
erogeneous full-scale simulations will require not only 
petaflop capabilities but also a computational infrastruc-
ture that permits model integration. Simultaneously, it 
must couple to huge databases created by an ever-in-
creasing number of high-throughput instruments.”2

More recently, a DOE-sponsored report on visual anal-
ysis and data exploration at extreme scale3 found that 
“datasets being produced by experiments and simula-
tions are rapidly outstripping our ability to explore and 
understand them, and there is, nationwide, compara-

tively little basic research in scientific data analysis and 
visualization for knowledge discovery.”

DEFINING THE DISCIPLINE
All of the existing definitions of data-intensive comput-

ing tend to focus on handling the problems of massive 
datasets.4 However, because new application requirements 
are driving data-intensive computing, we believe a broader 
definition is needed. 

Data-intensive computing promises not just an evolu-
tionary change in informatics but also a revolutionary 
change in the way researchers gather and process in-
formation, from the hardware and algorithms to the 

T
he continued exponential growth of compu-
tational power, data-generation sources, and 
communication technologies is giving rise to 
a new era in information processing: data-
intensive computing. 

According to a 2004 study on data management for 
science by the US Department of Energy (DOE), “We are 
entering an information-dominated age. Ability to tame 
a tidal wave of information will distinguish the most 
successful scientific, commercial, and national-security 
endeavors.”1 Another study on systems biology for energy 
and the environment, when discussing computational 
models, noted that “these enormously complex and het-

Richard T. Kouzes, Gordon A. Anderson, Stephen T. Elbert, Ian Gorton, and 
Deborah K. Gracio, Pacific Northwest National Laboratory

Through the development of new classes of 
software, algorithms, and hardware, data-
intensive applications provide timely and 
meaningful analytical results in response 
to exponentially growing data complexity 
and associated analysis requirements. 
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presentation of knowledge to the end user. Applications 
in many disciplines are driving a shift in the emphasis of 
data-intensive computing from focusing solely on large 
datasets to the broader realm of issues dealing with the 
time to reach a solution when data-handling capacity is 
a significant factor, such as required real-time processing 
of massive data streams. 

Some examples illustrate these new requirements: 

The North American electric power grid opera-
tions generate 15 terabytes of raw data per year, 
and estimates for analytic results from control, 
market, maintenance, and business operations 
exceed 45 Tbytes/day. As developers add new high- 
resolution sensors to the grid, this data volume is 
increasing rapidly while the time available to make 
control decisions remains constant.
A new generation of climate models that explicitly 
resolves, rather than parameterizes, cumulus clouds 
will produce a 1,000-fold increase in data, from  
8 Tbytes for a single 100-year simulation at current 
coarse resolution (100 km) to 8 petabytes per run for 
the same simulation at the planned 3-km resolution. 
The latest genomics and proteomics programs in biol-
ogy produce massive datasets from experiment and 
theory that require new approaches to discovery. Pro-
duction of proteomics data by just our laboratory can 
exceed 10 Tbytes/day; the national rate of proteomics 
data production exceeds 100 Tbytes/day from such 
activities as microbial processes related to the cre-
ation of new biofuels.
Social networking sites such as Facebook (www.
facebook.com) capture and store petabytes of het-
erogeneous information and maintain complex 
networks that link users. Mining this data to create 
new, high-value applications for users is an im-
mensely challenging problem. For example, Google 
sorts through 20 Pbytes per day.5 
The intelligence community is challenged with ex-
tracting useful knowledge from large amounts of 
communications data that is many orders of magni-
tude beyond its current ability to analyze. Analysts 
need to repeatedly filter through many terabytes of 
data to extract the information relevant to national 
security issues. 
High-energy physics remains a leading genera-
tor of raw data. For example, the Atlas (http:// 
atlasexperiment.org) experiment for the Large Hadron 
Collider (LHC) at the Center for European Nuclear Re-
search (CERN) will generate raw data at a rate of 2 
Pbytes per second beginning in 2008 and store about 
10 Pbytes per year of processed data. 

