
Christiano Braga and Narciso Martí-Oliet (Eds.)

Preproceedings of SBMF 2014
17th Brazilian Symposium on
Formal Methods

Preface

This volume contains the papers presented at SBMF 2014: the 17th Brazilian Sympo-
sium on Formal Methods. The conference was held in Maceió, Brazil, as part of CBSoft
2014, the 5th Brazilian Conference on Software: Theory and Practice.

The conference program included two invited talks, given by David Deharbe (UFRN,
Brazil) and Narciso Martí-Oliet (Universidad Complutense de Madrid, Spain).

A total of 14 research papers were presented at the conference: 10 full papers and 4
short papers. They are all included in these preproceedings. The authors of full papers
will have a chance to revise their papers once more and incorporate feedback received
during the conference. Further revised full papers will be published after the conference
as a volume of Lecture Notes in Computer Science, by Springer.

The contributions were selected from 34 submissions that came from 18 di�erent
countries: Brazil, Canada, Colombia, Denmark, France, Germany, India, Israel, Italy,
Pakistan, Portugal, South Africa, Switzerland, Tunisia, Turkey, Ukraine, UK, and Uru-
guay.

The processes of submission by the authors, paper review and deliberations of the
program committee were all assisted by EasyChair.

We are grateful to the program committee and to the referees for their hard work
in evaluating submissions and suggesting improvements. SBMF 2014 was organized by
the Universidade Federal de Alagoas (UFAL) and promoted by the Brazilian Computer
Society (SBC). We are very thankful to the local organizers of CBSoft 2014, that were
coordinated by Marcio Ribeiro, Baldoino Santos Neto and Leandro Dias da Silva, all
from UFAL, for their very hard work.

We hope you enjoy reading these proceedings as much as we enjoyed preparing them.

September 2014 Christiano Braga and Narciso Martí-Oliet
Program Chairs

SBMF 2014

Organization

Program Commitee
Aline Andrade (UFBA, Brazil)
Wilkerson Andrade (UFCG, Brazil)
Luis Barbosa (Universidade do Minho, Portugal)
Christiano Braga (UFF, Brazil, co-chair)
Michael Butler (University of Southampton, UK)
Ana Cavalcanti (University of York, UK)
Marcio Cornelio (UFPE, Brazil)
Andrea Corradini (University of Pisa, Italy)
Jim Davies (University of Oxford, UK)
David Deharbe (UFRN, Brazil)
Ewen Denney (RIACS/NASA, USA)
Clare Dixon (University of Liverpool, UK)
Jorge Figueiredo (UFCG, Brazil)
Marcelo Frias (Instituto Tecnologico de Buenos Aires, AR)
Rohit Gheyi (UFCG, Brazil)
Juliano Iyoda (UFPE, Brazil)
Zhiming Liu (Birmingham City University, UK)
Patricia Machado (UFCG, Brazil)
Tiago Massoni (UFCG, Brazil)
Ana Melo (USP, Brazil)
Alvaro Moreira (UFRGS, Brazil)
Anamaria Moreira (UFRN, Brazil)
Carroll Morgan (University of New South Wales, Australia)
Arnaldo Moura (UNICAMP, Brazil)
Leonardo Moura (Microsoft Research, USA)
Narciso Marti-Oliet (Universidad Complutense de Madrid, co-chair)
Alexandre Mota (UFPE, Brazil)
David Naumann (Stevens Institute of Technology, USA)
Daltro Nunes (UFRGS, Brazil)
Jose Oliveira (Universidade do Minho, Portugal)
Marcel Oliveira (UFRN, Brazil)
Peter Olveczky (University of Oslo, Norway)
Alberto Pardo (Universidad de la Republica, Uruguay)
Alexandre Petrenko (CRIM, Canada)
Leila Ribeiro (UFRGS, Brazil)
Augusto Sampaio (UFPE, Brazil)
Leila Silva (UFS, Brazil)
Adenilso Simao (ICMC-USP, Brazil)
Heike Wehrheim (University of Paderborn, Germany)
Jim Woodcock (University of York, UK)

iv

Referees

Paulo Salem
Omer Landry Nguena
Timo
Simone Hanazumi
Sarah Loos
Arnaud Dury

Vitaly Savicks
Jun Pang
Regina Motz
Alan Moraes
Regivan Santiago
Edward Hermann Haeusler

Andrea Vandin
Daniel Fridlender
Asieh Salehi Fathabadi
Jun Pang

Local Organization

Marcio Ribeiro, Baldoino Santos Neto e Leandro Dias da Silva (UFAL)

Promoting and Sponsoring Institutions

Sociedade Brasileira de Computação
CAPES, CNPq, Ines, and Google

v

Table of Contents

b2llvm: B developments onto the LLVM . 1
David Deharbe

Equational abstractions in RWL and Maude . 2
Narciso Martí-Oliet

Parameterisation of Three-Valued Abstractions . 3
Nils Timm and Stefan Gruner

A Probabilistic Model Checking Analysis of a Realistic Vehicular Networks
Mobility Model . 19

Bruno Ferreira, Fernando Braz and Sérgio Campos

Towards completeness in Bounded Model Checking through Automatic
Recursion Depth Detection . 35

Grigory Fedyukovich and Natasha Sharygina

Completeness and decidability results for hybrid(ised) logics 52
Renato Neves, Manuel A. Martins and Luis Barbosa

A conductive animation of Turing Machines . 68
Alberto Cia�aglione

Mechanised Semantics of BSP Routines with Subgroup Synchronisation 84
Frédéric Gava and Jean Fortin

Formalization of Z-Syntax to reason about Molecular Pathways in HOL4 100
Sohaib Ahmad, Osman Hasan, Umair Siddique and Sofiene Tahar

Towards a Family of Test Case Selection Criteria for Symbolic Models of
Real-Time Systems . 116

Diego Almeida, Alan Moraes, Wilkerson Andrade and Patricia Machado

Use Case Analysis based on Formal Methods: An Empirical Study 132
Marcos Antonio de Oliveira Junior, Leila Ribeiro, Erika Cota, Lucio Mauro
Duarte, Ingrid Nunes and Filipe Reis

A dynamic logic for every season . 138
Alexandre Madeira, Renato Neves, Manuel A. Martins and Luis Barbosa

Model-Driven Engineering in the Heterogeneous Tool Set 154
Daniel Calegari, Till Mossakowski and Nora Szasz

A Proposal for Integrating Formal Methods into a Lightweight UML-driven
Development Process . 171

Thiago C. de Sousa and Paulo Sérgio Muniz Silva

vi

Including Running System Implementations in the Simulation of System of
Systems Models . 177

Kenneth Lausdahl, Claus Ballegaard Nielsen and Klaus Kristensen

Purification of Esterel Programs . 183
Nir Koblenc and Shmuel Tyszberowicz

vii

viii

b2llvm: B developments onto the LLVM

David Deharbe

Universidade Federal do Rio Grande do Norte
david@dimap.ufrn.br

Abstract. We present �����, a multi-platform code generator for the B-method.
����� currently handles the following elements of the B language: simple data
types, imperative instructions and component compositions. In particular, this pa-
per describes the translation from some essential constructs of the B language for
implementations towards LLVM source code. We use an example-based approach
for this description.

Christiano Braga
1

Equational abstractions in Rewriting Logic and Maude

Narciso Martí-Oliet

Universidad Complutense de Madrid
narciso@ucm.es

Abstract. Maude is a high-level language and high-performance system support-
ing both equational and rewriting computation for a wide range of applications.
Maude also provides a model checker for linear temporal logic. This procedure can
be used to prove properties when the set of states reachable from an initial state in
a system is finite; when this is not the case, it may be possible to use an equational
abstraction technique for reducing the size of the state space. Abstraction reduces
the problem of whether an infinite state system satisfies a temporal logic prop-
erty to model checking that property on a finite state abstract version. The most
common abstractions are quotients of the original system. We present a simple
method of defining quotient abstractions by means of equations collapsing the set
of states. Our method yields the minimal quotient system together with a set of
proof obligations that guarantee its executability and can be discharged with tools
such as those available in the Maude formal environment. The proposed method
will be illustrated in a couple of detailed examples.

Christiano Braga
2

Parameterisation of Three-Valued Abstractions

Nils Timm and Stefan Gruner

Department of Computer Science, University of Pretoria, South Africa
{ntimm,sgruner}@cs.up.ac.za

Abstract. Three-valued abstraction is an established technique in soft-
ware model checking. It proceeds by generating a state space model over
the values true, false and unknown, where the latter value is used to rep-
resent the loss of information due to abstraction. Temporal logic proper-
ties can then be evaluated on such models. In case of an unknown result,
the abstraction is iteratively refined. In this paper, we introduce parame-

terised three-valued model checking. In our new type of models, unknown
parts can be either associated with the constant value unknown or with
expressions over boolean parameters. Our parameterisation is an alterna-
tive way to state that the truth value of certain predicates or transitions
is actually not known and that the checked property has to yield the
same result under each possible parameter instantiation. A novel fea-
ture of our approach is that it allows for establishing logical connections
between parameters: While unknown parts in pure three-valued models
are never related to each other, our parameterisation approach enables
to represent facts like ’a certain pair of transitions has unknown but
complementary truth values’, or ’the value of a predicate is unknown
but remains constant along all states of a certain path’. We demon-
strate that such facts can be automatically derived from the system to
be verified and that covering these facts in an abstract model can be
crucial for the success and e�ciency of checking temporal logic proper-
ties. Moreover, we introduce an automatic verification framework based
on counterexample-guided abstraction refinement and parameterisation.

1 Introduction

Predicate abstraction [2] is an established technique for reducing the complexity
of temporal logic model checking. It proceeds by generating a state space model
of the software system to be analysed. In this model, concrete states of the sys-
tem are mapped to abstract states over a finite set of predicates, and admissible
executions of the system are represented by sequences of transitions between
states. Traditional predicate abstraction techniques are based on a boolean do-
main for predicates and on an over-approximation of the concrete state space.
Thus, only universal properties are preserved under this form of abstraction. If
checking a universal property for an abstract model yields false, it cannot be con-
cluded that the original system violates this property as well. In this case, model
checking additionally returns an abstract counterexample - a path in the model
that refutes the property. In order to gain certainty about whether this coun-
terexample is spurious or corresponds to a real path, it has to be simulated on

Christiano Braga
3

the original system. The simulation of counterexamples involves a partial explo-
ration of the concrete state space, and thus, can be exceedingly costly. Spurious
counterexamples are typically ruled out via counterexample-guided abstraction

refinement (CEGAR) [4]: Further predicates over the variables of the system
are iteratively added to the model until a level of abstraction is reached where
the property can be either definitely proved or a real counterexample can be
found. The application of CEGAR does, however, not guarantee that eventually
a model can be constructed that is both precise enough for a definite outcome
and small enough to be manageable with the available computational resources.

