
A Combined Dual-stage Framework for Robust Scheduling
of Scientific Applications in Heterogeneous Environments

with Uncertain Availability

Florina M. Ciorba∗, Timothy Hansen‡, Srishti Srivastava†, Ioana Banicescu†,
Anthony A. Maciejewski‡, and Howard Jay Siegel‡§

∗Technische Universität Dresden
Center for Information Services

and High Performance Computing
01062 Dresden, Germany
florina.ciorba@tu-dresden.de

†Mississippi State University
Department of Computer
Science and Engineering

Mississippi State, MS 39762, USA
{ioana@cse.,ss878@}msstate.edu

Colorado State University
‡Department of Electrical and

Computer Engineering
§Department of Computer Science

Fort Collins, CO 80523, USA
{timothy.hansen,aam,hj}@colostate.edu

Abstract—Scheduling parallel applications on ex-
isting or emerging computing platforms is challeng-
ing, and, among other attributes, must be efficient
and robust. A dual-stage framework is proposed in
this paper to evaluate the robustness of efficient
resource allocation and dynamic load balancing of
scientific applications in heterogeneous computing
environments with uncertain availability. The first
stage employs robust resource allocation heuristics,
while the second stage incorporates robust dynamic
loop scheduling techniques. The combined dual-stage
framework constitutes a comprehensive framework
that enables and provides guarantees for the ro-
bust execution of scientific applications in comput-
ing systems where uncertainty is caused by various
unpredictable perturbations. The paper reports on
studies for determining the best techniques to be
used for each stage that: (a) maximize the probability
that the system makespan satisfies a deadline, and
(b) minimize the system makespan for every given
availability level in the system. The usefulness and
benefits of the proposed framework are demonstrated
via a small scale example.

Keywords-high performance; heterogeneous sys-
tems; non-dedicated systems; resource allocation;
dynamic loop scheduling; robustness; uncertainties.

I. INTRODUCTION

The rapid development of computing technol-
ogy has increased the complexity of computational
systems and their ability to solve large, and more
complex, scientific problems. These computing

systems often are heterogeneous and operate in
uncertain environments, consisting of computing
resources that differ in number and availability over
time. Machine availability is the percentage of the
machine’s total computational resource that can be
used for a given application. A machine is said to
be loaded when its availability is less than 100%.

Scientific applications express the solutions to
complex scientific problems, which often are data-
parallel and contain large loops. The execution
of such applications in heterogeneous computing
environments is computationally intensive and ex-
hibits an irregular behavior, in general due to
variations of algorithmic and systemic nature [1,
ch. 4]. Distribution of input data and variations
of algorithmic nature cause intrinsic imbalance,
while variations of systemic nature cause extrinsic
imbalance [2]. Load imbalance in computationally
intensive scientific applications is often their ma-
jor performance degradation factor [1][2]. Tradi-
tionally, solutions that address load imbalance in
scientific applications involve dynamic data and/or
work re-distribution.

Our problem statement has two components.
First, given a collection of applications with uncer-
tain input data and a heterogeneous computing sys-
tem with uncertain availability, how can resources
be assigned to maximize the probability that ap-
plications can complete by a common deadline?

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.5

193

Second, given this allocation of resources, how can
we minimize the makespan for this collection of
applications?

The work presented herein demonstrates that
using robust resource allocation (RA) heuristics [3]
and application load balancing via dynamic loop
scheduling (DLS) techniques, in concert, will en-
hance the execution of computationally intensive
scientific applications in uncertain heterogeneous
systems. The goal of this research is to assign
applications to heterogeneous computing systems
and execute them in such a way that all applications
complete before a common deadline, and their
completion times are robust against uncertainty in
input data and system availability.

To accomplish this goal, the approach proposed
herein is to divide the execution of scientific appli-
cations on heterogeneous computing systems into
two stages, as outlined in Figure 1:
Stage I initial mapping–resources are allocated to
each application according to a given robust RA
policy.
Stage II runtime application scheduling–the execu-
tion of each application is optimized, for the set of
resources allocated in the previous stage, according
to a given robust application scheduling strategy.

Initial mapping (IM) can be defined as the prob-
lem of finding a mapping of a batch of applications
onto a set of resources to maximize robustness
against uncertain input data and system availabil-
ity. Robustness here is defined as the probability
that applications are completed on the allocated
resources by a common deadline [4].

Motivation for Stage I. The motivation for solv-
ing the IM problem via robust RA is to avoid the
runtime resource reallocation problem, i.e., reallo-
cating resources already assigned to applications to
avoid violations of the performance objective. The
robustness of an RA can be quantified as the joint
probability that all applications will complete by
their deadline given the uncertain input data and
system availability.

Motivation for Stage II. Just as in stage I, un-
certain runtime availability of resources allocated
to an application, as well as uncertain input data,
are known sources of uncertainty in stage II and

may impact the applications execution times. The
motivation for this stage is based on the assump-
tion that a specific runtime application scheduling
(RAS) policy exists that avoids the runtime re-
source reallocation problem and that satisfies the
stated performance objective, while possibly allow-
ing a larger degree of uncertainty in input data and
system availability.

RAS is defined as the problem of selecting
the DLS technique for dynamic load balancing
of applications during their execution on the re-
sources already allocated in stage I that maximizes
robustness against uncertain input data and system
availability [5][6], defined as the maximum allow-
able decrease in the expected availability of the
resources allocated in stage I before a performance
objective violation occurs.

Employing a robust DLS technique for an appli-
cation during stage II will allow the application to
begin and complete its execution on the same set
of resources that have been allocated during stage
I, while in case of perturbations, only iterations (of
the same application) will be migrated between the
processors of the allocated resource set.

Usefulness. The usefulness of the proposed
combined dual-stage framework is based on the
following hypothesis: using an intelligent approach
in both stages will result in better overall system
performance than using an intelligent approach
for either stage in isolation or neither. The dual-
stage framework allows investigation of the over-
all degree of tolerable uncertainty, such that the
desired performance objective is satisfied, for each
application individually and the entire collection of
applications running on the heterogeneous comput-
ing system.

