume that there is some fixed cost 
Ctr for acquiring each training example and some fixed cost Cerr 
for each error made on an example in the score data set. Data cost 
will then equal n·Ctr and error cost will be estimated as e·|S|·Cerr. 
The total cost for a classifier then is given by equation 2, which is 
our measure of total utility. 

Total Cost =  n·Ctr + e·|S|·Cerr        [2] 

With specific domain knowledge we would be able to estimate 
Ctr, Cerr, and |S| and thus calculate total cost. However, in our 
case we do not know these values. Therefore we need to treat 
them as variables and analyze a wide range of values in order to 
properly analyze a data set. The problem with this situation is that 
three variables make a thorough analysis difficult. However, we 
can reduce this to two variables by arbitrarily assuming |S| is 100. 
This does not reduce the generality of our results because we can 
easily account for other values of |S| via a simple calculation. 
Namely, error cost is proportional to the product |S|·Cerr so that if 
we find that |S| is 100,000 instead of 100, we can simply look at 
the experiment results for Cerr/1,000 rather than Cerr. In a sense, 
we are measuring error cost in terms of every 100 score examples 
and then adjusting for different score set sizes. 
Given that we now only need to track Ctr and Cerr, for analysis 
purposes we can simplify things further by only tracking the ratio 
of these two variables. While the real total cost will depend on the 
actual constants, the optimal training set size, for example, will 
only depend on the ratio of the costs. So, in our results we simply 
report the cost ratio, Ctr:Cerr, where Ctr is typically 1, the unit 
cost, and Cerr ≥ 1. Because we want to plot our results using nu-
merical values, we often use the relative cost or relative cost ratio 
instead, which is simply Cerr/Ctr.  For example, if the cost ratio is 
1:100 then the relative cost ratio is 100. Note that in this case we 
can say that from a utility perspective it is an even trade-off to 
purchase 100 training examples if it will reduce the number of 
errors by 1, assuming |S| is 100. We can remove the condition on 
|S| by stating things in a slightly different manner: purchasing 100 
training examples leads to an even trade-off if it results in a 1% 
reduction in error rate. 
As an example, we can compute the total cost associated with one 
of the experiments reported in this paper, which uses the adult 
data set. For this particular experiment, n is 1500 and the error 
rate of the resulting classifier is 15.8%. The cost ratio is 1:1000 
and, as discussed, for now we presume the score set will have 100 
examples. Using equation 2, the total cost is then: 
 Total cost = 1500·1 + .158·100·1000 = 1500 + 15800 = 17,300 
One potential issue with the utility measure in equation 2 is that if 
|S| is sufficiently large then the second term will dominate the 
first, in which case the cost of acquiring the training data is not 
important. Will the error cost term always dominate the data cost 

 



term? We do not believe so for several reasons. First, for some 
domains the cost of acquiring training data is very significant and 
once the learning curve begins to flatten out it may take tens or 
hundreds of thousands of training examples to improve accuracy 
by even a tenth of a percent. In this region, even if |S| is very 
large, the first term may still play a significant role. It is within 
that region that we expect our cost model to be most useful. In 
addition, |S| need not always be extremely large. For example, in 
the poker example mentioned in Section 2.2 one will not typically 
play a large number of poker hands against a single opponent. 
Finally, other work in the field seems to support our intuition that 
data cost is important. For example, the entire field of active 
learning is based on the assumption that error cost will not totally 
dominate the data cost—if it did then active learning would be 
unnecessary. 
We conclude this section on measuring total utility by noting that 
total cost is not the only metric we could have used to measure 
utility. We could alternatively have factored in a benefit for each 
correctly classified example and a cost for each incorrectly classi-
fied example. However, given the goals of this paper we do not 
believe that there is much value in also evaluating this perform-
ance metric, although we recommend that practitioners use this 
alternative metric if it makes sense for a specific domain. 

4. RESULTS 
This section includes our main results. Section 4.1 describes how 
we use the cost ratio information to analyze the learning curve 
data generated by our experiments. Section 4.2 presents detailed 
results for a representative data set and then Section 4.3 provides 
summary results for the remaining data sets. 

