From subexponentials in linear logic to concurrent constraint programming and back

Carlos Olarte Joint work with Elaine Pimentel and Vivek Nigam

ECT, Universidade Federal do Rio Grande do Norte

October 13, 2015 Workshop on Logic, Language and Information

Our objetive

Languages and reasoning techniques for the specification and verification of concurrent systems where different modalities can be combined.

Potential target applications:

- Multimedia Interactive Systems
- Biochemical Systems
- Mobile systems, Social Networks, distributed systems.
- Spatial modalities: locations, places, devices, biochemical interaction domains....
- Epistemic modalities: beliefs, opinions, facts, lies...
- Temporal modalities: System's configuration evolves along time-units.

A B F A B F

Concurrent Constraint Programming (CCP)

A simple and powerful model of concurrency tied to logic:

- Systems are specified by constraints (i.e., formulas in logic) representing partial information on the variables of the system.
- Agents tell and ask constraints on a shared store of constraints.

Concurrent Constraint Programming (CCP)

- A simple and powerful model of concurrency tied to logic:
 - Systems are specified by constraints (i.e., formulas in logic) representing partial information on the variables of the system.
 - Agents tell and ask constraints on a shared store of constraints.

()

Concurrent Constraint Programming (CCP)

- A simple and powerful model of concurrency tied to logic:
 - Systems are specified by constraints (i.e., formulas in logic) representing partial information on the variables of the system.
 - Agents tell and ask constraints on a shared store of constraints.

< ∃ > <

Concurrent Constraint Programming (CCP)

- A simple and powerful model of concurrency tied to logic:
 - Systems are specified by constraints (i.e., formulas in logic) representing partial information on the variables of the system.
 - Agents tell and ask constraints on a shared store of constraints.

< ∃ > <

Motivation CCP Calculi

CCP has been extended to deal with different application domains:

- tcc: Reactive and timed systems [SJG94].
- pccp: Probabilistic choices [GJS97].
- lccp: Linearity and resources [FRS01].
- ntcc: Time, non-determinsim and asynchrony [NPV02].
- cc-pi, utcc: Mobility [BM07, OV08].
- soft-ccp : Soft constraints and preferences [BMR06].
- eccp and sccp: Epistemic and Spatial reasoning [KPPV12].

Motivation CCP Calculi

CCP has been extended to deal with different application domains:

- tcc: Reactive and timed systems [SJG94].
- pccp: Probabilistic choices [GJS97].
- lccp: Linearity and resources [FRS01].
- ntcc: Time, non-determinsim and asynchrony [NPV02].
- cc-pi, utcc: Mobility [BM07, OV08].
- soft-ccp : Soft constraints and preferences [BMR06].
- eccp and sccp: Epistemic and Spatial reasoning [KPPV12].

The idea

Reason about different CCP systems in one logical framework.

A B > A B >

Subexponentials in Linear Logic (SELL)

Linear logic:

- Formulas are seen as resources, e.g., $c \otimes c \not\vdash c$.
- Classical reasoning is recovered by the use of exponentials: $|c \vdash c \otimes c|$

Subexponentials [DJS93]

Intuitively, $!^{a}F$ means "F holds in location a". Such exponentials are not canonical:

(in general)
$$!^a c \not\equiv !^b c$$
 if $a \neq b$

(3)

Subexponentials in Linear Logic (SELL)

Linear logic:

- Formulas are seen as resources, e.g., $c \otimes c \not\vdash c$.
- Classical reasoning is recovered by the use of exponentials: $|c \vdash c \otimes c|$

Subexponentials [DJS93]

Intuitively, $!^{a}F$ means "F holds in location a". Such exponentials are not canonical:

(in general)
$$!^a c \not\equiv !^b c$$
 if $a \neq b$

The Idea

Quantification on location may allow the specification of interesting behaviours in concurrency.

