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ABSTRACT
Classification has been commonly used in many data mining
projects in the financial service industry. For instance, to
predict collectability of accounts receivable, a binary class la-
bel is created based on whether a payment is received within
a certain period. However, optimization of the classifier does
not necessarily lead to maximization of return on investment
(ROI), since maximization of the true positive rate is often
different from maximization of the collectable amount which
determines the ROI under a fixed budget constraint. The
typical cost sensitive learning does not solve this problem
either since it involves an unknown opportunity cost due
to the budget constraint. Learning the ranks of collectable
amount would ultimately solve the problem, but it tries to
tackle an unnecessarily difficult problem and often results in
poorer results for our specific target. We propose a new al-
gorithm that uses gradient descent to directly optimize the
related monetary measure under the budget constraint and
thus maximizes the ROI. By comparison with several classi-
fication, regression, and ranking algorithms, we demonstrate
the new algorithm’s substantial improvement of the finan-
cial impact on our clients in the financial service industry.
The proposed algorithm can also be applied to several other
areas such as maximizing average returns of stock selection
and identifying tax auditing targets of highest values.

Categories and Subject Descriptors
H.4 [Database Management]: Database Applications -
Data Mining; I.2.6 [Artificial Intelligence]: Learning; I.5.2
[Pattern Recognition]: Design Methodology - classifier
design and evaluation

General Terms
Algorithms

Keywords
return on investment, neural networks, constrained opti-
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1. INTRODUCTION
Classification has been commonly used in many data min-

ing projects in the financial service industry. We have used
a classifier to predict defection of mutual fund accounts for
a major US mutual fund company [9], where the positive
samples are defined as those accounts with a net redemp-
tion amount (redemption minus purchase) of 35% or more
of the account balance within a two-month window. We set
up a control group for the project to evaluate the model’s
accuracy. Table 1 shows the real-world evaluation results for
the control group over a four-month window, which consists
of two levels of defection risk and three segments based on
account values.

Higher risk
Def. rate Avg. net redem.

Segment 1 4.8% -$5,145
Segment 2 10.5% $14,494
Segment 3 5.7% $2,733

Lower risk
Def. rate Avg. net redem.

Segment 1 1.9% $2,494
Segment 2 1.6% $13,864
Segment 3 2.4% $2,686

Table 1: Defection rate and average net redemption
amount for the control group for a US mutual fund
company.

We can see that the model was successful at predicting
defecting accounts as evidenced by the higher defection rate
in the higher risk groups for all the three segments. How-
ever, the average net redemption amounts in the higher risk
groups were not significantly higher than those in the lower
risk groups. Especially, for Segment 1, even though the
higher risk group had a much higher defection rate than the
lower risk group, the negative net redemption amount in the
higher risk group indicates a positive net purchase. This
model can be used to reduce defection rate, but it would
not be the best model used to prevent the highest redemp-
tion amount. For a fixed budget, the return on investment
(ROI) of the project is determined by the amount of redemp-
tions prevented (rather than by the reduction of defection
rate). There are many significant factors other than the
model affecting the retained amount, but simply classifying
the accounts as defection or non-defection does not enable



the mutual fund company to reach out to those accounts
with the highest redemption amount.

As another example, a classifier can be used to predict col-
lectability of delinquent accounts receivable for credit card
issuers using credit, demographic, and account data, where
a binary class label is created based on whether a payment
for an account is received within a certain period since the
account was placed into the collection process. Typically,
the budget restricts how many accounts can be placed into
a specific collection process. While the true positive rate
among those accounts in the collection process is a mean-
ingful measure of classification accuracy, maximization of
the true positive rate is often different from maximization
of the collectable amount for the specific collection process.
It is the collection amount rather than the true positive rate
that determines the ROI under the fixed budget.

