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ABSTRACT

Advances in internetworking technology and the decreas-
ing cost-performance ratio of commodity computing com-
ponents have enabled Volunteer Computing (VC). VC plat-
forms aggregate tens or hundreds of thousands of hosts.
These hosts are typically volatile, which raises difficult re-
search questions. Most research in this area relies on sim-
ulation. The main issue when developing VC simulators is
scalability: How to perform simulations of large-scale VC
platforms with reasonable amounts of memory and reason-
ably fast? To achieve scalability, state-of-the-art VC simu-
lators employ simplistic simulation models and/or target on
narrow platform and application scenarios. In this paper we
enable VC simulations using the general-purpose SimGrid
simulation framework, which provides significantly more re-
alistic and flexible simulation capabilities than the afore-
mentioned simulators. Our key contribution is a set of im-
provements to SimGrid so that it brings these benefits to
VC simulations while achieving good scalability.

1. INTRODUCTION

Advances in internetworking technology in the last decade
have made it possible to establish distributed computing
platforms at a global scale. Capitalizing on the decreas-
ing cost-performance ratio of commodity computing compo-
nents, Volunteer Computing (VC) platforms aggregate tens
or hundreds of thousands of hosts. VC platforms are attrac-
tive as they provide enormous amounts of computational
power at low cost. However, the hosts are typically individ-
ually owned, and thus heterogeneous as well as volatile be-
cause subject to frequent downtimes and reclaims. To cope
with host volatility and heterogeneity, production VC uses
a centralized server and a simple master-worker computing
model for large numbers of independent, compute-intensive
tasks. The deployment of new classes of VC applications and
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the development of alternate designs for VC systems man-
date that several difficult research questions be answered.
In general, research in this area is experimental in nature.
Since experimenting with real-world VC platforms is a chal-
lenging proposition, due in part to the need for repeatable
experiments, most researchers resort to simulation.

Several simulators have been proposed and developed spe-
cifically for VC systems and applications [3, 32, 15, §]. A
paramount concern is scalability, i.e., the ability to simu-
late large-scale platforms and applications with low time and
space complexity. To achieve good scalability these simula-
tors make allowances that afford scalability at the expense
of realism and/or flexibility. For instance, they may opt for
not simulating network resources, for simulating host avail-
ability using standard probability distribution functions in-
stead of real-world availability traces, or for simulating only
one particular scenario without providing a generic and pro-
grammable simulation framework. In this paper we take
a different approach and enable VC simulations using the
general-purpose SimGrid simulation framework, which pro-
vides significantly more realistic and flexible simulation ca-
pabilities than aforementioned simulators. Our key result is
that it is possible to improve the SimGrid simulation core
to achieve high scalability. We make the following contribu-
tions: (i) we propose, justify, and implement improvements
to SimGrid in a view to supporting VC simulations; (ii)
we evaluate the impact of our improvements on simulation
scalability via simple benchmarks; and (iii) we compare our
improved SimGrid version to competing approaches.

This paper is organized as follows. Section 2 discusses
related work. Section 3 presents the SimGrid simulation
core and Section 4 describes improvements to it. Section 5
presents experimental results. Section 6 concludes the paper
and highlights directions for future work.

2. BACKGROUND AND RELATED WORK
2.1 Volunteer Computing

Volunteer Computing is a form of distributed computing
that allows volunteers to donate their computers’ idle CPU
times to a given application, or project. VC became fa-
mous thanks to the SETI@home project [2]. Since then,
SETI@home has been refactored and open-sourced, culmi-
nating in the release of BOINC (Berkeley Open Infrastruc-
ture for Network Computing) [1]. BOINC is the most pop-



ular VC infrastructure today with over 580,000 hosts that
deliver over 2,300 TeraFLOP per day. In such VC infras-
tructures, each project (e.g., SETI@home, Climatepredic-
tion.net, Einstein@home, World Community Grid) is hosted
on a server that provides hosts with work units. Once a host
has fetched one or more work units, it disconnects from the
server and computes work unit results. Several mechanisms
and policies determine when the host may perform these
computations, accounting for volunteer-defined rules (e.g.,
caps on CPU usage), for the volunteer’s activity (e.g., no
computation during keyboard activity), and for inopportune
shutdowns.