More recent approaches [3, 18, 13] to abstraction refinement for model check-
ing are based on a domain for predicates with the truth values true, false and
unknown. Corresponding three-valued models with the additional value unknown
enable to explicitly model the loss of information due to abstraction. In compar-
ison to boolean abstractions, the three-valued approach is capable of preserving
universal and existential properties. Hence, all definite results in three-valued
model checking can be directly transferred to the original system. Only an un-

known result necessitates iterative refinement. In the latter case, an unconfirmed

counterexample – a potential error path in the model with unknown transitions
and predicates – is returned. Unconfirmed counterexamples directly hint at nec-
essary refinement steps. Thus, the costly simulation of counterexamples on the
original system is not required in the three-valued setting. Model checking three-
valued abstractions can be conducted at the same cost as checking boolean ab-
stractions, but it additionally comes along with the aforementioned advantages.

Continuative work in this field has shown that the precision of model checking
three-valued abstractions can be increased by the concept of generalised model

checking (GMC) [7]. While standard three-valued model checking (3MC) [3, 18,
13] is based on a special three-valued semantics that enables the direct evalu-
ation of temporal logic formulae on three-valued models, the idea of GMC is
to construct all boolean concretisations of a three-valued model. Then classical
two-valued model checking is applied to each concretisation and it is checked
whether the results are consistent, i.e. whether either all results are true or
whether all are false. In case of consistency, the result can be transferred to the
original system. GMC generally yields more definite results than 3MC. Hence,
the application of GMC instead of 3MC can reduce the number of necessary re-
finement iterations in abstraction-based verification. However, the 3MC problem
is PSPACE-complete, whereas the GMC problem is even EXP-complete: Num-
ber and size of concretisations can be exponential in the size of the three-valued
model. Thus, GMC is rather of theoretical than of practical interest. Most exist-
ing three-valued abstraction-based verification frameworks, e.g. [13, 8, 14], rely
on standard 3MC and try to compensate the lack of precision with additional
refinement steps.

Here, we introduce parameterised three-valued model checking (PMC) which
is a hybrid of three-valued and generalised model checking. Predicates and tran-
sitions in our parameterised three-valued models can be either associated with
the values true, false or unknown – or with expressions over boolean parame-

Christiano Braga
4

ters. Our parameterisation is an alternative way to state that the truth value
of certain predicates or transitions is actually not known and that the checked
property has to yield the same result under each parameter instantiation. PMC
is thus conducted via evaluating a temporal logic formula under all parameter
instantiations and checking whether the results are consistent. In contrast to
GMC, parameterised three-valued model checking reduces to multiple instances
of standard three-valued model checking, since the instantiation only a↵ects pa-
rameters but not the explicit truth value unknown. Sizes of instantiations are
always linear in the size of the parameterised three-valued model. Moreover, pa-
rameterisation particularly allows to establish logical connections between un-

knowns in the abstract model: While unknown parts in 3MC and GMC are
never related to each other, our parameterisation approach enables to represent
facts like ’a certain pair of transitions has unknown but complementary truth
values’, or ’the value of a predicate is unknown but remains constant along all
states of a certain path’. We demonstrate that such facts can be automatically
derived from the software system to be verified and that covering these facts
in an abstract model can be crucial for the success and e�ciency of checking
temporal logic properties. In particular, we introduce an automatic verification
framework for concurrent systems based on parameterised three-valued model
checking: Starting with pure three-valued abstraction, in each iteration either
classical refinement or parameterisation of unknown parts is applied until a def-
inite result in verification can be obtained. The decisions for refinement or pa-
rameterisation are automatically made based on unconfirmed counterexamples.
For several verification tasks our hybrid approach can significantly outperform
the pure three-valued approach. Our work includes the definition of parameter-
isation rules for three-valued abstractions and a proven theorem which states
that PMC is sound if parameterisation is applied according to the rules.

2 Background: Three-Valued Model Checking

We start with a brief introduction to three-valued state space models, here three-
valued Kripke structures, and the evaluation of temporal logic properties on
them. The key feature of these Kripke structures is a third truth value ? (i.e.
unknown) for transitions and labellings, which can be used to model uncertainty.

Definition 1 (Three-Valued Kripke Structure). A three-valued Kripke
structure over a set of atomic predicates AP is a tuple K = (S ,R,L,F) where

– S is a finite set of states,

– R : S ⇥ S ! {true,?, false} is a transition function with 8 s 2 S : 9 s 0 2 S :
R(s, s 0) 2 {true,?},

– L : S ⇥ AP ! {true,?, false} is a labelling function that associates a truth

value with each predicate in each state,

– F ✓ P(R�1({true,?})) is a set of fairness constraints where each constraint

F 2 F is a set of non-false transitions.

Christiano Braga
5

An example for a Kripke structure K over a set AP = {p} is depicted below.

s

1

K ::

s

2

s

3

p = false

p = true

p = ?

?

?

A path ⇡ of a three-valued Kripke structure K is an infinite sequence of states
s

1

s

2

s

3

. . . with R(s
i

, s
i+1

) 2 {true,?}. ⇡
i

denotes the i -th state of ⇡, whereas ⇡i

denotes the i -th su�x ⇡
i

⇡
i+1

⇡
i+2

. . . of ⇡. A path ⇡ is fair if it takes infinitely
often a transition from every fairness constraint F 2 F. By ⇧(K , s) we denote
the set of all fair paths of K starting in s 2 S . Paths are considered for the
evaluation of temporal logic properties of Kripke structures. Here we use the
linear temporal logic (LTL) for specifying properties.

Definition 2 (Syntax of LTL). Let AP be a set of atomic predicates and

p 2 AP. The syntax of LTL formulae is given by

 ::= p | ¬ | _ | ^ | X | F | G | U .

Due to the extended domain for truth values in three-valued Kripke structures,
the evaluation of LTL formulae is not based on classical two-valued logic. In
three-valued model checking we operate under the three-valued Kleene logic K

3

[6] whose semantics is given by the truth tables below.

^ true ? false

true true ? false

? ? ? false

false false false false

_ true ? false

true true true true

? true ? ?
false true ? false

¬
true false

? ?
false true

For K
3

we have a reflexive information ordering K3 (in words: ’less or equal
definite than’) with ? K3 true, ? K3 false, and true, false incomparable.
Based on K

3

, linear temporal logic formulae can be evaluated on paths of three-
valued Kripke structures according to the following definition.

Definition 3 (Three-Valued Evaluation of LTL). Let K = (S ,R,L,F) over
AP be a three-valued Kripke structure. Then the evaluation of an LTL formula

 on a fair path ⇡ of K , written [⇡ |=], is inductively defined as follows

[⇡ |= p] := L(⇡
1

, p)

[⇡ |= ¬] := ¬ [⇡ |=]

[⇡ |= _ 0] := [⇡ |=] _ [⇡ |= 0]

[⇡ |= X] := R(⇡
1

,⇡
2

) ^
⇥
⇡2 |=

⇤

[⇡ |= G] :=
V

i2N
�
R(⇡

i

,⇡
i+1

) ^
⇥
⇡i |=

⇤�

[⇡ |= F] :=
W

i2N

⇣⇥
⇡i |=

⇤
^
V

0j<i

R(⇡
i

,⇡
i+1

)
⌘

[⇡ |= U 0] :=
W

i2N

⇣
[⇡i |= 0] ^

V
0j<i

�
R(⇡

j

,⇡
j+1

) ^ [⇡j |=]
�⌘

Christiano Braga
6

The evaluation of LTL formulae on entire three-valued Kripke structures is what
we call three-valued model checking [3].

Definition 4 (Three-Valued LTL Model Checking). Let K = (S ,R,L,F)
over AP be a three-valued Kripke structure. Moreover, let be an LTL formula

over AP. The value of in a state s of K , written [K , s |=], is defined as

[K , s |=] :=
V

⇡2⇧(K ,s) [⇡ |=]

In three-valued model checking there exist three possible outcomes: true, false
and ?. Three-valued model checking reduces to classical two-valued model check-
ing if the Kripke structure K is actually two-valued, i.e. R

�1(?) = ? and
L

�1(?) = ?. In this case, only the outcomes true and false are possible. For
our example Kripke structure [K , s

1

|= Gp] yields false, whereas [K , s
1

|= GFp]
yields unknown. Gp is a temporal logic formula that characterises a typical
safety property, while GFp characterises a liveness property. Safety and live-
ness are the most vital requirements in software verification. In our approach,
we therefore particularly focus on these two kinds of properties.

For the sake of completeness, we also briefly review generalised model check-
ing (for more details see [7]). Under GMC, [K , s |=] yields true i↵ [K 0, s |=]
is true for all concretisations K 0 of K , where a concretisation is a two-valued K

0

such that [K , s |=] K3 [K 0, s |=] for all LTL formulae . The definition of
[K , s |=] = false is analogous. In all remaining cases [K , s |=] yields ?.

3 Parameterised Three-Valued Model Checking

State space models constructed by three-valued abstraction techniques [13, 8,
14] are typically represented as (pure) three-valued Kripke structures. Here we
introduce a generalisation called parameterised three-valued Kripke structures,
and we define model checking for these structures. Later we will see that param-

eterised three-valued model checking (PMC) for three-valued abstractions can
significantly enhance the precision of verification.

Definition 5 (Parameterised Three-Valued Kripke Structure). A pa-
rameterised three-valued Kripke structure over AP and a set of boolean param-

eters X = {x
1

, . . . , x
m

} is a parameterised tuple K (
m

x) = (S ,R(
m

x),L(
m

x),F(mx))
where

– S is a finite set of states,

– R(
m

x) : S ⇥ S ! {true,?, false} [BE (X) is a transition function with 8 s 2
S : 9 s 0 2 S : R(

m

x)(s, s 0) 2 {true,?}[BE (X) where BE (X) denotes the set

of boolean expressions over X ,

– L(
m

x) : S ⇥ AP ! {true,?, false} [BE (X) is a labelling function that as-

sociates a truth value or a parameter expression with each predicate in each

state,

– F(mx) ✓ P(R�1(
m

x)({true,?}[BE (X))) is a set of fairness constraints where

each constraint F 2 F(mx) is a set of non-false transitions.