4.1 Analyzing the Impact of the Cost Ratio 
The basic experiments in this paper involve generating the learn-
ing curves for each data set. In order to analyze these results, we 
need to vary the cost ratios and then see how this impacts the total 
utility of the classifier. In particular, we want to determine the 
optimal training set size for any cost ratio and we would like to 
see how this optimal training set size changes as the cost ratio is 
varied. 
In our analysis we examine a wide range of cost ratios. We cannot 
focus on the most realistic values since those values are domain 
specific and we do not have the requisite domain knowledge. 
Rather, we try to examine a sufficient range of cost ratios so that 
we hit the “two extremes” and sample some points in between. 
Specifically, for each data set we strive to analyze cost ratios such 
that for one of the cost ratios the optimal strategy is to acquire 
almost no training data (≤ 10 examples) and for another cost ratio 
the optimal strategy is to acquire all possible training data. 
The cost ratio that leads us to acquire all of the training examples 
may be quite high, such as 1:50,000 (the cost ratio required by the 
adult data set). This cost ratio, which says that the cost of an error 
is 50,000 times that of the cost of a training example, may appear 
to be unrealistic, but that is not necessarily so. For example, if we 
have a direct marketing campaign where it costs $1 to produce 
and mail a catalog and the demographic information that is pur-
chased to help build a predictive model is $100 per 10,000 house-
holds, one can see that a training example is very cheap relative to 
the cost of an error ($1 for each household that was mistakenly 
predicted to make a purchase). Also recall that the errors are per 
100 score examples. The cost ratio of 1:50,000 with 100 score 

examples is equivalent, as described in Section 3.3, to a cost ratio 
of 1:50 if there are 100,000 examples in the score set. Stated more 
generally, a cost ratio of 1:50,000 means that purchasing 50,000 
training examples leads to an even trade-off if the error rate is 
reduced by 1%. This certainly seems like it could be a reasonable 
trade-off. 

4.2 Detailed Analysis of the Adult Data Set 
Our analysis of the adult data set begins with its learning curve, 
shown in Figure 1. As is common for learning curves, there is a 
very steep increase in accuracy at first which then diminishes as 
more training data becomes available. It is worth noting that the 
learning curve for this data set never reaches an asymptote, even 
when there are more than 15,000 training examples. What is par-
ticularly interesting is that the learning curve shows a small but 
steady increase in accuracy for an extended period of time—as 
the training set size grows from 4,500 to 15,960 training examples 
the accuracy increases from  85.0% to 85.9%. Also note that the 
learning curve is not smooth like an idealized learning curve and 
in a few cases shows a decrease in accuracy as the training set 
size increases (we expect these statistical aberrations would dis-
appear given an infinite number of runs with random sampling). 
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Figure 1: Learning Curve for Adult Data Set 

Given the learning curve data it is straightforward to compute the 
total cost for a variety of cost ratios, by using equation 2 (recall 
that |S| is fixed at 100). In figure 2 total cost is plotted versus 
training set size for six different cost ratios (Ctr:Cerr). 
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Figure 2: Utility Curves for Adult Data Set 

 



If we look at the 10:1 cost ratio, which places the highest relative 
cost on the training data (and is the only case where Ctr>Cerr), we 
see that the curve is linear. The reason for this is that in this situa-
tion data cost completely dominates error cost, so that total cost 
essentially equals data cost and hence is directly proportional to 
the size of the training set. When the ratio shifts to 1:1, data cost 
still dominates, but the slope is less because the total cost is now 
much less (approximately one-tenth the cost for 10:1). As the cost 
ratio continues to shift toward a higher relative cost for errors, the 
curve becomes non-linear and the minimum total cost (identified 
for each curve by the large square marker) no longer is at the 
minimum training set size, but rather shifts towards the larger and 
larger training set sizes. At a relative cost of 1:7500, the lowest 
cost is achieved with a training set size of 6,500. 
One problem with Figure 2 is that the total cost rises as the cost 
ratio becomes more skewed, which obscures some of the changes 
of the curves with lower total cost. To fix this problem we nor-
malize each curve by dividing the total cost by the maximum total 
cost associated with the curve. The results for normalized cost are 
shown in Figure 3. This method for representing the results also 
permits us to examine higher cost ratios and shows us that for a 
cost ratio of 1:50,000 the optimum strategy is to use all of the 
training data. 

