# Methods of proof for residuated algebras of binary relations



Joint work with Marcia Cerioli (COPPE/IM, UFRJ)

# Outline

- 1. Binary relations and some of their operations
- 2. Residuated algebras of binary relations
- 3. Algebraic and quasi-algebraic theories of residuated algebras of binary relations

- 4. Calculational reasoning
- 5. Diagrammatic reasoning
- 6. Perspectives

### 1. Binary relations and some of their operations

# **Binary relations**

Let U be a set.

Elements of U are usually denoted by  $u, v, w, \ldots$ 

A binary relation on U is a subset of  $U \times U$ .

2RelU is the set of all binary relations on U.

Elements of 2RelU are usually denoted by  $R, S, T, \ldots$ 

Operations on binary relations

Let  $R, S \in 2 \text{Rel} U$ .

#### Booleans

The *union* of R and S is:

$$R \cup S = \{(u, v) \in U : (u, v) \in R \text{ or } (u, v) \in S\}$$

The *intersection* of R and S is:

$$R \cup S = \{(u, v) \in U : (u, v) \in R \text{ and } (u, v) \in S\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Operations on binary relations

Let  $R, S \in 2 \text{Rel} U$ .

#### Peirceans

The *composition* of R and S is:

$$R \circ S = \{(u, v) \in U : \exists w \in U[(u, w) \in R \text{ and } (w, v) \in S]\}$$

The *reversion* of *R* is:

$$R^{-1} = \{(u, v) \in U : (v, u) \in R\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Operations on binary relations

Let  $R, S \in 2 \text{Rel} U$ .

#### **Between Booleans and Peirceans**

The *left residuation* of R and S is:

$$R \setminus S = \{(u, v) \in U : \forall w \in U[ \text{ if } (w, u) \in R, \text{ then } (w, v) \in S]\}$$

The right residuation of R and S is:

$$R/S = \{(u,v) \in U : \forall w \in U[ ext{ if } (v,w) \in S, ext{ then } (u,w) \in R]\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

# Motivations for residuals

- Algebra: M. Ward and R.P. Dilworth. Residuated lattices. Trans. Amer. Math. Soc. 45: 335–54 (1939)
- Computer Science: C.A.R Hoare and H. Jifeng. The weakest prespecification. *Fund. Inform.* 9: Part I 51–84, Part II 217–252 (1986)
- Linguistics: J. Lambek. The mathematics of sentence structure. Amer. Math. Monthly 65: 154–170 (1958)
- Logic: N. Galatos, P. Jipsen, T. Kowalski, and H. Ono . *Residuated Lattices. An Algebraic Glimpse at Substructural Logics.* Elsevier (2007)

2. Residuated algebras of binary relations

# Residuated algebras of relations

Let U be a set.

Let  $A \subseteq 2\operatorname{Rel} U$  be closed under all the operations  $\cup$ ,  $\cap$ ,  $\circ$ ,  $^{-1}$ ,  $\setminus$  and /.

The *residuated algebra of binary relations* on *U* based on *A* is the algebra:

$$\mathfrak{A} = \langle A, \cup, \cap, \circ, ^{-1}, \backslash, / \rangle$$

 $\mathcal{A}$ 2Rel is the class of all residuated algebra of binary relations.

Elements of  $\mathcal{A}2\mathsf{Rel}$  are usually denoted by  $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \ldots$ 

# Residuated algebras of relations

Aka lattice-ordered involuted residuated semigroups:

- 1. Lattice:  $R \cup S$  is a supremum and  $R \cap S$  is a infimum.
- 2. Ordered:  $R \leq S$  (iff  $R \cup S = S$  iff  $R \cap S = R$ ) is a parcial ordering.
- 3. Semigroup:  $R \circ S$  is a not necessarily commutative multiplication.
- 4. Involuted:  $(R^{-1})^{-1} = R$  and  $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$ .
- 5. Residuated:  $\setminus$  is the left-inverse of  $\circ$  and / is the right inverse of  $\circ.$

3. Algebraic and quasi-algebraic theories of residuated algebras of binary relations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Terms and inclusions

The **terms**, typically denoted by  $R, S, T, \ldots$ , are generated by:

 $R ::= X \mid R \cup R \mid R \cap S \mid R \circ R \mid R \setminus R \mid R/R \mid R^{-1}$ 

where  $X \in Var$ , a set of *variables* fixed in advance.