Note that we are always addressing a budget constraint,
which determines, among other things, how many mutual
fund accounts the customer service team can reach out ev-
ery month and how many accounts receivable can be placed
into a specific collection process. In our applications we
represent the budget constraint by the pull rate r which is
the percentage of accounts to pull out for a specific inter-
vention/collection process. Let us denote x as the target
monetary measure, e.g., collection amount, which directly
determines the ROI. Then the goal is to find a function
y(e), where e is the independent variables such as credit,
demographic, and account data, so that the accounts in the
top r% by y correspond to those in the top r% by the target
x. Thus the problem of maximizing the ROI can be formally
defined as

Max
∑

y(ei)∈Top r%

xi, (1)

where i = 0, 1, . . . , n − 1, and n is the total number of ac-
counts.

1.1 Related work
One might immediately suggest cost-sensitive learning,

e.g., [4], and ranking, e.g., [2], [3], would solve the above
problem. For cost-sensitive learning, we have the cost ma-
trix in Table 2. Assuming c00 = 0 and c11 = 0, a typical
sensitive learning algorithm tries to minimize the cost

C =
∑
i∈P

(1− qi)c01 +
∑
j∈N

qjc10 (2)

over the training set, where P , N are the sets of positive and
negative samples, respectively, and qi, qj are both posterior
probabilities of belonging to the positive class. In our appli-
cation, the actual positives are those accounts which are in
the top r% of x, and predicted positives are those accounts
which have a score y in the top r%. It is straightforward
that c01 = x, since if an actual positive is placed out of the
top r% (a predicted negative), the company will not be able
to collect $x or retain the net redemption of $x. If an actual
negative is placed among the top r%, the company will lose
the opportunity to reach out to one of the accounts with a
larger x in the top r%, since the number of accounts to be
contacted is pre-determined by the pull rate r. Thus, c10

is an opportunity cost that is not a constant and unknown.
One might still try to train a classifier with sample weights
intuitively based on x. In Sections 3 and 4, we compare our
algorithm’s results with such a classifier’s.

actual negative actual positive
predicted negative c00 c01

predicted positive c10 c11

Table 2: A cost matrix for cost-sensitive learning.

If we can learn a regression model so that y(ei) = xi, i =
0, . . . , n−1, or a ranking model so that y(ei) > y(ej) for any
(i, j) ∈ {(i, j)|xi > xj , i, j = 0, . . . , n − 1}, ∑

y(ei)∈Top r% xi

would be optimized for each r. However, both regression
and ranking try to solve an unnecessarily difficult problem,
and often lead to poorer results for our specific target at pull
rate r. Maximization of

∑
y(ei)∈Top r% xi requires only the

correct ranking between the Top r% and the others. The
ranking within the Top r% or the others is not necessary,
neither is the estimate of x itself by regression. In Sections
3 and 4, we compare our model with a regression and a
ranking model, which uses the algorithm in [2].

We present the new algorithm in the next section, where
we also describe the several classification, regression, and
ranking algorithms which we compare with in our projects.
In Section 3, we use the proposed algorithm to predict col-
lectibility of accounts receivable for delinquent consumer
loan accounts from several US financial institutions. In Sec-
tion 4, the new algorithm is applied to predicting defection
of mutual fund accounts for a major US mutual fund com-
pany. Finally, we discuss several algorithmic and applied
extensions of the proposed algorithm in Section 5.

2. CONSTRAINED OPTIMIZATION OF
THE ROI

For a model with 0 ≤ y ≤ 11, assume that the specified
pull rate r can be achieved at a decision threshold β (0 <
β < 1), i.e., the accounts in the pull are those with an output
larger than β. In this case, maximization of

∑
yi∈Top r% xi

can be solved by the following constrained optimization over
yi, i = 0, . . . , n− 1, and β:

Max

n−1∑
i=0

xi · I(yi, β), (3)

subject to
∑n−1

i=0 I(yi, β)

n
= r, (4)

where

I(yi, β) =

{
1 : yi > β
0 : otherwise

. (5)

When the constraint
∑n−1

i=0 I(yi,β)

n
= r is satisfied, the num-

ber of accounts with the model output yi > β will be ex-
actly r% of n. The difficulty here is that I(yi, β) is non-
differentiable, and gradient based optimization cannot be
used to optimize Eq. 8.