Salient characteristics of VC systems are thus their scale,
their heterogeneity, and their volatility and unpredictabil-
ity [22]. One way in which to cope with these characteristics
is to run applications that consist of large numbers of inde-
pendent work units (i.e., orders of magnitude larger than
the number of available hosts). Supporting new application
classes mandates that open research questions be addressed
so that the effects of heterogeneity and volatility can be
mitigated intelligently. For instance, scheduling techniques
have been proposed for VC applications that consist of small
numbers of work units [19]. Other works have proposed de-
parting from the traditional centralized server approach and
bring in ideas from peer-to-peer computing [11, 7].

In the vast majority of the cases, VC research must be
done empirically. Unfortunately, studying VC systems in
vivo is a challenging proposition. Production VC systems
are rarely available for experimentation so as not to interfere
with their workload. Deploying a VC system for the pur-
pose of experimentation is possible at best at moderate, non-
representative scale. Besides, to be convincing, experiments
should be conducted for more than one platform scenario.
Finally, and perhaps most important, non-deterministic host
volatility makes experiments inherently non-repeatable even
when run back-to-back. Given these challenges, most re-
search in this area is done through simulation.

2.2 Volunteer Computing Simulation

2.2.1 Design Issues

Simulating the hosts — The most generic and flexible ap-
proach for simulating the execution of a VC client is to model
each host as a lightweight process that executes arbitrary
source code and that uses a simulation API to simulate data
transfers, downtime, computation, etc. The scalability chal-
lenge is space complexity: for a VC simulation of one million
hosts running on a single machine with 4GB of memory, each
host can only be described with about 4KB. A popular alter-
native is to represent each host by a finite-state automaton.
While this approach greatly limits the flexibility of the sim-
ulation and takes it further from a real-world system, it may
allow better scalability. More elaborate techniques, some of
them used for simulating peer-to-peer systems (e.g., fluid
simulation [28, 23]), may be viable but, to the best of our
knowledge, have yet to be used for VC simulation.
Simulating the network — One option is to assume that
data transfers take a fixed (possibly zero) amount of time,
or an amount of time proportional to the data size. Such a
naive model may be justified for simulating compute-intensive
applications when server bandwidth is plentiful. For other
scenarios, realistic network simulation is needed. Although
simulation of large-scale networks can be extremely costly
(e.g., using packet-level simulation), simulation based on

mathematical models of network flows [24] may be feasible.
Simulating volatility — The most realistic approach for
simulating volatility is to “replay” availability traces col-
lected on VC systems [21]. This approach raises a scalability
challenge as traces may be numerous and large, which makes
storing and processing them expensive. The alternative,
which affords much higher scalability, is to rely on statis-
tical characterizations of host availability [22, 20]. Although
some simple candidate models have been identified [27], it is
not clear how closely they represent typical real-world plat-
forms.

Choosing a time scale — The time granularity of the sim-
ulation is a difficult issue because researchers may be in-
terested in long-term notions (e.g., average host idle time)
as well as in short-term notions (e.g., the number of time
a particular work unit was preempted). The most precise,
but also less scalable, approach is discrete-event simulation.
The simulation proceeds as a sequence of events, and each
event triggers one or more subsequent events. A less precise
alternative, which affords better scalability, is time-driven
simulation. In this approach one estimates the number of
events for several event types that occur in a relatively long
simulated time interval (e.g., one hour). Such time intervals
are processed in sequence. With time-driven simulation one
can trade off increased scalability for reduced accuracy by
increasing the interval size.

Different choices for the above design issues can lead to
widely different simulators, going from simulators that use
naive models and simulate very restricted scenarios, to general-
purpose simulators that use sophisticated models and are
flexible enough to simulate a wide range of scenarios. The
ideal simulator would be in the latter category while still af-
fording high scalability. Developing such a simulator is the
ultimate goal of this work.

2.2.2 BOINC Simulators

The BOINC distribution comes with a simulator that sim-
ulates a single BOINC client interacting with one or more
projects. This simulator uses time-driven simulation, uses a
simple host model, and does not simulate the network. It
has been used to evaluate and improve the BOINC client
scheduler [3, 18]. Because it uses original BOINC source
code, faithful simulations should be guaranteed. A draw-
back is that it is difficult to extend as a new scheduling
algorithm would require a full-fledge implementation in the
BOINC source code.

