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§1. Sequent calculus (SC): Basics -1-

Gentzen invented sequent calculus in order to prove Hilbert’s
consistency (more precisely, contradiction-free) assertion for
pure logic and Peano Arithmetic. He succeeded in both cases,
although the latter proof required consistency of Cantor’s
basic system of ordinals below ε0 .

To this end he replaced a familiar Hilbert-style logic formalism
based on the rule of detachment (aka modus ponens)

α α→ β

β

by a system R of direct inferences having subformula property:
‘premise formulas occur as (sub)formulas in the conclusion’.

Such R (finitary, generally well-founded) is consistent, since ⊥
(or 0 = 1) has no proper subformula, and hence not derivable.
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§1. Sequent calculus: Basics -2-

To complete the consistency proof it remains to show that
modus ponens is admissible in S .

In sequent form, modus ponens is called cut and looks like this

Γ⇒ α Γ, α⇒ β

Γ⇒ β
(int.) or

Γ, α Γ,¬α
Γ

(class.)

So cut elimination theorem does the job.

Theorem (cut elimination)

1 Logic: Every sequent derivable in R ∪ {cut} is derivable in R .

2 Peano Arithmetic: Every qf-sequent derivable in RPA ∪ {cut}
is derivable in RPA .
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§1.1. Sequent calculus: Conservative extensions

Due to Kreisel’s observation one can use cut elimination
techniques to establish proof-theoretic conservations :
‘ every formula provable in T is provable in sub-theory S ’.

The trick: express syntax a/o axioms of T \ S using
appropriate cuts which can be eliminated from sequent
calculus of T .

Example (ACA0 is conservative extension of PA)

Every 1-order formula provable in ACA0 is provable in PA, where
ACA0 extends PA by adding 2-order set-variables together with
(corresponding logic and) axioms for 1-order comprehension and
induction restricted to sets.
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§1.2. Sequent calculus: Ordinal analysis and beyond

Schütte (and followers) generalized Gentzen’s arithmetical
consistency proof working with infinite well-founded tree-like
derivations supplied with ordinal labels. This yields deeper
insight into proof-theoretic ordinals.

Namely, for much stronger than PA theories T it’s possible to
describe proof-theoretic ordinals αT >> ε0 which characterize
theorems of T as follows: ‘ every arithmetical theorem of T is
provable in PA extended by transfinite induction below αT ’.

More recent research (initiated by Harvey Friedman) enables
us to replace ordinals αT (which are very involved for strong
T ) by more transparent quasi-ordinals characterized by
extended Kruskal-style tree theorems.

This stuff is obviously related to (say, extended) Hilbert’s
Program concerning logic foundations of mathematics.
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§1.3. Sequent calculus: Some consequences

To put it in a nutshell, cut elimination provides an extremely
powerful tool in Hilbert-style proof theory. Moreover it is
constructive, and hence yields by now strongest conservation
results for various intuitionistic theories [L.G]. Besides, it enables to
work with cutfree systems of direct sequent rules. Also note:

Cutfree sequent calculi have better proof search.

However, there are complexity problems (re: speed-up).

What to do? Dag-like cutfree derivations and substitution
rule!

Full dag-like compression with substitution may provide a
solution (at least in the propositional case).

But main complexity problem remains open (re: NP vs coNP).
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§2. Natural deductions (ND): Basic comparison -1-

Prawitz formalized (Gentzen’s notion of) natural deductions.
Here’s a short overview of ND features (compared to SC).

1 Lambda calculus connections. (Disadvantage: geometry fails.)

2 Normalization (also constructive) instead of cut elimination.
Normal ND also have global subformula property (but, unlike
cutfree SC, not the local one).
Remember that normal ND are not like cutfree SC; actually
they include modus ponens explicitly.

3 ND normalization is weaker than SC cut elimination. And/but
it also features exponential speed-up.

4 Ordinal analysis?

5 Stronger ties to complexity theory?
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§2. Natural deductions: Basic comparison -2-

Due to lack of time let’s go straight to final clause 5.

Main question: How to get a short propositional ND?

Recall that sequent derivations (proofs) admit full dag-like
compressions. (In the sequel we consider propositional logic.)

Theorem (L.G.)

Any given tree-like sequent proof T (whether cutfree or not) is
constructively compressible to a dag-like sequent proof D of the
same endsequent such that the total number of pairwise distinct
nodes in D is less, or equal, than the total number of pairwise
distinct sequents occurring in T . Loosely speaking this holds also
in the presence of substitution rule(s).
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distinct sequents occurring in T . Loosely speaking this holds also
in the presence of substitution rule(s).
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§2. Natural deductions: Basic comparison -3-

Clearly this result yields a significant space reduction.

