Methods of proof for residuated algebras of binary relations

Joint work with Marcia Cerioli (COPPE/IM, UFRJ)

Outline

1. Binary relations and some of their operations
2. Residuated algebras of binary relations
3. Algebraic and quasi-algebraic theories of residuated algebras of binary relations
4. Calculational reasoning
5. Diagrammatic reasoning
6. Perspectives
7. Binary relations and some of their operations

Binary relations

Let U be a set.

Elements of U are usually denoted by u, v, w, \ldots

A binary relation on U is a subset of $U \times U$.
$2 \operatorname{Rel} U$ is the set of all binary relations on U.

Elements of $2 \operatorname{Rel} U$ are usually denoted by R, S, T, \ldots

Operations on binary relations

Let $R, S \in 2 \operatorname{Rel} U$.

Booleans

The union of R and S is:

$$
R \cup S=\{(u, v) \in U:(u, v) \in R \text { or }(u, v) \in S\}
$$

The intersection of R and S is:

$$
R \cup S=\{(u, v) \in U:(u, v) \in R \text { and }(u, v) \in S\}
$$

Operations on binary relations

Let $R, S \in 2 \operatorname{Rel} U$.

Peirceans

The composition of R and S is:

$$
R \circ S=\{(u, v) \in U: \exists w \in U[(u, w) \in R \text { and }(w, v) \in S]\}
$$

The reversion of R is:

$$
R^{-1}=\{(u, v) \in U:(v, u) \in R\}
$$

Operations on binary relations

Let $R, S \in 2 \operatorname{Rel} U$.

Between Booleans and Peirceans

The left residuation of R and S is:

$$
R \backslash S=\{(u, v) \in U: \forall w \in U[\text { if }(w, u) \in R, \text { then }(w, v) \in S]\}
$$

The right residuation of R and S is:

$$
R / S=\{(u, v) \in U: \forall w \in U[\text { if }(v, w) \in S, \text { then }(u, w) \in R]\}
$$

Motivations for residuals

- Algebra: M. Ward and R.P. Dilworth. Residuated lattices. Trans. Amer. Math. Soc. 45: 335-54 (1939)
- Computer Science: C.A.R Hoare and H. Jifeng. The weakest prespecification. Fund. Inform. 9: Part I 51-84, Part II 217-252 (1986)
- Linguistics: J. Lambek. The mathematics of sentence structure. Amer. Math. Monthly 65: 154-170 (1958)
- Logic: N. Galatos, P. Jipsen, T. Kowalski, and H. Ono . Residuated Lattices. An Algebraic Glimpse at Substructural Logics. Elsevier (2007)

2. Residuated algebras of binary relations

Residuated algebras of relations

Let U be a set.

Let $A \subseteq 2 \operatorname{Rel} U$ be closed under all the operations $\cup, \cap, \circ,{ }^{-1}$, \backslash and $/$.

The residuated algebra of binary relations on U based on A is the algebra:

$$
\mathfrak{A}=\left\langle A, \cup, \cap, \circ,^{-1}, \backslash, /\right\rangle
$$

$\mathcal{A} 2$ Rel is the class of all residuated algebra of binary relations.

Elements of $\mathcal{A} 2$ Rel are usually denoted by $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \ldots$

Residuated algebras of relations

Aka lattice-ordered involuted residuated semigroups:

1. Lattice: $R \cup S$ is a supremum and $R \cap S$ is a infimum.
2. Ordered: $R \leq S$ (iff $R \cup S=S$ iff $R \cap S=R$) is a parcial ordering.
3. Semigroup: $R \circ S$ is a not necessarily commutative multiplication.
4. Involuted: $\left(R^{-1}\right)^{-1}=R$ and $(R \circ S)^{-1}=S^{-1} \circ R^{-1}$.
5. Residuated: \backslash is the left-inverse of \circ and / is the right inverse of 0 .
6. Algebraic and quasi-algebraic theories of residuated algebras of binary relations

Terms and inclusions

The terms, typically denoted by R, S, T, \ldots, are generated by:

$$
R::=X|R \cup R| R \cap S|R \circ R| R \backslash R|R / R| R^{-1}
$$

where $X \in$ Var, a set of variables fixed in advance.

