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Abstract. Modularity is a pragmatic property of specifications that is not easy
to achieve. For instance, it has been left as an open problem by Plotkin in his
81 Aarhus lecture notes where Structural Operational Semantics (SOS) was de-
fined. This open problem has been solved only recently by Mosses with Modular
SOS (MSOS), a framework that extends labelled transitions systems with a la-
bel category where the semantic information isencapsulatedinside its arrows.
This extension gave rise toarrow-labelled transition systemsthat allow MSOS
specifications to be made modular, that is, extended monotonically.
The objective of this paper is to present the Maude MSOS Tool, a Maude im-
plementation of MSOS. Maude is a fast implementation of rewriting logic, are-
flectivelogic that has been shown as a generic framework which can represent
many logics, specification languages and models of computation. It is precisely
the reflective capabilities of rewriting logic implemented in the Maude system
that allow us to create an executable environment for MSOS: Maude MSOS Tool.

1 Introduction

Structural operational semantics (SOS) is a simple yet mathematically rigorous generic
semantic framework. Perhaps due to these two properties, is widely used in a number
of different classes of problems, such as language semantics [19] and formal models of
concurrency [18]. However, despite its wide application, an important pragmatic prop-
erty is missing in SOS: modularity, a key feature for the engineering of large specifica-
tions. Roughly, it means that if one should make an extension to an existing specifica-
tion to add new features that would involve the addition of a new semantic component,
this would imply a change to all existing rules. That is, specifications in SOS arenon-
monotonic.

Recently Peter Mosses has solved the modularity problem in SOS with a new frame-
work called Modular SOS (MSOS) [23]. In a nutshell, Mosses uses the labels in the
transitions to encapsulate the semantic information as records that may grow as new
language features are added in an extension to an existing MSOS specification.

Meseguer and Braga have developed a mapping [16] from MSOS to rewriting
logic [13], a generalreflectiveformalism that may represent several logics, specification
languages and models of computation. This mapping allows for the application of the
many execution, analysis and verification tools available for rewriting logic implemen-
tations, in particular those developed in Maude [6], including a LTL model checker [9]
and Full Maude [8], an extensible module algebra for the Maude language.

The goals of this paper are to explain how we have used the reflective capabili-
ties of the Maude system and Full Maude to implement the Maude MSOS Tool, an



executable environment for MSOS specifications, based on the formally defined map-
ping from MSOS to rewriting logic, and to show how one may execute and verify
programs, written in a languageL, based onL’s MSOS semantics using the Maude
System. It is worth mentioning that the Maude MSOS Tool is available for download
from http://www.ic.uff.br/˜cbraga/losd/maude-msos-tool/ .

To achieve these goals we begin our paper motivating the MSOS framework with
an exposition of the modularity problem in SOS. This is accomplished in Section 2.
Section 3 gives some background in rewriting logic and presents the mapping from
MSOS to rewriting logic. In Section 4 we present MSOS-SL, the specification language
available in the Maude MSOS Tool, defined as a conservative extension of the Maude
language. In Section 5 we present how we have extended Full Maude to create the
Maude MSOS Tool, using Maude’s reflective capabilities. Section 6 gives two examples
of how to execute a specification in the Maude MSOS Tool. The first example shows
how a simple functionalsequentialprogram may be executed and the second example
shows how aconcurrentfunctional program may be executed, exploring Maude’s logic
programming capabilities. We conclude this paper in Section 7 with our final remarks.

2 Modularity in Structural Operational Semantics Specifications

The Structural Operational Semantics (SOS) framework, defined by Gordon Plotkin
in [24], is a commonly used framework for the definition of formal programming lan-
guages semantics. Plotkin left open the problem of modularity in SOS specifications.
For example, Rules 1 and 2 define the SOS, also called “small-step” operational seman-
tics, for simple mathematical expressions:

Exp ::= m | e0 + e1 m ∈ N

e0−→ e′0
e0 + e1−→ e′0 + e1

e1−→ e′1
m0 + e1−→ m0 + e′1

(1)

m0 + m1−→ m0 + m1 (2)

The addition of bindings requires the use of anenvironmentcomponent, added to
the configuration. We use here an example adapted from Plotkin’s notes, which is a
simpler form of thelet construct from Standard ML [19]. Rule 3 specifies that, first,
the expressione0 is evaluated until a final valuem is found. Rule 4 specifies thate1

should be evaluated intoe′1 in the context of a new environment, obtained by replacing
all instances of the variablex in the environmentρ by m and placing back the evaluated
e′1 into thelet body. Finally, Rule 5 specifies that whene1 is evaluated to a final value
n, the entire expression should be replaced byn.

Exp ::= let x = e0 in e1 end x ∈ Var = {x1, x2, . . .}

ρ `V e0−→ e′0
ρ `V let x = e0 in e1 end −→ let x = e′0 in e1 end

(3)
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ρ[m/x] `V ∪{x} e1−→ e′1
ρ `V let x = m in e1 end −→ let x = m in e′1 end

(4)

ρ `V let x = m in n end −→ n (5)

Since now expressions are evaluated in the presence of an environment, the rules
for mathematical expressions must be rewritten.

ρ `V e0−→ e′0
ρ `V e0 + e1−→ e′0 + e1

ρ `V e1−→ e′1
ρ `V m0 + e1−→ m0 + e′1

(6)

ρ `V m0 + m1−→ m0 + m1 (7)

To solve the modularity problem, Peter Mosses developed a framework called Mod-
ular Structural Operational Semantics (MSOS) [23].

The key modularity point in MSOS lies on thearrow-labelled transition systems
where the semantic components such as the environment are moved from the configu-
rations to the transition label, now structured as a record, and referred throughindices.
Transitions in an arrow-labelled transition system are understood as arrows in a cate-
gory, named label category. The configurations rewritten by the transition rules consist
only of value-added abstract syntax trees, that is, an abstract syntax tree that may have
computed values on its branches. The idea is that a label may contain an unspecified
number of components, butonly the components that are neededin a particular transi-
tion must be made explicit.