Contribution. The main contribution of this pa-
per is the design of an intelligent two-stage frame-
work to solve the problem of allocating resources
to applications to maximize the probability that the
applications can complete by a common deadline
given uncertainty in the input data and system
availability, including developing a mathematical
model of this environment.

The next section presents a review of related
work, RA heuristics, and DLS techniques. The

194

Figure 1: Schematic illustration of the proposed dual-stage framework. A RA heuristic is employed in stage I to
assign each application from a batch of N applications in the queue to one of the N groups of processors of a
large-scale heterogeneous system. DLS techniques are used in stage II for runtime scheduling of each application
onto the processors of their respective assigned group.

proposed combined dual-stage framework is de-
scribed in Section III. The usefulness and benefits
of the proposed framework are demonstrated via a
small scale example in Section IV. The conclusions
and insights into future work are summarized in
Section V.

II. RELATED WORK

This work spans two major research areas: re-
source allocation and dynamic application schedul-
ing in heterogeneous computing systems. The fol-
lowing is a brief summary of some work relevant
to both research areas.

A framework for resource allocation and task
scheduling is proposed in [7] for efficient al-
location of heterogeneous grid resources to
resource-intensive applications that minimizes their
makespan and allocates the minimum number of
resources. This approach is static and based on the
current state of the grid resources. In contrast to
this work, the resource allocation and application
scheduling strategies are intertwined, application
tasks are assumed to take one unit of time, and
no source of uncertainty is considered.

The problem of mixed resource allocation
and task scheduling has been addressed via a
constrained-based approach as a temporally con-
strained and a resource constrained problem [8].
Time constraints can be limit times and prece-
dences, while resource constraints concern alloca-
tion and sharing. Constraints propagation mecha-
nisms have been proposed that led to the remov-
ing of some task assignments, or that determined
inconsistent allocations between pairs of tasks.
In contrast to this work, it is assumed that the
durations of the unassigned tasks are correlated and
constant, and that resources are homogeneous.

Extensions to application and performance mod-
els used in compile-time task and resource alloca-
tion have been proposed that capture applications
with statistical variations in execution times and
task dependencies [1]. In contrast to this work,
the focus is on compile-time mapping of sin-
gle applications onto homogeneous multiprocessor
platforms.

The approach proposed herein to satisfy the
stated performance objective in the presence of
uncertainties is to divide the execution of scientific

195

applications into two stages: stage I employs a RA
heuristic to allocate a set of resources to every
application, while in stage II, DLS techniques are
employed (one for each application) to ensure
an effective application execution on the set of
resources allocated in stage I. Existing work on
RA and DLS is reviewed next.

A. Review of RA heuristics

In general, the resource allocation and the appli-
cation scheduling problems are both known to be
NP-Complete [9][10][11], which leads to the use
of scheduling heuristics. In the stochastic resource
allocation model, the historical computing time
of each task to be run on each of the machines
in the system is said to be known beforehand
and is represented as a probability mass function
(PMF) [4]. The use of PMFs allows for the cal-
culation of the probability of a machine finishing
its tasks before a specified time. Because each of
the machine’s execution times are independent, the
overall probability of the system completing by a
specified time can be obtained by multiplying their
probabilities together.

Due to the fact that the example given later in the
paper (in Section IV) is illustrative and represents
a small scale case, no particular RA heuristic is
actually needed, as the optimal allocation can be
determined exhaustively. As a comparison metric
between possible resource allocations, a simple
load balancing technique is used, in which each ap-
plication is allocated an equal number of resources.

B. Review of DLS techniques

The most efficient dynamic load balancing ap-
proach for improving the performance of scien-
tific applications employs DLS. This approach
is effective in scientific applications that contain
computationally intensive parallel loops. The DLS
techniques are based on probabilistic analyses and
ensure a high performance execution of the appli-
cations. Using DLS, a new size for the next chunk
of ready-to-be-executed loop iterations is computed
at runtime, and thereupon offered for execution
to the first processor that finished executing other
assigned chunks.

DLS methods provide two alternative ap-
proaches, non-adaptive and adaptive, for achieving
good load balancing on variably loaded resources,
as well as for executing iterations with varying
execution times. Most of the techniques described
in [12] are based on probabilistic analyses and
are non-adaptive. Other non-adaptive techniques,
not contained in the above survey, include frac-
tiling and weighted factoring (WF) [13]. Subse-
quent efforts resulted in more elaborate techniques,
called adaptive. A few examples include adaptive
weighted factoring (AWF), and its variants: AWF-
batch (AWF-B) and AWF-chunk (AWF-C), and
adaptive factoring (AF) [14]. Most of these meth-
ods are derived from factoring (FAC) [15], and
hence, employ rules similar to those of FAC to
achieve dynamic load balancing.

The above adaptive methods are also based on
probabilistic analyses. Their goal is to achieve
the best possible scheduling that optimizes ap-
plication performance (minimizing the makespan)
via dynamic load balancing. The adaptive DLS
techniques use a combination of runtime infor-
mation about the application (e.g., input data)
and the system (e.g., availability) to (i) predict
the system capabilities for the next computational
assignments, or (ii) to estimate the time the re-
maining application iterations will require to finish
execution. These techniques dynamically compute
the size of chunks (a collection of iterations) at
runtime, such that they are completed within their
optimal time with high probability.

The DLS techniques considered in stage II in
this work are two non-adaptive methods, FAC
and WF, and two adaptive methods, AWF-B and
AF. The usefulness of the proposed dual-stage
framework is not limited to this choice of DLS
techniques. Due to space limitations, the interested
reader is referred to the appropriate references for
further details of the above DLS techniques.

III. A COMBINED DUAL-STAGE FRAMEWORK

A. Uncertainty and performance objective

A novel combined dual-stage framework
(CDSF) is proposed herein, with the goal of
assigning applications to heterogeneous computing

196

systems and executing them in such a way that all
applications complete before a common deadline,
and their completion times are robust against
uncertain input data and system availability.
The robust execution involves two stages: initial
mapping using robust RA heuristics, in stage I,
and runtime application scheduling using robust
DLS techniques, in stage II. The CDSF provides a
certain level of guarantee for satisfying the stated
performance objective against uncertainties.
Uncertainty: The uncertainty is assumed to be
caused by a 2-tuple of perturbation parameters [3]
(π1, π2), in which π1 pertains to stage I, while π2
pertains to stage II.