→ 3 → 4 3

This work is about

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Outline

2 SELL interpretation of CCP processes

- 3 SELL as Constraint System
- 4 Concluding Remarks

< ∃ > <

CCP: The language of Processes

Concurrent Constraint Programming

- tell(c) adds c to the store (d) leading to $d \wedge c$.
- The process **ask** *c* **then** *P* evolves into *P* if *c* can be deduced from the store. This is a simple and powerful synchronization mechanism.
- $P \parallel Q$: parallel execution of P and Q.
- (local x) P: local variables.
- Given a definition, $p(\overline{y}) \stackrel{\text{def}}{=} P$, the process $p(\overline{x})$ reduces to $P[\overline{x}/\overline{y}]$.

A simple example: Classical coffee machine

 $(tell(coin) \parallel ask coin then tell(coffee), true) \longrightarrow$ $(ask coin then tell(coffee), coin) \longrightarrow$ $(skip, coin \land coffee)$

(人間) トイヨト イヨト

Outline

Modalities in CCP

2 SELL interpretation of CCP processes

3 SELL as Constraint System

4 Concluding Remarks

Linear CCP [FRS01]

Constraints as formulae in (a fragment of) Girard's ILL:

Ask agents consume information when evolving.

The linear coffee machine

(tell(coin) \parallel ask coin then coffee, true) \rightarrow (ask coin then coffee, coin) \rightarrow (skip, <u>coffee</u>)

Declarative Reading of 1cc processes

[FRS01] showed that (L)CCP processes can be read as formulae in ILL:

 $(P,c) \longrightarrow^* (Q,d) \text{ iff } \mathcal{L}\llbracket P \rrbracket \otimes c \vdash \mathcal{L}\llbracket Q \rrbracket \otimes d$

- 本間 と えき と えき とうき

Focusing and Adequacy

Logical and operational steps do not correspond (closely) to each other:

- Process: $P = tell(c) \parallel ask \ c \ then \ tell(d) \parallel ask \ d \ then \ tell(e)$
- Operational side: $P \Downarrow_e (P \text{ outpus } e)$.
- Logical side $c \otimes (c \multimap d) \otimes (d \multimap e) \vdash e$, but:

$$\frac{\overline{c\vdash c}}{c,c\multimap d\vdash d} \frac{\overline{c\vdash c}}{c,c\multimap d\vdash d}$$

Andreoli's focusing system [And92]:

- negative connectives $-\infty, \&, \top, \forall, \dots$
- positive connectives: $\otimes, \oplus, \exists, \dots$

Focusing and Adequacy

Negative Phase

$$\frac{[\mathcal{K}:\Gamma],\Delta,F,G\longrightarrow\mathcal{R}}{[\mathcal{K}:\Gamma],\Delta,F\otimes G\longrightarrow\mathcal{R}} \otimes_{L} \frac{[\mathcal{K}:\Gamma],\Delta,F\longrightarrow G}{[\mathcal{K}:\Gamma],\Delta\longrightarrow F\multimap G} \multimap_{R} \frac{[\mathcal{K}:\Gamma],\Delta\longrightarrow G[x_{e}/x]}{[\mathcal{K}:\Gamma],\Delta\longrightarrow \forall x.G} \forall_{R}$$
Positive Phase

$$[\mathcal{K}_{1}:\Gamma_{1}]-_{F}\rightarrow [\mathcal{K}_{2}:\Gamma_{2}]-_{G}\rightarrow [\mathcal{K}_{1}:\Gamma_{1}]-_{F}\rightarrow [\mathcal{K}_{2}:\Gamma_{2}]\xrightarrow{H} G$$

$$\frac{[\mathcal{K}_1:\Gamma_1] - F \rightarrow [\mathcal{K}_2:\Gamma_2] - G \rightarrow}{[\mathcal{K}_1 \otimes \mathcal{K}_2:\Gamma_1,\Gamma_2] - F \otimes G \rightarrow} \otimes_R \quad \frac{[\mathcal{K}_1:\Gamma_1] - F \rightarrow [\mathcal{K}_2:\Gamma_2] \xrightarrow{\mathcal{F}} G}{[\mathcal{K}_1 \otimes \mathcal{K}_2:\Gamma_1,\Gamma_2] \xrightarrow{\mathcal{F}} G} \xrightarrow{-\circ_L}$$

If we decide to focus on $c \otimes (c \multimap d) \otimes (d \multimap e) \vdash e$, the atom d must be already in the context!