A quasi-equality is an expression of the form

$$
R \subseteq S
$$

where R and S ate terms.

Horn quasi-equalities

A Horn quasi-equality is an expression of the form

$$
R_{1} \subseteq S_{1}, \ldots, R_{n} \subseteq S_{n} \Rightarrow R \subseteq S
$$

where $R_{1}, S_{2}, \ldots, R_{n}, S_{n}, R, S$ are terms.

Valuations and values

Let $\mathfrak{A} \in \mathcal{A} 2$ Rel.

A valuation on \mathfrak{A} is a function $v: \operatorname{Var} \rightarrow A$.

Let R be a term, $\mathfrak{A} \in \mathcal{A} 2$ Rel, and v be a valuation on \mathfrak{A}. The value of R in \mathfrak{A} according to v, denoted by $R_{v}^{\mathfrak{A}}$ is defined by:

$$
\begin{array}{ll}
X_{v}^{\mathfrak{A}} & =v X \\
(R \cup S)_{v}^{\mathfrak{A}} & =R_{v}^{\mathfrak{A}} \cup S_{v}^{\mathfrak{A}} \\
(R \cap S)_{v}^{\mathfrak{A}} & =R_{v}^{\mathfrak{A}} \cap S_{v}^{\mathfrak{A}} \\
(R \circ S)_{v}^{\mathfrak{L}} & =R_{v}^{\mathfrak{A}} \circ S_{v}^{\mathfrak{A}} \\
(R \backslash S)_{v}^{\mathfrak{A}} & =R_{v}^{\mathfrak{A} \backslash} \backslash S_{v}^{\mathfrak{N}} \\
\left(R^{-1}\right)_{v}^{\mathfrak{A}} & =\left(R_{v}^{\mathfrak{A}}\right)^{-1}
\end{array}
$$

Truth and validity

Let $R \subseteq S$ be a quasi-equality, $\mathfrak{A} \in \mathcal{A} 2$ Rel, and v be a valuation on \mathfrak{A}.
$R \subseteq S$ is true on \mathfrak{A} under v if $R_{v}^{\mathfrak{A}} \subseteq S_{v}^{\mathfrak{A}}$.
$R \subseteq S$ is identically true on \mathfrak{A}, or \mathfrak{A} is a model of $R \subseteq S$, if
$R \subseteq S$ is true on \mathfrak{A} under v, for every valuation v.
$R \subseteq S$ is valid if every residuated algebra of relations \mathfrak{A} is a model of $R \subseteq S$.

Validity and consequence

Let

$$
\begin{equation*}
R_{1} \subseteq S_{1}, \ldots, R_{n} \subseteq S_{n} \Rightarrow R \subseteq S \tag{1}
\end{equation*}
$$

be a Horn quasi-equality, $\mathfrak{A} \in \mathcal{A} 2$ Rels, and v be a valuation on \mathfrak{A}.
(1) is valid, or $R \subseteq S$ is a consequence of $R_{1} \subseteq S_{1}, \ldots, R_{n} \subseteq S_{n}$, if every model of all $R_{1} \subseteq S_{1}, \ldots, R_{n} \subseteq S_{n}$ is a model of $R \subseteq S$.

From quasi-equalities to equalities and back

An equality is an expression of the form

$$
R=S
$$

where R and S ate terms.

A Horn equality is an expression of the form

$$
R_{1}=S_{1}, \ldots, R_{n}=S_{n} \Rightarrow R=S
$$

where $R_{1}, S_{2}, \ldots, R_{n}, S_{n}, R, S$ are terms.