The execution time of each application is consid-
ered stochastic due to its dependence on input data.
More specifically, we model the execution time of
each application as a random variable and assume
that we are given a PMF describing the possible
execution time values and their probabilities for
each combination of application and processor
type. That is, the execution time of each application
i when executed alone on a single, unloaded (fully
dedicated) processor of type j is modeled as a
random variable. The list of applications that the
user may select from is assumed limited to a set
of frequently requested algorithms such as may be
found in companies or government research lab en-
vironments [4]. Consequently, we assume that the
execution time random variable for each applica-
tion is well characterized. That is, we assume that
a PMF is available for each application execution
time random variable on each processor type (de-
termined by historical, experimental, or analytical
techniques [16][17]). In addition, each application
execution time is assumed independent, i.e., there
is no inter-application communication. Similarly,
the system availability for each processor type j is
modeled as a random variable, αj, with a given
PMF describing the possible system availability
percentages and their probabilities, generated using
historical usage data of the heterogeneous comput-
ing system.

Let ε̂ be a matrix where the (i, j)th element
is a random variable modeling the execution time
for application i on processor type j, as described

above. Â is a vector where the jth element is αj ,
denoting the availability of processors of type j,
also described above. The perturbation parameter
for stage I, π1, is given by π1 = {ε̂, Â}. If a given
application is executed on a single processor of a
given type, its computation can be modeled based
on ε̂ and Â. However, because each application
will be executed using parallelism, its computa-
tion time is more complex, and its modeling is
described in Section IV.

Let Λ be the system load fluctuation at run-
time [5][6][13]. Given A = 1 −Λ as the runtime
system availability in stage II, the perturbation
parameter for stage II is π2 = {A}. In general,
the runtime system availability can be higher or
lower than the expected system availability, i.e.,
A 6= E[Â]. A system is said to be loaded when it
is less than 100% available. For example, a system
having a load of 30% during a certain period of
time, is said to have a 100% − 30% = 70%
availability for that period of time.

The uncertainty in this work is assumed to be
caused by the 2-tuple (π1, π2) = ({ε̂, Â}, {A}).
Performance objective: The performance objec-
tive has two components, called performance fea-
tures [3]. These performance features are expressed
as a 2-tuple, denoted (φ1, φ2), in which φ1 is the
performance feature related to stage I, and φ2 is
the performance feature of interest in stage II.

Let Ψ be the system makespan, defined as the
completion time for an entire collection (or batch)
of applications, determined by the maximum of
the actual finishing times of all machines for all
applications. Ψ represents the time when the next
batch of applications will require resources given
an RA heuristic used in stage I and a set of DLS
techniques (one for each application) used in stage
II. Let ∆ be the system deadline. Then φ1 is
defined as Pr(Ψ ≤ ∆) given π1 = {ε̂, Â}, and
φ2 = {Ψ} given π2 = {A}.

Given a batch of parallel scientific applications
executing on the resources of a heterogeneous
system, the performance objective in this work
is given by the 2-tuple (φ1, φ2) = ({Pr(Ψ ≤
∆)}, {Ψ}), and is described as: (1) maximize the
probability that all applications complete before

197

the system deadline, i.e., maximize φ1 given ε̂
and Â (Stage I); and (2) minimize the system
makespan that satisfies the deadline for every given
availability in the system, i.e., minimize φ2 given
A (Stage II).

B. Outline of the proposed framework

The proposed CDSF for robust execution of
scientific applications on heterogeneous uncertain
computing systems is schematically illustrated in
Figure 2.

Initial mapping conducted in stage I is the prob-
lem of finding a static mapping (i.e., one found in
an offline planning phase) of a batch of applications
onto a set of resources to maximize robustness of
the allocation against uncertain input data and sys-
tem availability, by maximizing the probability that
all applications will complete before the deadline,
given a PMF for system availability Â. Runtime
application scheduling carried out in stage II is the
problem of finding a dynamic scheduling policy for
each application that minimizes the parallel time to
complete of an application for every given runtime
system availability A.
Stage I – initial mapping

Scientific applications arrive at random intervals
in the queue of a resource manager, in view of
assignment for execution onto any one of a group
of resources of a heterogeneous computing system.
The applications queue consists of different sci-
entific applications, which can represent different
instances of the same application.

As the applications arrive, their assignment to
available resources is made in batches. After as-
signment, an application is placed in the input
queue of the resource designated as coordinator
(master) of the assigned group of resources. Any
required data are staged at the master, in advance
of application execution. Let N be the number
of applications in the batch. Each application is
assumed to be data parallel (with no interproces-
sor communications needed) and to contain large
computationally intensive parallel loops.

Robust heuristics are employed for the initial
mapping, and the intention is to conduct studies to
determine the best heuristic to use in this stage.

The best heuristic will provide the most robust
mapping of groups of resources to applications,
i.e., maximize the probability that an application
completes before ∆, assuming a certain system
availability Â.

The resource allocation actions are pre-planned
before the actual execution of the applications
begins and the goal is to minimize (or to prevent)
the immediate effects of uncertain perturbation in
ε̂ and Â on the system makespan Ψ, such that
φ1 = {Pr(Ψ ≤∆)} is maximized. Regardless of
the type of allocated resources, once an allocation
decision has been made, it cannot be adjusted
for a currently executing application. Perturbations
during the actual execution of applications are
expected and addressed (or compensated for) in
stage II via the use of robust DLS techniques.

Let maxi, i = 1, N be the number of resources
allocated to application i, and T exp

maxi,i
be the ex-

pected time to complete of application i on maxi
processors.
Stage II – runtime application scheduling

Each application from the current batch of N
applications is executed on its group of resources
allocated in stage I. A robust DLS technique from
the set {FAC, WF, AWF-B, AF} [5][6][13] is
employed to define the rules for executing an
application at runtime. The intention is to conduct
studies to determine the best DLS technique to
employ for each application in the batch, such that
the completion time of an application is minimized
for every given runtime system availability A,
and consequently, the system makespan is smaller
than or equal to the deadline. A single DLS tech-
nique may be employed for several applications
as several distinct instances of the particular DLS
technique. In general, the runtime system availabil-
ity is expected to be different than the estimated
system availability. In this work, it is assumed that
A ≤ E[Â].

