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Sequent systems and modal logics

Sequent calculi for modal logics are well-established and
well-understood – but not entirely satisfactory!

Some desiderata for “good” calculi [Wansing:’02]:

I separation: distinct left and right introduction rules

I locality: no restrictions on the context

I modularity: obtain other logics by adding single rules

It can be easily verified that each of the standard rule
systems [for modal logics] fails to satisfy some of the
philosophical requirements [...].

[Wansing:’94]

E.g.:
Γ ` A
�Γ ` �A k

�Γ ` A
�Γ ` �A 4
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Solutions: structures with sequents in them

The solution according to internal approaches:

Extend the sequent structure!

By now, there are many ways to do so:

I Higher-level sequents : Sequents of sequents of sequents of...
[Došen:’85]

I 2-sequents: Streams of sequents
[Masini:’92]

I Display calculi: structural connectives for all operators
[Belnap:’82, Wansing:’94, Kracht:’96]

I Nested sequents: Trees of sequents
[Kashima:’94, Brünnler:’06, Poggiolesi:’09]

I ...



The Question

What is the simplest extension of the sequent structure
satisfying these desiderata for modal logics?



Case study: Nested sequents

Definition
([Brünnler:’09,Poggiolesi:’09])

A nested sequent is a finite tree
whose nodes are labelled with
sequents.The interpretation ι of
this nested sequent is

∧
Γ→

∨
∆ ∨

n∨
i=1

�ι(Σi ` Πi ) .

Fact
The nested sequent calculus with
modal rules �R and �L is sound
and cut-free complete for modal
logic K.

Γ ` ∆

Σ1 ` Π1 · · · Σn ` Πn

. . . . . . . . . . . .

. . .
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∆ ∨
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Trees are nice, but can we go simpler?



Linear nested sequents

Definition
A linear nested sequent is a finite list of sequents, written

Γ1 ` ∆1// . . . // Γn ` ∆n

and interpreted as
∧

Γ1 `
∨

∆1 ∨�(. . .�(
∧

Γn `
∨

∆n) . . . ).

The nested sequent system for K yields the modal rules of LNSK:

G// Γ ` ∆//Σ,A ` Π//H
G// Γ,�A ` ∆//Σ ` Π//H �L

G// Γ ` ∆// ` A

G// Γ ` ∆,�A
�R

Extensions, e.g. (lifted shamelessly from nested sequent calculi):

G// Γ ` ∆//A `
G// Γ,�A ` ∆

d
G// Γ ` ∆//Σ,�A ` Π//H
G// Γ,�A ` ∆//Σ ` Π//H 4



Completeness for linear nested sequents

We could show completeness via cut elimination . . . but it’s easier!

Observation: The data structure of LNS is the same as that of a
history in backwards proof search for a sequent calculus.

So we simply simulate a sequent derivation in the last components:
(G is the history)

Γ ` A

�Γ ` �A
... G

k
 

G//�Γ ` �A// Γ ` A

G//�Γ ` �A// ` A
�L

G//�Γ ` �A �R

Theorem
The LNS calculi for K and extensions with axioms from d, t, 4 or
d, 4, (4 ∧ 5) are cut-free complete and modular.

Corollary: Cut-free completeness of the nested sequent calculi.



Application: intuitionistic logic

The same idea connects Maehara’s multi-succedent calculus and
Fitting’s nested sequent calculus for intuitionistic logic, e.g.:

Maehara:

Γ,A ` B

Γ ` ∆,A ⊃ B
⊃R

Fitting (restricted to LNS):

G// Γ ` ∆//Σ,A ` Π//H
G// Γ,A ` ∆//Σ ` Π//H Lift

G// Γ ` ∆//A ` B

G// Γ ` ∆,A ⊃ B
⊃R

Maehara’s rule is simulated by Fitting’s ⊃R and Lift.
The quantifier rules are similar.

Theorem
The LNS calculus for (full) first-order intuitionistic logic (and
hence also Fitting’s nested sequent calculus) is cut-free complete.



Simply dependent bimodal logics
The language of simply dependent bimodal logic KT⊕⊆ S4
contains two modalities � and ♥, and the axioms are the KT
axioms for � together with the S4 axioms for ♥ and the
interaction axiom ♥A ⊃ �A.

♥A ⊃ �A k� �(A ⊃ B) ⊃ (�A ⊃ �B) t� �A ⊃ A ` A
` �A

nec�

k♥ ♥(A ⊃ B) ⊃ (♥A ⊃ ♥B) t♥ ♥A ⊃ A 4♥ ♥A ⊃ ♥♥A
` A
` ♥A

nec♥

G//∗Γ ` ∆//� ` A

G//∗Γ ` ∆,�A
�R�

S
{

Γ ` ∆//� Σ,A ` Π
}

S
{

Γ,�A ` ∆//� Σ ` Π
} �L

S
{

Γ ` ∆//� Σ,♥A ` Π
}

S
{

Γ,♥A ` ∆//� Σ ` Π
} ♥L�

G//∗Γ ` ∆//♥ ` A

G//∗Γ ` ∆,♥A
♥R♥

S
{

Γ ` ∆//♥Σ,♥A ` Π
}

S
{

Γ,♥A ` ∆//♥Σ ` Π
} ♥L♥

S{Γ,�A,A ` ∆}
S{Γ,�A ` ∆}

t�
S{Γ,♥A,A ` ∆}
S{Γ,♥A ` ∆}

t♥
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Non-normal modal logics
Classical modal logic E: congruence rule

A ⊃ B B ⊃ A
�A ⊃ �B (E)