A quasi-equality is an expression of the form

$$R \subseteq S$$

where R and S ate terms.

# Horn quasi-equalities

A Horn quasi-equality is an expression of the form

 $R_1 \subseteq S_1, \ldots, R_n \subseteq S_n \Rightarrow R \subseteq S$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where  $R_1, S_2, \ldots, R_n, S_n, R, S$  are terms.

## Valuations and values

Let  $\mathfrak{A} \in \mathcal{A}2\mathsf{Rel}$ .

A **valuation** on  $\mathfrak{A}$  is a function  $v : Var \to A$ .

Let *R* be a term,  $\mathfrak{A} \in \mathcal{A}2$ Rel, and *v* be a valuation on  $\mathfrak{A}$ . The **value** of *R* in  $\mathfrak{A}$  according to *v*, denoted by  $R_v^{\mathfrak{A}}$  is defined by:

$$\begin{array}{rcl} X^{\mathfrak{A}}_{v} &=& vX \\ (R \cup S)^{\mathfrak{A}}_{v} &=& R^{\mathfrak{A}}_{v} \cup S^{\mathfrak{A}}_{v} \\ (R \cap S)^{\mathfrak{A}}_{v} &=& R^{\mathfrak{A}}_{v} \cap S^{\mathfrak{A}}_{v} \\ (R \circ S)^{\mathfrak{A}}_{v} &=& R^{\mathfrak{A}}_{v} \circ S^{\mathfrak{A}}_{v} \\ (R \backslash S)^{\mathfrak{A}}_{v} &=& R^{\mathfrak{A}}_{v} \backslash S^{\mathfrak{A}}_{v} \\ (R^{-1})^{\mathfrak{A}}_{v} &=& (R^{\mathfrak{A}}_{v})^{-1} \end{array}$$

# Truth and validity

Let  $R \subseteq S$  be a quasi-equality,  $\mathfrak{A} \in \mathcal{A}2\mathsf{Rel}$ , and v be a valuation on  $\mathfrak{A}$ .

 $R \subseteq S$  is **true** on  $\mathfrak{A}$  under v if  $R_v^{\mathfrak{A}} \subseteq S_v^{\mathfrak{A}}$ .

 $R \subseteq S$  is **identically true** on  $\mathfrak{A}$ , or  $\mathfrak{A}$  is a **model** of  $R \subseteq S$ , if  $R \subseteq S$  is true on  $\mathfrak{A}$  under v, for every valuation v.

 $R \subseteq S$  is **valid** if every residuated algebra of relations  $\mathfrak{A}$  is a model of  $R \subseteq S$ .

# Validity and consequence

#### Let

$$R_1 \subseteq S_1, \dots, R_n \subseteq S_n \Rightarrow R \subseteq S \tag{1}$$

be a Horn quasi-equality,  $\mathfrak{A} \in \mathcal{A}2$ Rels, and v be a valuation on  $\mathfrak{A}$ .

(1) is valid, or  $R \subseteq S$  is a consequence of  $R_1 \subseteq S_1, \ldots, R_n \subseteq S_n$ , if every model of all  $R_1 \subseteq S_1, \ldots, R_n \subseteq S_n$  is a model of  $R \subseteq S$ .

From quasi-equalities to equalities and back

An equality is an expression of the form

$$R = S$$

where R and S ate terms.

A Horn equality is an expression of the form

$$R_1 = S_1, \ldots, R_n = S_n \Rightarrow R = S$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where  $R_1, S_2, \ldots, R_n, S_n, R, S$  are terms.

From quasi-equalities to equalities and back

True, identically true, and valid equalities are defined as usual.

(ロ)、(型)、(E)、(E)、 E) の(の)

From quasi-equalities to equalities and back

Since

 $R \subseteq S$  is valid iff  $R \cap S \subseteq S$  and  $S \subseteq R \cap S$  are both valid,

we can consider to build the algebraic and the quasi-algebraic theories of the residuated algebras of relations on the top of the *logic of equality*.