The most robust DLS technique will provide the
best runtime scheduling decisions for executing an
application on the allocated group of processors
that minimize the system makespan while toler-
ating a larger degree of perturbation in system
availability than the one assumed in stage I. The

198

Figure 2: Schematic illustration of the proposed combined dual-stage framework: a robust RA heuristic is employed
in stage I, and robust DLS techniques are employed in stage II. A number of N applications are mapped onto N
groups of processors, which compose into a large-scale heterogeneous system with

∑N
i=1 maxi processors.

goal of the robust DLS technique is to detect any
runtime perturbation in system availability as soon
as it occurs, and to take appropriate scheduling
decisions for the remaining unexecuted application
iterations. Stage II can, thus, be considered a run-
time approach for the detection and recovery from
the uncertain effects of the perturbation expected
to occur in A, on the performance feature φ2
described earlier.

To guide the scheduling decisions at runtime and
to tune the performance of an application, the DLS
techniques use runtime estimations of the time
required to compute loop iterations. These times
are determined using probabilistic analyses and are
influenced by the application input data and the
availability to compute of the resource executing
the iteration(s). The execution of an application

using a DLS technique is non-preemptive, and,
therefore, the choice of the DLS technique cannot
be changed during runtime.

The overhead associated with employing a ro-
bust DLS technique is higher than that of a robust
RA heuristic. The actions are not pre-planned and
are taken dynamically during the application exe-
cution, as soon as perturbation occurs. The benefits
are expected to, and in general do, compensate the
overhead of employing robust DLS techniques.

C. Questions regarding the CDSF robustness

To claim robustness for a system, the following
questions must be answered [18]:
1. What behavior of the system makes it robust?
Answer: The system considered in this work is ro-
bust if all applications complete before a common
deadline ∆, given uncertainty in input data (which

199

impacts application execution time) and system
availability. The system robustness is achieved via
the CDSF employing robust RA and robust DLS
in two consecutive stages.

A robust RA heuristic is one that is capable
of maximizing the probability that all applications
complete before the deadline. A DLS technique is
said to be robust if it facilitated the execution of
an application in the smallest amount of time, and
if this time satisfies the deadline when the runtime
system availability may vary from the one assumed
initially.
2. What uncertainties is the system robust
against?
Answer: Given uncertain variations in input data
and system availability, application execution times
are a known source of uncertainty in the system,
and may have a significant impact on the stated per-
formance objective. The uncertainty against which
the system considered in this work is assumed to
be robust is the 2-tuple (π1, π2).
3. How is the system robustness quantified?
Answer: The robustness of the system using the
CDSF can be quantified as the joint robustness
of the initial mapping in stage I and the runtime
application scheduling in stage II. The robustness
of stage I is quantified as the joint probability of all
applications completing by the common deadline,
i.e., φ1. Let Ai be the PMF for a given case study.
The robustness of stage II is quantified as the
percent decrease in weighted system availability
that can be tolerated by all applications without
violating the deadline, i.e., 1 − (E[Ai]/E[Â]) for
which Ψ ≤∆.

Let ρ1 be the largest robustness value of stage
I. Also, let ρ2 be the largest robustness value of
stage II. The system robustness is quantified as the
2-tuple (ρ1, ρ2).

IV. USEFULNESS OF PROPOSED FRAMEWORK

The assessment of the usefulness of the proposed
CDSF requires an investigation of the impact of
the different possible RA heuristics and DLS tech-
niques on the performance objective of interest. A
small scale example is provided next to illustrate
the usefulness of the proposed CDSF. The data

that was chosen for this example was used to
demonstrate the efficacy of the CDSF. The relevant
assumptions for this example are described below.
System setup: Consider a heterogeneous system
with twelve processors of two types, i.e., j = 1, 2:
four processors of type 1, and eight processors of
type 2. Processors of type 1 are assumed to have
a different computational capacity and availability
than processors of type 2. Case 1 in Table I de-
scribes the system availability as it was historically
collected and aggregated over a given period of
time, to form the expected system availability Â
used in stage I, and is taken as a reference case.
Cases 2–4 correspond to systems with decreased
weighted availability compared to the reference
case, i.e., E[A1] > E[A2] > E[A3] > E[A4].
Let pj be the number of processors of type j, and
ej be the expected availability of processor type j.
The weighted system availability can be calculated
as shown in Equation 1.

2∑
j=1

(pj)(ej)

3∑
i=1

maxi

(1)

A batch of N = 3 applications is considered,
having different sizes and serial/parallel component
ratios (see Table II). Serial iterations can only
be executed on a single processor and parallel
iterations can be executed on multiple processors of
the same type. The system deadline is ∆ = 3, 250
time units, and was chosen to help illustrate the
differences between using intelligent stages versus
naı̈ve stages in the dual-stage framework.

The single processor execution times for each of
the three applications on each of the two processor
types are represented as PMFs; this is the ε̂ used
in stage I. For this study, the PMFs were gener-
ated by sampling a normal distribution with the
mean values (µ) shown in Table III. Each normal
distribution used a standard deviation (σ) of one-
tenth of its mean value, i.e., σ = 1

10µ. These
values were considered to be the expected serial
times required for each application to execute on
one processor of a given type and were chosen to

200

highlight the usefulness of the proposed combined
two-stage framework.

It is assumed that all applications must be as-
signed and that they are assigned to a power-of-2
number of processors of one type. For application
i on processor type j, let Tijx be the time of pulse
x in the PMF, sij and pij be the serial and parallel
fractions, respectively, and nij be the number of
processors. Let Tijxn be the pulse in the parallel
execution time PMF of application i assigned to
nij processors of type j. This specific parallel
execution time PMF is obtained by recalculating
each pulse of the single processor execution time
PMF according to Equation (2).

Tijxn = (sijTijx) + (pijTijx)/nij (2)

For each pulse x, the time associated with Tijxn

Table I: Processor availabilities by type and weighted
system availabilities. Case 1 corresponds to Â. Square
brackets indicate 1− (E[Ai]/E[Â]).