0%

20%

40%

60%

80%

100%

0 4,000 8,000 12,000 16,000

Training Set Size

N
or

m
al

iz
ed

 C
os

t

1:10

1:5000

1:1000 1:50,000

1:500
1:100

 
Figure 3: Normalized Utility Curves for Adult Data Set 

Figure 3, in conjunction with Figure 1, shows that once the learn-
ing curve begins to flatten out, a great increase in the cost ratio is 
required for it to be worthwhile to use more training data. This is 
encouraging in that once we get past a certain point, the optimal 
training set size is not overly sensitive to the exact value of the 
cost ratio; hence a good estimate of this ratio should be adequate. 
Figure 3 also makes it clear that using all of the potentially avail-
able training data is not a good strategy—for most relative cost 
ratios the total (normalized) cost is much lower for the optimal 
training set size than when the maximum number of training ex-
amples are used.  
Figure 4 provides the most highly summarized information con-
cerning the adult data set. It shows, for each relative cost 
(Cerr/Ctr), the optimum training set size. The optimum training 
set size curve can be used by a practitioner to determine the 
amount of training data to obtain even if the precise cost ratio is 
not known (in Section 5 we introduce a progressive sampling 
strategy to find this optimum without first requiring all of the 
potentially available training data). At a minimum, curves like 

those in Figure 4 can inform a data mining practitioner of the 
trade-offs involved. We provide the associated accuracies beneath 
some of the data points, to help correlate these results with the 
learning curve results in Figure 1. 
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Figure 4: Optimal Training Set Sizes for Adult Data Set 

The shape of the optimal training set size curve in Figure 4 de-
serves some discussion. This curve is not smooth and this is not 
because we only calculate the optimal training set size for certain 
relative costs. The curve is not smooth because the learning curve 
in Figure 1 is not smooth. You may also note that there is a sharp 
increase in slope when the relative cost increases from 4,000 to 
5,000 (between these two values the optimal training set size 
jumps from 1,400 to 5,000 examples). This is due to the fact that 
the learning curve in Figure 1 temporarily shows a small decrease 
in accuracy when the training set size increases beyond 1,400 and 
hence the cost ratio must increase significantly to overcome the 
“burden” of purchasing training examples which do not increase 
the accuracy of the classifier. 

4.3 Summary Results for all Data Sets 
In this section we present summary results for all of the data sets. 
Figures 5 and 6 show the learning curves for the large and small 
data sets, respectively. Note that for many of the data sets a pla-
teau is not reached using the available training data. For some, 
like coding, the performance is still improving relatively rapidly, 
while for others, like adult, it is improving only slowly.  
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Figure 5: Learning Curves for Large Data Sets 
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Figure 6: Learning Curves for Small Data Sets 

Figures 7 and 8 show the optimal training set sizes for the large 
and small data sets, respectively (the curve for adult is not pro-
vided again). Note that once the relative cost is sufficiently high, 
all of the potentially available training data will be used and then 
the optimal training set size curve will flatten out completely. 
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Figure 7: Optimal Training Set Sizes for Large Data Sets 
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Figure 8: Optimal Training Set Sizes for Small Data Sets 

5. Progressive Sampling Strategies 
The results in Section 4 demonstrate that one can improve overall 
classifier utility by properly trading-off the cost of acquiring addi-
tional training data with its benefits (i.e., fewer errors). However, 

to be of practical use, we need a strategy that identifies a good 
(near-optimal) training set size g without acquiring/using more 
than g training examples. That is, we must “pay” for training ex-
amples “up front”, so once we acquire them we will always use 
them. The strategy used in Section 4 of trying a variety of training 
set sizes up until the maximum number available makes no sense 
in this context. What we need is a progressive sampling strategy 
to identify g while purchasing only g examples. 