From quasi-equalities to equalities and back

True, identically true, and valid equalities are defined as usual.

From quasi-equalities to equalities and back

Since
$R \subseteq S$ is valid iff $R \cap S \subseteq S$ and $S \subseteq R \cap S$ are both valid, we can consider to build the algebraic and the quasi-algebraic theories of the residuated algebras of relations on the top of the logic of equality.

But, taking equational logic as the subjacent logic, we have the following...

Negative results

The set of all valid equalities (quasi-equalities) is not finitely axiomatizable (Mikulás, IGPL, 2010).

The set of all valid Horn equalities (Horn quasi-equalities) is not finitely axiomatizable (Andréka and Mikulás, JoLLI, 1994).

Negative results

One proper question is:
are there interesting alternatives for equational reasoning on residuated algebras of binary relations?
4. Calculational reasoning

Quasi-posets

Let P be a set and R be a binary relation on P.
$\langle P, R\rangle$ is a quasi-poset if R is reflexive and transitive (but not necessarily antisymmetric) on P.

Galois connections

Let $\mathfrak{P}_{1}=\left\langle P_{1}, \leq_{1}\right\rangle, \mathfrak{P}_{2}=\left\langle P_{2}, \leq_{2}\right\rangle$ be quasi-posets, and $f: P_{1} \rightarrow P_{2}, g: P_{2} \rightarrow P_{1}$ be functions.
$\left\langle\mathfrak{P}_{1}, \mathfrak{P}_{2}, f, g\right\rangle$ is a Galois connection if, for all $x \in P_{1}$ and $y \in P_{2}$:

$$
f x \leq_{2} y \Longleftrightarrow x \leq_{1} g y
$$

Calculational rules

Quasi-poset rules

$$
\begin{array}{cc}
x \leq y \\
& \vdots \\
\frac{\top}{x \leq x} \operatorname{Ref} & \frac{y \leq z}{x \leq z} \text { Tra }
\end{array}
$$

GC rules

$$
\frac{f x \leq y}{x \leq g y} \mathrm{GC} \quad \frac{x \leq g y}{f x \leq y} \mathrm{GC}
$$

These rules aloud us to perform both direct and indirect calculational reasoning (without negation).

Direct calculational proofs

A direct calculational proof of $t_{1} \leq t_{2}$ is a sequence

$$
\left\langle t_{1} \leq t_{2}, t_{3} \leq t_{4}, \ldots, t_{n-1} \leq t_{n}\right\rangle
$$

such that, for each $i, 3 \leq i \leq n, t_{i} \leq t_{i+1}$, at least one oh the following conditions hold:

1. $t_{i} \leq t_{i+1}$ is an axiom.
2. $t_{i} \leq t_{i+1}$ is obtained from previou(s) quasi-equation(s) in the sequence by one application of some calculational rule.
3. $t_{n-1} \leq t_{n}$ is an axiom.

Start with $t_{1} \leq t_{2}$ and applying axioms and calculational rules arrive in an axiom.

Direct calculational proofs from hypothesis

Let Γ be a set of quasi-equations.
A direct calculational proof of $t_{1} \leq t_{2}$ from Γ is a sequence

$$
\left\langle t_{1} \leq t_{2}, t_{3} \leq t_{4}, \ldots, t_{n-1} \leq t_{n}\right\rangle
$$

such that, for each $t_{i} \leq t_{i+1}$, where $3 \leq i \leq n$, at least one of the following conditions hold:

1. $t_{i} \leq t_{i+1}$ is an axiom
2. $t_{i} \leq t_{i+1} \in \Gamma$
3. $t_{i} \leq t_{i+1}$ is obtained from previou(s) quasi-equation(s) in the sequence by one application of some Calculational Rule.
4. $t_{n-1} \leq t_{n}$ is an axiom or belongs to Γ.

Start with $t_{1} \leq t_{2}$ and applying axioms, hyphotesis, and calculational rules arrive in an axiom or hyphotesis.