Allows exchanging logically equivalent formulae under the modality.
Extensions:

M �(A∧B) ⊃ (�A∧�B) C (�A∧�B) ⊃ �(A∧B) N �>

G//Γ ` ∆//m ` B

G//Γ ` �B,∆
�m

R

G//Γ ` ∆//Σ,A ` Π

G//Γ,�A ` ∆//mΣ ` Π
�m

L

G//Γ ` ∆//mΣ,A ` Π

G//Γ,�A ` ∆//mΣ ` Π
�c

L

G//Γ ` ∆// ` B

G//Γ ` �B,∆
�n

R

LNSM { �m
R ,�

m
L } LNSMC { �m

R ,�
m
L,�

c
L }

LNSMN { �m
R ,�

m
L,�

n
R } LNSMCN { �m

R ,�
m
L,�

c
L,�

n
R }
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Non-monotone non-normal modal logics

For extensions of classical modal logic E not containing the
monotonicity axiom M we need to store more information about
the unfinished premisses.

Thus instead of //m we introduce a binary
nesting operator //e(.; .).

G//Γ ` ∆//e( ` B;B ` )

G//Γ ` �B,∆
�e

R

G//Γ ` ∆//Σ,A ` Π G//Γ ` ∆//Ω ` A,Θ

G//Γ,�A ` ∆//e(Σ ` Π; Ω ` Θ)
�e

L

G//Γ ` ∆//e(Σ,A ` Π; Ω ` Θ) G//Γ ` ∆//Ω ` A,Θ

G//Γ,�A ` ∆//e(Σ ` Π; Ω ` Θ)
�ec

L

LNSE { �e
R ,�

e
L } LNSEC { �e

R ,�
e
L,�

ec
L }
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Labelled line sequent systems

Γ0 ` ∆0

Γ1 ` ∆1

. . .

Γn ` ∆n

xn−1Rxn, x0 : Γ0, . . . , xn : Γn ` x0 : ∆0, . . . , xn : ∆n

xRy ,X ` Y , y : A

zRx ,X ,` Y , x : �A
�R

A LNS calculus is end-active if in all its rules the rightmost
components of the premisses are active and the only active
components (in premisses and conclusion) are the two rightmost
ones.
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Focused labelled line sequent systems

zRx : Γ;X , x : A, x : B ⇒ Y ; ∆

zRx : Γ;X , x : A ∧ B ⇒ Y ; ∆
∧L

zRx : Γ;X , x : A⇒ Y , x : B; ∆

zRx : Γ;X ⇒ Y , x : A ⊃ B; ∆
⊃R

zRx : Γ, x : Bb;X ⇒ Y ; ∆

zRx : Γ;X , x : Bb ⇒ Y ; ∆
storeL

zRx : Γ;X ⇒ Y ; ∆, x : Ab

zRx : Γ;X ⇒ Y , x : Ab; ∆
storeR

zR[x ] : Γ;X , x : A→ ·; ∆, x : A
init

zR[x ] : Γ;X → ·; ∆

zRx : Γ;X ⇒ ·; ∆
D

xRy : ·;X ⇒ Y ; ∆

[x ]Ry : ·;X → Y ; ∆
R

[x ]Ry : Γ;X → y : A; ∆

zR[x ] : Γ;X → ·; ∆, x : �A
�R

[x ]Ry : Γ;X , y : A→ Y ; ∆

[x ]Ry : Γ, x : �A;X → Y ; ∆
�L

Focusing effectively blocks derivations where propositional rules are
applied between modal ones. Hence we reconcile the added
superior expressiveness and modularity of nested sequents with the
computational behavior of the standard sequent framework.
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Automatic proof search in linear nested sequents

I The method for constructing focused systems generates
optimal systems, in the sense that proof search complexity
matches exactly that of the original sequent calculi.

I We can exploit the fact that these calculi sport separate left
and right introduction rules for the modalities to present a
systematic way of encoding labelled line nested sequents in
linear logic.

I This enables us to both: (i) use the rich linear logic meta-level
theory in order to reason about the specified systems; and (ii)
use a linear logic prover in order to do automatic proof search
in those systems (http://subsell.logic.at/nestLL/).

(init) ∃A, x .bx : Ac⊥ ⊗ dx : Ae⊥ ⊗ atomic(A)
(∧l) ∃A,B, x .bx : A ∧ Bc⊥ ⊗ bx : Ac .................................................

............
.................................. bx : Bc

(∧r ) ∃A,B, x .dx : A ∧ Be⊥ ⊗ dx : Ae & dx : Be
(�R) ∃A,B, x .dx : �Ae⊥ ⊗ ∀y .(dy : Ae .................................................

............
.................................. R(x , y))⊗ ∃z .R(z , x)⊥

(�L) ∃A,B, x .bx : �Ac⊥ ⊗ ∃y .(by : Ac .................................................
............
.................................. R(x , y))⊗ R(x , y)⊥

http://subsell.logic.at/nestLL/
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Conclusion and future work
Summing up we:

I proposed focused nested sequent systems for a number of
modal logics (including a non-trivial bimodal logic and
non-normal logics) which match the complexity of existing
sequent calculi;

I specified the labelled systems in linear logic, thereby obtaining
automatic provers for all of them.

This is a significant step towards a better understanding of proof
theory for modal logics in general, and it opens an avenue for
research in proof search for a broad set of systems (not only
modal).
Future work:

I applicability of this approach to logics based on non-classical
propositional logic such as constructive modal logics;

I our methods work for logics which are not based on a cut-free
sequent calculus, such as the calculi for K5 or KB?

I automatically extract focused systems from LLF specifications.
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