Christiano Braga
7

Note that (
m

x) is an abbreviation for the parameter tuple (x
1

, . . . , x
m

). An instan-
tiation of a parameterised three-valued Kripke structure K (

m

x) is a pure three-
valued Kripke structure K (

m

a) where (
m

a) 2 {true, false}m . Hence, all parameters
are substituted by boolean truth values. However, predicates and transitions that
were not parameterised in K (

m

x) may still hold the value unknown in K (
m

a). If
the current tuple of parameters or truth values is clear from the context, we
will not explicitly mention it, i.e. we will just refer to R, L and F. An exam-
ple for a parameterised three-valued Kripke structure together with all its pure
three-valued instantiations is shown in the figure below.

s

1

K (x
1

) ::

s

2

s

3

p = false

p = true

p = ?

¬x
1

x

1

s

1

K (true) ::

s

2

s

3

p = false

p = true

p = ?

s

1

K (false) ::

s

2

s

3

p = false

p = true

p = ?

For evaluating temporal logic formulae on parameterised three-valued Kripke
structures we consider all possible instantiations.

Definition 6 (Parameterised Three-Valued LTL Model Checking). Let

K (
m

x) = (S ,R(
m

x),L(
m

x),F(mx)) be a parameterised three-valued Kripke structure

over AP and X = {x
1

, . . . , x
m

}. Moreover, let be an LTL formula over AP.

The value of in a state s of K (
m

x), written [K (
m

x), s |=], is defined as

h
K (

m

x), s |=
i
:=

8
>>><

>>>:

true if

V
(

m

a)2{t,f }m

⇣h
K (

m

a), s |=
i
= true

⌘

false if

V
(

m

a)2{t,f }m

⇣h
K (

m

a), s |=
i
= false

⌘

? else

Thus, if checking a temporal logic property yields true for all instantiations, the
result is transferred to the parameterised Kripke structure. The same holds for
false results for all instantiations. In all other cases PMC returns unknown. For
our recent example, we get [K (x

1

), s
1

|= GFp] = true since GFp holds for both
K (true) and K (false). In contrast to our example from Section 2, the two outgo-
ing transitions of state s

2

are no longer unknown but parameterised. Moreover,
we capture the fact that the associated transition values are complementary,
which gives us the necessary precision for a definite result in verification.

Subsequently, we will see that such facts can be automatically derived from
the control flow and program code of the modelled system in the sense that the
corresponding parameterisation gives us a sound abstraction. Furthermore, we
will show how parameterised three-valued model checking can be e↵ectively in-
tegrated into an automatic abstraction refinement-based verification procedure.

4 Application to Three-Valued Abstractions

Three-valued model checking [3] is used in many abstraction-based verification
frameworks for software systems [13, 10, 8, 1]. An e↵ective state space reduction

Christiano Braga
8

technique for concurrent software systems is three-valued spotlight abstraction

[12, 14, 15]. In previous works [16, 17], we have demonstrated that verifying con-
current systems via spotlight abstraction and three-valued model checking can
significantly outperform approaches based on boolean predicate abstraction [2].
In this section, we give a brief introduction to concurrent systems and spotlight
abstraction (for more details see [12]). Moreover, we show how parameterisa-

tion can be applied to three-valued Kripke structures constructed by spotlight
abstraction and how this can increase the e�ciency of verification.

4.1 Spotlight Abstraction for Concurrent Systems

A concurrent system Sys consists of a number of asynchronous processes com-
posed in parallel: Sys = kn

i=1

Proc

i

. It is defined over a set of variables Var =
Var

s

[
S

n

i=1

Var

i

where Var

s

is a set of shared variables and Var

1

, . . . ,Var
n

are sets of local variables associated with the processes Proc
1

, . . . ,Proc
n

, respec-
tively. A process corresponds to a finite sequence of locations where each location
is associated with an operation op on the variables in Var

s

[Var

i

. Operations
are of the form op = assume(e) : v

1

:= e

1

, . . . , v
k

:= e

k

where e, e
1

, . . . , e
k

are
expressions over Var

s

[Var

i

= {v
1

, . . . , v
k

}. Hence, an operation consists of an
assume part, also called guard, and a list of assignments. Executing the guard
blocks the execution of the assignments until the expression e evaluates to true.
We omit the guard if e is constantly true. The current location of a process Proc

i

can be regarded as the value of an additional local counter variable pc

i

over the
process’ locations Loc

i

= {1
i

, . . . ,L
i

}. Locations may also be associated with
compound operations, which consist of one or more sub-operations nested inside
a control structure. Compound operations in our systems are, amongst others,
if-then-else and while-do. An example for a concurrent system is depicted below.

v1, . . . , vk : integer

Proc1 ::

2

66666664

1 :

⇥
. . .

⇤

2 : while (v1 > 0) do

3 :

⇥
. . .

⇤

4 : progress

5 :

⇥
. . .

⇤

3

77777775

k Proc2 ::

2

664

1 :

⇥
. . .

⇤

2 : v1 := f (v2, . . . , vk)

3 :

⇥
. . .

⇤

3

775 k . . . k Proc

n

Here we have a composition of n processes operating on the shared variables
v

1

, . . . , v
k

. A liveness property to verify might be whether Proc
1

always repeat-
edly reaches progress, which we assume is an arbitrary assertion over Proc

1

’s
variables. Subsequently, we show how this verification task can be approached
by three-valued spotlight abstraction.

Spotlight abstraction involves the partition of the processes of the system
into a spotlight and a shade. Predicate abstraction is applied to the spotlight,
while the shade processes are abstracted away by summarising them in one ap-
proximative component. The state space of the resulting abstract system can be
straightforwardly modelled as a (pure) three-valued Kripke structure. In our cur-
rent verification task, the relevant process for the property of interest is Proc

1

,

Christiano Braga
9

which we put into the spotlight: Spot(Proc) = {Proc
1

}, whereas the remain-
ing system is for now kept in the shade: Shade(Proc) = {Proc

2

, . . . ,Proc
n

}.
Next, a set of so-called spotlight predicates over the system variables is selected,
here we choose Spot(Pred) = {progress, (v

1

> 0)}. By applying three-valued
predicate abstraction to the spotlight processes, we obtain an abstract process
Proc

a

1

with the same control flow as Proc
1

but with operations abstracted over
Spot(Pred). The processes in the shade are summarised to one approximative
process Proc

Shade

. Due to the loss of information about the shade, Proc
Shade

might set predicates over shared variables to the value ?. Our abstract system
now looks as follows: Sysa = Proc

a

1

k Proc

Shade

. The state space of Sysa can be
modelled as a pure three-valued Kripke structure over AP = Spot(Pred)[{(pc

i

=
j) | Proc

i

2 Spot(Proc), j 2 Loc

i

} where (pc
i

= j) refers to the program counter
of Proc

i

, and each definite model checking result obtained for this structure can
be transferred to the concrete system [12]. A three-valued Kripke structure K

corresponding to Sys

a is depicted in part (a) of the figure below. For simplicity,
we only show the program counter predicates that are currently true.

(a) (b)

s

1

K :: s

2

s

3

s

4

s

5

(pc
1

=1)
(v

1

>0)=?
progress=f

(pc
1

=2)
(v

1

>0)=?
progress=f

(pc
1

=4)
(v

1

>0)=f

progress=t

(pc
1

=5)
(v

1

>0)=f

progress=f

(pc
1

=3)
(v

1

>0)=t

progress=f

?

?
s

1

K (x
1

) :: s

2

s

3

s

4

s

5

(pc
1

=1)
(v

1

>0)=?
progress=f

(pc
1

=2)
(v

1

>0)=?
progress=f

(pc
1

=4)
(v

1

>0)=f

progress=t

(pc
1

=3)
(v

1

>0)=t

progress=f

(pc
1

=5)
progress=f

(v
1

>0)=f

x

1

¬x
1

Note that the control flow of spotlight processes is always preserved under spot-
light abstraction. Hence, each transition of K associated with the spotlight
matches with a specific operation of the spotlight process Proc

1

. For K and its
set of atomic predicates AP = {progress, (v

1

> 0)} [{(pc
1

= j) | j 2 Loc

1

} we
can formalise our property of interest as the LTL formula GFprogress and then
apply standard three-valued model checking, i.e. check [K , s

1

|= GFprogress].
The current abstraction is not precise enough for a definite result in verification.
Since there exist processes in the shade that operate on the shared variable v

1

,
the value of the predicate (v

1

> 0) in the states s
1

and s

2

is ?. Thus, it is also
unknown whether the body of the while-loop can be executed via the transition
(s

2

, s
3

), or whether the loop can be eventually left via (s
2

, s
4

). The automatic
abstraction refinement procedure introduced in [17] would now iteratively shift
processes from the shade to the spotlight until it can be definitively shown which

branch of the while-loop can be actually taken. However, due to transitive de-
pendencies – Proc

2

modifies v
1

, but in turn depends on v

2

, . . . , v
k

which may be
modified by other shade processes as well – such a refinement can be exceed-
ingly costly or can even lead to a failure of verification because of state explosion.
A closer look at our simple example structure tell us that, regardless of which
branch of the loop will be ever taken, progress will never hold repeatedly. Hence,
the evaluation of GFprogress on K should yield false. However, the standard

Christiano Braga
10

three-valued LTL semantics (compare Section 2) does not allow us to draw this
conclusion. In the following we will see that automated parameterisation can
give us the necessary precision for a definite verification result – at considerably
less cost than classical abstraction refinement.

4.2 Parameterisation of Three-Valued Abstractions

As we just have seen, [K , s
1

|= GFprogress] yields ?. Nevertheless, a ?-result
in 3MC always comes along with an unconfirmed counterexample – a potential
error path in the Kripke structure with some unknown transitions or predicates.
Four our running example the path ⇡ = s

1

s

2

s

4

s

5

s

5

. . . is an unconfirmed coun-
terexample. Such a path is typically used for counterexample-guided abstraction

refinement (CEGAR) [4]: In our case, the?-transition (s
2

, s
4

) would be identified
as the reason for uncertainty, and shade processes that modify the if -condition
(v

1

> 0) associated with (s
2

, s
4

) would be iteratively shifted to the spotlight.
Now we will show that counterexamples can also be exploited for the parame-
terisation of three-valued Kripke structures. We first illustrate parameterisation
based on our running example and then provide the general rules for it.