\cup defines a Galois connection

Let $\langle\mathfrak{A}, \subseteq\rangle \in \mathcal{A} 2 \operatorname{Rel}$ and take $\langle\mathfrak{A} \times \mathfrak{A}, \subseteq \times \subseteq\rangle \in \mathcal{A} 2 \operatorname{Rel}$.
For all $X, Y \in A$, we define $f: A \times A \rightarrow A$ by:

$$
f(X, Y)=X \cup Y
$$

and $g: A \rightarrow A \times A$ by:

$$
g(X)=(X, X)
$$

With these notations, for all $R, S, T \in A$:

$$
R \cup S \subseteq T \Longleftrightarrow R \subseteq T \text { and } S \subseteq T
$$

is the same as

$$
f(R, S) \subseteq T \Leftrightarrow(R, S) \subseteq g(T)
$$

\defines a family of Galois connections
Let $\langle\mathfrak{A}, \subseteq\rangle \in \mathcal{A} 2$ Rel.
For every $R \in A$, we define:

$$
f_{R}(X)=R \circ X
$$

and

$$
g_{R}(X)=R \backslash X
$$

With these notations, we have that

$$
R \circ S \subseteq T \Leftrightarrow S \subseteq R \backslash T
$$

is the same as

$$
f_{R}(S) \subseteq T \Leftrightarrow S \subseteq g_{R}(T)
$$

$\cap,-1$ and / define Galois connections

Sorry, no time to enter in details!

Basic arithmetical results

$\left.T_{1}\right) S \subseteq R \backslash(R \circ S)$

$$
\begin{aligned}
& S \subseteq R \backslash(R \circ S) \\
& \Uparrow \mathbb{G C} \\
& R \circ S \subseteq R \circ S \\
& \mathbb{\|} \operatorname{Ref} \\
& T
\end{aligned}
$$

Basic arithmetical results

$\left.T_{2}\right) R \circ(R \backslash S) \subseteq S$

$$
\begin{aligned}
& R \circ(R \backslash S) \subseteq S \\
& \Uparrow G C \\
& R \backslash S \subseteq R \backslash S \\
& \mathbb{\imath} \operatorname{Ref} \\
& \top
\end{aligned}
$$

Basic arithmetical results

$$
\left.T_{3}\right) R \backslash(S \cap T) \subseteq(R \backslash S) \cap(R \backslash T)
$$

$$
\begin{aligned}
& R \backslash(S \cap T)] \subseteq(R \backslash S) \cap(R \backslash T) \\
& \mathbb{\imath} G C \\
& R \backslash(S \cap T)] \subseteq R \backslash S \wedge R \backslash(S \cap T) \subseteq S \backslash T \\
& \mathbb{\sharp} G C \\
& R \circ[R \backslash(S \cap T)] \subseteq S \wedge R \circ[R \backslash(S \cap T)] \subseteq T \\
& \mathbb{\imath} G C \\
& R \circ[R \backslash(S \cap T)] \subseteq S \cap T \\
& \mathbb{\imath} G C \\
& R \backslash(S \cap T) \subseteq R \circ(S \cap T) \\
& \mathbb{1} R e f
\end{aligned}
$$

Basic arithmetical results

$\left.T_{4}\right) S \subseteq T \Longrightarrow R \backslash S \subseteq R \backslash T$

$$
\begin{aligned}
& S \subseteq T \\
& \Uparrow \mathbb{i} T_{2} \\
& R \circ(R \backslash S) \subseteq T \\
& \Uparrow G C \\
& R \backslash S \subseteq R \backslash T
\end{aligned}
$$

By $T_{2}, R \circ(R \backslash S) \subseteq S$.