In [14], Estrada et al. investigate threshold-based schedul-
ing policies in BOINC with the use of a custom simulator
called SimBA [32]. SimBA is a discrete-event simulator that
models hosts as finite-state automata parameterized with
several characteristics (e.g., compute rate, error rate, time-
out rate), and that models the failure or success of each task
using a uniform probability distribution. Volatility is mod-
eled using a Gaussian probability distribution. This sim-
ulator, because it opts for the simple and inexpensive op-
tions for the design issues in the previous section, provides
high scalability at the potential expense of simulation real-
ism. Furthermore, it is limited to the simulation of a single
project.

A few years later, Estrada et al. developed a new sim-
ulator, EmBOINC [15]. They modified the BOINC server
source code so that it could run in emulation mode. In
this way, fictitious clients can send fictitious requests to a



server executing real BOINC source code. These modifica-
tions were integrated in the original BOINC source code.
Here again, this approach is interesting for studying a single
BOINC project server but cannot accommodate a multi-
project BOINC system.

In [8], Kondo et al. use a simulator called SimBOINC [17].
This simulator, based on modified BOINC source code, emu-
lates BOINC clients using the general-purpose SimGrid [31]
simulation framework as a back-end. One weakness of this
simulator is that the modified BOINC source code must be
maintained alongside the main BOINC distribution. At the
moment, the simulator is compliant with BOINC 5.5.11,
which is two years behind the current 6.6.40 distribution,
and is no longer supported. Unlike the previously described
simulators and emulators, SimBOINC allows for the simula-
tion of a complete BOINC system, i.e., with many projects
and many clients with complex and diverse behaviors.

2.2.3 General-Purpose Simulators

Many custom simulators are built by researchers in the
area of distributed computing, but most are short-lived [26].
Two that have withstood the test of time are SimGrid [10,
31] and GridSim [6]. Both simulators are general-purpose
and provide ways for a user to program arbitrary simula-
tions using a convenient API. Scalability limitations have
been reported for GridSim [13, 4], which casts doubts on
its potential use for VC simulation. For instance, its use of
Java threads prevents it from simulating more than 10,992
active hosts. Instead, SimGrid has been used in recent VC
studies [16] and has been shown capable of simulating up to
200,000 hosts on a machine with 4GB of memory [31]. Sim-
Grid has also been used by the OurGrid project [30, 25] and
in a recent Bag-of-Tasks application scheduling study [12].
In spite of these encouraging SimGrid results, in a recent
study with a few hundred hosts [16] Heien et al. identified
simple scenarios in which SimGrid leads to unacceptably
high execution times. These observations motivate the im-
provements to SimGrid presented in this work.

3. SIMGRID SIMULATIONS
3.1 SimGrid APIs

The SimGrid project was initiated for simulating distributed

applications in grid computing environments [9]. In such en-
vironments, the underlying platform is complex (resource
heterogeneity, hierarchical network topology, dynamic re-
source availability, etc.), and scheduling algorithms must be
designed based on a much simpler and tractable model of
the platform. The original goal of SimGrid was to pro-
vide a tool for evaluating such scheduling algorithms us-
ing realistic simulation of complex grid platforms. SimGrid
now provides four APIs (MSG, GRAS, SimDAG, and SMPI)
through which users can develop simulations that run on top
of SimGrid’s simulation core, each of these API being suited
to a particular use (e.g., study of parallel applications struc-
tured as directed acyclic graphs, of already existing MPI
applications). For the work in this article we use the MSG
API, which allows the easy prototyping and study of generic
distributed applications, and is the one most commonly used
by SimGrid users.

3.2 The SIMGRID Simulation Core

The SimGrid simulation core implements and provides in-
terfaces to a number of simulation models that vary in so-
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Figure 1: Illustrating the SimGrid layers and the
main data structures.

phistication and can be used to simulate different types of
resources (network resources, computational resources). It
consists of two main layers: the SURF layer implements
the simulation models, and the SIMIX layer provides a low-
level API to these models upon which user-level APIs can
be developed. Both layers are described hereafter. Some
simulation models share the same structure, which is imple-
mented as an additional layer, called LMM, which is called
by SURF and which is briefly described hereafter as well.

3.2.1 SIMIX

SIMIX provides a Pthread-like API to manage concurrent
simulated processes. More precisely, it provides the follow-
ing abstractions: processes, locks, condition variables, and
actions. Processes correspond to threads of control of the
simulated application, locks and condition variables are used
for synchronizing these threads of control, and actions are
used to represent resource consumption generated by these
threads of control. We briefly illustrate these abstractions
via a simple example.