Our method detects that the reason for uncertainty, the ?-transition (s
2

, s
4

)
along ⇡, is associated with a complementary branch in the original system: a
branch of the control flow of a single process with complementary branching
conditions – here (v

1

> 0) and ¬(v
1

> 0). Instead of applying classical CEGAR,
a fresh boolean parameter x

1

is introduced and the transition is parameterised
as follows: R(s

2

, s
4

) := x

1

. Next, the complementary transition (s
2

, s
3

) is iden-
tified and parameterised by R(s

2

, s
3

) := ¬x
1

. The corresponding parameterised
three-valued Kripke structure K (x

1

) is depicted in part (b) of the figure on the
previous page. Applying parameterised three-valued model checking, i.e. verify-
ing [K (x

1

), s
1

|= GFprogress] immediately returns false. Thus, for our running
example a definite result in verification only requires the introduction of a single
parameter and the consideration of the two instantiations K (true) and K (false)
of K (x

1

). In contrast, a corresponding pure three-valued approach would require
a large number of additional refinement steps and thus would most likely fail
due to state explosion. Also the application of the computationally more expen-
sive GMC would not be successful, since it cannot establish the complementary
relation between (s

2

, s
4

) and (s
2

, s
3

). The following rule generalises the parame-
terisation of complementary branches in three-valued Kripke structures.

Rule I (Parameterisation of Complementary Branch Transitions). Let

Sys = kn
i=1

Proc

i

be a concurrent system and Spot = Spot(Proc) [Spot(Pred)
be a spotlight abstraction for Sys. Let K be a three-valued KS over AP =
Spot(Pred) [{(pc

i

= j) | Proc

i

2 Spot(Proc) ^ j 2 Loc

i

} that models the

abstract state space corresponding to Sys and Spot, and let s

1

be a state of K .

Moreover, let be a safety or liveness LTL formula and checking [K , s
1

|=]
yields ?. Let ⇡ be the unconfirmed counterexample returned by model checking

which runs through a finite number of di↵erent transitions. The transitions of K

can be parameterised as follows:

Christiano Braga
11

For each transition (s, s 0) along ⇡ with R(s, s 0) = ?, check if (s, s 0) is part

of a complementary branch, i.e.: (s, s 0) is associated with a guard operation

assume(e) of a spotlight process Proc

i

, where e is a boolean expression – and

moreover, there exists a state s

00
such that (s, s 00) is associated with a comple-

mentary guard operation assume(¬e) of Proc
i

. Then introduce a fresh parameter

x

j

and set R(s, s 0) = x

j

and R(s, s 00) = ¬x
j

.

This rule allows to parameterise complementary branches (e.g. if - or while-
operations) in three-valued abstractions. As we have seen in our running exam-
ple, this can lead to substantial savings in the number of necessary refinement
steps for a definite result in verification. In fact, any verification task where the
property of interest turns out to be independent from certain branches can profit
from such a parameterisation in a similar manner. At the end of this section we
will present a theorem which states that the application of Rule I leads to sound
abstractions of concurrent systems. Beforehand, we introduce another rule that
allows the parameterisation of predicates in three-valued abstractions.

In order to illustrate how the parameterisation of predicates works, we consider
a second example, the concurrent system Sys depicted below. Our property of
interest is now mutual exclusion, i.e. whether the flag variables flag

1

and flag

2

are never true at the same time.
v1, . . . , vk : integer;

flag1,flag2, init : boolean where flag1 = false,flag2 = false, init = false;

Proc1 ::

2

666664

1 : flag1 := f (v1, . . . , vk)

2 : init := true

3 : flag1 := ¬flag2

4 :

⇥
. . .

⇤

3

777775
k Proc2 ::

2

666664

1 : flag2 := false

2 : await(init)

3 : flag2 := ¬flag1

4 :

⇥
. . .

⇤

3

777775
k . . . k Proc

n

Applying three-valued spotlight abstraction with classical refinement yields the
following spotlight after a number of iterations: Spot(Proc) = {Proc

1

,Proc
2

} and
Spot(Pred) = {flag

1

,flag
2

, init}. Next, a corresponding pure three-valued Kripke
structure K over AP = {flag

1

,flag
2

, init} [{(pc
i

= j) | Proc

i

2 Spot(Proc) ^
j 2 Loc

i

} is constructed, and the mutual exclusion property formalised by the
safety LTL formula G¬(flag

1

^ flag

2

) is checked for K . Model checking returns
unknown, since the assignment to flag

1

at location 1 of Proc
1

depends on the
shared variables v

1

, . . . , v
k

which are potentially modified by a large number
of processes that are currently in the shade. Thus, with classical abstraction
refinement we have to expect a large number of further refinement steps necessary
for a definite result in verification: Predicates over the variables v

1

, . . . , v
k

as
well as processes modifying these variables have to be drawn into the spotlight.
Nevertheless, the model checking run based on the current spotlight also returns
the unconfirmed counterexample ⇡ depicted in part (a) of the figure below.

(a) (b)

s

1

⇡ :: s

2

s

3

s

4

s

5

s

6

(pc
1

=1)
(pc

2

=1)
flag

1

=f

flag

2

=f

init=f

(pc
1

=2)
(pc

2

=1)
flag

1

=?
flag

2

=f

init=f

(pc
1

=3)
(pc

2

=1)
flag

1

=?
flag

2

=f

init=t

(pc
1

=3)
(pc

2

=2)
flag

1

=?
flag

2

=f

init=t

(pc
1

=3)
(pc

2

=3)
flag

1

=?
flag

2

=f

init=t

(pc
1

=3)
(pc

2

=4)
flag

1

=?
flag

2

=?
init=t

s

1

⇡(x
1

) :: s

2

s

3

s

4

s

5

s

6

(pc
1

=1)
(pc

2

=1)
flag

1

=f

flag

2

=f

init=f

(pc
1

=2)
(pc

2

=1)
flag

1

=x

1

flag

2

=f

init=f

(pc
1

=3)
(pc

2

=1)
flag

1

=x

1

flag

2

=f

init=t

(pc
1

=3)
(pc

2

=2)
flag

1

=x

1

flag

2

=f

init=t

(pc
1

=3)
(pc

2

=3)
flag

1

=x

1

flag

2

=f

init=t

(pc
1

=3)
(pc

2

=4)
flag

1

=x

1

flag

2

=¬x
1

init=t

Christiano Braga
12

The reason for uncertainty is the reachable state s
6

where flag
1

and flag

2

are both
?. The predicate flag

1

is set to ? by transition (s
1

, s
2

), since there are not enough
predicates and processes in the spotlight in order to abstract the associated
operation flag

1

:= f (v
1

, . . . , v
k

) properly. The predicate flag

2

is set to ? by
(s

5

, s
6

) because the associated operation flag

2

:= ¬flag
1

modifies this predicate
in relation to the already unknown predicate flag

1

. In our simple example it
is easy to see that flag

1

and flag

2

must have complementary values in state s

6

– which would rule out the unconfirmed counterexample ⇡. However, this fact
cannot be captured by pure three-valued abstraction since it does not allow to
establish connections between predicates that are associated with the value ?.

Our concept of parameterisation enables us to establish such connections.
For our running example we proceed as follows: We backtrack to the state s

2

where flag

1

was initially associated with ?. Next, we introduce a fresh param-
eter x

1

and set L(s
2

,flag
1

) := x

1

. Based on the operations associated with the
succeeding transitions along ⇡ we update the labellings of the states s

3

to s

6

. As
a consequence, we now can capture that flag

1

constantly keeps the value x
1

along
⇡, flag

2

keeps the value false until s
5

, and in particular, flag
1

and flag

2

have com-
plementary values in s

6

. The resulting path ⇡(x
1

), which is depicted in part (b)
on the previous page, is no longer an unconfirmed counterexample. Thus, check-
ing G¬(flag

1

^ flag

2

) on a corresponding parameterised Kripke structure K (x
1

)
will immediately return that no counterexample exists, i.e. that the property is
satisfied for the modelled system. Again we have seen that parameterisation –
here with regard to predicates – can lead to substantial savings in the number
of necessary refinement steps for a definite result in verification. The following
rule generalises the parameterisation of predicates in three-valued abstractions.

Rule II (Parameterisation of Predicates along Counterexamples). Let

Sys, Spot, K , s

1

and AP be as in Rule I. Moreover, let = G¬(
V

m

i=1

p

i

)
be a safety LTL formula with {p

1

, . . . , p
m

} ✓ Spot(Pred) and model check-

ing [K , s
1

|=] yields ?. Let ⇡ = s

1

. . . s
k

be the unconfirmed counterexam-

ple returned by model checking which is a path prefix that ends in a state s

k

where all predicates from {p
1

, . . . , p
m

} are associated with either the value ? or

true. K can be parameterised along ⇡ according to the following procedure:

for s := s1 to s

k

do

for each p

i

2 {p1, . . . , pm

} with L(s

k

, p
i

) = ? do

if L(s, p
i

) = ? then

if s = s1, i.e. s is the initial state then

introduce a fresh parameter x

j

and set L(s, p
i

) := x

j

else

let s

0
be the direct predecessor of s along ⇡, and let op be the operation

associated with the transition (s

0, s)
if op is not associated with a process in Spot(Proc) or none of the

atomic predicates occurring in the weakest precondition

1
wp

op

(p

i

) are

contained in Spot(Pred) then

introduce a fresh parameter x

j

and set L(s, p
i

) := x

j

else

set L(s, p
i

) :=

wp

op

(p

i

)

⇥
p/L(s0, p) |p 2 Spot(Pred)

⇤
[p/? |p 62 Spot(Pred)],

i.e. update L(s, p
i

) wrt. parameterisations in predecessor s

0

1 Let op = assume(e) : x1 := e1, . . . , xm := e

m

then wp

op

(p) = e^p[x1/e1, . . . , xm/e
m

].