Basic arithmetical results

$\left.T_{5}\right) T_{1}, T_{2}, T_{3} \Longrightarrow \mathrm{GC}$ for \backslash

$$
\begin{aligned}
& R \circ S \subseteq T \\
& \Downarrow \text { Mon, Ide } \\
& R \circ S \subseteq(R \circ S) \cap T \\
& \Downarrow T_{4} \\
& R \backslash(R \circ S) \subseteq R \backslash[(R \circ S) \cap T] \\
& \Downarrow T_{1} \\
& S \subseteq R \backslash[(R \circ S) \cap T] \\
& \Downarrow T_{3} \\
& S \subseteq R \backslash T
\end{aligned}
$$

By $T_{1}, S \subseteq R \backslash(R \circ S)$.
By $T_{3}, R \backslash[(R \circ S) \cap T] \subseteq R \backslash T$.

Basic arithmetical results

$$
\left.T_{5}\right) T_{1}, T_{2}, T_{3} \Longrightarrow \mathrm{GC} \text { for } \backslash
$$

$$
\begin{aligned}
& S \subseteq R \backslash T \\
& \Downarrow M \circ n \\
& R \circ S \subseteq R \circ(R \backslash T) \\
& \Downarrow T_{2} \\
& R \circ S \subseteq T
\end{aligned}
$$

By $T_{2}, R \circ(R \backslash S) \subseteq S$

Indirect calculational proofs

An indirect calculational proof of $t_{1} \leq t_{n}$ is a sequence

$$
\left\langle x \leq t_{1}, t_{2} \leq t_{3}, \ldots, x \leq t_{n}\right\rangle
$$

such that $t_{i} \leq t_{i+1}$-for each $i, 2 \leq i \leq n-1$ - and $x \leq t_{n}$ are obtained from previou(s) quasi-equation(s) in the sequence by one application of some calculational rule.

Suppose $x \leq t_{1}$ and prove $x \leq t_{2}$ by applying the calculational rules.

Indirect calculational proofs from hyphotesis

Let Γ be a set of quasi-equations.
A direct calculational proof of $t_{1} \leq t_{n}$ from Γ is a sequence

$$
\left\langle x \leq t_{1}, t_{2} \leq t_{3}, \ldots, x \leq t_{n}\right\rangle
$$

such that, for each $t_{i} \leq t_{i+1}$, where $2 \leq i \leq n-1$, at least one of the following conditions hold:

1. $t_{i} \leq t_{i+1}$ is an axiom
2. $t_{i} \leq t_{i+1} \in \Gamma$
3. $t_{i} \leq t_{i+1}$ is obtained from previou(s) quasi-equation(s) in the sequence by one application of some calculational rule.
4. $x \leq t_{n}$ is an axiom or belongs to Γ.

Suppose $x \leq t_{1}$ and prove $x \leq t_{2}$ by applying axioms, hyphotesis, and calculational rules.

Basic arithmetical results

$\left.T_{6}\right)(R \backslash S) \cap(R \backslash T) \subseteq R \backslash(S \cap T)$

$$
\begin{aligned}
& X \subseteq(R \backslash S) \cap(R \backslash T) \\
& \mathbb{\mathbb { I } G C} \\
& X \subseteq R \backslash S \wedge X \subseteq R \backslash T \\
& \mathbb{I} G C \\
& R \circ X \subseteq S \wedge R \circ X \subseteq T \\
& \mathbb{I} G C \\
& R \circ X \subseteq S \cap T \\
& \mathbb{\|} G C \\
& X \subseteq R \backslash(S \cap T)
\end{aligned}
$$

Hence, $(R \backslash S) \cap(R \backslash T) \subseteq R \backslash(S \cap T)$ and $R \backslash(S \cap T) \subseteq(R \backslash S) \cap(R \backslash T)$ (this is a bonus!).