But, taking equational logic as the subjacent logic, we have the following  $\ldots$ 

The set of all valid equalities (quasi-equalities) is not finitely axiomatizable (Mikulás, IGPL, 2010).

The set of all valid Horn equalities (Horn quasi-equalities) is not finitely axiomatizable (Andréka and Mikulás, JoLLI, 1994).

One proper question is:

are there interesting alternatives for equational reasoning on residuated algebras of binary relations?

## 4. Calculational reasoning

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Let P be a set and R be a binary relation on P.

 $\langle P, R \rangle$  is a **quasi-poset** if *R* is reflexive and transitive (but not necessarily antisymmetric) on *P*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Galois connections

Let  $\mathfrak{P}_1 = \langle P_1, \leq_1 \rangle$ ,  $\mathfrak{P}_2 = \langle P_2, \leq_2 \rangle$  be quasi-posets, and  $f : P_1 \to P_2$ ,  $g : P_2 \to P_1$  be functions.

 $\langle \mathfrak{P}_1, \mathfrak{P}_2, f, g \rangle$  is a **Galois connection** if, for all  $x \in P_1$  and  $y \in P_2$ :

$$fx \leq_2 y \iff x \leq_1 gy$$

# Calculational rules

#### Quasi-poset rules







These rules aloud us to perform both direct and indirect calculational reasoning (without negation).

## Direct calculational proofs

A direct calculational proof of  $t_1 \leq t_2$  is a sequence

$$\langle t_1 \leq t_2, t_3 \leq t_4, \ldots, t_{n-1} \leq t_n \rangle$$

such that, for each *i*,  $3 \le i \le n$ ,  $t_i \le t_{i+1}$ , at least one of the following conditions hold:

- 1.  $t_i \leq t_{i+1}$  is an axiom.
- 2.  $t_i \le t_{i+1}$  is obtained from previou(s) quasi-equation(s) in the sequence by one application of some calculational rule.
- 3.  $t_{n-1} \leq t_n$  is an axiom.

Start with  $t_1 \le t_2$  and applying axioms and calculational rules arrive in an axiom.

(日) (同) (三) (三) (三) (○) (○)

# Direct calculational proofs from hypothesis

Let  $\Gamma$  be a set of quasi-equations.

A direct calculational proof of  $t_1 \leq t_2$  from  $\Gamma$  is a sequence

$$\langle t_1 \leq t_2, t_3 \leq t_4, \ldots, t_{n-1} \leq t_n \rangle$$

such that, for each  $t_i \leq t_{i+1}$ , where  $3 \leq i \leq n$ , at least one of the following conditions hold:

- 1.  $t_i \leq t_{i+1}$  is an axiom
- 2.  $t_i \leq t_{i+1} \in \Gamma$
- 3.  $t_i \leq t_{i+1}$  is obtained from previou(s) quasi-equation(s) in the sequence by one application of some Calculational Rule.
- 4.  $t_{n-1} \leq t_n$  is an axiom or belongs to  $\Gamma$ .

Start with  $t_1 \le t_2$  and applying axioms, hyphotesis, and calculational rules arrive in an axiom or hyphotesis.

# $\cup$ defines a Galois connection

Let  $\langle \mathfrak{A}, \subseteq \rangle \in \mathcal{A}2\mathsf{Rel}$  and take  $\langle \mathfrak{A} \times \mathfrak{A}, \subseteq \times \subseteq \rangle \in \mathcal{A}2\mathsf{Rel}$ . For all  $X, Y \in A$ , we define  $f : A \times A \to A$  by:

 $f(X,Y)=X\cup Y$ 

and  $g: A \rightarrow A \times A$  by:

$$g(X) = (X, X)$$

With these notations, for all  $R, S, T \in A$ :

$$R \cup S \subseteq T \iff R \subseteq T$$
 and  $S \subseteq T$ 

is the same as

$$f(R,S) \subseteq T \Leftrightarrow (R,S) \subseteq g(T)$$

\ defines a family of Galois connections

Let  $\langle \mathfrak{A}, \subseteq \rangle \in \mathcal{A}2\mathsf{Rel}.$ 

For every  $R \in A$ , we define:

 $f_R(X)=R\circ X$ 

and

$$g_R(X) = R \setminus X$$

With these notations, we have that

$$R \circ S \subseteq T \Leftrightarrow S \subseteq R \setminus T$$

is the same as

$$f_R(S) \subseteq T \Leftrightarrow S \subseteq g_R(T)$$

 $\cap$ ,  $^{-1}$  and / define Galois connections

Sorry, no time to enter in details!

$$T_1) \ S \subseteq R \backslash (R \circ S)$$

$$S \subseteq R \setminus (R \circ S)$$
  
 $\ \ \, \bigcirc GC$   
 $R \circ S \subseteq R \circ S$   
 $\ \ \, \bigcirc Ref$   
 $\top$ 

 $T_2) \ R \circ (R \backslash S) \subseteq S$ 

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 のへで

```
T_3) \ R \backslash (S \cap T) \subseteq (R \backslash S) \cap (R \backslash T)
```

```
R \setminus (S \cap T)] \subseteq (R \setminus S) \cap (R \setminus T)
1 GC
R \setminus (S \cap T)] \subseteq R \setminus S \land R \setminus (S \cap T) \subseteq S \setminus T
1 GC
R \circ [R \setminus (S \cap T)] \subseteq S \land R \circ [R \setminus (S \cap T)] \subseteq T
1 GC
R \circ [R \setminus (S \cap T)] \subseteq S \cap T
1 GC
R \setminus (S \cap T) \subseteq R \circ (S \cap T)
1 Ref
Т
```

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$T_4) \ S \subseteq T \Longrightarrow R \backslash S \subseteq R \backslash T$$

$$S \subseteq T$$

$$T_2$$

$$R \circ (R \setminus S) \subseteq T$$

$$GC$$

$$R \setminus S \subseteq R \setminus T$$

By  $T_2$ ,  $R \circ (R \setminus S) \subseteq S$ .

 $T_5$ )  $T_1, T_2, T_3 \Longrightarrow \text{GC for } \setminus$  $R \circ S \subset T$  $\Downarrow$  Mon, Ide  $R \circ S \subseteq (R \circ S) \cap T$  $\downarrow T_4$  $R \setminus (R \circ S) \subseteq R \setminus [(R \circ S) \cap T]$  $\Downarrow T_1$  $S \subseteq R \setminus [(R \circ S) \cap T]$  $\downarrow T_3$  $S \subseteq R \setminus T$ 

By 
$$T_1$$
,  $S \subseteq R \setminus (R \circ S)$ .  
By  $T_3$ ,  $R \setminus [(R \circ S) \cap T] \subseteq R \setminus T$ .

 $T_5$ )  $T_1, T_2, T_3 \Longrightarrow \mathsf{GC}$  for  $\setminus$ 

$$S \subseteq R \setminus T$$

$$\Downarrow Mon$$

$$R \circ S \subseteq R \circ (R \setminus T)$$

$$\Downarrow T_2$$

$$R \circ S \subseteq T$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

By  $T_2$ ,  $R \circ (R \setminus S) \subseteq S$ 

## Indirect calculational proofs

An **indirect calculational proof** of  $t_1 \leq t_n$  is a sequence

$$\langle x \leq t_1, t_2 \leq t_3, \ldots, x \leq t_n \rangle$$

such that  $t_i \leq t_{i+1}$  —for each i,  $2 \leq i \leq n-1$ — and  $x \leq t_n$  are obtained from previou(s) quasi-equation(s) in the sequence by one application of some calculational rule.

Suppose  $x \le t_1$  and prove  $x \le t_2$  by applying the calculational rules.

# Indirect calculational proofs from hyphotesis

Let  $\Gamma$  be a set of quasi-equations.