In [8], [9], we demonstrate that the sigmoid function

σ(yi, β) =
1

1 + e−κ(yi−β)
, (6)

where κ > 0, does not provide a good differentiable approx-
imation to I(yi, β) when −1 ≤ yi − β ≤ 1. Instead, we have

1For simplicity, we’ll omit the independent variable e and
use yi for y(ei).



proposed the following differentiable approximation

f(yi, β + γ) =

{
(yi − β − γ)p : yi > β + γ

0 : otherwise
, (7)

where p > 1 and 0 ≤ γ < 1. A small but positive γ is often
helpful for a better generalization performance over the test
set. Now Eq. 3 becomes

Max

n−1∑
i=0

xi · f(yi, β + γ). (8)

However,
∑n−1

i=0 f(yi,β)

n
is not a good approximation to

∑n−1
i=0 I(yi,β)

n
, since f(yi, β) is often not close to 1. As in

[9], rather than trying to use a differentiable approximation
to r, we approximate a related ratio r

1−r
by the following

differentiable function:
∑n−1

i=0 f(yi, β)∑n−1
i=0 g(yi, β)

, (9)

where

g(yi, β) =

{
(β − yi)

p : yi < β
0 : otherwise

(10)

with p > 1. g(yi, β) is a differentiable approximation to the
following step function

Ip(yi, β) =

{
1 : yi < β
0 : otherwise

. (11)

Since the optimization often moves most yi close to β in the
end, we will see that Eq. 9 can provide a close approximation
to r

1−r
.

Now we convert the constrained optimization into an un-
constrained optimization problem by minimizing the follow-
ing Lagrangian:

L = − 1

n

n−1∑
i=0

xi · f(yi, β + γ) +
1

µ
(

∑n−1
i=0 f(yi, β)∑n−1
i=0 g(yi, β)

− r

1− r
)2.

(12)
During the training iterations, µ is gradually decreased un-

til convergence of the constraint (
∑n−1

i=0 f(yi,β)
∑n−1

i=0 g(yi,β)
− r

1−r
)2 is

achieved. In practice, we have found that mapping xi in
Eq. 12 to a value between -1 and 1 by

θ(xi) =
1− e−xi

1 + e−xi
(13)

typically obtains improved results.
In the Appendix, we derive the derivatives for yi. These

derivatives together with the chain rule can then be applied
to any parametric model, for which one can optimize the dif-
ferentiable objective function with respect to the parameters
using gradient based methods.2 In our projects, we apply
the proposed algorithms to a typical multilayer perceptron
(MLP) network with softmax outputs between 0 and 1, and
with a single hidden layer and direct connection between the
input and output layers. β can also be optimized with the
model parameters, but we have found that fixing β at 0.5
achieves almost the same results over our data sets.

2We use the limited memory BFGS method in [6].

2.1 Comparing methods
In Sections 3 and 4, we apply the new algorithm to pre-

dicting collectibility of accounts receivable and predicting
defection of mutual fund accounts, and compare the re-
sults of the proposed algorithm with the following four al-
gorithms’.

• Classification An ensemble of MLP classifiers is trained
by mean squared error based on the defined class label.
Since the class prior is typically low, each individual
classifier in the ensemble has a modified prior to com-
pensate for the imbalanced data sets [10].

• Weighted classification An MLP classifier is trained
by mean squared error based on either the defined
class label, e.g., whether the net redemption amount
is above or below 35% of the account balance, or the
ranks of the training samples. Using the ranks to de-
termine the class label is an intuitive idea: labeling
those samples in the top r% of x as positive and the
others as negative. When r is the same as the prior of
the defined class, these two approaches are the same.
During training, the samples are weighted by x or a
function of x. To avoid the dominance of those sam-
ples with an extreme value of x, we typically use the
sigmoid function of x to smooth out the weights.