5.1 Overview of Progressive Sampling 
The general outline of a progressive sampling strategy is simple. 
You begin with some initial amount of training data and then, 
iteratively, build a classifier, evaluate its performance and acquire 
additional training data. There are two key decisions faced by 
such a progressive sampling algorithm: 1) when to terminate the 
loop and stop acquiring training data, and 2) how many training 
examples to acquire at each iteration (i.e., the batch size). 
In our progressive sampling experiments we use a simple stopping 
strategy: we stop obtaining more training data after the first ob-
served increase in total cost. Note that this guarantees that we will 
not achieve the optimal cost because, at minimum, there is one 
better training set size (i.e., the one observed before the increase). 
That is, once we have acquired additional training data we have 
incurred the cost associated with purchasing it, and must include 
this cost we analyzing the performance of the progressive sam-
pling strategy. If the accuracy of the learning curve is non-
decreasing, then this stopping condition will lead to a training set 
size that is very close to optimal. Our results show that the actual 
learning curves are not always non-decreasing, but this does not 
usually have a big impact on the results.   
The choice of how much additional training data to acquire at 
each iteration is decided by a sampling schedule. In this paper we 
only evaluate very simple, non-adaptive sampling schedules, al-
though more sophisticated ones are described later as possible 
future work. We utilize the sampling strategies S1 and S2 that 
were described in Section 3.1 as our progressive sampling strate-
gies. With a few exceptions, S1 samples every 1000 examples 
whereas S2 uses a geometric sampling scheme that starts with 50 
examples and then repeatedly doubles the training set size. 

5.2 Progressive Sampling Results 
This section presents the results of the two progressive sampling 
strategies, S1 and S2. As described earlier, each strategy termi-
nates after the first observed increase in total cost. Because we 
want to see how well these strategies perform, we compare them 
to the “optimal strategy” that always selects the optimal training 
set size and cost based on S1 (which samples more frequently 
than S2). We also compare these progressive sampling strategies 
to our “straw man” strategy, which simply uses all of the avail-
able training data.1  This second comparison quantifies the benefit 
of considering the training data cost when building a classifier, 
since without such knowledge a reasonable strategy would be to 
use all potentially available training data. 
                                                                 
1 There may not always be a maximum “amount of available 

training data” for a data set, but in many cases there will be 
(e.g., the number of records describing businesses is limited by 
the number of businesses). In this paper we assume that the only 
data available is in the original data set and the maximum 
amount available for training is equal to 75% of this amount.   

 



5.2.1 Detailed Results for the Adult Data Set 
We begin by presenting detailed results for the adult data set. 
Table 2 presents the results for the progressive sampling strategies 
S1, S2 and the “optimal” version of S1, Optimal-S1. We report 
the results for a variety of relative cost ratios. For each cost ratio 
and strategy, we report the selected training set size, the total cost 
and the CPU time, in seconds, associated with all of the experi-
ments used to identify that training set size. For example, for a 
relative cost ratio of 10,000 a training set size of 9,000 yields the 
optimal cost, which is 152,900. The total CPU time required is 
9.15 seconds, which is the time to build all of the classifiers using 
the sampling schedule, up until the training set size of 10,000. 

Relative
Cost Ratio Size Cost CPU Size Cost CPU Size Cost CPU

1 10 34 0.00 50 74 0.00 100 122 0.00
10 10 25 0.00 50 292 0.00 100 319 0.00
20 500 2,233 0.20 50 2,470 0.00 100 538 0.00

200 500 3,966 0.20 1,000 4,266 0.53 800 4,060 0.40
500 500 9,165 0.20 2,000 9,945 1.23 1,600 9,480 0.92

5,000 5,000 79,450 4.17 6,000 79,800 5.27 12,800 83,700 14.84
10,000 9,000 152,900 9.15 7,000 154,700 6.48 12,800 154,600 14.84
15,000 9,000 224,850 9.15 7,000 228,550 6.48 15,960 226,860 20.88
20,000 9,000 296,800 9.15 7,000 302,400 6.48 15,960 297,160 20.88
50,000 15,960 721,460 20.89 7,000 745,500 6.48 15,960 718,960 20.88

Optimal-S1 S1 S2

 
Table 2: Progressive Sampling Strategy Comparison for Adult 

Table 2 shows us that S1 and S2 are quite effective strategies, 
since they come relatively close to achieving the optimal cost. 
The S2 strategy seems to outperform S1, although if more training 
data were available we would expect S1 to do better—since each 
strategy stops one iteration after the lowest cost that extra step 
would be more costly for S2, which geometrically increases the 
training set size. Our total cost metric does not factor in CPU 
time, but the results for the adult data set indicate that this is 
probably okay, since the CPU times are all quite small. However, 
this might not be true for much larger data sets. We discuss exten-
sions to the total utility metric to factor in the cost of computation 
in Section 7. 
Figure 9 compares the performance of the S1 and Straw Man 
strategies for cost ratios below 1:10,000. Note that the x-axis is 
not scaled in this case, in order to make the results easier to read. 
We see that the straw man strategy of just using all of the training 
data independent of the relative cost ratio leads to very poor re-
sults until a relative cost ratio of about 1:10,000 is reached. This 
motivates the need and benefit of factoring in the training data 
cost when building a classifier. 
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Figure 9: Comparison of S1 and Straw Man Strategies for Adult 