•

•

•

•

•

•

A petabyte represents the content of 5,000 Blu-ray 
disks (each holding 200 Gbytes), 0.6 km of them laid 
end-to-end. But that is just the tip of the iceberg. IDC 
estimates that in 2007, the digital universe consisted of 
281 exabytes (281,000 petabytes—about halfway to the 
moon with Blu-ray disks).6 IDC also estimates that the 
amount of information will grow by a factor of 10 in just 
five years (more than twice to the moon and back).

These challenging examples represent a new era that 
will require a shift for information technology to incor-
porate a far more expansive, flexible, and responsive 
enterprise model and operating philosophy.

In contrast to compute-intensive tasks where 
available processing power is the rate-limiting factor, data- 
intensive computing could be qualitatively defined as “any 
computational task where data availability is the rate-limit-
ing factor to producing time-critical solutions.” The term 
“availability” used here includes such factors as latency 
and bandwidth in hardware systems that impact the ca-
pacity to obtain, process, and dispose of data at rates that 
match the sources’ capability to provide data. However, 
this definition misses the mark because it would include 
processes where data has not yet been produced, which 
is not necessarily a data-intensive problem. We suggest an 
updated qualitative definition: Data-intensive computing is 
managing, analyzing, and understanding data at volumes 
and rates that push the frontiers of current technologies.7 

Data-intensive computing facilitates human un-
derstanding of complex problems. Data-intensive 
applications provide timely and meaningful analytical 
results in response to exponentially growing data com-
plexity and associated analysis requirements through 
the development of new classes of software, algorithms, 
and hardware. In many application domains, data vol-
umes that must be processed have grown to the petabyte 
scale while, simultaneously, computational models and 
algorithms have pushed the performance of existing 
computer architectures.8 

Revolutions in scientific experimentation, data sensor 
diversity, and computing power, and the availability of in-
expensive, distributed communications have driven this 
explosion in the volume and complexity of data. Effective 

A new era will require a shift for 
information technology to incorporate 
a far more expansive, flexible, and 
responsive enterprise model  
and operating philosophy.
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Figure 1. Data processing pipeline blueprint. The processing 
steps in the pipeline reduce large data volumes to 
create small datasets suitable for visualization or human 
understanding.

coupling of computational simulations with experimental 
and field data through innovations in knowledge manage-
ment, information analytics, visualization, and decision 
tools is critical for progress in science, homeland security, 
and the national energy and economic infrastructure.

To be more specific about what data-intensive comput-
ing encompasses, it is valuable to quantify the meaning of 
this term beyond a qualitative definition. Quantifying the 
meaning of data-intensive computing is heavily impacted 
by the complexity of factors that need to be considered. 
Classifying a problem as data-intensive could clearly 
depend upon the data rates (gigabytes/s to terabytes/s) and 
data volumes (terabytes to petabytes) involved, but other 
factors such as the variability in data rate, bandwidth of 
data paths, number of data handling units, complexity of 
the data and analysis, and human limitations in interacting 
with the data can all be important. 

Data-Intensive Computing Styles
Several model solutions for contemporary data- 

intensive problems have emerged in the past few years. 

Data-processing pipelines
Researchers use processing pipelines to address many 

large data problems emerging from the scientific domains. 
Initially, the researchers capture and store raw data that 
originates from a scientific instrument or a simulation. 
The first stage of processing typically applies techniques 
to reduce the data’s size by removing noise or by indexing, 
summarizing, or marking it up so that downstream analyt-
ics can manipulate it more efficiently. 

Once the capture and initial processing have taken 
place, complex algorithms search and process the data. 
These algorithms create information or knowledge that 
humans or further computational processes can digest. 
Often, these analytics require large-scale distributed or 
specialized high-performance computing platforms to 
execute. 

Finally, the researchers present the analysis results to 
users so that they can digest and act upon them. This stage 
might use advanced visualization tools, enabling the user 
to step back through the processing that has been per-
formed to conduct forensic investigations to validate the 
outcome. Users might also need facilities to modify param-
eters on some of the analytics that have been performed 
and reexecute various steps in the processing pipeline.