• Ranking Burges et al. propose a ranking algorithm
using gradient descent [2]. We apply this algorithm to
train an MLP model which ranks x in our applications.
The algorithm tries to minimize the cross entropy func-
tion

∑

(i,j)∈S

−P̄ij log Pij − (1− P̄ij) log(1− Pij), (14)

where S = {(i, j)|xi ≥ xj , i, j = 0, . . . , n− 1}, and P̄ij

is the target probability of xi > xj . Pij is the model’s

estimate of P̄ij in the form Pij = e
yi−yj

1+e
yi−yj

. Then the

cost function becomes
∑

(i,j)∈S

−P̄ij(yi − yj) + log(1 + eyi−yj ). (15)

In our experiments, we choose P̄ij = 1 if xi > xj and
P̄ij = 0.5 if xi = xj .

• Regression An MLP regressor is trained by mean
squared error against x. We map x to a value between
0 and 1 using the sigmoid function.

3. PREDICTING COLLECTIBILITY OF AC-
COUNTS RECEIVABLE

Accounts receivable are unpaid customer invoices, and any
other money owed to a company by its customers. From
credit card issuers to banks, from local retail stores and
service businesses, to the federal, state and local govern-
ments, if the business or government unit extends credit,
offers payment installment plans, or makes assessments, it
has accounts receivable. The collection industry serves an
important role in the U.S. economy by recovering billions
in revenue from charged-off or delinquent accounts receiv-
able for U.S. companies. By returning this money to U.S.
companies, the collection industry saves American families
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Figure 1: This figure shows convergence of pull rates
achieved by the threshold β during the optimization.
Line 1 is for the training set, and Line 2 shows the
pull rate change over the test set.

on average $331 a year in money they otherwise would have
spent if businesses raised their prices to cover losses to bad
debt [1].

The portfolio of accounts receivable we worked on consists
of consumer loan accounts from several US financial service
institutions. The portfolio includes several types of accounts
in terms of account history. For example, some are the so-
called Prime accounts which are newly charged off accounts,
and some are Seconds which had already gone through a col-
lection process. Our goal is to develop a generic predictive
model which can be used to guide the agents’ collection ef-
forts. In particular, we would like to identify a high value
segment which consists of 11% of the whole portfolio. The
11% is chosen since the payer rate (percentage of paid ac-
counts in the first six months) is 11%. It is clear that the
return on investment is determined by the collection amount
from the identified 11% accounts in the segment.

The data set includes 684,600 accounts. We randomly
split the data set into a training set and a test set of equal
size. In addition to the account history and general de-
mographic information, several hundred data fields from a
credit score provider about the account owner are also avail-
able. The domain experts guided the feature selection, and
30 data fields are used in the final model.3 Missing values for
continuous variables are simply imputed by the mean with
an added binary column indicating missingness for this vari-
able. Most of the data fields are categorical. For categorical
variables with missing values, the sets of distinct values are
augmented by another value ‘missing’. We encode the cat-
egorical variable C = {c1, c2, . . . , ck} by replacing ci with
the conditional mean E(x|ci) and conditional standard de-
viation σ(x|ci), i = 1, 2, . . . , k.

We set r = 11% and fix β at 0.5 for the new algorithm,
trying to maximize the average collection amount among the
top 11% accounts. We choose γ and p in Eq. 12 so that the
number of training samples with the model output y > β is
close to r% and the average collection amount among the

3While we are still working on several feature selection al-
gorithms trying to reveal more useful data features, up to
now we have only achieved marginal improvement by adding
more data fields.
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Figure 2: This figure shows the improving average
collection amount among the top 11% accounts dur-
ing the optimization. Line 1 is for the training set,
and Line 2 is over the test set.

top r% in the training set is the largest. Here we chose
γ = 0.01 and p = 2 4, and the number of hidden units is
5.5 In Figures 1 and 2, we show the optimization process
along with iterations of µ, which is initialized at 100, and is
updated by µt+1 = 0.75µt during the optimization, where t
is the iteration index. Figure 1 shows that the optimization
converged when the number of training samples with y > β
reached 12%, which is quite close to the target pull rate 11%.
We can see that the pull rate over the test set, achieved by
the same threshold β, is also very close to the target 11%.
This demonstrates that Eq. 9 provides a good approximation
to r

1−r
. In Figure 2, with the iterations, a steadily improving

average collection amount among the top 11% is observed for
both the training and test sets. We rarely observe obvious
overfitting, and this justifies the use of the training set to
choose γ and p.