Let us illustrate the modularity of MSOS specifications revisiting the specifications
for arithmetic expressions and let expressions. Rules 8 and 9 specify the evaluation of
expressions in MSOS. An informal explanation for Rule 8 is as follows: to evaluate
e0 + e1, first evaluate one step ofe0, giving e′0. The labelX in Rule 8 means that
while evaluating expressione0, any changes to the semantic components (such as a
memory component, but not an environment) should be part of the transition in the
rule’s conclusion. The label may, of course, remain the same. This is the case of Rule 9,
where labelU means that no change may happen at all in the semantic components,
that is, the label is anidentity label with respect to label composition. For a label to be
unobservableit must have: (i)X.i = X.i′, in usual record notation, for a read-write
indexi; (ii) X.i′ = ε, for write-only indexi.

e0 −X→ e′0
e0 + e1 −X→ e′0 + e1

e1 −X→ e′1
m0 + e1 −X→ m0 + e′1

(8)

m0 + m1 −U→ m0 + m1 (9)

To give semantics to alet expression, we should now add an environment to the
specification by means of an index declaration in the labels. Indices of labels may be
of three different types, that reflect on the different types of components they refer to:
(i) read-only, declared with an un-primed index. This index represents the information
that may not change, typically represented as an environment component; (ii) read-
write, that actually declares apair of indices, an un-primed and a primed, typically
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represented as a memory component. The un-primed index represents the information
available in the primed index of an adjacent transition, and the primed index represents
the component that may have changed during the transition itself; and (iii) write-only,
declared as a single, primed, index. In this case, the primed index represents the infor-
mation emitted by (or resulting from) the transition. Write-only components from a set
S form a monoid(S∗, ·, ε), where· is the monoid binary operation, andε is the monoid
identity element.

Rules 10, 11, and 12 specify in MSOS the meaning of let expressions. The informal
description of Rule 11 is: to evaluate thee1 expression inside thelet, evaluate one step
of e1 in the context of a newenv-indexed component (ρ[m/x]) into e′1; any changes to
unspecified components (represented by the notation “. . .”) should be carried onto the
main rule. We have omitted here, and from the SOS specification above, the rules for
the evaluation of variables.

e0 −X→ e′0
let x = e0 in e1 end −X→ let x = e′0 in e1 end

(10)

e1 −{(env : ρ[m/x]), . . .}→ e′1
let x = m in e1 end −{(env : ρ), . . .}→ let x = m in e′1 end

(11)

let x = m in n end −U→ n (12)

Finally, computations are sequences of labelled transitions between configurations,
with the additional requirement that the labels of adjacent transitions are composable.
The composition of two labelsX = X1;X2 is defined as: (i) for each read-only index
i, X.i = X1.i = X2.i; (ii) for each read-write indexi, X.i = X1.i andX.i′ = X2.i

′;
(iii) for each write-only indexi, X.i′ = (X1.i

′ ·X2.i
′).

3 Mapping MSOS to Rewriting Logic

This section aims to present the formal mapping from MSOS to rewriting logic. This
mapping was given by Meseguer and Braga in [16] with a detailed presentation. Here
we will present the intuition and main points of the mapping and its correctness proof,
necessary for a complete description of the Maude MSOS Tool as a formally defined
and implemented meta-tool in rewriting logic. We refer the interested reader to [16] for
the detailed presentation.

Let us begin with a short introduction to rewrite theories in rewriting logic.
A rewrite theory in rewriting logic [13] is a triple(Σ, E,R) with Σ the signature of

the rewrite theory,E the set of Church-Rosser equations, andR the set of weakly co-
herent rewrite rules that are applied modulo the equations. The rewriting logic calculus
is given by the rules of deduction1 in Figure 1.

1 Recently, Bruni and Meseguer formalized ageneralizedversion of rewriting logic [4], in which
frozen argumentsmay be specified on the operations. Afrozen argumentallows no rewrites
under it. Since we do not explore this feature in our mapping, the rules of deduction in Figure 1
do not mention this new feature.
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t ∈ TΣ(X)k

(∀X) t → t
Reflexivity

(∀X) t1 → t2, (∀X) t2 → t3

(∀X) t1 → t3
Transitivity

E ` (∀X) t = u, (∀X) u → u′, E ` (∀X) u′ = t′

(∀X) t → t′
Equality

f ∈ Σk1···kn,k, ti, t
′
i ∈ TΣ(X)ki for i ∈ {1, . . . , n}

(∀X) tj → t′j for j ∈ ν(f)

(∀X) f(t1, . . . , tn) → f(t′1, . . . , t
′
n)

Congruence

(∀X) r : t → t′ if
∧

i∈I pi = qi ∧
∧

j∈J wj : sj ∧
∧

l∈L tl → t′l ∈ R

θ, θ′ : X → TΣ(Y ),

E ` (∀Y ) θ(pi) = θ(qi) for i ∈ I, E ` (∀Y ) θ(wj) : sj for j ∈ J

(∀Y ) θ(tl) → θ(t′l) for l ∈ L, (∀Y ) θ(x) → θ′(x) for x ∈ ν(t, t′)

(∀Y ) θ(t) → θ′(t′)

Nested
Replacement

Fig. 1.Deduction rules for rewriting logic.

Rewriting logic is acomputational logicfor the specification of concurrent sys-
tems [13]. Its inference system allows us to infer all the possible finitary concurrent
computations of a system specified as a rewrite theory. One could then make a compu-
tational reading of the rules of deduction in Figure 1 as follows: (i) reflexivity is just the
possibility of having idle transitions, (ii) equality means that states are equalmodulothe
set of equationsE, (iii) congruence is a general form ofsidewaysparallelism, (iii) re-
placement combines an atomic transition at the top using a rule with nested concurrency
in the substitution, and (iv) transitivity is sequential composition.