Consider a simulation of a computation on a host. This
computation is embedded within a SIMIX process and laun-
ched via a user-level API call, e.g., MSG_task_execute if us-
ing the MSG API. This call creates a SIMIX action that
corresponds to the amount of computation to be performed
(specified by the user-level API call). This action is associ-
ated with a SIMIX condition variable on which the process
blocks. Once the action is completed, as dictated by the
simulation models after some elapsed simulated time, the
condition variable is signaled. The user-level API call re-
turns control to the user, thereby providing the simulation
of the delay incurred for performing the computation.

Most simulations consist of many SIMIX processes. All
processes run in mutual exclusion and SIMIX is responsible
for controlling their execution. Essentially, all processes run
in round-robin fashion until all of them block on condition



variables to wait for action completions. At a given sim-
ulated time ¢, SIMIX has thus a list of blocked processes.
SIMIX then calls the lower layer of the simulation core,
SURF, through the surf_solve function. SURF, discussed
in the next section, is responsible for handling the simu-
lation clock and the usage of simulated physical resources.
surf_solve advances the simulation clock to time t 4 ¢ at
which at least one of the actions waited upon has completed
(or failed). A list of the completed (or failed) actions at
time ¢ + ¢ is returned to SIMIX. SIMIX then wakes up the
corresponding processes. The same procedure is repeated,
advancing the simulated time from task completion to task
completion until all processes terminate.

The execution of the simulated application is handled by
SIMIX, and is fully separated from the simulation of the
underlying platform, which is handled by SURF. The two
layers communicate solely via the condition variable and ac-
tion abstractions, as shown in the top part of Figure 1.

3.2.2 SURF

SURF provides several models for determining simulated
action execution times and resource consumptions. These
models can be selected and configured at runtime, and each
model is responsible for actions and resources of a given
type (e.g., CPU, network, timer). For instance, in terms of
network resource models, the current implementation pro-
vides a default model of TCP networks [33], a model that
offloads all simulation to the GTNetS packet-level network
simulator [29], a simple model based on uniform random dis-
tributions, and more advanced models that use Lagrangian
optimization and gradient descent [24]. By picking an ap-
propriate model the user can trade off speed/scalability for
accuracy, with no change to user source code.

All simulation models are accessed via the surf_solve
function, which proceeds in the following steps:

1) Query each active simulation model for the next ac-
tion completion/failure date among all the actions managed
by that model. This is done through the share_resources
function, which each model must implement. For many
models, this function relies on an extra layer, LMM, via
which resource usage is represented as a a set of linear con-
straints, as seen in the next section. This general approach
enables to represent very complex situations. LMM uses a
sparse representation of this linear system and uses a sim-
ple max-min allocation algorithm by default but also imple-
ments more sophisticated models based on the work in [24].
As seen in Figure 1, the models in SURF keep track of the
amount of work remaining for each action, and can therefore
determine when each action will complete based on current
simulated resource usage.

2) Compute tmin, the minimum of these completion dates.
Examine user-provided traces used to describe dynamically
changing resource conditions to see whether a resource state
change occurs before tmin (e.g., the available bandwidth of
a network link increases, a host is shutdown). If such a
state change occurs, then call the update_resource_state
function of the model in charge of the resource. Each model
must implement update_resource_state. Update tpin to
be the earliest time of next resource change.

3) Ask each active model to advance the simulation time
to tmin and to update every action state accordingly. This
is done through the update_action_state function, which
each model must implement.

4) Return the set of actions that have finished or failed.
3.2.3 The LMM Layer

Many of the simulation models in SimGrid represent ac-
tions and resources as variables and constraints in a linear
system. For example, given a set £ of network links defined
by their bandwidths and a set F of network flows defined
by the set of links they use, we can represent each flow f by
a variable x (representing the bandwidth allocated to it).
For each link [ we have the following constraint:

> "y < Ci, where C; is the bandwidth of link 1,
VEL

which states that the bandwidth capacity of the link can-
not be exceeded. For instance, in Figure 1, variable z2 and
x3 correspond to two flows using respectively {Li, Lo, L3}
and {Lz, L4}. Many allocations z can satisfy the set of link
capacity constraints and different network protocols lead to
different allocations [24]. SimGrid uses a simple max-min
allocation by default [5] but also implements more sophisti-
cated models based on the work in [24].