Table 3 presents the average collection amount in the top
11% accounts over the test set for five different models. The
classification model is an ensemble of 25 MLP networks with
a modified class prior between 0.02 and 0.5 [10]. For the
model of weighted classification, during training the samples
are weighted by σ(x) = 1

1+e−x , which is also the target vari-
able for the regression model. For ranking, most accounts
(89%) have a tied collection amount of zero. We can see
that the new algorithm is clearly exceeding all other algo-
rithms. Comparing with the classification model, the ROI is
improved by 25%. Note that the average collection amount
over the whole portfolio is $36 only.

new model class. weighted class. ranking regress.
$157 $126 $106 $61 $116

Table 3: The average collection amount in the top
11% accounts over the test set for five different mod-
els.

4In some cases, by choosing different p values in Eq. 8 and
Eq. 9, better results over the training set can be achieved.
5We have observed that the number of hidden units, varying
from 0 to 10, does not have a significant effect on the results
over our large data sets. Therefore all the MLP structures
in the paper have 5 hidden units.



4. PREDICTING DEFECTION OF MUTUAL
FUND ACCOUNTS

Worldwide the mutual fund industry houses 15 trillion US
dollars – about 8 trillion from US investors and another 7
trillion from investors in other countries. Today, the US
mutual fund industry holds about 18% of all households’
financial assets and about 22% of all outstanding US cor-
porate stock [5]. However, in the end of 2003 the industry
wide redemption rate stood at 24.2%, implying that the in-
vestor base completely turns over in 4 (1/0.242) years. To
illustrate the magnitude of redemptions in the mutual fund
industry, the Investment Company Institute estimated that
in 2003 1.086 trillion new dollars flowed into equity funds
but, over the exact same measurement interval, 934 billion
(86%) flowed back out [5]. The costs associated with keep-
ing track of this flowing river of money, adding and deleting
client information to databases, filing required tax forms
with federal, state and local taxing authorities as well as
simply cutting checks to redeeming clients is an enormous
drain on any funds’ expense ratio, not mentioning the rev-
enue drop of fund companies because of the decreased assets
under management (AUM) due to redemption. In recent
years, more and more mutual fund companies have recog-
nized the importance of early identification of investors at
risk of redeeming their assets (i.e., defectors), so that proac-
tive client service and educational programs could be initi-
ated to “plug” the outflow of assets.

We have developed a model to predict account defection
for a major US mutual fund company. In order to pro-
vide early identification of defectors, there is a two month
gap between the end of the independent variable (IV) win-
dow and the beginning of the two-month dependent vari-
able (DV) window. For example, at the end of February,
we would like to predict which accounts will defect in the
time period of May and June. The two-month leading time
allows the mutual fund company to act on the predicted
potential defectors in March and April. For classification
purpose, a defector is defined by the domain experts as an
account which had a net redemption amount (redemption
minus purchase) of at least 35% of the account balance in a
two month window. As the training set, we received about
184,000 accounts, each of which had an account balance of
at least $100,000. For training, the IV window is a one-
year period ending on May 31, and the DV window is a
two-month period of August and September. Based on the
definition of defection, the defection rate is below 1% in the
two month window. Regardless of the defection definition,
the average net redemption amount in the two months over
the whole training set was about -$3,000, where the nega-
tive sign means that, on average, the account balance had
a net increase. We used a forward time-shifted test set of
around 434,000 accounts, which had the one-year IV win-
dow ending on September 30 and the DV window consisting
of December and January.