Let us turn now to the use of rewriting logic in the context of givingmodularse-
mantics specifications to programming languages.

Modularity of language semantics specifications can be achieved in rewriting logic
directly using a technique named modular rewriting semantics (MRS) [16] which essen-
tially defines aspecial formof a rewrite theory designed specifically for this purpose.

MRS specifications use a syntax-directed style of semantics, with program syntax
being separated from semantic components, such as the environment, memory or syn-
chronization signals. This is captured by the operator< , > : Program Record
-> Conf , a constructor of sortConf . The sortProgram represents a program’s syn-
tax and the sortRecord is precisely the sort that holds the semantic components to-
gether by means of indices. The association between an index and a semantic compo-
nent, or component for short, is called a field, declared with syntax: : [Index]
[Component] -> [Field] . A subset of a record is called a pre-record. A record
then is a multiset of non-duplicated pre-record fields declared with the operator{ } :
[PreRecord] -> [Record] . TheRECORDtheory in Maude is given below.

fmod RECORD is
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sorts Index Component Field PreRecord Record Truth .
subsort Field < PreRecord .
op tt : -> Truth .
op null : -> PreRecord [ctor] .
op _,_ : PreRecord PreRecord -> PreRecord

[ctor assoc comm id: null] .
op _:_ : [Index] [Component] -> [Field] [ctor] .
op {_} : [PreRecord] -> [Record] [ctor] .
op duplicated : [PreRecord] -> [Truth] .
var I : Index . vars C C’ : Component . var PR : PreRecord .
eq duplicated((I : C),(I : C’), PR) = tt .
cmb {PR} : Record if duplicated(PR) =/= tt .

endfm

When a sort is used between angle brackets in a operation declaration, such as
[Field] in the declaration of the operator: , it means that the function represented
by that operator ispartial. An operator declaration may also have attributes, such as
assoc , meaning that the operator is associative,comm, meaning commutativity and
ctor , meaning that the operator is a constructor. The operator: for instance is a
constructor for terms of sortField .

This theory, of course, is not enough to guarantee the modularity of a language
semantics specification. Two techniques should be used to make sure that once a rewrite
rule is written to give semantics for a language feature, that is, when a semantic rule is
specified, it is done once and for all.

The first technique is calledrecord inheritanceand consists of adding a new field to
the record structure whenever a new semantic component is necessary. This technique
enforces modularity when the semantic rules only make explicit the fields necessary
to specify a certain language feature, and are, therefore, definitive in the precise sense
advocated by Mosses in his Definitive Semantics notes [22].

This technique may be illustrated with the example from Section 2. An environment
would be declared as a component bound to an indexenv giving rise to the field:

op env : -> Index .
mb env : E:Env : Field .

The membership declaration, done with syntaxmb specifies that when the index
env is related to and environmentE:Env by the operator: , a field is formed. (Mem-
bership equational logic [14] is a generalization of order-sorted equational logic.) If
this example specification were to be further extended with a store component, a sim-
ilar declaration would be then necessary but this time declaring and index, let us say,
sto and a membership equation bindingsto to a term of sortStore , the data type
for memory stores.

The semantic rules for thelet expressions and memory assignment, for instance, are
definitive. Neither the former would need to be changed when stores are added nor the
latter in a further extension such as the inclusion of concurrency primitives.

The second technique is the systematic use ofabstract functions, or interfaces, in
the specification of semantic rules while referring to the application of operations to
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semantic components. If such functions were made concrete, that is, equationally ax-
iomatized at the level of semantic rules, a given semantic rule would be committed to
a particular implementation of a data type. This is problematic when one wishes to im-
plement analysis tools based on programming languages semantics specifications, such
as in [3], which may require several extensions to concrete data type structures.

To exemplify the use of abstract functions, let us consider a scenario where one
needs to commit to a particular garbage collection strategy. This would require a fine
tuning on the semantics of the declaration of references and memory cell allocation. If
Rule 11 referred to a concrete overriding function, with syntax/ in Rule 11, the new
requirement of garbage collection would imply aretract of Rule 11 and the addition
of a new rule. Since abstract functions are being used, one only needs to extend the
concrete implementation of environment (and stores) with the new functionality.

The question now is how to make use of these techniques to relate MSOS to rewrit-
ing logic.

First of all, we need to extend theRECORDtheory worth sortsIRecord , for iden-
tity records, subsort ofRecord , IPreRecord , for identity prerecords, subsort of
PreRecord , andROPreRecord , WOPreRecord , andRWPreRecord , for multi-
sets of fields that declare indices that should be read-only, write-only, and read-write,
respectively, all subsorts ofPreRecord . A WOPreRecord associates an index with
a free monoidcomponent, and declares a prefix predicatev, whereC v C ′ means that
for each write-only fieldk the stringC.k is a possibly identical prefix of the stringC ′.k.
Composition of records is also defined, with syntax; , such that for the composition
u;u′ to be defined, we must haveu.i = u′.i for each read-only indexi, andu.j′ = u′.j
for each read-write indexj. The compositionu;u′ then has(u;u′).i = u.i = u′.i,
(u;u′).j = u.j, (u;u′).j′ = u′.j′, and(u;u′).k = (u.k).(u′.k) for each write-only
indexk. Identitiesare then recordsu such thatu.j = u.j′, andu.k = nil.

With this extended record theory we can now represent MSOS labeled transitions
t

u→ t′ as transitions witht and t′ being program expressions anu being arecord.
Therefore the modularity of MSOS inference rules is precisely captured by therecord
inheritancetechnique.