But there is one catch: We can’t properly control the number
of pairwise distinct sequents (as being sets of formulas)
occurring in T even if we know that all formulas in question
are subformulas of the conclusion.
It’s still exponential upper bound! What to do?

Recall that, by contrast, ND’s consist of single formulas.
Moreover, the normal ones share the same subformula
property. Is it possible to compress them analogously and
obtain polynomial upper bounds on the total number of
nodes?
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§2. Natural deductions: Basic comparison -4-

Warning:
There is one obstacle when it comes to compression of natural
deductions. Namely, we should avoid vertical compressions
due to possible confusion caused by discharged assumptions.
(This problem is irrelevant to proof compression theory in
sequent calculi).

What can be done is a sort of horizontal dag-like compression.

Underlying idea:
If an input tree-like deduction has merely polynomial height
and every horizontal section is fully dag-like compressible (i.e.
reducible to pairwise distinct formulas), then the resulting
dag-like deduction has polynomial size. Voilà!
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§2.1. Dag-like natural deductions -1-

The assumptions on the tree-like complexity in question can
be obtained by embedding into ND calculus Hudelmaier’s
sequent calculus for minimal a/o intuitionistic logic (without
disjunction).

All in all such dag-like compression will infer NP = PSPACE.

But to this end we have to formalize dag-like deducibility in
Prawitz’s world. Recall that ‘dag’ stands for directed acyclic
graph (edges directed upwards).

The main difference between tree-like and dag-like natural
deductions is caused by the art of discharging, as the following
example shows.
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§2.1. Dag-like natural deductions -2-

Example

Consider a dag-like natural deduction ∂ =

(→ E)

(→ E)

Γ︷︸︸︷
∵

β → α

[α]1 α→ β

β
(→ E)

α α→ β [1]
(→ I)

β

in which the right-hand side premise of second (→ E) coincides
with (→ I) premise β. Note that the assumption α above β is
discharged by this (→ I). However, we can only infer that ∂
deduces β from Γ ∪ {α, α→ β}, instead of expected Γ ∪ {α→ β},
which leaves the option Γ ∪ {α→ β} 0 β open, if α /∈ Γ.
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Example (continued)

This becomes obvious if we replace ∂ by its “unfolded” tree-like
version ∂u =

α α→ β

β

Γ︷︸︸︷
∵

β → α

α

[α]1 α→ β

β

α→ β [1]

β

Clearly ∂u deduces β from Γ∪{α, α→ β}, instead of Γ∪{α→ β},
which leaves the option Γ ∪ {α→ β} 0 β open, if α /∈ Γ.
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§2.1. Dag-like natural deductions -4-

Keeping this in mind we’ll say that in a dag-like natural
deduction ∂, a given leaf u is an open (or undischarged)
assumption-node iff there exists a thread θ connecting u with
the root and such that no w ∈ θ is the (→ I) conclusion
assigned with α→ β, provided that α is assigned to u. Other
leaves are called closed (or discharged) in ∂. Note that the
corresponding condition ‘u is open (resp. closed) in ∂’ belongs
merely to NP (resp. coNP) 1, and hence ad hoc is
inappropriate for polynomial time proof verification.

We overcome this trouble by a suitable modification of the
notion of local correctness that includes special vertex-labeling
function `d : v(D)× f (D)→ {0, 1}, where v(D) and f(D)
are respectively the vertices (= nodes) and formulas of the
underlying dag D.

1unless ∂ is tree-like, in which case both propeties are in P.
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§2.1. Dag-like natural deductions -5-

Other two (standard) labeling functions `f : v(D)→ F and
`r : v(D)→ R∪{∅} assign formulas and rule-names. Now for
any given locally correct labeled dag D =

〈
D, `f, `r, `d

〉
we

call ΓD :=
{
`f (u) : 0 =

−→
deg (u) = `d (u, `f (u))

}
u∈v(D)

the

set of open (or undischarged) assumptions, in D. Moreover
D =

〈
D, `f, `r, `d

〉
is called an encoded dag-like natural

deduction of `f (root (D)) from ΓD. In particular, if ΓD = ∅,
then D is called an encoded dag-like proof of `f (root (D)).

Lemma

There is a 1− 1 correspondence between plain and encoded
dag-like natural deductions (in particular, proofs).
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§2.2. More on local correctness

Definition

Local correctness conditions for `d are as follows, where
`rf (u) = (→ I )α stands for
`r (u) = (→ I ) ∧ `f (u) = α→ `f

(
u(1)

)
.

1 If
←−
deg (u) = 0, i.e. u is the root, then `d (u, α) = 1 iff

`rf (u) = (→ I )α .

2 If `rf (u) = (→ I )α, then `d (u, α) = 1.

3 If
←−
deg (u) > 0 and `rf (u) 6= (→ I )α,

then `d (u, α) =

←−
deg(u)∏
i=1

`d
(
u(i), α

)
.
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