The data for each account is a mixture of continuous and
categorical variables, including basic account information,
asset data, transactions, demographic information, bench-
mark performance data, and customer service records. There
are about 2,000 raw data fields, but the final model uses 123
data fields after conducting feature selection and time series
transformation [9]. The mutual fund company set r = 10%
based on the predetermined budget. We will discuss the
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Figure 3: This figure shows convergence of pull rates
achieved by the threshold β during the optimization.
Line 1 is for the training set, and Line 2 shows the
pull rate change over the test set.

savability issue in the next section. Until then let us assume
that the return on investment is primarily dependent on the
net redemption amount identified among the top 10%.

Again we fix β at 0.5 for the new algorithm and try to
maximize the average net redemption amount in the top
10%. We chose γ = 0 and p = 2 since, with these param-
eters, the number of training samples with y > β is close
to 10% and the average collection amount among the top
10% in the training set is the largest. We have seen that
these two goals are often quite consistent, i.e., when a set of
parameters results in the largest average collection amount,
it also brings the number of training samples with y > β
close to the target pull rate. We show the optimization pro-
cess along with iterations of µ in Figures 3 and 4. Again
we can see that the optimization converged when the num-
ber of training samples with y > β reached 11%, which is
quite close to the target pull rate 10%. Over the test set,
the number of samples with y > β reached 12%, 2% higher
than the target rate. Figure 4 shows a quite large difference
of the average net redemption amount between the training
and test sets. This is due to the overall net redemption is
changed in the test set’s DV window, which is four months
apart from the training set DV window. The average net re-
demption amount over all the accounts is now about -$3,400,
comparing with -$670 over the training set.

In Table 4, the classification model is an ensemble of 25
MLP networks trained with modified priors based on the
defection definition of 35% or more redemption. However,
the weighted classification model is trained by class labels
based on the ranking, i.e., the samples with the top 10%
of net redemption amount are positives and the others are
negatives. The training samples are weighted by 1

1+e−|x| ,

which gives larger weights to samples with a larger (posi-
tive or negative) net redemption amount. The regression
model is trained against σ(x) = 1

1+e−x . Note that in Table
4 a negative net redemption amount means a positive net
purchase. Though the classification model achieves a 39%
true positive rate (the new model has a true positive rate of
14%), it cannot effectively identify those accounts with the
highest redemption amount.
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Figure 4: This figure shows the average net redemp-
tion amount change among the top 10% accounts
during the optimization. Line 1 is for the training
set, and Line 2 is over the test set.

new model class. weighted class. ranking regress.
$1,236 -$6,723 -$18,968 -$9,923 $671

Table 4: The average net redemption amount in the
top 10% accounts over the test set for five different
models.

5. DISCUSSIONS
We have proposed a new learning algorithm which focuses

on maximizing the monetary measure under a fixed budget
constraint. The two applications demonstrate the substan-
tial improvement of financial impact by the new algorithm.
In this section, we discuss several related practical issues
and some algorithmic and application extensions.

• Savability There is no doubt that maximizing the
collection amount for the top r% accounts also max-
imizes the ROI of the collection efforts which reach
out to a predetermined r%. However, it is arguable
that maximizing the net redemption amount in the top
r% accounts would maximize the retained redemption
amount and thus the ROI. Another important factor
determining the ROI is the savability of the predicted
net redemption amount. It is reasonable to assume
that it might be more difficult to retain a substan-
tial redemption amount of a large account, since the
redemption rate against the balance might be insignif-
icant and the redemption is just some normal cash
flow activity. To model ‘savability’ directly appears
not feasible since ‘being savable’ is not observable and
cannot be defined correctly. However, we have tried
to model savability from the other aspect – ‘being un-
savable’, which can be partially defined, i.e., if an ac-
count was predicted to defect and was contacted for
retention but still became defected, this account was
unsavable. Here we implicitly assume retention efforts
do not cause originally non-defecting accounts to de-
fect. We have developed such a savability model for
a US mutual fund company. However, we have not
been able to combine the savability model with scores
from the model by the new algorithm in a principled
way, since the score is only a ranking indicator rather

than a probabilistic estimate of x. An empirical way
to consider savability is to increase the predetermined
r by a certain percentage, and to exclude those ac-
counts with a savability score below an empirically de-
termined threshold.