As Figure 1 shows, processing pipelines start with 
large data volumes with low information content. The 
subsequent processing steps in the pipeline reduce this 
data to create relatively small datasets rich in information 
and suitable for visualization or human understanding. 
In many applications, for example, the Atlas (http://atlas.
web.cern.ch/Atlas/index.html) high-energy physics ex-
periment, large datasets are moved between sites over 
high-speed wide-area networks for downstream pipeline 
processing. 

Data warehouses
Commercial enterprises are voracious users of data 

warehousing technologies. Mainstream vendors supply 
these database technologies to provide archival storage of 
business transactions for business analysis purposes. As 
enterprises capture and store more data, data warehouses 
have grown into the petabyte range. The best-known, 
Wal-Mart’s, has grown over a decade to store more than a 
petabyte (Information Week, 6 Aug. 2007), fueled by daily 
data from 800 million transactions generated by its 30 
million customers. 

The data warehousing approach is now finding traction 
in science. The Sloan Digital Sky Survey (SDSS) SkyServer 
stores the results of processing raw astronomical data from 
the SDSS telescope in a data warehouse for subsequent 
data mining by astronomers (http://cas.sdss.org/dr6/en). 
While the SkyServer data warehouse currently only stores 
around 10 Tbytes of data, its fundamental design principles 
are being leveraged in the design of the data warehouse for 
the Large Synoptic Survey Telescope (www.lsst.org) that 
will commence data production in 2012. The telescope 
will produce 6 Pbytes of raw data each year, requiring the 
data warehouse to grow at an expected rate of 300 Tbytes 
per year.

Data centers
Driven by the Internet’s explosive growth, Internet 

search enterprises such as Google and Yahoo have de-
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veloped multipetabyte data centers based on low-cost 
commodity hardware. Data is stored across a number of 
widely geographically distributed physical data centers, 
each of which might contain more than 100,000 nodes. 
Programming models such as MapReduce5 and its open 
source counterpart, Hadoop (http://hadoop.apache.org), 
provide abstractions that simplify writing applications 
that access this massively distributed data collection. 

Essentially, MapReduce distributes data and processing 
across clusters of commodity computers and processes 
the data in parallel locally at each node. In this way, mas-
sively parallel processing can be achieved using clusters 
that comprise thousands of nodes. In addition, the sup-
porting runtime environment provides transparent fault 
tolerance by automatically duplicating data across nodes 
and detecting and restarting computations that fail on a 
particular node. 

This approach is also attracting interest from the sci-
entific community. The National Science Foundation is 
partnering with Google and IBM to provide a 1,600-node 
cluster for academic research (www.nsf.gov/news/news_
summ.jsp?cntn_id=111186). Supported by the Hadoop open 
source software, this provides an experimental platform 
for scientists and researchers to use in investigating new 
data-intensive computing applications.

Challenges for Technologies 
While some problems combine both data-intensive and 

compute-intensive challenges, others clearly fit into one 
class or the other. 

Data-intensive problems occur when the size or com-
plexity of the information source influences the way 
researchers address solutions or seek answers. Data-inten-
sive computing begins with the analysis and interpretation 
of massive amounts of data. The data might be needed to 
build and constrain the space of feasible models that make 
simulations computationally tractable, but more often the 
primary focus of the analyses is to derive insights through 
computationally driven discovery or hypothesis testing. 

A variety of tools for the management of data- 
intensive problems exist or are emerging. However, major 
gaps in capabilities remain and extant capabilities are not 
well integrated or always easily adaptable across domains. 
The problems are exacerbated by the many data-intensive 
problems that require the computing power available from 
high-performance computing systems or massive distrib-
uted clusters of commodity machines.

Data management
The first challenge to data-intensive computation is the 

incoming data, obtained from multiple sources, types, 
scales, and locations with varying degrees of quality and 
reliability. Information about the data (metadata) might be 
either highly relevant and high quality (automated results 

from sensors or experiments) or sparse and unreliable. The 
metadata might be embedded in large amounts of extrane-
ous information, such as news feeds, where evaluation by 
humans might be desirable or even necessary for proper 
assertion of semantic or ontological relationships. 