Proc. Avail-
ability
(%)

Prob-
ability
(%)

Expected
avail-
ability

(%)

Weighted
system
avail-
ability

(%)

Case 1 Type 1 75 50 87.50
75.00100 50

(A1 = Â) Type 2
25 25

68.7550 25
100 50

Case 2 Type 1 50 90 52.50 53.8775 10

(A2) Type 2
33 45

54.55 [28.17]66 45
100 10

Case 3 Type 1 52 50 60.58 51.9269 50

(A3) Type 2
17 25

47.60 [30.77]35 25
69 50

Case 4 Type 1 33 75 41.25 50.4266 25

(A4) Type 2
20 50

55.00 [32.77]80 25
100 25

Table II: Characteristics of a batch of applications
App. # Serial

iterations
Parallel
iterations

% Serial
iterations

% Parallel
iterations

1 439 1024 30 70
2 512 2048 20 80
3 216 4096 5 95

will differ from Tijx, while the probability will
remain the same.
Table III: Normal distribution mean values for single
processor execution times of each application on each
processor type.

Processor T exp
1,1 T exp

1,2 T exp
1,3

Type 1 1,800 2,800 12,000
Type 2 4,000 6,000 8,000

Once the PMF modeling the parallel execution
time of an application on a certain number of
processors of one type is calculated, it is convo-
luted with the PMF modeling the historical system
availability (Â) of processors of that type (αj), to
determine the PMF used in stage I to calculate the
resource allocation robustness values. To calculate
the probability that for a given resource allocation,
an application will meet the common deadline
∆, each pulse in this resulting PMF correspond-
ing to a time less than the deadline is summed
together. Due to the fact that each application’s
finishing times are independent, the probability that
the entire system will complete by the common
deadline is given by multiplying each application’s
probability of completion by ∆ together.

To demonstrate the benefits and usefulness of
the proposed CDSF for allocating the twelve het-
erogeneous processors of two types, executing with
uncertainties shown in Table I, to the three ap-
plications, four scenarios have been identified: 1)
naı̈ve IM−naı̈ve RAS, 2) robust IM−naı̈ve RAS,
3) naı̈ve IM−robust RAS, and 4) robust IM−robust
RAS.

In all scenarios, the IM problem is solved assum-
ing a system availability equal to Â = A1, while
the RAS problem is solved assuming the runtime
system availability A, is one value from the set
{A1,A2,A3,A4}.

In naı̈ve IM, a simple load balancing technique
is used to allocate an equal share of the available
processors to each application. The load balanc-
ing allocation with the highest probability that
all applications will complete before the deadline
was chosen. In the system as described by the
example, the load balancing technique allocated
resources as described in Table IV. Given this
resource allocation, the system has a 26% chance

201

of completing the applications before the deadline,
i.e., Pr(Ψ ≤∆) = 26%.
Table IV: Resource allocation for naı̈ve and robust IM

RA App. i Proc. type j # Procs maxi

naı̈ve IM
1 2 4
2 1 4
3 2 4

robust IM
1 1 2
2 1 2
3 2 8

In the robust IM case, all possible resource
allocations are compared and the one with the
highest probability of all applications completing
before the system deadline is chosen. This results
in resources being allocated as shown in Table
IV. Given this resource allocation, the system has
a 74.5% chance of completing the applications
before the deadline, i.e., Pr(Ψ ≤ ∆) = 74.5%.
It is important to note that this exhaustive search
for the robust resource allocation is only feasible in
the case of the small demonstrative example. More
advanced and scalable RA heuristics are required
for larger problem sizes, and our future work will
include designing such robust RA heuristics.

Given the two resource allocations, naı̈ve and ro-
bust, each application’s expected completion time
calculated in stage I is shown in Table V. These
values were obtained by taking the expected value
of the PMF relating to the assigned resources
for each application. It is interesting to note that
T exp
max2,2

is larger in the robust IM than in the naı̈ve
IM.
Table V: Parallel PMF estimated values of applications
completion times for naı̈ve and robust IM (in time units)

RA T exp
max1,1

T exp
max2,2

T exp
max3,3

naı̈ve IM 3800.02 1306.39 4599.76
robust IM 1365.46 1959.59 2699.86

In naı̈ve RAS, straightforward parallelization
is employed for each application to schedule its
iterations in equal shares, which are then assigned
to processors in a single step. This technique is
called STATIC.

In robust RAS, a DLS technique from the set
{FAC, WF, AWF-B, AF} is employed to exe-
cute an application on its allocated resources. The
DLS techniques implement dynamic load balanc-
ing mechanisms based on probabilistic analyses

to ensure minimal impact of runtime uncertain-
ties on the application performance. For a given
application and a runtime system availability, the
DLS technique resulting in the smallest parallel
execution time that satisfies the system deadline
is considered best.

The usefulness of the proposed CDSF is based
on the hypothesis that any of the first three sce-
narios will result in solutions that tolerate much
less perturbations variations in the overall system,
and therefore, are less robust. Thus, the fourth
scenario (robust IM−robust RAS) is expected to
be superior to the first three scenarios. The CDSF
allows investigation of the overall degree of toler-
able uncertainty for which the stated performance
objective is satisfied, at the level of each individual
application and for the entire batch of applications
executing on the heterogeneous system.
Scenario 1) Naı̈ve IM−naı̈ve RAS

In this scenario, each stage employs naı̈ve
heuristics to allocate resources to each of the three
applications, namely simple load balancing and
STATIC, respectively. The application execution
times are shown in Figure 3.

 0

 2000

 4000

 6000

 8000

 10000

 12000

Case 1

Case 2

Case 3

Case 4

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

Runtime system availability [cases]

Scenario 1: Stage II - Applications 1-3
 Parallel execution time using STATIC

App1-STATIC App2-STATIC App3-STATIC

T1

T2

T3

8177.81

6487.82

12099.14

10222.27

Figure 3: Scenario 1) Stage I: resource allocation
using simple load balancing, Stage II: straightforward
parallelization using STATIC. ∆ = 3, 250 time units
is the system deadline. T1 = 3, 800.02 time units,
T2 = 1, 306.39 time units, and T3 = 4, 599.76 time
units where Ti = T exp

maxi,i
(see Table V).