Declarative Reading of 1cc processes [OP15]

Focused proofs corresponds, one-to-one, to operational steps in (I)CCP.

$$(P,c) \longrightarrow^* (Q,d) \text{ iff } \mathcal{L}\llbracket P \rrbracket \otimes c \vdash \mathcal{L}\llbracket Q \rrbracket \otimes d$$

Modalities in CCP

Epistemic and Spatial behavior in CCP

Assume a set of agents A={i,j,k...},

- $[P]_i$ means P runs in the space-agent i.
- $s_i(c)$ means the constraint (information) c holds for agent i.

Constraints are of the form $s_i(c)$. Two possible interpretations:

• Epistemic:

- $s_i(c)$: *i* knows *c* (and then, *c* is true).
- ▶ $s_j(s_i(c))$: *j* knows that *i* knows *c* (and then, *j* knows *c*).

② Spatial

- ► s_i(c): c holds in the space of i.
- s_j(s_i(c)): c holds in the space that j conferred to i but c does not necessarily hold in j.

・ 同 ト ・ ヨ ト ・ ヨ ト

Epistemic CCP

Some properties for s_i :

- $s_i(c) \vdash_{\Delta_e} c$ (believes are facts)
- $s_i(s_i(c)) = s_i(c)$ (idempotence)

In eccp, knowledge of agents becomes a fact and information propagates to outermost spaces:

(ask coin then tell(coffee) $\| [tell(coin)]_i, true) \rightarrow$ (ask coin then tell(coffee) $\|, s_i(coin)) \rightarrow$ (tell(coffee), $s_i(coin)) \rightarrow$ (skip, $\underline{s_i(coin)} \land coffee$)

- 4回 ト 4 ヨ ト - 4 ヨ ト - ヨ

Spatial CCP (Information Confinment)

In sccp, inconsistency (and information) is confined:

s_i(0) ∀_{Δs} s_j(0) (false is not propagated outside locations).
 s_i(0) ∀_{Δs} 0 (falsity is not global)

(ask coin then tell(coffee) $\parallel [tell(coin)]_i, true) \longrightarrow$ (ask coin then tell(coffee), $s_i(coin)) \not\longrightarrow$

How to give a declarative interpretation of such modalities ?

Modalities in CCP

2 SELL interpretation of CCP processes

3 SELL as Constraint System

4 Concluding Remarks

Carlos Olarte (UFRN)

CCP& SELL

WoLLI2015 16 / 29

→ ∃ →

Subexponentials [DJS93] in Linear Logic

Subexponential Signature

 $\Sigma = \langle I, \leq, U \rangle$ where *I* is a set of labels, $U \subseteq I$ set of unbounded subexp and \leq is a pre-order among the elements of *I*.

$$\frac{\Gamma, F \longrightarrow G}{\Gamma, !^{a}F \longrightarrow G} !^{a}{}_{L} \qquad \frac{!^{a_{1}}F_{1}, \dots, !^{a_{n}}F_{n} \longrightarrow F}{!^{a_{1}}F_{1}, \dots, !^{a_{n}}F_{n} \longrightarrow !^{a}F} !^{a}{}_{R}, \text{ provided } a \preceq a_{i}$$
$$\frac{\Gamma \longrightarrow G}{\Gamma, !^{b}F \longrightarrow G} W \qquad \frac{\Gamma, !^{b}F, !^{b}F \longrightarrow G}{\Gamma, !^{b}F \longrightarrow G} C$$

Assume now two separated rooms *a* and *b*, i.e., $a \not\leq b$ and $b \not\leq a$. $(!^{a}coin \multimap !^{a}coffee) \otimes !^{b}coin \not\vdash !^{b}coffee$

- What about a specification like ∀*I*.(!^{*l*}coin-o!^{*l*}coffee) ?
- We need a theory for existential/universal quantification on subexponentials.