Let us consider the following general form of a MSOS inference rule defining the
semantics of a language featuref ,

v1
u1−→ v′1 . . . vn

un−→ v′n cnd

f(t1, . . . , tn) u−→ t′
(13)

wheref(t1, . . . , tn), t′, and thevi, v
′
i are program expressions (which can involve val-

ues),u, u1, . . . , un are record expressions, andcnd is a side condition involving equa-
tions and perhaps predicates.

Our mapping is based on the notation given in [23], with the extra requirements that:
(i) the side conditionscnd do not involve any expressions with records, fields, indices
or [Truth] values, and (ii) records are expressed either in its explicit form using the
{ } constructor or as a variable of sortRecord .

With the representation of labels as records and the extra requirements on the use of
record expressions in the transition rules, once we choose membership equational logic
to specify the syntax and the semantic components the equational part of the resulting
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rewrite theory is pretty much defined, and we need now to specify how the inference
rules are translated to conditional rewrite rules. This is done following the intuition of
building apreorderout of the transition relation of the arrow-labelled transition system
associated with MSOS specifications. This intuition gives rise to the following trans-
lation from records (that is, labels) in a MSOS inference rule to recordprojectionsin
conditional rewrite rule. Given a recordu in a MSOS transitionu is deconstructed into
its pre andpostprojections that represent the semantic components before and after a
transition involvingu. Theupre andupost projections are calculated as follows.

– If i : w is aROPreRecord it appears as is in bothupre andupost projections.
– If i′ : w is aWOPreRecord , then theupre projection hasi : l, with l a variable of

sortS, with (S∗, ·, ε) the free monoid related toi, andupost hasi : l · w. If i′ : w
appears on a transition in thecondition, then theupre projection hasi : ε and the
upost hasi : w.

– If i : w andi′ : w′ areROPreRecord field expressions inu, theni : w ∈ upre

andi′ : w′ ∈ upost .

Given a MSOS specificationS, this transformation is semantics-preserving in the
precise sense of taking the form of a strong bissimulation of the labeled transition sys-
tems associated with the initial reachability preorder restricted to sortConf that models
the rewrite theory generated fromS and the category of finite computations defined by
S. Again, we refer the interested reader to [16, 15] for a detailed presentation and a
proof sketch of the bissimulation, respectively.

4 MSOS-SL

MSOS-SL is a specification language for MSOS, defined as a conservative extension
of Full Maude’s system modules and therefore follow the algebraic way of specifying
language semantics.

MSOS-SL modules are declared with syntax(msos 〈name〉 is 〈includes〉. . .
sosm) . The 〈includes〉 part of the module definition is a sequence ofincluding
〈m〉 . declarations. MSOS-SL modules contain three distinct parts: the signature of
the object language, that is, the language being specified, the declaration of the indices
in the labels, and the declaration of transitions.

In what follows, we will describe the syntax of each part of MSOS-SL specifications
and show how the example on Section 2 is specified in MSOS-SL.

4.1 Defining the signature of the object language

The formal definition of the syntax of a programming language is usually stated as
productions in the Backus-Naur Form (BNF), as we have done in Section 2. Maude’s
functional modules, with membership equational logic (mel) as its underlying equa-
tional logic, offer a flexible alternative: operations may be defined ininfix notation, have
associated precedence, gathering patterns, and attributes such as associativity, commu-
tativity, and identity (left, right, or both).
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In what follows, we introduce the main constructions for the syntax definition of
programming languages by making a parallel with BNF declarations. For this simple
example it suffices to say that nonterminals in BNF productions are converted intosort
declarationsin Maude and, for a production rule such asP → γ we have: i) ifγ is a
non-terminal, the production is mapped into the declaration of the sort corresponding to
γ as a subsort of the sort corresponding toP ; ii) if γ is a combination of terminals and
non-terminals, it is mapped into an operator declaration in Maude. For a more thorough
discussion on the mapping between context-free grammars and a simpler version of
mel, order-sorted equational logic, see [10].

Care must be taken when the productionγ is a terminal symbol, but belongs to an
infinite setof constants, such asN. In Maude, the infinitely enumerable constants in
such sets must, of course, be represented by an algebraic data type. The set of integers
might be specified, for example, in the traditional Peano notation. Thus, the sort of the
algebraic data type related toγ should, in this particular case, be a subsort of the sort
corresponding toP .

For example, the BNF rules for the declaration of expressions, as defined in Sec-
tion 2 is:

Exp ::= m | e0 + e1 m ∈ N

Assuming that we have a predefined sortInt that represents the integers, the cor-
responding translation to MSOS-SL is the declaration of the sortExp, its supersort
relation withInt , and the declaration of the_+_ operator. As mentioned before, the
declaration of an operator in Maude is made using theop keyword. Thector opera-
tor attribute specifies that this is aconstructoroperator, and not a function over terms.
When an operator has an underline (“”), it is said to be ininfix formand arguments will
occupy the places of the underline character in terms. Thus in Maude this all takes the
following form.

sort Exp .
subsort Int < Exp .

op _+_ : Exp Exp -> Exp [ctor] .

Finally, the BNF rule forlet expressions is:

Exp ::= let x = e0 in e1 end x ∈ Var = {x1, x2, . . .}

And its corresponding MSOS-SL fragment is the declaration of the sortVar and
the declaration of thelet in end operator, as follows:

sort Var .
op let_=_in_end : Var Exp Exp -> Exp [ctor] .

4.2 Declaring label indices

Label indices in MSOS-SL may be declared using the following keywords:
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read-only i : τ .
read-write i : τ .
write-only i : τ ( e, bop) .

wherei is the index name, andτ the sort of the values indexed byi, referred to as
components.

The declaration of read-write indices creates two indices,i and i′, as outlined in
Section 2. The declaration of the write-only indexi creates one indexi′. Also, this dec-
laration needs the information about the corresponding monoid component: its identity
element (e) and the binary operation (bop).