Some questions

To determine the strengths of:
(1) direct calculational proofs,
(2) direct calculational proofs from hypothesis,
(3) indirect calculational proofs, and
(4) indirect calculational proofs from hyphotesis.
5. Diagrammatic reasoning

Digraphs

A directed labelled multi graph is a structure $\langle N, A\rangle$, where:

1. N is a set of nodes
2. $A \subseteq N \times$ Terms $\times N$ is a set of arcs labeled by terms

Nodes are usually denoted by u, v, w, \ldots

Digraphs are usualy denoted by $\mathfrak{G}, \mathfrak{H}, \mathfrak{I}, \ldots$

Homomorphisms

Let $\mathfrak{G}_{1}=\left\langle N_{1}, A_{1}\right\rangle$ and $\mathfrak{G}_{2}=\left\langle N_{2}, A_{2}\right\rangle$ be digraphs.

A homomorphism from \mathfrak{G}_{1} to \mathfrak{G}_{2} is a mapping $h: N_{1} \rightarrow N_{2}$ such that:

$$
(h u, t, h v) \in A_{2} \text { whenever }(u, t, v) \in A_{1}
$$

A mapping that preserves labels.

2-pointed graphs

A 2-pointed digraph is a structure

$$
\langle N, A, s, t\rangle,
$$

where:

1. $\langle N, A\rangle$ is the subjacent digraph
2. $s, t \in N$, where s is the source and t is the target

2-pointed digraphs are usually denoted by $\langle\mathfrak{G}, s, t\rangle$.

2-pointed Homomorphisms

Let $\mathfrak{G}_{1}=\left\langle N_{1}, A_{1}, s_{1}, t_{1}\right\rangle$ and $\mathfrak{G}_{2}=\left\langle N_{2}, A_{2}, s_{2}, t_{2}\right\rangle$ be 2-pointed digraphs.

A 2-pointed homomorphism from \mathfrak{G}_{1} to \mathfrak{G}_{2} is a homomorphism $h: N_{1} \rightarrow N_{2}$ such that:

$$
h s_{1}=s_{2} \text { and } h t_{1}=t_{2}
$$

A homomorphism that preserves source and target.

Operations on diagrams

Split digraphs

$$
\bullet \xrightarrow{R \cup S} \bullet \bullet \bullet \xrightarrow{R} \bullet \mid \bullet \xrightarrow{S}
$$

Paralelize arcs

Operations on diagrams

Sequentialize arcs

$$
\circ \xrightarrow{R \circ S} 0=0 \xrightarrow{R} 0 \xrightarrow{S} 0
$$

Revert arcs

Operations on diagrams

Close digraphs

Add residuals

Operations on diagrams

Hyphotesis rule

Hybrid rule

$$
S \subseteq T \wedge \bullet \xrightarrow{R \backslash S} \bullet \subseteq \bullet \xrightarrow{R \backslash T} \bullet
$$

Basic arithmetical results

Suppose $R \circ S \subseteq T$.

We shall prove $S \subseteq R \backslash T$ by means of diagrams.

Basic arithmetical results

Start with the graph of the left hand side:
$-\xrightarrow{S}+$

Basic arithmetical results

Apply add residuals:

Basic arithmetical results

Apply hybrid rule, together with the hyphotesis $R \circ S \subseteq T$:

Basic arithmetical results

Apply homomorphism, erasing superfluous arcs:

Basic arithmetical results

Suppose $S \subseteq R \backslash T$.

We shall prove $R \circ S \subseteq T$ by means of diagrams.

Basic arithmetical results

Start with the graph of the left hand side:
$-\xrightarrow{R \circ S}+$

Basic arithmetical results

Apply sequencialize arcs:

$$
-\xrightarrow{R} \bullet \xrightarrow{S}+
$$

Basic arithmetical results

Apply the hyphotesis $R \subseteq R \backslash T$:

Basic arithmetical results

Apply close diagram:

Basic arithmetical results

Apply homomorphism, arasing superfluous arcs:

Some questions

(1) To determine the strengths of the proofs with graphs.
(2) To compare equational reasoning with calculational reasoning with diagrammatic reasoning.