For such models, the LMM layer uses a sparse representa-
tion of the above constraints. The problem is solved by the
1mm_solve function, which is efficient because its complexity
is linear in the system size, where the system size depends
on the number of actions, the number of active resources,
and the complexity of the resource usage. For example, the
system corresponding to a set of N CPUs running each an
action would be of size ©(N). The system corresponding to
F flows going each through L links would be of size ©(F.L).

If the system needs to be modified it is invalidated and
the allocation must be recomputed with possibly new vari-
ables and constraints. For example, in Figure 1, removing
variable x2 would force recomputation of variable x3, remov-
ing variable ;1 would force recomputation of variable z,
etc. More generally, such invalidations occur based on the
action life-cycle (e.g., action creation, action termination,
action suspension/resumption), i.e., between two successive
calls to surf_solve, or based on resource state changes, i.e.,
when function update_resource_state is called. Although
we have used network resources as an example, the same
approach is applicable to other, arguably less challenging,
resource types.

3.2.4 The Default CPU Model

Like many other models, the default CPU model relies on
a LMM system and associates each CPU with a constraint
whose bound is the rate of the simulated CPU (in MFlop/s).
We detail the components of this model along with their
complexities:
Action creation — An action is defined by its remaining
amount of work (in MFlop), which is initialized upon cre-
ation, and by a corresponding variable in the LMM system.
The resource consumption rate allocated to the action varies
over time depending on the value of this variable.
share_resources— To compute the next action completion
date, this function first computes a new solution of the LMM
system, if needed. Then, it goes through the list of all active
actions to compute when each would complete, based on its
current resource share and remaining amount of work, as-
suming that the system remains unchanged. The complexity
of this function is thus ©(]actions|) plus possibly the com-
plexity of 1mm_solve, which is also ©(|actions|).



update_resource_state— When the state of a resource is
changed, one needs only to update the bound of the corre-
sponding constraint, which is done with complexity O(1).
update_action_state— This function advances simulation
time. To do so it goes through the list of all actions to
update their remaining amounts of work, which leads to a
O(|actions|) complexity.

3.3 Analyzing a Simple VC Example

In this section, we consider a platform with N hosts with

compute speeds sampled from the speeds found in SETI@home

traces [21]. On each host a worker process sequentially com-
putes P tasks whose work amounts, in MFlop, are uniformly
sampled between 0 and 8.10*2 (i.e., up to roughly one day on
a standard machine). This minimalistic example was sub-
mitted to the SimGrid developers by Eric Heien after using
SimGrid in [16].

Whenever an action ends, the whole resource allocation is
recomputed (through the call to share_resources) and all
pending actions are updated (through the call to update_
action_state). However, there is very little modification
to the system. Indeed when an action ends on a host, it
does not affect the other hosts nor the other action com-
pletion dates. Still, the remaining amount of all actions is
updated so as to always have a consistent system, which
takes a time ©(|pending actions|) = ©(V), since at a given
time there is one pending action per host. There will be
as many calls to surf_solve as the total number of actions
in the lifetime of the simulation. Since there are N hosts
and P tasks per host, there is a total of NP actions. Thus
the overall complexity of SimGrid to run such a simple ex-
ample is ©(N2P). One would hope for a complexity that
is much lower than quadratic with respect to N, since in
VC scenarios N is routinely as high as tens or hundreds of
thousands.

In our example, the computational power of the hosts does
not change over time. Assume that each host is annotated
with a trace with T state change events, where each state
change could be a change in the host’s available computa-
tion power. In this case, there would be a total of NT state
change events and the remaining amount of work of all ac-
tions would be updated every time. The time needed to re-
trieve an event would be ©(log V) (as we use a heap to store
the next event for each resource), which is negligible when
compared to the calls to update_action_state. Therefore
the overall complexity for running such an example would
be @(N?(P +T)), which is also unacceptably high for large
N and large traces.

4. IMPROVING THE SIMGRID CORE
4.1 Lazy Action Management

The main reason why SimGrid has such a high complexity
is that it was initially designed to handle hierarchical hetero-
geneous networks, where an action may interfere with many
others. However, when simulating a VC system, most re-
sources are independent from each other. In such a situation,
a careful management of LMM makes it possible to amortize
the complexity of 1lmm_solve but the complexity of share_
resources is still ©(|actions|) as the completion date of each
action is recomputed after the call to lmm_solve. Yet, only
the actions whose resource shares have just been modified in
1mm_solve need to be updated. We introduce a future event

set, implemented as a heap, in which we store the comple-
tion date of the different actions. When a resource share is
modified, all corresponding actions are removed from the set.
The completion date of each such action is then updated and
the action is reinserted into the heap. Removing and insert-
ing elements in the heap has ©(log(|actions|)) complexity
and computing the minimum completion date to return to
SURF’s main loop is now O(1).