A component is specified as an algebraic data type in a Maude functional module.
For example, we may define the environment for bindings by declaring a sortEnv, for
the component itself, and a sortBVal which represents all values that may be bound to
an identifier, and associated functions, such as disjoint union of bindings, overriding of
one set of bindings by another, a bind constructor that creates bindings from identifiers
andBVal terms, and a lookup function that given an environment and an identifier,
returns the value bound to it in the given environment. The moduleENVIRONMENTde-
clares the signature of the environment data type declaring operator_U_ as the disjoin
union of bindings,_->_ as the bind constructor,_//_ as the overriding function, and
find as the lookup function.

(fmod ENVIRONMENT is protecting IDE .
sorts Env BVal .

op _U_ : Env Env -> Env . op find : Env Ide -> [BVal] .
op _->_ : Ide BVal -> Env [ctor] . op _//_ : Env Env -> Env .
...

endfm)

The use of[BVal] as the image sort for the functionfind means that this repre-
sents apartial function that might return anerror termat the kind level. (A kind [14] is
the connected component of sorts related by the subsort relation). For example, when
the identifier is not found on the given environment, the function should return an error
term, such asno-value .

It is important to emphasize that functional modules in Maude are expected to be
confluent and terminating that is, Church-Rosser. Therefore the theories that specify the
data types for the indices values are supposed to have the Church-Rosser property.

Returning to our example in Section 2, the declaration of the indexenv as the index
for the environment component used in Rules 10 and 11 is specified in MSOS-SL using
a read-only index declaration as follows:

read-only env : Env .

4.3 Declaring transition rules and label expressions

Transitions in MSOS-SL are declared with syntaxctr in the following way:

ctr γ = α => γ′ if 〈condition〉 .
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whereα has sortLabel. Labels are formed by a set offieldsof the form ( i : C) ,
wherei is a previously declared index term andC its associated component term. The
set of fields is separated by commas and enclosed by braces (see example in the next
paragraph). Also,γ is the value-added abstract syntactic tree before the execution of the
rule andγ′ is the result of the execution of the rule.

The sortIndexSet is defined as a subsort of aLabel . This opens the possibility
to createlabel expressionsas in MSOS. In the expression{(env : rho), (st :
sigma), (st’ : sigma’), IS} , the variableIS , of sortIndexSet , matches
against any unspecified component.

Unobservable labels areidentity labelsof the sortILabel , a subsort ofLabel ,
and their subsets are of the sortIIndexSet , a subsort ofIndexSet .

The 〈condition〉 part of MSOS-SL transitions consists of a conjunction of transi-
tions, with syntax “/\ ” written in the general formγ = α => γ′, together with the
usual conditions from Maude system modules:

– ordinary equationst = t’ , which are satisfied if and only if the canonical forms
of t andt’ are equal modulo the equational attributes specified in the operators in
t andt’ , such as associativity, commutativity, and identify.

– abbreviated Boolean equations such ast , abbreviating the equationt = true .
There are a number of built-in predicates, such as: equality (_==_ ), inequality
(_=/=_ ), membership predicates (_:: S , with S a sort, which returns true if
the parameter is of sortS), together with a combination of the connectivesnot_ ,
_and_ , and_or_ .

– matching equations [6], written ast := t’ , which are also ordinary equations,
but with additional requirements at the operational level. In essence, matching
equations are used to instantiate new variables by matching the lefthand side of
the matching equation against the righthand side.

– rewrites, such ast => t’ , wheret andt’ are terms of any sort, which means
that there is a rewrite of the termt to the termt’ with zero or more rewriting steps.

If the transition is unconditional it can be written simply astr γ = α => γ′ .
Finally, unobservable transitions have the alternative syntaxγ ==> γ′.

Let us now exemplify the declaration of transitions forlet expressions whose mean-
ing was given by the rules give in Section 2. Thelet rules may be written in MSOS-SL
as follows. For brevity, we have omitted the rules that govern the evaluation of declara-
tions, such asval x = (1 + 10) and y = 5 , which, when evaluated, generate
a set of bindings.

var X : Label . var IS : IndexSet .
var v : Value . vars D D’ : Decl . var i : Var.
vars E1 E’1 E2 E’2 : Exp . vars b rho rho’ : Env .

ctr let x = E1 in E2 end = X => let x = E1 in E2 end
if E1 = X => E’1 .

ctr let x = v in E2 end ={(env : rho), IS}=>
let x = v in E’2 end
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if rho’ := (rho // (x->v)) /\ E2 ={(env : rho’), IS}=> E’2 .

tr let x = b in v end ==> v .

The MSOS-SL transition rules above specify the inference Rules 10, 11, and 12 on
page 4, respectively.

5 Maude MSOS Tool as a Formal Meta-Tool in Maude

Rewriting logic is reflective in the strict sense in which there exists an universal rewrite
theoryU that can represent any other rewrite theoryR as a termR (including when
R = U) so that ifR proves some sentenceα, thenU proves thatR provesα.

The sentencesα of rewriting logic are rewriting relations between termst, andt′,
written ast → t′, in which t′ is reached byt by zero or more steps, according to the
deduction rules of rewriting logic’s calculus [12]. Formally, we express the universality
of a theoryU as:

R ` t → t′ ⇔ U ` 〈R, t〉 → 〈R, t′〉

wheret andt′ are the meta-representations oft andt′, respectively.
As we said before,U is itself representable as a term, giving rise to the so-called

reflective tower, with arbitrary levels of reflection.
In Maude, the universal theoryU is implemented in the functional moduleME-

TA-LEVEL, which includes modulesMETA-MODULEandMETA-TERM. The key func-
tionality in these modules lies in thedescentfunctionsmetaParse , metaReduce ,
metaRewrite , andmetaPrettyPrint . We give next a summary of their func-
tionality:

– metaReduce( M , t) is the metarepresentation of Maude’sreduce command,
which reduces a term to its canonical form. It attempts to reduce the termt using
the operations and equations defined in the moduleM .