Carlos Olarte (UFRN)

Quantification on Locations [NOP13]

$$\frac{\mathcal{A}; \mathcal{L}; \Gamma, \mathcal{P}[I/x] \vdash G}{\mathcal{A}; \mathcal{L}; \Gamma, \mathbb{m}x : a.P \vdash G} \cong_{L} \qquad \frac{\mathcal{A}, l_{e} : a; \mathcal{L}; \Gamma \vdash \mathcal{P}[l_{e}/x]}{\mathcal{A}; \mathcal{L}; \Gamma \vdash \mathbb{m}x : a.P} \cong_{R}$$

$$\frac{\mathcal{A}, l_{e} : a; \mathcal{L}; \Gamma, \mathbb{P}[l_{e}/x] \vdash G}{\mathcal{A}; \mathcal{L}; \Gamma, \mathbb{W}x : a.P \vdash G} \boxtimes_{L} \qquad \frac{\mathcal{A}; \mathcal{L}; \Gamma \vdash \mathcal{P}[I/x]}{\mathcal{A}; \mathcal{L}; \Gamma \vdash \mathbb{W}x : a.P} \boxtimes_{R}$$

- Creating "new" locations: $\Gamma, \bigcup I.(F) \vdash G$
- Asserting something about all locations: Γ , $\square I.(F) \vdash G$
- Proving that all locations satisfies $G: \Gamma \vdash \bigcap I.(G)$
- Proving that G holds in some location: $\Gamma \vdash \bigcup I.(G)$

Theorem (Cut-elimination) [NOP13]

For any signature $\Sigma,$ the proof system ${\rm SELL}^{\mathbb m}$ admits cut-elimination.

Epistemic and Spatial Encodings

The intuition

Connective	Meaning
$\nabla_s = !^s$	$!^{s}P$ is located at s.
$\nabla_s = !^s ?^s$! ^s ? ^s P is confined to s.
<i>⋒I</i> : a P	P can move to locations below (outside) a

Epistemic Modalities

\preceq	Meaning
a.a \sim a	Modalities are idempotent: $[[P]_a]_a \sim [P]_a$
$a \preceq a.b$	Processes move outside $[[P]_b]_a \longrightarrow [P \parallel [P]_b]_a$

Spatial Modalities

\preceq	Meaning
a <u>⊀</u> b	P does not communicate with Q in $[P]_a \parallel [Q]_b$
a.a ⁄ a	Modalities are not necessarily idempotent.
a <u>⊀</u> a.b	Processes are confined: $[[P]_b]_a \not\sim [P \parallel [P]_b]_a$

F 4 3 F 4

Adequacy

Take for instance:

$$\mathcal{P}\llbracket \mathsf{tell}(c) \rrbracket_a = !^{\mathfrak{p}(a)} \cap s : a.(\mathcal{C}\llbracket c \rrbracket_s)$$

We get the following (focused) derivation in $SELL^{\square}$:

Theorem (Adequacy)

Let P be an eccp/sccp process, then,

$$P \Downarrow_{c} \text{ iff } \mathcal{P}\llbracket P \rrbracket \longrightarrow \mathcal{C}\llbracket c \rrbracket_{nil}$$

Carlos Olarte (UFRN)

Timed Modalities in SELLF

The tcc calculus

$$P, Q, \dots := \mathbf{tell}(c) \dots | \circ P | \Box P$$

Theorem (Adequacy)

Let P be a timed process, (C_t, Δ_t) be a CS. Then $P \Downarrow_c$ iff $\mathfrak{l}^{\mathfrak{c}(\infty)}[\![\Delta_t]\!], \mathcal{P}[\![P]\!]_1 \longrightarrow \bigcup I : 1+.\mathfrak{l}^{\mathfrak{c}(I)}\mathfrak{c}^{\mathfrak{c}(I)} c \otimes \top.$

Carlos Olarte (UFRN)

▶ < ≣ ▶ ≣ ∽ < @ WoLLI2015 21 / 29

<ロ> (日) (日) (日) (日) (日)

Outline

Modalities in CCP

SELL interpretation of CCP processes

SELL as Constraint System

4 Concluding Remarks

Carlos Olarte (UFRN)

CCP& SELL

WoLLI2015 22 / 29

- 一司

< ∃ > <

Subexponential CCP From SELL[®] to CCP

Assume a constraint system where subexponentials are allowed:

$$F := 1 | A | F \otimes F | \exists \overline{x}.F | !^{a}F | !^{s}?^{s}F$$

• $!^{a}c = (|c|)_{a}$: c holds (is believed) with preference a.