202

For the given resource allocation and application
scheduling, φ1 = 26% and φ2 > ∆ for all
system availability cases. This scenario shows that
a naive RA policy in stage I and a straightforward
parallelization in stage II cannot prevent the vi-
olation of the system deadline given the system
availability cases considered. Therefore, the system
is not robust.
Scenario 2) Robust IM−naı̈ve RAS

 0

 2000

 4000

 6000

 8000

 10000

 12000

Case 1

Case 2

Case 3

Case 4

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

Runtime system availability [cases]

Scenario 2: Stage II - Applications 1-3
 Parallel execution time using STATIC

App1-STATIC App2-STATIC App3-STATIC

T1
T2
T3

4381.81
3654.48

6510.93
5517.27

Figure 4: Scenario 2) Stage I: resource allocation using
optimal RA, Stage II: straightforward parallelization
using STATIC. ∆ = 3, 250 time units is the system
deadline. T1 = 1, 365.46 time units, T2 = 1, 959.59
time units, and T3 = 2, 699.86 time units where Ti =
T exp
maxi,i

(see Table V).

The interest in this scenario is to investigate how
much perturbation can be tolerated when only the
robust IM ensures a certain level of robustness for
all applications. Thus, an optimal RA heuristic is
employed in stage I to allocate resources to each
application, such that they all complete before ∆,
with a probability of 74.5% assuming the system
availability equals Â (see Table I). The use of
robust RA is recommended when the assumptions
made using a naı̈ve RA are not sufficient to guar-
antee the satisfaction of ∆, as is the case in the
previous scenario. Each application is parallelized
using STATIC in stage II, and their execution times
are plotted in Figure 4.

Given the robust resource allocation, φ1 =
74.5%. This means that the system makespan has
a higher probability of meeting the deadline when
π2 = E[A1] than in the previous scenario. How-
ever, Figure 4 shows that the performance of each
application using STATIC degrades with decreas-
ing system availability after the RA decisions have
been taken in stage I, and φ2 > ∆ for all four
system availability cases. Thus, it can be stated that
the system is not robust.
Scenario 3) Naı̈ve IM−robust RAS

In this scenario, the interest is to investigate how
much perturbation can be tolerated when only the
DLS policy ensures a certain level of robustness for
each application. Thus, the allocation decisions are
made in stage I according to a naı̈ve RA heuristic.
A robust DLS technique, i.e., FAC, WF, AWF-B, or
AF, is employed in stage II, and uses knowledge
obtained during the execution of the application
about the system, to guide the scheduling decisions
in such a way that the performance of the appli-
cation suffers a minimal degradation with varying
(decreasing) system availability. The application
execution times for this scenario are illustrated in
Figure 5.

For the naı̈ve resource allocation the probability
of all applications completing before ∆ is φ1 =
26%. Even when the most robust DLS technique
is used in stage II, one can note that certain
applications finish earlier than others. This causes
the violation of the system deadline, as it is the case
for application 3 in case 1, and applications 1 and 3
in cases 2-4. Given that φ2 > ∆ for all four system
availability cases, a more robust RA heuristic is,
hence, required in stage I to complement the robust
DLS technique used in stage II. It can be stated that
the system in this scenario is not robust.
Scenario 4) Robust IM−robust RAS

The previous two scenarios show an improve-
ment over the first scenario. This improvement
is, however, insufficient to ensure that the system
deadline is met for all applications. Therefore,
in this scenario the largest amount of tolerable
perturbation in system availability is considered,
while ensuring that the system deadline is met for
the entire batch of applications. This scenario, is

203

 0

 2000

 4000

 6000

 8000

 10000

 12000

Case 1

Case 2

Case 3

Case 4

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

Runtime system availability [cases]

Scenario 3: Stage II - Applications 1-3
 Parallel execution time using FAC, WF, AWF-B, and AF

App1: FAC
App1: WF

App1: AWF-B
App1: AF

App2: FAC
App2: WF

App2: AWF-B
App2: AF

App3: FAC
App3: WF

App3: AWF-B
App3: AF

T1

T2

T3

App1
App1

App1
App1

App2
App2 App2

App2

App3 App3

App3
App33616.81 4080.54

5251.33 4938.52

Figure 5: Scenario 3) Stage I: resource allocation
using simple load balancing, Stage II: robust DLS using
FAC, WF, AWF-B, and AF. ∆ = 3, 250 time units
is the system deadline. T1 = 3, 800.02 time units,
T2 = 1, 306.39 time units, and T3 = 4, 599.76 time
units where Ti = T exp

maxi,i
(see Table V).

also referred to as the scenario that best illustrates
the usefulness of the proposed combined dual-stage
framework.

The robust IM from the second scenario (robust
IM−naı̈ve RAS) is employed in stage I to allocate
a more suitable set of resources to each application
than in scenarios 1 and 3. Just as in scenario 3,
robust DLS algorithms are employed in stage II
to minimize the impact on the application perfor-
mance assuming unforeseen variation in the system
availability, and to support the probability given
by the robust IM in stage I that all applications
complete before the system deadline.

The application execution times for this scenario
are shown in Figure 6. One can note that the
system deadline is met for all applications when the
weighted system availability decreased by 28.17%
(case 2) and 30.77% (case 3), respectively, com-
pared to that assumed in stage I (case 1). When the
weighted system availability decreased by 32.77%
(case 4), the deadline is met for application 1,
while it is violated for application 2 using any DLS
technique and for application 3 using FAC, WF

 0

 2000

 4000

 6000

 8000

 10000

 12000

Case 1

Case 2

Case 3

Case 4

Pa
ra

lle
l e

xe
cu

tio
n

tim
e

Runtime system availability [cases]

Scenario 4: Stage II - Applications 1-3
 Parallel execution time using FAC, WF, AWF-B, and AF

App1: FAC
App1: WF

App1: AWF-B
App1: AF

App2: FAC
App2: WF

App2: AWF-B
App2: AF

App3: FAC
App3: WF

App3: AWF-B
App3: AF

T1
T2
T3

App1
App1 App1

App1
App2

App2 App2
App2

App3 App3
App3 App3

2043.81

3064.67 3182.33

4018.19

Figure 6: Scenario 4) Stage I: resource allocation using
optimal RA, Stage II: robust DLS using FAC, WF, AWF-
B, and AF. ∆ = 3, 250 time units is the system deadline.
T1 = 1, 365.46 time units, T2 = 1, 959.59 time units,
and T3 = 2, 699.86 time units where Ti = T exp

maxi,i
(see

Table V).

or AWF-B. This indicates that in case 4 and for
application 3, AF is more robust than FAC, WF, or
AWF-B when executing on the resources of type 2
allocated in stage I, with an expected availability of
55% for this processor type. Therefore, the system
is said to be robust for system availability cases
1-3, while it is not robust for case 4, and the
robustness value for stage I is ρ1 = 74.5%.