– metaRewrite( M , t, b) is the metarepresentation ofrewrite command in
Maude. It rewrites the termt according the rules in moduleM , after reducingt,
until no more rewrite rules are applicable, or a user-defined number of rewrites has
been reached (via theb parameter).

– metaParse( M , QL, T ) constructs a term of sort/kindT from an arbitrary
input string, encoded as a sequenceQL of quoted identifiers representing the input
tokens. The function also has a parameter a functional moduleM that defines the
signature of the terms to be parsed.

– metaPrettyPrint( M , t) is the inverse ofmetaParse , in which it converts
a termt to a sequence of quoted identifiers that represent the object syntax oft,
according to a signature defined in moduleM .

All this combined with the fact that rewriting logic is a general framework for the
representation of logics, computer systems, and programming languages due to its gen-
eral calculus, adds up to the possibility for the creation offormal tools[7] for these
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concepts. This is implemented by way of a mapping from the concept being formalized
into a rewriting logic theory, that is, a functional or system module in Maude. The re-
flective aspect provides us with the necessary support for mechanization of this process.

Formally, this is achieved by defining a translationΨ : L → R, which is imple-
mented using the reflective capabilities as a translation between terms that represent
programs inL to terms that represent rewrite theories inR. Let us callModuleL a
module that represents programs in languageL. What we want is, in fact, a function
τ : ModuleL → ModuleR. Section 3 outlined how such a function might be defined in
the case whereL = MSOS.

We now proceed to show how we added support for MSOS-SL modules in Maude.
For that to happen, users must be able to input MSOS-SL programs to the Maude inter-
preter, execute MSOS-SL specifications, and list previously entered modules.

This was achieved by extending Full Maude, which is an application that makes
heavy use of the reflective power of rewriting logic and Maude. Full Maude defines a
rich module algebra which includes module hierarchies, parameterization, views, theo-
ries, module expressions, and object-oriented modules.

User input in Full Maude is handled by Maude’sLOOP-MODEfacility, a general
input/output method that receives user input within parenthesis and converts it into a
sequence of “tokens”, represented as quoted-identifiers.LOOP-MODEalso converts a
given sequence of tokens to output. This sequence of tokens defines the formatting of
the output, including spacing, coloring, etc. Using this input/output schema, user input
enclosed in parenthesis is parsed into terms by themetaParse function. Informally
speaking, as modules are processed via user input, they are inserted into adatabaseof
modules. Again, this is possible since Maude is a reflexive language and its modules
may be metarepresented astermsin this database. Full Maude’s module hierarchy has
Unit as its topmost sort, with several subsorts of each type of module supported, such
asStrFModule for functional modules, andStrSModule for system modules. For
the execution of these modules,ModuleL modules are compiled into system modules,
as outlined before. The functionmetaRewrite is then used to rewrite arbitrary terms
using the compiled module.

Full Maude defines the signature of the user input, such as module declarations,
commands, in the moduleMETA-FULL-MAUDE-SIGN. The first extension point is
then to create an extended version of that module, calledEXT-META-FULL-MAU-
DE-SIGN, that adds to Full Maude the signatures of user input that the Maude MSOS
Tool handles. This currently resumes to the syntax definition of MSOS-SL modules but
may be extended to add commands that are specific to the MSOS domain.

Once the user input is parsed, it must be handled by a specific function defined in
Full Maude. This mapping of user input and their corresponding handlers is created
in the DATABASE-HANDLINGmodule by way of anEXT-DATABASE-HANDLING
module that has necessary mappings to deal with MSOS user input.

Parsed MSOS-SL modules are of the sortStrMModule , also a subsort ofUnit ,
which are then compiled into system modules of the sortStrSModule that will be
used for the execution and verification of MSOS-SL specifications. The compilation
function is defined with the following signature, and implements the mapping defined
in Section 3.
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convertMSOS : StrMModule→ StrSModule

Now, we may execute and verify a MSOS-SL specification by way of this compiled
module. Also, we define a pretty printer for MSOS-SL specifications by extending Full
Maude’seMetaPrettyPrint to supportStrMModule modules.

6 Executing MSOS-SL

In this section we exemplify the use of the Maude MSOS Tool. First we execute the
example on Section 4. Next we execute a concurrent program written in the Concur-
rent ML language (CML) [25], an extension of Milner’s Standard ML [19] with con-
currency features, exploring Maude’s logic programming features.

6.1 Executing a let expression

For the execution of a simplelet expression, we need to specify the contents of the
label associated with that expression. For this simple example, only two components
are needed:Env, the environment of bindings from identifiers to values, andVal , a
component needed for the evaluation of pattern matching.

We shall not give the semantics of declarations as pattern matching among identi-
fiers and values nor its specification in MSOS-SL. We refer to [21] for the latter and
http://www.ic.uff.br/˜cbraga/losd/maude-msos-tool/ for the former.

In order to execute thelet expression semantics in the Maude MSOS Tool, one may
first provide a module in Maude that specifies the initial state for the semantic compo-
nents, that is, the initial values for the label fields in the configuration. In our example we
named the moduleINTERPRETERand it first imports the moduleSML-SEMANTICS
with the language semantics and then defines the constantinit of sortLabel which
declares a label withenv and val indices initialized to as the empty environment
(< mt-env > ) and empty val (< mt-val > ), respectively.