The last remaining expensive function is update_action_
state. This function is supposed to update the state of
all actions, namely remaining work amounts, and return
completed and failed actions. There is thus no hope to re-
duce its ©(|actions|) complexity if all actions need to be up-
dated. Instead, we update remaining work amounts lazily.
More precisely, we update a remaining work amount only
when needed for recomputing a completion date or when
requested from a use-level API call. In update_action_
state we only remove from the future event set the actions
that complete, which enables us to reduce the complexity of
update_action_state to O(log(|actions|))

In our simple example, the complexity of surf_solve is
thus ©(log N) and the overall complexity of the simulation
O(NP.log(N)), instead of O(N?P).

In a more complex example (e.g., involving a network
model), if the completion date of most actions need to be
updated then our new algorithm may be slower than the
previous algorithm (O(]actions|.log(|actions|) compared to
O(|actions|)). Therefore, although our improvements should
be beneficial in most situations, the SimGrid user can deac-
tivate them per model if needed.

4.2 Trace Integration

Let us assume now that our CPU resources are associated
with traces. At each trace event, we call update_resource_
state, which leads to recomputing the sharing of the corre-
sponding resource during the next call to surf_solve. This
is unavoidable when simulating complex situations (e.g., a
network) but again, when resources do not interfere with
each others it may be avoided.

Let us consider a CPU and denote by p(t) its computa-
tional power (in MFlop/s) at time ¢. Let us define P(z) =
foz p(t).dt. Let us consider n actions Ai,..., A, running
on this CPU, each with R; remaining MFlop to do at time
to. At any time t > to, each action receives a share of
the CPU’s computational power equal to p(t)/n. Therefore,
during the time interval [a,b], action A; will advance by
[P p(t)/ndt = 1/n [7p(t).dt.

The value returned by share_resources is the largest ¢;
such that 1/n f:gl p(t).dt < Ry, i.e., t1 is such that f:ol p(t).dt =
nmin R;. The goal is to compute the first completion of all
active tasks on each resource, which then amounts to solving
P(t1) = P(to) + nmin R; for all resources.

By pre-integrating the trace, t; can be computed using a
simple binary search. The time needed to pre-integrate the
trace is the same as parsing the trace (instead of storing the
trace p, we simply store its integral P as cumulative sums)
and finding ¢; is thus logarithmic in the trace size.

In our VC simple example, the sharing needs to be recom-
puted for only one host at each call to surf_solve and the
cost of share_resources is thus only O(log(7T") + log(N)),
when combined with the previously described lazy action
management. Hence, the overall complexity of the simula-
tion is O(NP(log(N) + log(T))) (instead of O(N?(P + T))



with no improvement and ©(N(P + T)log(N)) with lazy
action management).

Note that unlike the lazy action management mechanism
described in the previous section, this improvement works
only for CPU resources. However, it is fundamental for
VC simulation since host states are often described by large
traces.

5. PERFORMANCE EVALUATION
5.1 Simple Case Study

We consider a simple platform with N hosts with com-
pute speeds sampled from the speeds found in SETI@home
traces [21]. In the first experiment, these hosts are avail-
able at all times, whereas in the second experiment we use
the SETI@home availability traces. On each host a worker
process sequentially computes tasks whose work amount, in
MFlop, is uniformly sampled between 0 and 8.10*? (i.e., up
to roughly one day on a standard machine). The source
code for the simulator can be found at http://mescal.imag.
fr/membres/pedro.velho/Isap10 along with scripts for run-
ning experiments and analyzing experimental results. All
our improvements have been implemented in the SimGrid
source code and integrated in the last stable version (3.4).

The timings reported in this section were obtained on an
AMD Opteron 248 Dual Core (2.2 GHz) with 1MB of L2
cache and 2 GB of RAM. Experiments were performed at
least 10 times each and the 95% confidence interval based on
Student’s distribution is plotted on all graphs (even though
they are generally so small that they can hardly be seen).

We compare three versions of SimGrid:

e Default CPU Model: original SimGrid implemen-
tation, as described in Sections 3.2 and 3.3;

e Lazy Action Management: as above, but using the
improvement described in Section 4.1;

e Trace Integration: using the improvement described
in Section 4.1 and 4.2.