It is important to note that the above observa-
tions are valid only for the combination of type
1 and type 2 processors availabilities shown in
Table I (third column), and not for any general
combination that may result in the weighted system
availability values in Table I (sixth column).

Table VI: Scenario 4) DLS techniques providing best
application performance and meeting the system dead-
line for all cases of system availability

Application Case 1 Case 2 Case 3 Case 4
1 WF AF AF AF
2 WF WF AF –
3 AF AF AF AF

Table VI shows the DLS techniques that result
in the best application performance and that at

204

the same time satisfy the system deadline. It can
be noted that from all the cases considered in
Table I the largest tolerable decrease in overall
system availability compared to the reference case
is 30.77% (case 3) and the system deadline is
met for all applications. The most robust DLS
technique in this case is AF for all applications
(cf. Table VI, fourth column), and, hence, the
robustness value for stage II is ρ2 = 30.77%.

The system robustness for this scenario is quan-
tified as (ρ1, ρ2) = (74.5%, 30.77%).

V. CONCLUSIONS

The goal of this research is to study the alloca-
tion of resources to applications and the completion
of their execution before a system deadline in the
presence of uncertainty in input data and in system
availability. A combined dual-stage framework has
been proposed towards this goal. The framework
enables the robustness of resource allocation used
in a first stage to be enhanced via the use of
dynamic loop scheduling techniques used in a
second stage. The usefulness of the framework has
been demonstrated via a small scale, illustrative
example.

Extensions to this work may consider the im-
pacts of employing previously developed static [4]
and dynamic [19] stochastic resource allocation
heuristics in stage I, and other dynamic loop
scheduling techniques in stage II [14]. Design-
ing novel robust and scalable resource allocation
heuristics to be employed in stage I is also a
noteworthy extension to the present work. A study
of the factors to be considered in guiding the
choice of heuristics used in either stage is another
potential extension of interest to the current work.
Exploring the possible correlation between the
availabilities for different processor types on the
overall robustness of the system is also of interest
for our future work because it would help in better
quantifying the system robustness.

In future work, a larger scale problem will
be used to demonstrate the necessity of more
advanced RA heuristics in stage I. This larger
scale problem will incorporate more applications,
i.e., in a larger batch or in multiple batches, on

a larger computing system, i.e., one with more
processors and processor types. Probabilistic
studies will be performed on this larger problem
to determine the benefit of the CDSF on a range
of application and system parameters.

Acknowledgments: This work is in part supported
by the German Research Foundation (DFG) in the
Collaborative Research Center 912 “Highly Adap-
tive Energy-Efficient Computing,” by the National
Science Foundation (NSF) under grant numbers
CNS-0905399 and NSF IIP-1127978, and by the
Colorado State University George T. Abell Endow-
ment.

REFERENCES

[1] N. R. Satish, “Compile Time Task and Resource
Allocation of Concurrent Applications to Multipro-
cessor Systems,” Ph.D. dissertation, University of
California at Berkeley, Berkeley, CA, USA, 2009.

[2] C. Boneti, R. Gioiosa, F. J. Cazorla, and
M. Valero, Parallel and Distributed Computing,
Alberto Ros (Ed.). InTech, 2010, ch. 7. Using
Hardware Resource Allocation to Balance HPC
Applications. [Online]. Available: http://www.
intechopen.com/articles/show/title/using-hardware-
resource-allocation-to-balance-hpc-applications

[3] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-
K. Kim, “Measuring the robustness of a resource
allocation,” IEEE Transactions on Parallel and
Distributed Systems, vol. 15, no. 7, pp. 630 – 641,
Jul. 2004.

[4] V. Shestak, J. Smith, A. A. Maciejewski, and H. J.
Siegel, “Stochastic robustness metric and its use for
static resource allocations,” Journal of Parallel and
Distributed Computing, vol. 68, no. 8, pp. 1157–
1173, August 2008.

[5] I. Banicescu, F. Ciorba, and R. L. Cariño, “Towards
the robustness of dynamic loop scheduling on
large-scale heterogeneous distributed systems,” In-
ternational Symposium on Parallel and Distributed
Computing (ISPDC 2009), vol. 0, pp. 129–132,
2009.

[6] S. Srivastava, I. Banicescu, and F. Ciorba, “Inves-
tigating the robustness of adaptive dynamic loop
scheduling on heterogeneous computing systems,”
in Parallel and Distributed Scientific and Engineer-
ing Computing Workshop 2010, in the Proceedings
of the International Parallel and Distributed Pro-
cessing Symposium (IPDPSW-PDSEC 2010), Apr.
2010, pp. 1–8.

[7] A. Aziz and H. El-Rewini, “Grid resource alloca-
tion and task scheduling for resource intensive ap-
plications,” in International Conference on Parallel

205

Processing Workshops (ICPP 2006 Workshops),
2006.

[8] M.-J. Huguet and P. Lopez, “Mixed task scheduling
and resource allocation problems,” in In Inter-
national Conference on Integration of Artificial
Intelligence and Operations Research techniques
in Constraint Programming (CPAIOR 2000), Pade-
born, Germany, 2000, pp. 71–79.

[9] E. G. Coffman, Computer and Job-Shop Schedul-
ing Theory. John Wiley & Sons, New York, NY,
1976.

[10] D. Fernandez-Baca, “Allocating modules to proces-
sors in a distributed system,” IEEE Transactions on
Software Engineering, vol. 15, no. 11, pp. 1427–
1436, 1989.

[11] O. Ibarra and C. E. Kim, “Heuristic algorithms
for scheduling independent tasks on non-identical
processors,” Journal of the ACM, vol. 24, no. 2, pp.
280–289, 1977.