Other requirements might add to the complexity of the 
data ingest process. Must the data be merged into a single 
stream, as audio and video data are merged in a streaming 
media presentation, before being analyzed? How should 
the data be augmented with additional metadata to indi-
cate references and relationships to other data? What data 
structure contains the most information yet is the most 

efficient to analyze? How does this data structure indicate 
where data is missing or is of poor quality? Is there an op-
timal sampling rate for data at different resolutions? Is the 
dataflow steady or does it arrive in bursts? Can the bursts 
exceed processing capacity? If so, how is this handled? 
How long must the data be preserved? Are there acceptable 
lossy or nonlossy compression algorithms? The answers to 
these fundamental questions are needed to define a data- 
management architecture and establish performance re-
quirements for a data-intensive application.

Various approaches are available for physically 
storing and accessing massive data volumes. High- 
performance, clustered file systems such as Lustre (www.
lustre.org) and the General Parallel File System (www-03. 
ibm.com/systems/clusters/software/gpfs/index.html) 
are commonly deployed in high-performance computing 
centers. These file systems are capable of scaling across 
thousands of disks to support petabytes of storage within 
a single file system. They also offer high reliability and 
availability capabilities by providing redundant paths 
and automatic recovery from node and disk failures. 
From an application perspective, they present a tradi-
tional Posix-style file system interface for data-intensive 
applications to exploit.

Underlying the MapReduce programming model is the 
Google File System, along with its open source counterpart, 
the Hadoop Distributed File System. While these systems 
have much in common with traditional distributed file 
systems, they differ in that they are built based on the as-
sumption that terabyte datasets will be distributed across 
thousands of disks attached to commodity compute nodes. 
In such environments, hardware failure occurs regularly. 

The relational database technology  
that underpins data warehouses is 
scaling to support petabyte data 
collections.
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Hence, data redundancy, fault detection, and computation 
recovery are core facilities that the file system provides 
transparently to applications. In addition, files are assumed 
to be read-mostly, and they can only be created and subse-
quently appended to. This simplifies data coherency issues 
and provides high-throughput data access. 

In addition, the relational database technology that un-
derpins data warehouses is scaling to support petabyte 
data collections. Parallel, high-performance relational da-
tabase engines are capable of automatically parallelizing 
Structured Query Language queries and efficiently plan-
ning query execution on relational data that is distributed 
in partitioned tables across multiple disks. The declarative 
nature of SQL queries and the built-in query execution 
and data management capabilities of relational databases 
can provide a highly simplified model for data-intensive 
applications, as long as the database can organize the un-
derlying data into a relational form that can be queried 
efficiently. 

While each of these data management approaches au-
tomatically maintains the necessary file metadata needed 
to access and manage files, many data-intensive applica-
tions, especially in science, have much more demanding 
metadata management requirements. Understanding 
how particular analyses are derived at some stage in the 
future requires capturing provenance information.9 Prov-
enance captures snapshots of the input and output files to 
a process, the version of the analysis code executed, and 
a record of the overall processing steps performed in an 
analysis pipeline. 

Several projects seeking solutions for integrating prov-
enance capture and query with a scientific workflow 
environment are under way10 and are showing prom-
ising results. Long-term storage of provenance data 
will add considerably to the storage burden for data- 
intensive applications. Hence, solutions in which the sci-
entist can guide and optimize when and how provenance 
is captured will likely emerge as the most attractive and 
pragmatic options.

A sample data management solution for biology, 
the PRISM data collection and management system 
(http://ncrr.pnl.gov/prism) currently manages more than  
70 Tbytes of proteomics information generated by a vari-
ety of mass spectrometers in the Environmental Molecular 

Sciences Laboratory at the Pacific Northwest National 
Laboratory (PNNL). Individual experiments at this na-
tional user facility can produce 10 Gbytes of raw data. 
PRISM’s data management system holds the raw spectra 
and analysis results files and metadata. PRISM’s mass tag 
system tracks all peptides found for each organism and 
contains the mass tags and results of peak matching for 
each experimental campaign. A relational database stores 
metadata about the experiments and the raw and resulting 
data. Entries in the database point to the actual data files 
derived from the mass spectrometer and intermediate 
processing, which are stored as flat files in a hierarchical 
distributed file system.