5.1.1 Experiments Without Traces

In these experiments the number of hosts, IV, ranges from
10 up to 10,240 and a week of computation is simulated. No
availability traces are used. Figure 2 (a) plots the execution
time as a function of N for the three versions of SimGrid.

For the default model, simulations were limited to 2,560
hosts due to extremely long execution times (e.g., 16 hours
for 5,120 hosts with the default model). As expected, the
new two SimGrid versions scale significantly better. The
seemingly linear shape of the curves is due to the O(N?P)
complexity of the default model, and the O(NPlog(N)) of
the new versions. Both new versions have similar perfor-
mance because no host availability traces are used. They
are able to simulate one week of computation with 10,240
hosts in about 1 minute.

5.1.2  Experiments with Traces

Figure 2 (b) shows results for experiments with host avail-
abilities described by SETI@home traces. These traces are
from the Failure Trace Archive [21] and total from 148KB
(for 10 hosts) to 177MB (for 10,240 hosts). The trace pars-
ing time may thus be a substantial part (about one third
when using trace integration) of the simulation executions
time.

The results with the default model are limited to 2,560
hosts due to scalability issues, and results with lazy action

[ Project | Einstein | SETI | LHC |
Process Time (hours) 24 1.5 1
Deadline (days) 14 4.3 4

Table 1: BOINC project characteristics

Time SimGrid BOINC client simulator
(hours) | Einstein SETI LHC | Einstein SETI LHC
100 1 23 27 1 21 33
500 7 112 163 7 108 166
1,000 12 220 272 14 220 331
5,000 70 1106 1565 70 1103 1652
10,000 139 2221 3327 139 2214 3319

Table 2: Number of completed tasks for the SimGrid
and the BOINC client simulator.

management as limited to 5,120 hosts. Indeed, the lazy ac-
tion management optimization is not sufficient to achieve
scalability in the presence of availability traces. This is be-
cause its complexity is linear in the number of trace events,
i.e., O(N(P+T)log(N)). The trace integration reduces this
complexity to O(NP(log(N) + log(T"))), which explains its
better scalability. The last version of SimGrid is the version
of choice for VC simulations. In this example it manages to
run simulations essentially as fast as in the no-trace case.

5.2 A BOINC-like Simulation

As a proof of concept of SimGrid’s ability to simulate VC
systems, we have implemented a simulator for a BOINC ar-
chitecture. This simulator uses the MSG API to SimGrid
and consists of about 800 lines of C source code. Our simu-
lator implements the BOINC client scheduling algorithm as
described in [3]. The source code of the real BOINC client

consists of 20,000+ lines and its scheduler core (work_fetch.cpp

and cpu_sched.cpp) of 2,000+ lines. Our version is thus
simplified. For example, we do not simulate multi-core hosts
or application checkpointing. However, we implement most
important features of the real scheduler (deadline schedul-
ing, long term debt, fair sharing, exponential back-off).

In Section 5.2.1, we compare our simulator with the BOINC
client simulator, which allows the simulation of one BOINC
host. We run this simulator using its default settings. The
goal of this comparison is to validate the simulation results
produced by our simulator. In Section 5.2.2 we compare
the scalability of our simulator to that of the SimBA sim-
ulator [32]. We conducted our experiments on a machine
similar to that used in [32], a 3.0 GHz Intel Pentium 4 with
1GB RAM, so that our execution time measurements can
be compared fairly to those published for SimBA.

For all these experiments, we used SimGrid with all the
improvements described in Section 4 and using the simple
network model based on uniform random distributions.

5.2.1 Comparison with the BOINC Client Simulator

We simulate three projects that we deem representative of
the diversity of BOINC projects: Einstein@home, SETI@home,
and LHC@home. Table 1 gives the time to process a project
task and project-imposed task deadlines, as found in the of-
ficial catalog of active BOINC projects *.

Table 2 shows the number of tasks completed for each
project within a given time period ranging from 100 to 10,000
hours according to both our SimGrid simulator and the

!http://www.boinc-wiki.info/Catalog_of_BOINC_Powered_Projects



Figure 2: Execution time vs. the number of simulated hosts using the different proposed improvements on a
log-log scale, (a) without availability traces and (b) using availability traces.

BOINC client simulator. In all experiments, no task dead-
line were missed. More importantly, we see that the num-
bers of completed tasks are very close. This is true even for
large time frames, which shows that the cumulative “error”
introduced by our simulator is small. More thorough exper-
iments would be needed to fully validate our simulator, but
based on these results we simply say that our simulator does
a reasonable job of simulating BOINC.