[12] A. Hurson, J. Lim, K. Kavia, and B. Lee, “Par-
allelization of DOALL and DOACROSS loops: A
survey,” Advances in Computers, vol. 45, 1997.

[13] I. Banicescu and R. L. Cariño, “Addressing the
stochastic nature of scientific computations via
dynamic loop scheduling,” Transactions on Nu-
merical Analysis, Special Issue on Combinatorial
Scientific Computing, vol. 21, pp. 66–80, 2005.

[14] R. L. Cariño and I. Banicescu, “Dynamic load
balancing with adaptive factoring methods in scien-
tific applications,” The Journal of Supercomputing,
vol. 44, pp. 41–63, 2008.

[15] S. F. Hummel, E. Schonberg, and L. E. Flynn,
“Factoring: A method for scheduling parallel
loops,” Communications of the ACM, vol. 35, no. 8,
pp. 90–101, Aug. 1992.

[16] Y. A. Li, J. K. Antonio, H. J. Siegel, M. Tan,
and D. W. Watson, “Determining the execution
time distribution for a data parallel program in a
heterogeneous computing environment,” Journal of
Parallel and Distributed Computing, vol. 44, no. 1,
pp. 35–52, Jul. 1997.

[17] L. Wasserman, All of Statistics: A Concise Course
in Statistical Interference. New York, NY:
Springer Science+Business Media, 2005.

[18] S. Ali, A. A. Maciejewski, and H. J. Siegel, ”Per-
spectives on robust resource allocation for hetero-
geneous parallel systems”, Handbook of Parallel
Computing: Models, Algorithms, and Applications,
S. Rajasekaran and J. Reif, Ed. Boca Raton, FL:
Chapman and Hall/CRC Press, 2008.

[19] J. Smith, E. K. P. Chong, A. A. Maciejewski,
and H. J. Siegel, “Stochastic-based robust dynamic
resource allocation in a heterogeneous computing
system,” International Conference on Parallel Pro-
cessing (ICPP 2009), 2009.

BIOGRAPHIES

Florina M. Ciorba received the Diploma in
Engineering (Computer Science) in 2001 from the
University of Oradea, Romania, and the Ph.D.
degree in Computer Engineering in 2008 from the
National Technical University of Athens, Greece.
From 2008 to 2010 she was a Postdoctoral Re-
search Associate at Mississippi State University.
In 2010 she joined the Center for Information Ser-
vices and High Performance Computing at Tech-
nische Universität Dresden, where she is currently
a Postdoctoral Research Associate. She is a mem-
ber of IEEE and ACM. Further information is
available at wwwpub.zih.tu-dresden.de/∼ciorba.

Tim Hansen received the B.S. degree in Com-
puter Engineering from the Milwaukee School of
Engineering in 2011. He is currently a graduate
research assistant in the robust computing group
in the Department of Electrical and Computer
Engineering at Colorado State University, working
towards his Ph.D. His research interests include
high performance computing, robust computing
systems, and resource allocation. He is a student
member of the IEEE.

Srishti Srivastava is a PhD student at the
Department of Computer Science and Engineer-
ing at Mississippi State University since August
2010. Her research interests include dynamic load
balancing, high performance computing, perfor-
mance and reliability analysis, optimization, and
prediction, and autonomic computing. Presently,
she is also a graduate research assistant at the
Center for Autonomic Computing at Mississippi
State University, which is also one of the four
National Science Foundation sites for autonomic
computing. Srishti has authored and co-authored
a number of articles published in renowned IEEE
and ACM conferences.

Ioana Banicescu is a professor in the Depart-
ment of Computer Science and Engineering at
Mississippi State University (MSU), a Director of
the Center for Autonomic Computing at MSU,
and also a Co-Director of the National Science
Foundation Center for Autonomic Computing. She
received the Diploma in Engineering (Electronics
and Telecommunications) from Polytechnic Uni-

206

versity - Bucharest, and the M.S. and the Ph.D.
degrees in Computer Science from New York
University - Polytechnic Institute. Professor Ban-
icescu’s research interests include parallel algo-
rithms, scientific computing, performance analysis,
evaluation, and prediction. Currently, her research
focus is on autonomic computing and performance
optimization for problems in computational sci-
ence. She is an Associate Editor of the Cluster
Computing journal and the International Journal
on Computational Science and Engineering, and
she has given many invited talks at universities,
government laboratories, and at various national
and international forums in the United States and
overseas. Professor Banicescu is the recipient of a
number of awards and distinctions for her scholarly
contributions and has authored and co-authored
over 100 articles published in journals, books, and
conference proceedings.

Anthony A. Maciejewski received the B.S.,
M.S., and Ph.D. degrees in Electrical Engineering
in 1982, 1984, and 1987, respectively, all from The
Ohio State University. From 1988 to 2001, he was a
Professor of Electrical and Computer Engineering
at Purdue University. In 2001, he joined Colorado
State University where he is currently the Head
of the Department of Electrical and Computer
Engineering. He is a Fellow of IEEE. A complete
vita is available at www.engr.colostate.edu/∼aam.

Howard Jay Siegel was appointed the Abell
Endowed Chair Distinguished Professor of Electri-
cal and Computer Engineering at Colorado State
University (CSU) in 2001, where he is also a
Professor of Computer Science and Director of the
CSU Information Science and Technology Center
(ISTeC). From 1976 to 2001, he was a professor
at Purdue University. Prof. Siegel is a Fellow of
the IEEE and a Fellow of the ACM. He received a
two B.S. degrees from the Massachusetts Institute
of Technology (MIT), and the M.A., M.S.E., and
Ph.D. degrees from Princeton University. He has
co-authored over 380 published technical papers.
His research interests include robust computing
systems, resource allocation, heterogeneous par-
allel and distributed computing and communica-
tions, and parallel algorithms, and parallel machine

interconnection networks. He was a Coeditor-in-
Chief of the Journal of Parallel and Distributed
Computing, and has been on the Editorial Boards
of both the IEEE Transactions on Parallel and
Distributed Systems and the IEEE Transactions on
Computers. He has been an international keynote
speaker and tutorial lecturer, and has consulted for
industry and government. For more information,
please see www.engr.colostate.edu/∼hj.

207