Christiano Braga
13

Parameterisation of predicates is applied in a similar way for model checking

liveness formulae, i.e. [K , s
1

|= GF(
W

m

i=1

p

i

)] with {p
1

, . . . , p
m

} ✓ Spot(Pred).
In case of an unknown result, the model checker additionally returns an uncon-

firmed counterexample ⇡ of the form (s
1

. . . s
l�1

) � (s
l

. . . s
k

)! and in all states

s

l

. . . s
k

each predicate from {p
1

, . . . , p
m

} is associated with either the value ?
or false. The finite prefix (s

1

. . . s
l�1

) of ⇡ is then parameterised in the same

manner as in the case of model checking safety formulae.

The following theorem establishes the soundness, with respect to the informa-
tion ordering K3 (compare Section 2), of parameterised three-valued model
checking, provided that parameterisation is applied according to Rule I and II.

Theorem 1. Let Sys and Spot be as before. Let K over AP be a two-valued KS

modelling the concrete state space of Sys and let K

?
over AP

? = Spot(Pred)[
{(pc

i

= j) | Proc

i

2 Spot(Proc) ^ j 2 Loc

i

} with AP

? ✓ AP be a pure three-

valued KS modelling the abstract state space corresponding to Spot. Moreover,

let s

1

and s

?
1

be states representing the initial configuration of Sys in K resp.

K

?
. Then for any parameterisation K

?(
m

x) of K?
obtained by applying the rules

I and II, and for any safety or liveness LTL formula 2

over AP

?
the following

holds:

[K?(
m

x), s?
1

|=] K3 [K , s
1

|=]

Proof. See http://www.cs.up.ac.za/cs/ntimm/proof.pdf

Hence, every definite result in verification obtained for [K?(
m

x), s?
1

|=] can
be directly transferred to the concrete system modelled by K , whereas an un-

known result for [K?(
m

x), s?
1

|=] tells us that further abstraction refinement
or parameterisation of K?(

m

x) is required. In the next section, we will show how
we have implemented the application of the parameterisation rules within an
automatic abstraction refinement procedure for the verification of concurrent
systems and how verification can benefit from our parameterisation approach.

5 Automatic Counterexample-Guided Refinement and

Parameterisation

We have prototypically implemented a verification framework for concurrent
systems based on spotlight abstraction with counterexample-guided refinement
and parameterisation. Our framework 3Spot works on top of the three-valued
symbolic model checker �Chek [5]. 3Spot takes a concurrent system Sys over a
variable set Var and a safety or liveness temporal logic formula over Sys as
input. The initial spotlight Spot is defined by the processes that are referenced
in and the atomic predicates over Var that are subformulae of . Next, a
parameterised three-valued Kripke structureK?(

m

x) = (S ,R,L,F) corresponding
to Sys and Spot is constructed with a state s

1

2 S representing the initial
configuration of Sys . The parameter tuple (

m

x) of K?(
m

x) is initially empty. In
order to check [K?(

m

x), s
1

|=], the following procedure is executed:

2 is either of the form G¬(
V

m

i=1 pi) or GF(
W

m

i=1 pi) with {p1, . . . , pm} ✓ AP

?.

Christiano Braga
14

1. check [K

?
(

m

a), s1 |=] for all valuations (

m

a) 2 {t, f }m

if 8(ma) 2 {t, f }m

: [K

?
(

m

a), s1 |=] = t or 8(ma) 2 {t, f }m

: [K

?
(

m

a), s1 |=] = f then

property is successfully proved resp. disproved for the concurrent system Sys; stop

if 8(ma) 2 {t, f }m

: [K

?
(

m

a), s1 |=] 2 {?, t} or 8(ma) 2 {t, f }m

: [K

?
(

m

a), s1 |=] 2 {?, f }
then

still some unknown results; further refinement or parameterisation required; go to 2.

if 9(ma) 2 {t, f }m

: [K

?
(

m

a), s1 |=] = t and 9(ma) 2 {t, f }m

: [K

?
(

m

a), s1 |=] = f then

current parameterisation not expedient; revoke last parameterisation; go to 2.

2. for each valuation (

m

a) 2 {t, f }m

with [K

?
(

m

a), s1 |=] = ? do

generate unconfirmed counterexample ⇡?
for [K

?
(

m

a), s1 |=]
select unconfirmed counterexample ⇡?

with the fewest unknown transitions and predicates

if Rule I is applicable along ⇡?
then

apply Rule I to the corresponding branch in K

?
(

m

x)

else if Rule II is applicable along ⇡?
then

apply Rule II to the corresponding path prefix in K

?
(

m

x)

else

determine cause of indefinite result along ⇡?
and derive corresponding refinement candi-

date r (see our previous work [17] for an example technique for deriving refinement can-

didates from unconfirmed counterexamples), which can be a shade process or a predicate;

add r to Spot

if r is a predicate then

revoke parameterisation for parameterised branches in K

?
(

m

x) where the value of r

a↵ects the branching condition

update K

?
(

m

x) according to changes in 2. and go to 1.

Hence, the procedure terminates if for all instantiations of the current parame-
terised Kripke structure the same definite result in verification can be obtained.
If model checking yields true for some instantiations and false for others, the
last parameterisation step was not expedient: The property of interest is then
obviously not independent from the most recent parameterisation. Thus, this
step is revoked, which also includes that the same parameterisation will not be
admissible in future iterations. In case model checking returns unknown for some
instantiations, the abstraction has to be further parameterised or refined based
on unconfirmed counterexamples obtained for these instantiations. For this pur-
pose we always apply Rule I or II if possible, or use classical refinement (see our
previous work [17]) otherwise. Adding a new predicate p to the abstraction may
a↵ect parameterised branches: An abstract state s that is the starting point
of a complementary branch may be split into two new states s

a

and s

b

with
L(s

a

, p) = true and L(s
b

, p) = false. Thus, in the general case, the parameter-
isation of the complementary branch starting in s has to be revoked. However,
if the branch condition is independent from the value of p then the parame-
terisation can be kept. Alternatives to the revocation of parameterisations are:
Keeping the parameterisation for only one state, either s

a

or s
b

. Or, introducing
a fresh parameter x

j

for the second branch starting in s

b

. Each iteration ends
with the update of the parameterised three-valued Kripke structure according
to new parameterisations or additional refinements. In case a new predicate has
been added to the abstraction, this update also involves the recalculation of the
parameterisation of predicates (compare last step of Rule II).

So far, parameterisation resp. refinement is performed based on the uncon-
firmed counterexample with the fewest unknown transitions and predicates. The
intention behind this is to minimise the expected e↵ort to confirm or eliminate
the counterexample. Moreover, the attempt to apply the parameterisation rules

Christiano Braga
15

or classical refinement is so far always conducted in the fixed order Rule I, Rule

II, refinement. In the future, we intend to use heuristic guidance for selecting the
unconfirmed counterexample and for deciding which rule application or which
refinement step is currently most promising in order to achieve a definite result in
verification within a small number of iterations. Similar to our previous work on
heuristics for pure refinement [17], we plan to base this heuristic approach on the
structure of the underlying concurrent system, i.e. on the variable dependencies
between the processes of the system.

In preliminary experiments, we applied our procedure to multiple-resource al-
location systems3 with up to 25 processes and 140 variable dependencies, and we
checked safety as well as liveness properties. We compared verification under the
pure three-valued approach (which has proven to be generally successful for con-
current systems in [17, 14, 15]) with verification under our novel approach with
parameterisation. In several cases where the pure three-valued approach failed
due to an out-of-memory exception, our new technique was capable of returning
a definite verification result. The additional computations for parameterisation
particularly paid o↵ when the property of interest turned out to be indepen-
dent from certain branches in the system, and the costs for concretising these
branches via classical refinement were high. In fact, such cases are very common
for systems with many if -, while-, and similar operations. We also observed ver-
ification tasks (primarily where the system only exhibited very few branches, or
where the property was dependent on most of the branches) that did not profit
from the application of parameterisation rules. Here verification under the new
approach was slower but did not fail, since parameterisation only increases the
number of checks per iteration, but not the size of the abstraction (spotlight
processes and predicates). Thus, so far it is a good strategy to apply the pure
three-valued approach first and in case of failure the approach with parameteri-
sation subsequently. Nevertheless, with our intended heuristic approach, we aim
at directly discovering the best possible combination of refinement and param-
eterisation for each verification task. A more extensive experimental evaluation
of such an enhanced approach is also planned as future work.

6 Related Work

Or research is situated in the field of model checking temporal logic proper-
ties on partial system models. The idea of evaluating temporal logic formulae
on three-valued Kripke structures was initially proposed in [3] and is now es-
tablished under the name three-valued model checking (3MC). Our new concept
parameterised three-valued model checking (PMC) is an extension of 3MC. In our
approach, unknown parts of the modelled system cannot only be represented by
the constant ?, but also by expressions over boolean parameters. The evaluation
of temporal logic formulae is then performed for each possible parameter instan-
tiation. The idea of considering possible instantiations resp. concretisations of
a partial model is adopted from generalised model checking (GMC) [7]. In con-
trast to the concretisations in GMC, our instantiations only a↵ect parameters

3 A detailed description of these systems can be found in [14].

Christiano Braga
16

but do not concern the constant ?. Moreover, our instantiations are always of
the same size as the partial model, whereas the concretisations in GMC can be
exponentially larger. Neither 3MC nor GMC o↵er a concept for drawing con-
nections between unknown parts. While 3MC and GMC are general concepts
for the verification of partial models, our approach is application-oriented and
takes advantage from the consideration of the system structure when applying
the parameterisation rules within our automated verification procedure.

Another work related to ours is that of Herbstritt et al. [9] who combine three-
valued logic and quantified boolean parameters for representing unspecified parts
of a hardware model with di↵erent precision. Their technique is geared towards
equivalence checking of circuits. In contrast to our approach, [9] do not introduce
a concept for establishing connections between parameters in the model. More-
over, the decision for modelling an unspecified part via the third truth value ? or
via a boolean parameter has to be done by hand and not based on automatable
rules. [9] encode their hardware verification tasks as bounded model checking
problems that can be e�ciently solved via SAT/QBF-solvers. The definition of
such encodings for our parameterised three-valued model checking is another
interesting direction for future research. A similar approach to the verification
of hardware circuits, but in the context of BDD-based symbolic model check-
ing was introduced in [11]. Their method supports the verification of full CTL
properties based on models with a flexible representation of unknowns. This
approach necessitates the manual selection of the type of modelling unknown
parts. Establishing logical relations between parameters is not possible here.