5.2.2 Summary Results for the Large Data Sets 
A comparison of the performance of the S1 strategy with the S1-
optimal strategy, for the five large data sets, is provided in Table 
3. The results show that the S1 progressive sampling strategy is 
quite effective, except for very low relative costs. In these situa-
tions the training data is relatively expensive and the stopping 
criteria, which requires that the sampling strategy go past the 
optimal training set size, is heavily penalized. An adaptive sam-
pling strategy that reduces the batch size as increases in training 
set size lead to smaller improvements in total utility would likely 
reduce the impact of this problem. The results for the S2 strategy 
are not included in this section due to space considerations and 
because it is not that different than the S1 sampling strategy given 
the amount of available training data (it would be very different if 
the data sets were much larger).  

Relative
 Cost Ratio Adult Blackjack Boa1 Coding Network1

1 115.7% 53.2% 70.1% 62.8% 91.0%
20 10.6% 34.6% 5.1% 2.0% 0.7%

500 8.5% 1.0% 1.2% 2.1% 2.7%
1,000 3.2% 2.6% 2.3% 0.6% 3.6%
5,000 0.4% 1.4% 4.7% 0.2% 1.5%

10,000 1.2% 1.1% 5.9% 0.0% 1.3%
15,000 1.6% 1.6% 6.3% 0.0% 1.2%
20,000 1.9% 1.9% 6.5% 0.0% 1.1%
50,000 3.3% 0.7% 6.9% 0.0% 1.0%

Increase In Total Cost: S1 vs. S1-optimal

 
Table 3: Optimal vs. S1 for Large Training Sets 

Table 4 compares the straw man strategy with the S1 progressive 
sampling strategy for the five large data sets and shows that, con-
sistent with the results presented in Figure 9 for the adult data set, 
the straw man strategy performs very poorly when the relative 
cost ratio is below a certain threshold. After a point they perform 
similarly and the straw man strategy is even sometimes superior, 
because the S1 strategy sometimes stops prematurely, due to a 
temporary decrease in accuracy in the learning curves. If more 
training data were available, such that the learning curves reached 
a plateau with only a fraction of this training data, we would then 
expect the straw man strategy to perform poorly even for these 
higher cost ratios. 

Relative
Cost Ratio Adult Blackjack Boa1 Coding Network1

1 21428.5% 12024.0% 8345.6% 15880.9% 3270.9%
20 557.6% 976.5% 802.6% 1539.2% 381.0%

500 131.4% 61.3% 27.9% 43.7% 5.8%
1,000 68.1% 26.1% 11.0% 13.4% 0.0%
5,000 8.4% 2.9% -2.6% 0% 0%

10,000 1.5% 0.4% -4.3% 0% 0%
15,000 -0.4% -0.4% -4.9% 0% 0%
20,000 -1.4% -0.8% -5.2% 0% 0%
50,000 -3.2% 0.1% -5.7% 0% 0%

Increase In Total Cost: Straw Man vs. S1

 
Table 4: Straw Man vs. S1 for Large Training Sets 

We have not shown the CPU times required by the progressive 
sampling strategies, except for the adult data set. However, these 
times are under a minute in every case and hence the cost of com-
putation does not appear to be a significant consideration for these 
data sets.  

 