Integration
The data warehouses and data center approaches to 

data-intensive computing are successful in part because 
they bring all the data they can analyze to a single logi-
cal file system. This supports efficient data access as the 
analyses can be deployed on processors local to the data, 
and programs are composed using a single programming 
model (SQL or Hadoop) and runtime environment.

Unfortunately, many data-intensive applications cannot 
make this simplifying assumption. The data they need to 
process is inherently distributed, and legacy analysis codes 
must be used that are nonhomogeneous in terms of pro-
gramming models, languages, and execution platforms. 

Biology has good examples of this. There are numer-
ous biology-related data sources, including Genbank 
(www.ncbi.nlm.nih.gov/Genbank—more than 110 giga-
bases stored by February 2008), Entrez (www.ncbi.nlm.
nih.gov/gquery/gquery.fcgi), SwissProt (www.ebi.ac.uk/
swissprot), KEGG (www.genome.jp/kegg), and the Protein 
Data Bank (PDB; www.rcsb.org/pdb/home/home.do—with 
structural information for more than 46,000 proteins in 
April 2008).

In these widely distributed, data-intensive applications, 
copying very large datasets is time-consuming. For ex-
ample, copying a 1-Pbyte file on a 10-Gbps network with 
80 percent utilization takes around 11 days. It therefore 
becomes crucial that, whenever possible, data analyses 
execute locally to the data. Achieving this requires mecha-
nisms to invoke computations remotely and return the 
results efficiently. 

In the past few years, Web services have emerged as the 
predominant means for facilitating distributed computa-
tion. Requests and results are transmitted as messages 
using the SOAP protocol, and these messages can be se-
cured by leveraging existing security investments through 
Web services security. 

Web services are, however, not suitable for trans-
mitting large payloads as they encode data using XML, 
which can rapidly become verbose as data sizes increase. 
This has led to solutions in which requests and input 

Process orchestration is a key 
component in the construction  
of high-performance, distributed  
data-intensive applications.
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parameters are delivered using Web services, and the 
results are made available asynchronously over a pro-
tocol more amenable for large file transfer, such as the 
Parallel File Transport Protocol. 

As these results typically take some time to produce 
at the distributed compute resources, their efficient re-
trieval requires some form of process automation, or 
orchestration, which is triggered by a notification of avail-
ability message. Process orchestration is therefore a key 
component in the construction of high-performance, dis-
tributed data-intensive applications. Approaches based 
on standards like the Web Services Business Process 
Execution Language and Kepler (http://kepler-project.
org) show promise for this purpose, but much research 
is needed to improve the usability, manageability, and 
adaptability of these tools for use in large-scale data-
intensive applications.11 

Analysis
As data sizes increase, so do the compute resources 

needed to analyze them. In some cases, the analysis scales 
linearly with data size, and thus is amenable to straightfor-
ward parallelization techniques. However, many problems 
require more complex processing, such as multiple passes 
over data or graph searching, and they scale superlinearly 
with data size. As the data sizes increase, these algorithms 
take exponentially longer to execute and consume vast 
amounts of resources on high-performance computing 
platforms.

Undoubtedly, advances in supercomputers will acceler-
ate the performance of these algorithms, although there 
are challenges here that researchers must address. For ex-
ample, over the past 20 years, bandwidth has doubled in a 
period of 1.7-2.9 years, depending on the medium—proces-
sor, memory, LAN, disk—while latency has only improved 
20 to 30 percent in this doubling period.12 The speed of 
light ultimately limits latency; this problem is at the heart 
of many data-intensive analyses.13 

To address this limitation, new latency-hiding tech-
niques are emerging in hardware architectures. For 
example, processors with hardware-based thread support, 
such as the Cray Threadstorm and Sun’s Niagara, can ef-
fectively hide data access latencies by efficiently exploiting 
parallelism through rapid context switching. 