In terms of execution times we found that, surprisingly,
the SimGrid simulator is faster than the BOINC client sim-
ulator, even though the latter is specific-purpose and time-
driven and thus should be extremely fast. For instance, for
10,000 hours of simulated time, our simulator runs in about
1 second while the BOINC client simulator runs in 1 minute.

5.2.2  Comparison with SimBA

For results in this section we configured SimGrid so that
the stack size of the simulated processes is reduced from the
default 128KB to 16KB. This is so that the simulation can
fit on a machine with 1GB of RAM. By default SimGrid
implements simulated processes using System V contexts.
While SimGrid supports POSIX threads, System V contexts
are more lightweight and better suited for the SimGrid core
implementations. The execution times measured with our
simulator and those reported by Estrada et al. in [32] are
contrasted as follows:

e They simulated 15 days of computation with 7,810
hosts working on the Predictor@Home project in 107
minutes. Our simulator simulates the same configura-
tion in under 4 minutes (for 10 runs the 95% confidence
interval is [208.13,223.71] in seconds).

e They simulated 8 days of computation with 5,093 clients
working on the CHARMM project in 44 minutes. Our
simulator simulates the same configuration in under
1.5 minutes (for 10 runs the 95% confidence inter-
val is [80.38,80.87] in seconds). Note that in both
experiments, we used host availabilities described by
SETI@home traces and about one third of the simula-
tion time was spent parsing these traces.

Our hope was that our simulator would not be “too slow”
when compared to SimBA, but we found it to be faster.
This is surprising given that SimBA opts for many of the

simplest options for addressing the design issues outlined in
Section 2.2.1. Instead SimGrid, because its goal is to be
a powerful and general-purpose simulation framework, opts
for more sophisticated but costly options (e.g., use of host
availability traces, simulation of processes that execute ar-
bitrary code using a simulation API). As a result, a VC
simulator build with SimGrid benefits from all the advan-
tages that SimGrid has afforded to many simulators in the
past. Among these, and perhaps most important, is the fact
that the simulator can be programmed and thus extended
easily. Consequently, it would be straightforward to imple-
ment new client scheduling strategies using the MSG API of
SimGrid. Similarly, the implementations of the server could
be be extended using the same API to implement various
scheduling policies. Another immediate extension, which
would require essentially no extra work, would be to activate
one of SimGrid’s network model to take network contention
into account.

6. CONCLUSION AND FUTURE WORKS

Given the scale and nature of VC systems, it is often
thought that they cannot be simulated efficiently by general-
purpose simulators. As a result, most existing VC simula-
tors use simple (and often naive) design options for achieving
scalability at the expense of simulation realism and extensi-
bility. In this work we have presented and analyzed the inter-
nals of the SimGrid general-purpose simulation framework,
which affords simulation realism and extensibility, and have
identified performance and scalability bottlenecks that come
into play for VC simulations. We have proposed and imple-
mented improvements to remove these bottlenecks. These
improvements have been evaluated and, using simple bench-
marks, have been shown to lead to better performance than
the original SimGrid version by orders of magnitude. We
have also implemented a simulator for a simple BOINC sys-
tem. Our key result is that this simulator is significantly
more scalable than a previously implemented BOINC simu-
lator. Since SimGrid is a programmable simulation frame-
work, this simulator can easily be extended to conduct com-
plex studies that are simply not possible with previous ap-
proaches. For example, it is now possible to study a scenario
in which projects have interest in response time rather than



throughput and thus develop aggressive scheduling/replication

strategies. SimGrid is thus not only a viable, but in fact an
attractive platform for VC simulation both in terms of the
power of the simulation and of its scalability.

A clear future direction is to focus on improving the scal-
ability of some of SimGrid’s network models. All results in
this article are for simulations that use very simple network
models since the focus is on compute-intensive scenarios, as
done in most previous VC research. However, due to recent
advances in internetworking technology, it is conceivable to
run communication-intensive applications on VC systems.
Most volunteers use DSL connections that have very specific
behaviors. SimGrid provide complex but realistic commu-
nication models for grid platforms. These models may not
be adequate to DSL connections. Moreover, these network
models as implemented in SimGrid currently do not scale
well beyond a few thousand hosts. We are in the process of
designing both realistic and scalable network models in this
context.
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