(mod INTERPRETER is protecting SML-SEMANTICS .
op init : -> Label .
eq init = { (env : < mt-env >), (val : < mt-val >) } .
ops x y : -> Ide .

endm)

We now may execute the expression using Maude’srewrite command as follows:

Maude> (rew < let val x = $(10) in
let val y = x in y end

end, init > .)

rewrite in TEST :
< let ... end, init >

result Conf :
< $(10), {(env : < mt-env >), (val : < mt-val >)} >

Numbers are represented here with syntax$n$ , with n of the sortNat , to avoid pre-
regularity conflicts. This is a technicality and we refer to [6] for a detailed explanation.
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6.2 Executing a concurrent program

We have specified in MSOS-SL a significant subset of CML, based on the specification
given by Mosses in [21]. Due to space limitations we give here the formal definition of
the concurrent primitives of CML. The complete specification can be found athttp://

www.ic.uff.br/˜cbraga/losd/maude-msos-tool/ . For each primitive we give
its informal semantics and then its MSOS-SL specification.

We begin with the representation of processes. Processes in CML have the general
form proc( PI, E) , wherePI is aprocess identifier(pid), andE is a CML expres-
sion. As processes are created, they are joined in apool of processes. A complete CML
program consists of at least one process and is written as:cml P , whereP is the pool
of processes. Four primitive operations are defined:spawn , for the creation of new
processes,send andrecv , for sending and receiving information through a channel,
andchannel , that allocates new communication channels. Message-passing in CML
is synchronous, that is, a process transmitting or receiving information blocks until the
operation is completed. A successful communication (or synchronization) is defined
when there is another process sending a value on a channelc while there is a process
waiting to receive something on the same channel. In this case, we say that both pro-
cessesagreeon their synchronization operations.

Concurrency constructs have the following signature in MSOS-SL:

(msos CML-CONCURRENCY is
including SML-IMPERATIVES .
including PIDE .

sorts Prog Procs .

op cml_ : Procs -> Prog [ctor] .
op _||_ : Procs Procs -> Procs [ctor comm assoc] .
op proc : PIde Exp -> Procs [ctor] .

ops spawn channel send recv : -> Value [ctor] .
sosm)

The concurrency constructs have been defined as constants of sortValue , the sort
of final computed values such as naturals and tuples, because both CML and SML have
the concept ofapplication of expressionsof the formE1 E2. Therefore there are rules
for the application of each concurrency primitive to the appropriate value.

The || operator is the syntax for thepool of processes, defined to be both commu-
tative and associative. This gives this operator the semantics of amathematical multiset,
where elements have no fixed order.

The moduleCML-CONCURRENCYis including the moduleSML-IMPERATI-
VES, which specifies the semantics of a subset of Standard ML. It also includes the
module that declares the sortPIde .

We now proceed to the specification of concurrency constructs in CML. We make
use of two components:PIdes , a read-write component that keeps track of the pids
that have been created, andCreate , a write-only component with identitynilc and
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binary operatorappendc , that signals the creation of a new process by thespawn
command.

read-write pides : PIdes .
write-only create : Create (nilc, appendc) .

Rule 14 specifies the semantics of thespawn construct. Whenspawn is applied
to an anonymous function, it proceeds to: (i) allocate a new pid; (ii) register this new
pid on the relevant component; (iii) signals the creation of a new process by moving the
process formed by the new pid and the application of the anonymous function to the
empty tuple to theCreate component.

ctr (spawn f) = {(create’ : C),
(pides : PDS), (pides’ : PDS’), IIS} => PI

if PI := newPIde (PDS) /\ PDS’ := addPIde (PDS, PI) /\
C := new-create (proc (PI, (f tuple()))) . (14)

The variableIIS , of sortIIndexSet , indicates that any unspecified components
will remain unchanged by this transition. Also,tuple() is the final value obtained
from the evaluation of an empty tuple, written as() in CML.

Rule 15 puts the recently spawned process in the pool, and behaves as follows:
when the evaluation of an expression inside some process gives rise to a processp in
theCreate component, processp is moved from theCreate component to the pool
of processes. TheCreate component is then cleared.Create is actually declared as
a list but it will never have more than one element at a time. The functionget-one
returns the contents of the componentonly whenit contains one element.

ctr proc (PI1, E1) ={(create’ : nilc), IS}=>
proc (PI1, E’1) || P

if E1 ={(create’ : C), IS}=> E’1 /\ P := get-one (C) . (15)

If no process creation is signaled in theCreate component, a process must con-
tinue to evaluate normally. This is specified by Rule 16.

ctr proc (PI1, E) ={(create’ : nilc), IS}=> proc (PI1, E’)
if E ={(create’ : nilc), IS}=> E’ . (16)

Rule 17 selects one process from the pool to step, that is, to evaluate. In Mosses’
MSOS specification of CML there are two rules for the nondeterministic evaluation
betweenP1 andP2. In our MSOS-SL specification, since we have defined the||
operator to beassociative and commutative, only one rule is needed.

ctr P1 || P2 = X => P’1 || P2
if P1 = X => P’1 . (17)

Process synchronization constructs need two components:Channels , a read-write
component that keeps track of the created channels, andOffers , a write-only com-
ponent that manages the synchronization of processes. These indices are declared in
MSOS-SL as follows.

read-write chans : Channels .
write-only offer : Offers (nilo, appendo) .
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Rule 18 for the allocation of channels is straightforward: it creates a new channel
and inserts it in theChannels component.

ctr channel tuple() ={(chans : chs),
(chans’ : chs’), IIS}=> ch

if ch := newChannel (chs) /\ chs’ := addChannel (chs, ch) . (18)

When a process executes asend or recv , it creates anoffer that is added to the
Offers component, signalizing its will to synchronize. Two types of offers are de-
fined:

op snd : Channel Value -> Offer [ctor] .
op rcv : Channel -> Offer [ctor] .