• $!^{s}?^{s'}c = [c]_{s'}^{s}$: c holds in any space in the hierarchy s' : s.

Processes are allowed to create and communicate locations:

$$P, Q := \operatorname{\mathsf{tell}}(c) \mid (\operatorname{\mathsf{local}} \overline{x}; \overline{l}) \, Q \mid (\operatorname{\mathsf{abs}} \overline{x}; \overline{l}; c) \, Q \mid P \parallel Q \mid [P]_{\mathfrak{s}}$$

What do we get?

A declarative model for concurrency where different modalities can be combined!

Programming Examples

Sharing Information

Assume that $s'' \leq s' \leq s$:

- [c]^s_{s'} ⊢_∆ [c]_{s'} (information c can be propagated to the inner/lower space s');
- [c]^s_{s"} ⊢_∆ [c]_{s'} (information c can be propagated to the intermediate location in the hierarchy);
- **③** $[c]_{s}$ $⊣_{\Delta}$ $[c]_{s'}^{s}$ (information is confined if sharing is not explicit);

Example (Agent 86's Coffee Machine)

 $(\text{local } l : m/c, l' : m/c) \text{tell}([coin]_l) \parallel \text{ask } [coin]_l \text{ then tell}([coffee]_{l'})$

Example (Nested Locations)

 $(\text{local } l : m/c, l' : l) \text{tell}([coin]_l) \parallel \text{ask } [coin]_l \text{ then tell}([coffee]_{l'})$

イロト イポト イヨト イヨト

Programming Examples

Temporal and Spatial Dependencies

Example

 $[[c]_2]_{s_a} \otimes [[d]_{3+}]_{s_{a'}}$ means that c holds for agent a in time-unit 2 while d holds for a' in all future time-unit $t \geq 3$. This is useful for describing sets of biochemical reactions ([CFHO15]).

Mobility

for names: $\exists x.P \land \forall y.Q \rightsquigarrow \exists x.(P \land Q)$ for locations: $\bigcup I. \bigtriangledown_I P \land \bigcap w. \bigtriangledown_w Q \rightsquigarrow \bigcup I.(\bigtriangledown_I P \land \bigtriangledown_I Q)$

Example (Service Oriented Computing)

 $\begin{aligned} \mathsf{request}(a,b) &\stackrel{\text{def}}{=} (\mathsf{local}\,x,l:\{a,b\}) \, (\mathsf{tell}([\mathsf{com}(x)]_b) \parallel \mathsf{ask} \, [\mathsf{com}(x)]_a \, \mathsf{then} \, (\mathsf{tell}([\mathsf{com}(x)]_l) \parallel P)) \\ \mathsf{accept}(a,b) &\stackrel{\text{def}}{=} (\mathsf{abs}\, y:b; [\mathsf{com}(y)]_b) \, (\mathsf{tell}([\mathsf{com}(y)]_a) \parallel (\mathsf{abs}\, k:b; [\mathsf{com}(y)]_k) \, Q) \end{aligned}$

Preferences and Soft Constraints

Using a c-semiring as a subexponential signature, agents can tell/ask preferences:

Examples of c-semirings $\langle \mathcal{A}, +, \times, \perp_{\mathcal{A}}, \top_{\mathcal{A}} \rangle$

- Fuzzy: $S_F = \langle [0,1], max, min, 0,1 \rangle$ Preferences
- Probabilistic: $S_P = \langle [0,1], max, \times, 0, 1 \rangle$
- Weighted: $S_w = \langle \mathcal{R}^-, max, +, -\infty, 0 \rangle$ Costs

SELLS System [PON14], Promotion Rule

$$\frac{!^{a_1}F_1,\cdots,!^{a_n}F_n\longrightarrow G}{!^{a_1}F_1,\cdots,!^{a_n}F_n\longrightarrow !^bG} \ b\preceq a_1\times\ldots\times a_n$$

Fuzzy: (|c|)_{0.7} ⊢_∆ (|c|)_{0.5} (if c is added with a higher preference a', then it can be deduced with a lower preference a);
Probabilistic: (|c|)_{0.7} ⊗ (|d|)_{0.3} ⊢_∆ (|c ⊗ d))_a (a ≤ 0.21).