But ultimately, in the face of ever-growing data vol-
umes, new algorithms are needed. One approach, machine 
learning, shows promise. It encompasses a wide range of 
approaches, typically involving Bayesian statistics with 
or without Markov models. Methods for modeling condi-
tional probability density functions through regression 
and classification include artificial neural networks, genetic 
algorithms, genetic programming, K-nearest neighbor, 
quadratic classifier, and support vector machines. Our 
laboratory has had some success using support vector ma-

chines on several problems, including homology detection 
in eukaryotic organisms.14 The advantages of SVMs include 
a compact classifier that minimizes the interaction with the 
data and a training step resistant to overtraining.

Cross-Cutting Requirements 
Although data-intensive computing needs vary by 

application area, in all cases, the data-intensive comput-
ing capability must provide an integrated and seamless 
framework of tools, services, and environments between 
high-performance computing resources and data-intensive 
analytics. This will entail tightly bundled mathematics, 
statistics, and computational sciences capabilities, plus 
linkage to specific scientific domains and widely applicable 
core capabilities. 

The hardware architecture must be tailored for data-in-
tensive analytics, and it must be scalable and portable to all 
venues and platforms with the ability to process complex 
streaming data and large-volume data repositories. This 
requires a repository of tools, methods, and expertise that 
can span the spectrum of solutions from highly integrated, 
complex systems to isolated analyses on focused problems 
adaptable for use on a variety of applications.

To understand the various data-intensive computing 
requirements of a range of scientific fields, PNNL held a 
series of focus groups with domain scientists in the areas 
of systems biology, climate modeling, energy systems, 
homeland security, and computational science. The sci-
entists from each of these domains described a need for 
creating a comprehensive knowledge discovery environ-
ment, especially for nonexperts in a specialty area, to ease 
access to the flood of diverse data, integrate significantly 
enhanced modeling capabilities, and guide experiment-
ers to perform optimal experiments. From their input, 
a set of cross-cutting common requirements related to 
data-intensive computing was compiled, as listed in Table 
1. The table presents requirements and challenges for the 
architecture components (data acquisition, data manage-
ment, modeling and simulation, algorithms, information 
analytics, and computing platforms) for each of these ap-
plication areas.

The focus groups generally believed that transforma-
tional, not incremental, approaches are needed to have a 
major impact. Comprehensive integrated models are re-

Inexpensive digital sensors and the 
ability to move the data to analysis 
engines are opening new opportunities 
in nearly every field.

31JANUARY 2009



Table 1. Summary of cross-cutting data-intensive computing characteristics and requirements.

Architecture components Cross-cutting characteristics and requirements

Data acquisition • Unsynchronized exploding amounts of high-volume data produced by a wide range of rap-
idly evolving experimental, computational, and other information sources.

• Disparate, incomplete, sometimes perishable data, with no standard formats and of unknown 
pedigree existing in stove-piped data stores.

• More data volume might not be useful if it is more of the same; need different data to 
improve the conclusions drawn.

Data management • Users overloaded by volumes of data.

• Since all data cannot be saved, decisions are made regarding what data is important to 
archive even though humans cannot get their arms around the problem.

• Raw data is of interest to a few, while the processed data derived from heterogeneous 
sources is of value to many.

• There is no common data format or architecture to pull data and information together since 
data is accumulated, stored, and owned by different groups, creating the need to obtain 
authority for data movement with the incurred cost and time.

Modeling and simulation • Simulations need to focus on results that can be tested.

• Modeling is a multiscale problem in space and time.

• Predictive models are needed for a variety of mission areas.

• Analysis can be data-driven or model-driven, and requires a common environment for bring-
ing these together.

Algorithms • Need improved, trusted, open, efficient, and validated algorithms that correspond to the 
state of knowledge for classes of problems that are scalable from today’s data to massive, het-
erogeneous datasets.

• Algorithms are needed to capture important events out of the large data stream, most of 
which is unimportant.

• Approximations are currently made because of limitations on spatial scale; more accurate 
algorithms are needed.

• Need a universal parser to tag information for analysis.

• Need algorithms to recognize and predict intent by combining all available data.