A direct calculational proof of  $t_1 \leq t_n$  from  $\Gamma$  is a sequence

$$\langle x \leq t_1, t_2 \leq t_3, \dots, x \leq t_n \rangle$$

such that, for each  $t_i \leq t_{i+1}$ , where  $2 \leq i \leq n-1$ , at least one of the following conditions hold:

- 1.  $t_i \leq t_{i+1}$  is an axiom
- 2.  $t_i \leq t_{i+1} \in \Gamma$
- 3.  $t_i \leq t_{i+1}$  is obtained from previou(s) quasi-equation(s) in the sequence by one application of some calculational rule.
- 4.  $x \leq t_n$  is an axiom or belongs to  $\Gamma$ .

Suppose  $x \le t_1$  and prove  $x \le t_2$  by applying axioms, hyphotesis, and calculational rules.

 $T_6) \ (R \setminus S) \cap (R \setminus T) \subseteq R \setminus (S \cap T)$ 

Hence,  $(R \setminus S) \cap (R \setminus T) \subseteq R \setminus (S \cap T)$  and  $R \setminus (S \cap T) \subseteq (R \setminus S) \cap (R \setminus T)$  (this is a bonus!).

## Some questions

To determine the strengths of:

(1) direct calculational proofs,

(2) direct calculational proofs from hypothesis,

(3) indirect calculational proofs, and

(4) indirect calculational proofs from hyphotesis.

5. Diagrammatic reasoning

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

# Digraphs

A directed labelled multi graph is a structure  $\langle N, A \rangle$ , where:

1. *N* is a set of **nodes** 

2.  $A \subseteq N \times \text{Terms} \times N$  is a set of **arcs labeled by terms** 

Nodes are usually denoted by  $u, v, w, \ldots$ 

Digraphs are usualy denoted by  $\mathfrak{G}, \mathfrak{H}, \mathfrak{I}, \ldots$ 

## Homomorphisms

Let  $\mathfrak{G}_1 = \langle N_1, A_1 \rangle$  and  $\mathfrak{G}_2 = \langle N_2, A_2 \rangle$  be digraphs.

A homomorphism from  $\mathfrak{G}_1$  to  $\mathfrak{G}_2$  is a mapping  $h: N_1 \to N_2$  such that:

$$(hu, t, hv) \in A_2$$
 whenever  $(u, t, v) \in A_1$ 

(日) (日) (日) (日) (日) (日) (日) (日)

A mapping that preserves labels.

## 2-pointed graphs

#### A 2-pointed digraph is a structure

$$\langle N, A, s, t \rangle$$
,

where:

#### 1. $\langle N, A \rangle$ is the subjacent digraph

2.  $s, t \in N$ , where s is the **source** and t is the **target** 

2-pointed digraphs are usually denoted by  $\langle \mathfrak{G}, s, t \rangle$ .

## 2-pointed Homomorphisms

Let  $\mathfrak{G}_1 = \langle N_1, A_1, s_1, t_1 \rangle$  and  $\mathfrak{G}_2 = \langle N_2, A_2, s_2, t_2 \rangle$  be 2-pointed digraphs.

A 2-pointed homomorphism from  $\mathfrak{G}_1$  to  $\mathfrak{G}_2$  is a homomorphism  $h: N_1 \to N_2$  such that:

 $hs_1 = s_2$  and  $ht_1 = t_2$ 

A homomorphism that preserves source and target.



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

#### Sequentialize arcs

$$\circ \xrightarrow{R \circ S} \circ = \circ \xrightarrow{R} \circ \xrightarrow{S} \circ$$

#### **Revert arcs**



◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ







◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Suppose  $R \circ S \subseteq T$ .

We shall prove  $S \subseteq R \setminus T$  by means of diagrams.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Start with the graph of the left hand side:



◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Apply add residuals:



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

### Apply hybrid rule, together with the hyphotesis $R \circ S \subseteq T$ :



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Apply homomorphism, erasing superfluous arcs:



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose  $S \subseteq R \setminus T$ .

We shall prove  $R \circ S \subseteq T$  by means of diagrams.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Start with the graph of the left hand side:



Apply sequencialize arcs:



Apply the hyphotesis  $R \subseteq R \setminus T$ :



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Apply close diagram:



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Apply homomorphism, arasing superfluous arcs:



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

## Some questions

## (1) To determine the strengths of the proofs with graphs.

# (2) To compare equational reasoning with calculational reasoning with diagrammatic reasoning.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