7 Conclusion

We developed a concept for modelling unknown parts of an abstract software
system with di↵erent types of approximation: In our parameterised three-valued
Kripke structures the loss of information about a predicate or a transition can
be either represented by the constant ? or by an expression over boolean param-
eters. A novel feature of our modelling approach is that it allows for establishing
logical connections between unknown parameters, like equality or complemen-
tarity – and thus, to preserve more details under abstraction that can be crucial
for the success and e�ciency of verification. We introduced temporal logic model
checking for parameterised three-valued Kripke structures and showed that this
method is sound if the models are constructed with regard to parameterisation
rules that we defined. These rules take the branching structure and the program
code of the modelled system into account and arrange the connections between
parameters in the model. We then presented an automatic verification procedure
based on iterative abstraction refinement and parameterisation. For several veri-
fication tasks, particularly for verifying systems with many conditional branches,
our new approach with parameterisation can significantly outperform verification
based on classical modelling techniques that are not capable of characterising
connections between unknown parts. We are convinced that our concept for pa-
rameterisation can be easily and e↵ectively adapted to other types of systems
and verification tasks, which we intend to investigate in our future research.

Christiano Braga
17

References

1. Alfaro, L., Roy, P.: Solving games via three-valued abstraction refinement. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007, LNCS, vol. 4703, pp. 74–89.
Springer-Verlag Berlin Heidelberg (2007)

2. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of C programs. In: ACM SIGPLAN 2001. pp. 203–213. PLDI ’01, ACM,
New York, NY, USA (2001)

3. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. pp. 274–287. LNCS,
Springer-Verlag Berlin Heidelberg, London, UK (1999)

4. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000, LNCS, vol.
1855, pp. 154–169. Springer-Verlag Berlin Heidelberg (2000)

5. Easterbrook, S.M., Chechik, M., Devereux, B., Gurfinkel, A., Lai, A.Y.C., Petro-
vykh, V., Tafliovich, A., Thompson-Walsh, C.: �Chek: A model checker for multi-
valued reasoning. In: ICSE 2003. pp. 804–805 (2003)

6. Fitting, M.: Kleene’s three valued logics and their children. Fundamenta Informat-
icae 20(1-3), 113–131 (Mar 1994)

7. Godefroid, P., Piterman, N.: LTL generalized model checking revisited. In: Jones,
N.D., Mueller-Olm, M. (eds.) VMCAI 2009, LNCS, vol. 5403, pp. 89–104. Springer
Berlin Heidelberg (2009)

8. Grumberg, O.: 2-valued and 3-valued abstraction-refinement in model checking.
In: Logics and Languages for Reliability and Security, pp. 105–128. IOS Press,
Incorporated (2010)

9. Herbstritt, M., Becker, B.: On combining 01X-logic and QBF. In: Moreno Diaz,
R., Pichler, F., Quesada Arencibia, A. (eds.) Comp. Aided Systems Theory - EU-
ROCAST 2007, LNCS, vol. 4739, pp. 531–538. Springer Berlin Heidelberg (2007)

10. Katoen, J.P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for prob-
abilistic systems. Logic and Algebraic Programming 81(4), 356 – 389 (2012)

11. Nopper, T., Scholl, C.: Symbolic model checking for incomplete designs with flex-
ible modeling of unknowns. IEEE Trans. Computers 62(6), 1234–1254 (2013)

12. Schrieb, J., Wehrheim, H., Wonisch, D.: Three-valued spotlight abstractions. In:
Cavalcanti, A., Dams, D.R. (eds.) FM 2009: Formal Methods, LNCS, vol. 5850,
pp. 106–122. Springer-Verlag Berlin Heidelberg (2009)

13. Shoham, S., Grumberg, O.: 3-valued abstraction: More precision at less cost. In-
formation and Computation 206(11), 1313 – 1333 (2008)

14. Timm, N.: Three-Valued Abstraction and Heuristic-Guided Refinement for Veri-
fying Concurrent Systems. Phd thesis, University of Paderborn (2013)

15. Timm, N.: Spotlight abstraction with shade clustering – automatic verification of
parameterised systems. In: 8th International Symposium on Theoretical Aspects
of Software Engineering, IEEE Computer Society (to appear) (2014)

16. Timm, N., Wehrheim, H.: On symmetries and spotlights – verifying parameterised
systems. In: Dong, J., Zhu, H. (eds.) ICFEM 2010, LNCS, vol. 6447, pp. 534–548.
Springer, Heidelberg (2010)

17. Timm, N., Wehrheim, H., Czech, M.: Heuristic-guided abstraction refinement for
concurrent systems. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012, LNCS, vol. 7635,
pp. 348–363. Springer Berlin Heidelberg (2012)

18. Wei, O., Gurfinkel, A., Chechik, M.: On the consistency, expressiveness, and pre-
cision of partial modeling formalisms. Information and Computation 209(1), 20 –
47 (2011)

Christiano Braga
18

A Probabilistic Model Checking Analysis of a

Realistic Vehicular Networks Mobility Model

Bruno Ferreira, Fernando A. F. Braz, and Sérgio V. A. Campos

Department of Computer Science, Federal University of Minas Gerais
Av. Antônio Carlos, 6627, Pampulha, 30123-970 Belo Horizonte, Brazil

{bruno.ferreira,fbraz,scampos}@dcc.ufmg.br

Abstract. Vehicular Ad-Hoc Networks (VANET) are a special type of
network where its nodes are vehicles that move according to specific pat-
terns. This network is based on wireless communication, presenting new
challenges, such as how it will be tested in realistic scenarios. Currently,
simulations are widely used. However, they have limitations, such as lo-
cal minima. Another approach is model checking, which has been used
in only a few studies, often overlooking mobility and signal propagation
issues. This work provides a realistic mobility model using probabilistic
model checking to describe an overtake scenario involving three vehicles
in a short distance. Our analysis has shown 98% of accident chance in
this situation. However, the main result is providing an example to rep-
resent the mobility aspect which can be connected with other models
such as signal propagation and the network itself. Therefore, VANETs
can now be tested using methods closer to the reality.

Keywords: Model Checking, Vehicular Ad-Hoc Networks, Mobility

1 Introduction

Intelligent Tra�c Systems (ITS) are a response to reduce the number of traf-
fic accidents, the cost of transportation and the volume of CO

2

emissions [11].
These systems make intensive use of communication among vehicles, which is
possible using Vehicular Ad-Hoc Networks (VANETs), a particular class of Mo-
bile Ad-Hoc Networks (MANETs). VANETs are distributed and self-organized
communication networks, characterized by their high speed and mobility, which
brings several challenges to the academic community [13].

Current research in this field frequently analyzes the behavior of VANETs
using simulators. However, simulation methods examine only a subset of possi-
ble scenarios, which can lead to an incomplete – or even worse, an incorrect –
analysis [14]. Furthermore, works such as [2] and [4] have reported that VANET
simulators, despite their constant evolution, have not reached an ideal point,
because they need to integrate the mobility of the nodes, the communication
protocols (network model) and the signals propagation.

A complementary approach to simulation is the use of probabilistic model
checking (PMC) [9, 19]. PMC is a technique for the automatic analysis of sys-
tems, which verifies properties in probabilistic logic by exhaustively enumerating

Christiano Braga
19

2 A PMC Analysis of a Realistic Vehicular Networks Mobility Model

all reachable states. PMC can answer questions such as “What is the probabil-
ity of the occurrence of a certain event?”. This approach is ideal for dynamic
and stochastic systems, such as VANETs. PMC verification is performed by (1)
specifying what are the properties that the system must obey, (2) constructing
the formal model of the system, which should capture all the essential properties
and (3) finally, running the verifier to validate the specified properties.

Verification techniques can be useful to assess the e�ciency and correctness
of MANETs. The results obtained can be used to improve a wide range of sys-
tems. Despite its benefits, model checking is rarely used in VANETs. Also, the
few studies (e.g. [5] and [21]) do not address uncertainty caused by the dynamism
of the nodes. Thus, the non-determinism of the message delivery caused by the
mobility of vehicles is not being represented, which is an underlying factor in
VANETs. [20] uses simulation of Markov chains to represent planned trajectories
of autonomous vehicles. The tool which we have used for analysis also represents
its model with this technique, however, it uses a formal approach, finding ex-
act probabilities and estimates, besides, other resources such as multi-terminal
binary decision diagrams are used [19] and our work benefits from these features.

It is important to verify networks considering not only the network itself,
but also its additional functionalists. Thus, it is often necessary to model the
communication and other important system components [8]. Therefore, building
complete models considering the tra�c flow, network and radio propagation are
necessary and rarely explored in model checking. We have proposed the first
step for completely modeling VANETs presenting a motion aspect which will be
coupled with the traditional network analysis.

Nevertheless, this work has the objective of representing mobility models
in VANETs using PMC. The proposed model follows practices and concepts al-
ready used in simulation methods to model an overtake situation involving three
vehicles. However, it uses the benefits of automatic and exhaustive verification
provided by PMC. Thus, the application of model checking in VANETs can be
extended in the future to describe network and mobility models.

We have used PRISM, a probabilistic model checker for formal modelling
and analysis. This tool can represent systems that exhibit random or probabilis-
tic behaviour. It has been used to analyze many di↵erent application domains
from communication protocols to biological systems [18]. We have modeled an
overtake scenario involving three vehicles in a short distance. The model shows
that there is a huge chance of an accident (98% in some scenarios), however
counter-examples to a safe overtake are presented.

This paper is organized as follows: Section 2 presents important concepts
of VANET analysis; PMC is defined in Section 3; Section 4 shows our mobility
model; Section 5 discusses the results of the model; finally, conclusions and future
works are presented in Section 6.

Christiano Braga
20

A PMC Analysis of a Realistic Vehicular Networks Mobility Model 3

2 VANET Analysis

In order to validate the e↵ectiveness of Intelligent Tra�c Systems, it is nec-
essary to evaluate their performance and communication protocols in real test
environments. However, there are logistic di�culties, economic questions and
technological limitations which make simulations a good choice for testing and
validation of these protocols. The fields of computer networks and tra�c engi-
neering make extensive use of simulators. There are long established software
such as NS-2 (The Network Simulator)1 and SUMO (Simulation of Urban Mo-
bility)2. Since the introduction of vehicular networks, the integration of these
two fields has recently become necessary [14].