Information analytics • Require an integrating informatics resource manager that takes in sensor data, transforming 
between heterogeneous datasets and integrating computational tools, and presents results to 
the human user.

• Since the scale of data and problems overwhelms visual displays, new approaches are 
needed to develop the appropriate level of abstraction and to condense and select data to dis-
play under the user’s control.

• Collaborative sharing and analysis of datasets and observations are desirable.

Computing platforms • Current architectures are inadequate for the problem set to access large local and distributed 
datasets, providing solutions with reasonable throughput to analyze and model at the 
required spatial scales.

• Current machines do not have the storage capacity for the amount of data that models use 
and produce. 

• Need self-healing and intrinsically secure operating systems with high-performance net-
working that provides built-in encryption.

• Computational needs range from large central high-performance computing systems to 
portable lightweight systems such as miniaturized labs on a chip for field deployments.
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quired for understanding very complex, multistage physical 
systems. Support is required for high-speed dataflows in 
various formats, from disparate, heterogeneous data 
sources, with classified and unclassified sources, over vari-
ous communication paths being integrated together with a 
knowledge discovery tool. Large datasets, including those 
from fielded sensor systems, can be highly perishable, re-
quiring real-time, centralized integration, identification, 
and action.

Where do we go from here?
Having outlined the challenges, the question remains, 

How will progress be made? Will commercial interests be 
able to drive solutions that support a healthy, data-driven 
economy or are there fundamental issues that require pre-
competitive investments from private and public sources? A 
related question, and one of general concern to all forms of 
high-performance computing, is, Will the solutions to com-
mercial problems be adequate to address broader public 
interests in areas of national security, public health, en-
vironmental stewardship, and the scientific research that 
supports and advances these areas? What role will each 
of the interested parties play: the scientific research com-
munity, industry, standards bodies, public policy makers, 
and information consumers?

At some level, the limits of engineering and economy 
constrain the infrastructure equipment providers. The 
move to multicore and many-core chips is being driven not 
because it is a good idea, but because given realistic power 
limits and the effect on increasing clock speed, there is 
no alternative way to increase performance at the rate 
industry expectations dictate. Terabyte disks with only 
minor performance improvements over a decade ago are 
another example of how the economics and technology 
of what is possible create their own challenges. Improved 
memory volumes without associated bandwidth or latency 
improvements are a similar phenomenon.

Inexpensive digital sensors and the ability to move the 
data to analysis engines are opening new opportunities in 
nearly every field: astronomy, physics, chemistry, biology, 
climate science, and the fields they support, such as public 
health and threat detection. The constantly changing bal-
ance points of device capability are a fact of life, and while 
uncomfortable in many respects, they power the engine 
of innovation.

Software that can mask the technology’s constant un-
derlying shifts has a tremendous advantage. Google has had 
great success using the MapReduce5 programming model 
for many different purposes. One reason for this success 
is the model’s simplicity. Its popularity has spawned open 
source versions such as Hadoop. Is this the kind of spark 
that HTTP provided, revolutionizing our concept of data 
access? The infrastructure that makes MapReduce suc-
cessful is complex and evolving, and is not suitable for all 

data-intensive environments. However, the model’s simplic-
ity has great appeal in a field that easily gets bogged down 
with the complexities of semantic translation, metadata 
management, schemas, federated Web services, and a 
forest of policy domains.

Frameworks such as MapReduce—which can mask a 
data-intensive environment’s underlying complexity so 
that humans can do what they do best, be creative, without 
imposing too many restrictions—are the key enablers of 
data-intensive computing. Managing the internal complexity 
is a difficult technological problem that sometimes can be 
addressed with standards when there are competing, equally 
valid solutions, but might need fundamental research at other 
times when there are no obvious solutions.

D
ata-intensive computing is undergoing a rapid 
transformation driven by the demands of 
science, engineering, and commerce. Issues 
abound, while solutions lag, partly due to 
the difficulty of defining the full scope of the 

diverse data-intensive problems. Core issues of data-inten-
sive architectures and approaches need clear definition 
and concerted efforts if progress is to be made before we 
collapse under the burden of our data-intensive world. 
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