• Valuable false positives The model trained using the
new algorithm does not classify accounts into positive
and negative samples defined separately, e.g., by the
redemption rate of 35%. We have observed that the
model achieving the highest average net redemption
amount can have a very low true positive rate based
on the defection definition. Some companies will not
feel comfortable to see a low true positive rate based on
the defection definition given by their domain experts.
It would be most desirable to achieve both a high true
positive rate and a higher average redemption amount
among the false positives. We call these false positives
valuable false positives since they may have substantial
net redemption too. We have tried to simply add an
item, which approximates the true positive rate in [9],
into Eq. 12 and to minimize the Lagrangian:

L = − 1

n

n−1∑
i=0

xi · f(yi, β + γ)− 1

m

∑
i∈P

f(yi, β + γ)

+
1

µ
(

∑n−1
i=0 f(yi, β)∑n−1
i=0 g(yi, β)

− r

1− r
)2, (16)

where m = |P |, the number of positive samples. How-
ever, this intuitive approach does not appear to work
well.

• No budget constraint In some cases, there is no fixed
budget constraint and r is not predetermined. For
example, for the collection industry, the goal might
be loosely stated as collecting as much as possible by
contacting as less accounts as possible. For this goal
one might be tempted to minimize the following La-
grangian:

L = − 1

n

n−1∑
i=0

xi · f(yi, β + γ) +
1

µ

∑n−1
i=0 f(yi, β)∑n−1
i=0 g(yi, β)

. (17)

This approach does not work since it always tries to get
to a contact rate close to zero. In theory, the maximum
profit or ROI is achieved when the marginal collection
cost equals to marginal revenue (collection amount).
Typically, we can assume the marginal collection cost
is a constant. By searching over different r values, for
each of which a model needs to be trained by mini-
mizing Eq. 12, the optimum r can be found so that
the marginal collection cost is equal to the marginal
revenue and the ROI is maximized.

• Other applications The new algorithm can also be
applied to several other areas. For example, maxi-
mizing average returns of stock selection, identifying
tax auditing targets of highest values, and identifying
fundraising targets with the highest contributions – all
these tasks involve a predetermined budget and only
concern the related average monetary value in the top
r% determined by the budget. Even in the typical
customer relationship management area, e.g., churn
prediction for wireless service providers [10], since the



ultimate concern is the loss of revenue due to service
disconnection, we can apply this algorithm to iden-
tify those accounts with the highest revenue losses.
It would be interesting to compare this approach to
another approach which combines an estimate of cus-
tomer value with a predicted churn probability [7].
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APPENDIX

Derivatives for minimizing Eq. 12
The following partial derivatives with the chain rule together
form the basis to minimize Eq. 12 against the model param-
eters, e.g., the weights of an MLP structure.

Let

F =

n−1∑
i=0

f(yi, β) (18)

and

G =

n−1∑
i=0

g(yi, β). (19)

For i ∈ {i|f(yi, β+γ) ≤ 0, i = 0, . . . , n−1}, we have ∂L
∂yi

= 0.

For i ∈ {i|f(yi, β + γ) > 0, i = 0, . . . , n − 1}, we have the
following two cases:

• When f(yi, β) > 0,

∂L

∂yi
= − p

n
xi(yi − β − γ)p−1

+
2p

µ
(
F

G
− r

1− r
)
1

G
(yi − β)p−1. (20)

• When g(yi, β) > 0,

∂L

∂yi
= − p

n
xi(yi − β − γ)p−1

+
2p

µ
(
F

G
− r

1− r
)

F

G2
(β − yi)

p−1. (21)