This integration is required due to inherent features of the strong coupling
between communication and mobility in VANETs. Communication modifies mo-
bility patterns, on the other hand, correct message reception is a↵ected by vehic-
ular movement. However, three distinct aspects must work together in order to
achieve realistic tests [4]: (1)Mobility Models represent the vehicle movement,
including mobility patterns and the interaction between vehicles (e.g. crossroad
control); (2) Network Models describe the data exchanged between vehicles,
including MAC, routing and superior protocol layers; (3) Signal Propagation
Models reproduce the environment modeling involving fixed and mobile obsta-
cles during the communication. For further details on these mobility and signal
propagation techniques, we refer to [13] and [17], respectively.

Mobility models, the main subject of this work, can be described in two
points [12]: (1) Freedom of movement, responsible for describing the motion
constraint to each vehicle. These representations have been improved from sim-
plified models such Manhattan grid [3] to real world maps (e.g. [7] and [22]) and
(2) Interaction among vehicles which modeling the behavior of a vehicle that
is a direct consequence of the interaction with the other vehicles on the road. This
includes microscopic aspects, such as lane changing and decreasing/increasing
the speed due to the surrounding tra�c.

Regarding this microscopic implementation, Car Following Models (CFMs)
are the most used type of driver model. CFMs usually represent time, position,
speed, and acceleration as continuous functions. However, CFMs have been ex-
tended to include discrete formulations [14]. Commonly used models are (as
described by [15]): the cellular automata models, follow-the-leader models and
intelligent driver model (IDM). The next subsections describe two CFM models
chosen for their simplicity, e�ciency and realism.

2.1 Intelligent Driver Model

The Intelligent Driver Model (IDM) shows a crash-free collective dynamic, ex-
hibits controllable stability properties, and implements a braking strategy with
smooth transitions between acceleration and deceleration behavior [16]. The IDM

1 NS-2 . http://www.isi.edu/nsnam/ns/. Access date: September 10, 2014
2 SUMO. http://sumo.sourceforge.net/. Access date: September 10, 2014

Christiano Braga
21

4 A PMC Analysis of a Realistic Vehicular Networks Mobility Model

acceleration is a continuous function incorporating di↵erent driving modes for
all velocities of freeway and city tra�c. The distance s (bumper-to-bumper) to
the leading vehicle is given by s = x

l

�x� e, where x
l

and x are the coordinates
and e is the extent of vehicle. IDM also takes into account the velocity di↵er-
ence (approaching rate) to the leading vehicle, given by �v = v � v

l

. The IDM
acceleration function is given by the Equations 1 and 2.

a
IDM

(s, v,�v) = a

"
1�

✓
v

v
0

◆
�

�
✓
s⇤(v,�v)

s

◆
2

#
(1)

s⇤(v,�v) = s
0

+ vT +
v�v

2
p
ab

(2)

This expression combines the free-road acceleration strategy, given by:

a
free

(v) = a[1� (v/v
0

)�]

with a deceleration strategy, given by:

a
brake

(s, v,�v) = �a(s⇤/s)2

The deceleration strategy becomes relevant when the gap to the leading vehicle
is not significantly larger than the “desired (safe) gap”, given by s⇤(v,�v). The
free acceleration is denoted by the desired speed v

0

, the maximum acceleration is
a, and the exponent � indicates how the acceleration decreases with velocity (� =
1 corresponds to a linear decrease, while � ! 1 denotes a constant acceleration).

The e↵ective minimum gap s⇤ is composed of the minimum distance s
0

(which
is relevant for low velocities only), the velocity dependent distance vT , which
corresponds to following the leading vehicle with a constant desired time gap T,
and a dynamic contribution which is only active in non-stationary tra�c corre-
sponding to situations in which �v 6= 0. This latter contribution implements an
“intelligent” driving behavior that, in normal situations, limits braking deceler-
ations to a comfortable deceleration b. In critical situations, however, the IDM
deceleration becomes significantly higher, making the IDM collision-free [24].
The IDM parameters v

0

, T, s
0

, a and b are shown in Table 1.

Table 1. Parameters of the Intelligent Driver Model. Adapted– [16]

Parameter Car Truck
Desired speed v0 120 km/h 85 km/h
Free acceleration exponent � 4 4
Desired time gap T 1.5 2.0
Jam distance s0 2.0 4.0
Maximum acceleration a 1.4 m/s2 0.7 m/s2

Desired deceleration b 2.0 m/s2 2.0 m/s2

Changing threshold �th 0.1 m/s2 0.1 m/s2

Calculating the acceleration at a time t, the new position and speed or de-
celeration distance can be given by traditional kinematics’ equations.

Christiano Braga
22

A PMC Analysis of a Realistic Vehicular Networks Mobility Model 5

2.2 Minimizing Overall Braking Induced by Lane Change

A general model to represent lane-changing rules was proposed by [10]. The
model is called Minimizing Overall Braking Induced by Lane Change (MOBIL).
The utility and risk associated of a given lane are determined in terms of lon-
gitudinal accelerations calculated by microscopic car-following models as IDM.
The previous vehicle deceleration in the target lane can not exceed a given safe
limit b

safe

. Risk criterion prevents critical lane changes and collisions, while the
incentive criterion takes into account the advantages and disadvantages of other
drivers associated with a lane change via the “politeness factor” p.

A lane change is shown in Figure 1. The MOBIL model depends on the
two previous vehicles in the current and the target lanes, respectively. Thus,
for a vehicle c considering a lane change, the previous vehicles in the target
and current lanes are represented by n and o, respectively. The acceleration a

c

denotes the acceleration of vehicle c on the current lane, and ã
c

refers to the
situation in the target lane, that is, to the new acceleration of vehicle c in the
target lane. Likewise, ã

o

and ã
n

denote the acceleration of old and new previous
vehicles after the lane change of vehicle c [10].

Fig. 1. Mobil notations. Adapted from [10].

According to [10], the incentive criterion determines if the lane change is
better or not to a driver. In this model, the incentive is generalized to include
the immediately a↵ected neighbors. The politeness factor p determines to which
degree these vehicles influence the lane- changing decision. Thus, the incentive
criterion is given by the Equation 3.

ã
c

� a
c| {z }

driver

+p

0

@ ã
n

� a
n| {z }

new behind

+ ã
o

� a
o| {z }

old behind

1

A > �a
th

(3)

The first two terms of the Equation 3 denote the advantage of a possible
lane change to the driver. The change is good if the driver can go faster in the
new lane. The third term denotes the total advantage of the two immediately
a↵ected neighbors multiplied by the politeness factor p. The �a

th

term on the
right-hand side represents a certain inertia and prevents lane changes if the
overall advantage is only marginal compared with a “keep lane” directive.

Christiano Braga
23

6 A PMC Analysis of a Realistic Vehicular Networks Mobility Model

2.3 Framework for Realistic Vehicular Mobility Models

For the purpose of guiding the developers through various challenges and op-
tions during the modeling, the authors of [13] propose a concept map for a
comprehensible representation of a realistic vehicular mobility model. As can
be seen in Figure 2, the concept map is organized around two major modules,
motion constraints and the tra�c generator. Additional modules such as
time and external influences are also required for a fine tuning of the mobil-
ity patterns. The main modules (gray blocks) are implemented through several
auxiliary modules (white ones), which are added according to the desired de-
tail level. These last ones can be more explored in the original work. The main
modules description are as follows [13]:

Fig. 2. Concept map of realistic mobility models. Adapted from [13].

– Motion constraints describe the relative degree of freedom available for
each vehicle. Restrictions can be streets, buildings, vehicles and pedestrians.

– Tra�c generator defines di↵erent kinds of vehicles, and handles their inter-
actions according to the environment under study. Macroscopically, it models
tra�c densities, speeds and flows, while microscopically, it deals with proper-
ties such as the distance between cars, acceleration, braking, and overtaking.

– Time describes di↵erent mobility configurations for a specific time of the
day. Tra�c density is not uniform during a day. Peak times, such as rush
hours or during special events, can be observed. This block influences the
motion constraints and the tra�c generator functional blocks.

– External influences model the impact of a communication protocol or any
other source of information on the motion patterns. This block models the
impact of accidents, temporary road works, or real-time knowledge of the
tra�c status on the motion constraints and the tra�c generator blocks.

Christiano Braga
24

A PMC Analysis of a Realistic Vehicular Networks Mobility Model 7

3 Probabilistic Model Checking

Probabilistic model checking is a formal, exhaustive and automatic technique for
modeling and analyzing stochastic systems. PMC checks if the model satisfies a
set of properties given in special types of logics.

A stochastic system M is usually a Markov chain or a Markov decision pro-
cess. This means that the system must satisfy the Markov property, i.e., its
behavior depends only on its current state and not on the whole system history,
and each transition between states occurs in real-time.

Given a property � expressed as a probabilistic temporal logic formula, PMC
attempts to check whether a model of a stochastic system M satisfies the prop-
erty � with a probability p � ✓, for a probability threshold ✓ 2 [0, 1].

Tools called model checkers such as PRISM [19] solve this problem. It requires
two inputs: a modeling description of the system, which defines its behavior
(for example, through the PRISM language), and a probabilistic temporal logic
specification of a set of desired properties (�).

The model checker builds a representation of the system M , usually as a
graph-based data structure called Binary Decision Diagrams (BDDs), which can
be used to represent boolean functions. States represent possible configurations,
while transitions are changes from one configuration to another. Probabilities
are assigned to the transitions between states, representing rates of negative
exponential distributions.

Properties can be expressed quantitatively as “What is the shortest time
which occurs overtaking?” or qualitatively as “Is overtake maneuver successful?”,
o↵ering valuable insight over the system behavior.

Let R�0

be the set of positive reals and AP be a fixed, finite set of atomic
propositions used to label states with properties of interest. A labeled CTMC C
is a tuple (S, s̄, R, L) where:

– S is a finite set of states;
– s̄ 2 S is the initial state;
– R : S ⇥ S ! R�0

is the transition rate matrix, which assigns rates between
each pair of states;

– L : S ! 2AP is a labeling function which labels each state s 2 S the set L(s)
of atomic propositions that are true in the state.