6. RELATED WORK 
Previous research, to the best of our knowledge, does not directly 
address the cost of cases that we address in this paper. However, 
there is a substantial amount of research that studies related costs 
and issues. We describe these research efforts in this section and 
comment on how they relate to our work. 
Work on progressive sampling has focused on efficiently finding 
the training set size where the learning curve reaches a plateau 
[7]. The motivation for that work is to reduce the cost of computa-
tion—the training data cost is not taken into account. If we ignore 
the cost of computation, the past work on progressive sampling is 
a special case of our work, where the cost of training data is arbi-
trarily small, but non-zero (if it were zero one would just use all 
of the available training data even if a plateau is reached). This 
previous work showed that a geometric sampling scheme, similar 
to our S2 strategy, is asymptotically optimal, with respect to the 
cost of computation (not with respect to training data cost). As 
described shortly, we plan to generalize our work to include the 
cost of computation, at which point our work will subsume this 
previous work on progressive sampling. 
Weiss and Provost [11] factored in the cost of cases, but only in a 
limited way. The assumption in that work was that the cost of 
cases limited the amount of training data and this amount is al-
ready specified. The only decision in that work was what class 
distribution should be used for training in order to maximize clas-
sifier performance. That work also used a progressive sampling 
strategy, although the goal in that case was to identify the optimal 
class distribution. 
In this paper we assume that one has no control over which exam-
ples are added to the training data. That is, if there is a cost asso-
ciated with labeling an example, we cannot selectively choose 
which examples to label and if there is a cost associated with 
measuring feature values, we cannot determine which examples to 
add based on these feature acquisition costs. Thus, we do not 
consider active learning methods which have been used in other 
work [1, 4, 10, 13].  Nonetheless, one does not always have the 
freedom to use active learning methods (e.g., in the scenario 
where one is purchasing data from an external source). Also, 
much of the work on active learning assumes a fixed budget [4], 
in which case the decision is just which examples are best to label 
or features to measure, and there is no need to determine when to 
stop acquiring more training data. The closest match to our re-
search from the active learning community is research where the 
marginal utility of each example is estimated and this is used to 
determine how many examples to label [5].  
One of the contributions of our research is that it shows how the 
optimal training set size varies based on the relative cost of train-
ing examples versus errors. These optimal training set size curves 
may be useful even if the specific cost ratios are not known.  The 
cost curves of Drummond and Holte [2] are quite analogous to 
our optimal curves, except that their curves show the optimal 
performance based on the ratio of the cost of a false positive to a 
false negative classification error, rather than the cost of a training 
example versus the cost of an error. Both their curves and ours 
can aid a practitioner who must make decisions about how to 
generate the best classifier. 

7. LIMITATIONS AND FUTURE WORK 
The work described in this paper has several limitations and can 
be extended in many ways. In this section we describe some of 
the limitations and possible future extensions. We expect to ad-
dress many of these issues in the near future. 
One of the limitations of our work concerns the size of the data 
sets. Ideally we would have sufficient training data for all of our 
data sets so that the learning curves would always reach a plateau. 
If that were the case then additional data would not be of any 
benefit and then we could completely analyze the behavior of the 
data set with respect to training set size. Unfortunately, for many 
of our data sets a plateau is not reached. It would therefore be 
valuable to analyze much larger data sets, especially those that are 
complex enough to require a great deal of training data in order 
for the learning curve to reach a plateau.  
Our utility metric considers the cost of data but not the cost of 
computation (i.e., CPU time). We intend to include the cost of 
computation in future analyses. However, since both progressive 
sampling strategies required less than one minute of CPU time 
when applied to each of the ten data sets, it is important that we 
first obtain much larger and more complex data sets. In addition, 
we intend to analyze more sophisticated sampling schedules, in-
cluding adaptive schedules, where the amount of training data 
requested in each “batch” varies based on the expected change in 
total cost (which could be extrapolated based on the changes in 
total cost for the previous batches). These more sophisticated 
schemes would be more likely to find the true “optimal” training 
set size, by reducing the batch size as the marginal utility of add-
ing training data approaches zero. Note that this behavior is the 
opposite of what happens when the cost of computation is the 
main cost; the past work on progressive sampling increases the 
batch size over time since it uses a geometric sampling 
scheme[7]. 

8. CONCLUSION 
This paper analyzed the impact of training data cost on total clas-
sifier utility, where total utility considers the cost of the training 
data as well as the performance of the classifier on classifying 
new examples. We introduced a variety of charts to help visualize 
the relationship between training data cost, the cost of errors and 
total utility. We also identified the optimal training set size for 
different data sets and different cost ratios and showed that over-
all utility can be substantially improved by not using all of the 
training data that is potentially available. Two simple progressive 
sampling strategies were also introduced and were shown to be 
relatively effective in finding the optimal training set size and 
optimal total utility. Furthermore, one of these progressive sam-
pling strategies was shown to outperform the “straw man” strat-
egy of using all potentially available training data. The research 
described in this paper fills in a “hole” in the area of Utility-Based 
Data Mining by considering the cost of training cases in the data 
mining process. 
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