Our MSOS-SL specification slightly differs from Mosses’ MSOS specification in
this point. In Mosses’ specification, thercv offer also has aValue parameter param-
eterized by a free variable that eventually will beunified with a value from thesnd
offer from another process. However, the Maude MSOS Tool is implemented on top of
Maude version 2.1.1, the version available at this time of writing, and it does not have
unification yet. Therefore our MSOS-SL specification uses aplaceholderrecv-ph
that is to be rewritten at the right time by way of ametafunction. (We refer to [5] for the
operational details on this approach.). The placeholder constructor is defined as follows.

op recv-ph : Channel -> Value [ctor] .

Rule 19 specifies that when a process wants to send a valuev through channelch , it
adds anoffer snd(ch,v) to theOffers component and rewrites to the empty tuple.

ctr send tuple(ch, v) ={(offer’ : O), IIS}=> tuple()
if O := new-offer (snd (ch, v)) . (19)

When a process is ready to receive a value through channelch , it adds anof-
fer rcv(ch) to theOffers component and rewritesrecv ch to the placeholder
recv-ph(ch) . This is specified by Rule 20.

ctr recv ch ={(offer’ : O), IIS}=> recv-ph (ch)
if O := new-offer (rcv (ch)) . (20)

For the synchronization effectively to occur, two offers mustagree. For example: a
snd(c, v) agrees with arcv(c), but not with arcv(c′) if c′ 6= c. If two offers agree, then
the functionagree-value declared below returns the valuev that parameterizes the
send offer involved in the synchronization.

op agree : Offer Offer -> Bool .
op agree-value : Offer Offer -> Value .

Two processes may step at the same time if on that step both of them signalize offers
that agreeon theirOffers component. When this is the case, theupdate-recv
function updates the process receiving the value by replacing theplaceholderfor the
sent value. TheOffers of the remaining computation is set to be empty. Rule 21
specifies this case.
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ctr P1 || P2 ={(offer’ : nilo), IIS}=>
P’1 || update-recv(P’2,v)

if P1 ={(offer’ : O1), IIS}=> P’1 /\
P2 ={(offer’ : O2), IIS}=> P’2 /\
o1 := get-offer (O1) /\ o2 := get-offer (O2) /\
agree (o1, o2) /\ v := agree-value (o1, o2) . (21)

Finally, Rule 22 only steps the entire pool of processes when theOffers compo-
nent is empty, meaning that processes are not allowed to continue their execution if they
are synchronizing.

ctr cml P ={(offer’ : nilo), IS}=> cml P’
if P ={(offer’ : nilo), IS}=> P’ . (22)

As an example of application of these rules, consider the case where two processes,
P1 andP2 try to send different values to another process,P3. There are two possible
outcomes: (i)P1 successfully synchronizes withP3 and the transaction completes. In
this case, processP2 will remain blocked forever trying to synchronize withP3; and
(ii) P1 is blocked whileP2 manages to transmit the value. The following shows that
example using the Maudesearch command on the rewrite theory produced by the
Maude MSOS Tool using the CML MSOS-SL specification as input. Solutions 1 and 2
represents cases (i) and (ii), respectively.

(search exec (let val c = channel t()
in (spawn (fn x => send t(c, $(10))) ;

spawn (fn x => send t(c, $(11))) ;
recv c)

end) =>! C:Conf .)

search in CML-TEST : exec(let ... end) =>! C:Conf .
Solution 1
C:Conf <- < cml(proc(pide(0),$(10)) ||

proc(pide(1),empty-tuple) ||
proc(pide(2),

let <[c,chn(1)]> in
let <[x,empty-tuple]> in

send tuple(chn(1),$(11))
end

end)), {...} >
Solution 2
C:Conf <- < cml(proc(pide(0),$(11))||

proc(pide(1),
let <[c,chn(1)]> in

let <[x, empty-tuple]> in
send tuple(chn(1),$(10))

end
end) ||

proc(pide(2), empty-tuple)), {...} >
No more solutions.
Bye.
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7 Final remarks

This paper presented Maude MSOS Tool and the MSOS-SL language for the specifi-
cation of formal semantics of programming languages in the Modular Structural Op-
erational Semantics framework formally specified by means of a semantics preserving
mapping from MSOS and rewriting logic [16].

The Maude MSOS Tool is a mature prototype that evolved from previous develop-
ment of one of the authors together with Hæusler, Meseguer, and Mosses [1, 2]. Even
though much have been done since the first implementation [1], performance is still
an issue since the use of rules in the generated Maude theories produces a large num-
ber of states that slows down verification times. A translation to unconditional rewrite
rules [26], using a continuation-passing style, that would significantly improve perfor-
mance according to a prototype that we have developed for CML using this technique.
(http://www.ic.uff.br/˜cbraga/losd/specs/cml-cps/cml.maude ) Anoth-
er approach is the (automatic) use of equational abstractions [17], by means of annota-
tions in the MSOS-SL specification that would allow the Maude MSOS Tool to produce
equations instead of rules, therefore shortening down the state space.

The current mapping from MSOS to rewriting logic handles concurrency using in-
terleaving. It is part of our future work to explore the true concurrency model available
in rewriting logic [13] which is also related to the representation with unconditional
rewrite rules.

Finally, continuing on the work started in [1], we are developing a new version of
the Maude Action Tool which is a prototype system for the execution and verification of
Action Semantics [20] specifications using the Maude MSOS Tool, following its MSOS
specification given in [11].

After we begun the development of the Maude MSOS Tool, Peter Mosses has de-
fined its own specification language for MSOS, MSDF, along with an interpreter, writ-
ten in Prolog. (http://www.brics.dk/˜pdm/MSOS/ ) We are working together
with Mosses on a comparison of our two systems in terms of usability and efficiency
and also to unify the specification languages.

8 Acknowledgments

Braga would like to thank Peter Mosses, José Meseguer, and Edward Hermann Hæusler
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