Outline

Modalities in CCP

2 SELL interpretation of CCP processes

3 SELL as Constraint System

4 Concluding Remarks

- 一司

< ∃ > <

Concluding Remarks

- We showed that subexponentials can express interesting behaviors in concurrency.
- The resulting system turned out to be a nice proof system for different flavors of CCP:
 - Spatial modalities, where nested locations can be dynamically created and shared.
 - Knowledge
 - Temporal Modalities
 - Soft constraints and preferences
- The logical system guided the design for new (still declarative) constructors for CCP.
- Two concrete applications so far: logic/CCP semantics for:
 - P-Systems.
 - Reactive Scores.

• • = • • = •

Thank you!

・ロト ・聞ト ・ヨト ・ヨト

Jean-Marc Andreoli.

Logic programming with focusing proofs in linear logic. J. Log. Comput., 2(3):297–347, 1992.

- Maria Grazia Buscemi and Ugo Montanari.
 - Cc-pi: A constraint-based language for specifying service level agreements.

In Rocco De Nicola, editor, *ESOP*, volume 4421 of *Lecture Notes in Computer Science*, pages 18–32. Springer, 2007.

- Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Soft concurrent constraint programming. ACM Trans. Comput. Log., 7(3):563–589, 2006.
- Davide Chiarugi, Moreno Falaschi, Diana Hermith, and Carlos Olarte. Verification of spatial and temporal modalities in biochemical systems. *Electr. Notes Theor. Comput. Sci.*, 316:29–44, 2015.
 - Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx.The structure of exponentials: Uncovering the dynamics of linear logic
proofs.

Carlos Olarte (UFRN)

In Georg Gottlob, Alexander Leitsch, and Daniele Mundici, editors, *Computational Logic and Proof Theory, Third Kurt Gödel Colloquium, KGC'93, Brno, Czech Republic, August 24-27, 1993, Proceedings,* volume 713 of *Lecture Notes in Computer Science*, pages 159–171. Springer, 1993.

Francois Fages, Paul Ruet, and Sylvain Soliman. Linear concurrent constraint programming: Operational and phase semantics.

Information and Computation, 165, 2001.

Vineet Gupta, Radha Jagadeesan, and Vijay A. Saraswat.
 Probabilistic concurrent constraint programming.
 In Proc. of CONCUR 97, London, UK, 1997. Springer-Verlag.

Sophia Knight, Catuscia Palamidessi, Prakash Panangaden, and
Frank D. Valencia.
Spatial and epistemic modalities in constraint-based process calculi.
In Maciej Koutny and Irek Ulidowski, editors, *CONCUR*, volume 7454
of *Lecture Notes in Computer Science*, pages 317–332. Springer, 2012.

(日) (同) (三) (三)

Vivek Nigam, Carlos Olarte, and Elaine Pimentel.

A general proof system for modalities in concurrent constraint programming.

In Pedro R. D'Argenio and Hernán C. Melgratti, editors, *CONCUR* 2013 - Concurrency Theory - 24th International Conference, CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013. Proceedings, volume 8052 of Lecture Notes in Computer Science, pages 410–424. Springer, 2013.

M. Nielsen, C. Palamidessi, and F.D. Valencia.

Temporal concurrent constraint programming: Denotation, logic and applications.

Nordic Journal of Computing, 9(1), 2002.

Carlos Olarte and Elaine Pimentel.

Proving concurrent constraint programming correct, revisited. *Electr. Notes Theor. Comput. Sci.*, 312:179–195, 2015.

Carlos Olarte and Frank D. Valencia.

Universal concurrent constraint programing: Symbolic semantics and applications to security.

In Proc. of SAC 2008. ACM. 2008.

- Elaine Pimentel, Carlos Olarte, and Vivek Nigam. A proof theoretic study of soft concurrent constraint programming. TPLP, 14(4-5):649-663, 2014.

Vijay Saraswat, Radha Jagadeesan, and Vineet Gupta. Foundations of timed concurrent constraint programming. In Proc. of LICS'94. IEEE CS, 1994.