The probability of a transition between states s and s0 being triggered within t
time units is 1�e�R(s,s

0
)·t. The elapsed time in state s, before a transition occurs,

is exponentially distributed with the exit rate given by E(s) =
P

s

02S

R(s, s0).

The probability of changing to state s0 is given by R(s,s

0
)

E(s)

.

Properties are specified using the Continuous Stochastic Logic (CSL) [23],
which is based on the Computation Tree Logic (CTL) and the Probabilistic CTL
(PCTL). The syntax of CSL formulas is the following:

� ::= true | a | ¬� | � ^ � | PEp

[�] | SEp

[�]
� ::= X � | � UI �

Christiano Braga
25

8 A PMC Analysis of a Realistic Vehicular Networks Mobility Model

where a is an atomic proposition, E 2 {>, <, �, }, p 2 [0, 1] and I 2 R�0

.
There are two types of CSL properties: transient (PEp

) and steady-state
(SEp

). In this work we are interested in transient or time related properties.
A formula PEp

[�] states that the probability of the formula � being satisfied
from a state respects the bound Ep. Path formulas use the X (next) and the UI

(time-bounded until) operators. For example, formula X� is true if � is satisfied
in the next state.

This can be applied to check if a probability p is met for one property leading
to other, such as PEp

[�
1

=> X�
2

], where �
1

and �
2

could be the properties
“car reaches twice the truck’s speed” and “car overtakes truck in 150 meters”.

PRISM allows including rewards in the model, which are structures used
to quantify states and transitions by associating real values to them. The state
rewards are counted proportionately to the elapsed time in the state, while tran-
sition rewards are counted each time the transition occurs. In PRISM, rewards
are described using the syntax:

rewards “reward name”

...

endrewards

Each reward is specified using the multiple reward commands syntax:

[sync] guard : reward ;

Reward commands describe state and transition rewards. The guard predicate
must be true. The sync is a label used to synchronize commands into a single
transition. The reward is an expression that counts for the reward.

Reward properties can be used in states and transitions, e.g. “What is the
expected reward (speed or throttle) for the car to travel 200 meters at time T?”.

This reward can be instantaneous, obtaining its value at the given time
through the property R

=?

[I=t], or accumulated, calculating its value until the
given time, using the property R

=?

[C<=t]. One can obtain the probability of a
state reward by dividing it to the sum of all state rewards. The same procedure
can be applied to transitions.

Rewards of paths in a Continuous-time Markov chain are summations of
state rewards along the path and transition rewards for each transition between
these states. State rewards are interpreted as the rate at which rewards are
accumulated, essentially counting them, i.e. if t time units are spent in a state
with state-reward r, the accumulated reward in that state is r ⇥ t.

Another interesting PRISM feature, when reporting the result of model
checking, is the ability to customize properties to obtain di↵erent results. This
is done using filters, which use the following syntax:

filter(op, prop, states);

PRISM usually has to compute values for all states simultaneously, thus a
specific point or all initial states can be selected. In the syntax, op is the filter

Christiano Braga
26

A PMC Analysis of a Realistic Vehicular Networks Mobility Model 9

operator (e.g. max, min, avg), prop is any PRISM property and states is a
Boolean-valued expression identifying a set of initial states to apply the filter.

4 Mobility VANET Model

Our model was created with a microscopic focus. The idea is to show the rep-
resentation of movement of nodes through the analytical Equations 1, 2 and 3,
previously described in Section 2.1. Signal propagation and communication have
been abstracted. Our microscopic model take into account position, speed, and
acceleration of the vehicles. For this, a overtaking vehicle scenario is implemented
using the PRISM language. This has been done to demonstrate the viability of
PMC usage to check microscopic aspects. Fragments of the models are presented
below and the complete version can be found in the supplementary material and
website [1].

Figure 3 illustrates the proposed scenario. There are three vehicles involved.
The car c1 will overtake the truck, called Leader, which travels slower. However,
the vehicle c2 is coming in the opposite direction. In this situation, c1 can not
see c2, due to weather conditions or lack of attention. This scenario will happen
in a 250 meters road. Thus, the model should answer questions such as “What
is the probability of a collision?”.

Fig. 3. Overtaking vehicle scenario.

The Figure 6 depicts the c1’s variables (other vehicles are similar). Each
vehicle maintains its current position and velocity. The variable lane informs
where c1 is located. If the lane is equal to 1, then the vehicle is on right-hand side
(default value), otherwise the car is on left-hand side. In other words, the vehicle
is trying to overtake. The constants desired speed car, desired speed truck

and RS (road side) constrain the model and they are respectively represented in
m/s, m/s and m. The carCrash variable indicates whether c1 and c2 collided
at some point in time.

An interesting feature of the model is that it does not have a specific initial
state. This is achieved by the code shown in Figure 4. The restriction imple-
mented states that vehicles c1 and c2 in opposite directions are separated by RS

meters and that there is a leader (truck) between them, which will be overtaken
by c1. However, the leader position and the initial speed of all involved can be

Christiano Braga
27

10 A PMC Analysis of a Realistic Vehicular Networks Mobility Model

a combination of values. This creates several scenarios to be automatically ex-
plored. An interesting abstraction was adopted to c2’s position. It starts in one,
however, its real location on the road is given by RS � pos c2.

Initialization of Variables

init
(pos_l >= truck_size + min_gap_car) & (pos_c1 = 1) & (pos_c2=1) &
(lane = ((v_c1>pos_l) | (a_c1 <= 0) ? 2 : 1)) &
(v_c1 >= 0 & v_c1 <= desired_speed_car) &
(v_c2 >= 0 & v_c2 <= desired_speed_car) &
(v_l >=0 & v_l <= desired_speed_truck) &
(carCrash = false)

endinit

Fig. 4. Initial states for the model

The vehicles position is given by x = x
i

+ vt + (a/2)t2, implemented in the
PRISM language, which involves the initial position x

i

, velocity vt, acceleration
a, and time t. Each transition of the model represents a time period that is
defined by the constant t. The acceleration of the vehicles are calculated by
the IDM model previously presented in Section 2.1. The new speed is given by
v = v

i

+at and it also depends on the vehicle acceleration. The Figure 5 describes
a fragment of the model responsible for calculating the acceleration and position
of vehicle c1. The formulas are similar for other vehicles.

As mentioned in Section 2.1, the IDM expression combines the free-road
acceleration strategy, given by a

free

(v) = a[1 � (v/v
0

)�], with a deceleration
strategy, given by a

brake

(s, v,�v) = �a(s⇤/s)2. Therefore, the Equation 1 has
been algebraically split during implementation, because the vehicles do not suf-
fer deceleration when there are no obstacles ahead. Thus, when the vehicle c1
overtakes the leader, c1 does not su↵er slowdown, while the truck’s acceleration,
which used to have free way, starts to be influenced by the new c1’s position.

Acceleration and Position Formulas

formula a_c1_free = AM_car - AM_car * pow(v_c1 / desired_speed_car, exponent);
formula a_c1_obst = a_c1_free - a_brake_c1;
formula a_c1 = (overtook|lane=2?a_c1_free: (pos_l>=RS?a_c1_free:a_c1_obst));

formula a_brake_c1 = AM_car * pow(des_dyn_dis_c1 / deltaD_c1, 2);
formula des_dyn_dis_c1 = min_gap_car + max(0.0, v_c1 * T_car + (v_c1 * deltaV_c1) /

(2*pow(AM_car*BM_car,0.5)));
formula deltaV_c1 = v_c1 - v_l;
formula deltaD_c1 = max(pos_l - pos_c1 - truck_size,1);//"max 1" to avoid division by zero

formula muv_c1 = (v_c1 + (a_c1*pow(time,2)) / 2) > 0 ?
(v_c1 + (a_c1*pow(time,2)) / 2) : (-1 * (v_c1 + (a_c1*pow(time,2)) / 2));

Fig. 5. IDM model implementation

PRISM model comprises a set of modules which represent di↵erent compo-
nents. The behavior of a module, i.e. the changes to its state that can occur, is
specified by a set of guarded commands. These take the form:

[sync]guard ! rate : update;

Christiano Braga
28

A PMC Analysis of a Realistic Vehicular Networks Mobility Model 11

where act is an (optional) action label, guard is a predicate over the variables of
the model, rate is a (non-negative) real-valued expression and update is of the
form:

(x0
1

= u
1

)&(x0
2

= u
2

)& . . .&(x0
k

= u
k

)

where x
1

;x
2

; . . . ;x
k

are local variables of the module and u
1

;u
2

; . . . ;u
k

are ex-
pressions over all variables.

Intuitively, a command is enabled in a global state of the PRISM model if
the state satisfies the predicate guard. If a command is enabled, a transition that
updates the module’s variables according to update can occur with rate rate.

The modules Mod vC1 and Mod dC1 presented in Figure 6 are responsible for
the transitions in the model which assign a new position and speed to vehicle
c1, and also control the lane change of c1. If the vehicle is able to overtake ac-
cording to the conditions presented by MOBIL model (refer to Subsection 2.2),
the vehicle change to the left lane. If c1 is on the left lane and already overtook
the leader, then c1 returns to the default lane. These modules are synchronized
by label “m”, which is placed inside the square brackets. The Mod dC1 is also
responsible for detecting a crash, which happens when c1 and c2 are in the
same lane and their coordinates are overlaid or the deceleration calculated by
the Torricelle equation (v2 = v2

i

+ 2a�x) is unfeasible to be executed in a nor-
mal situation. The modules for the other vehicles involved are similar, although
simpler because they just move forwards without overtake maneuvers.

Modules proposed

module Mod_vC1
v_c1 : [0..desired_speed_car]; // speed

[m] (pos_c1 <= RS) & (v_c1 <= desired_speed_car) ->
(v_c1’ = min(max(ceil(v_c1 + a_c1)*time,0),desired_speed_car));

endmodule

module Mod_dC1
pos_c1 : [1..RS]; // position
lane : [1..2]2; //lane’s c1 (1 - right lane, 2 - left lane)
carCrash : bool;

[m] (pos_c1 <= RS) -> (pos_c1’ = min((ceil(pos_c1 + muv_c1)),RS)) &
(lane’ = ((lane = 2)&(pos_c1 >= (pos_l+min_gap_car+car_size)))?1:

((lane = 1)&(can_change_lane))?2:lane) &
(carCrash’= ((CanotDecelaration | OverlapPosition) &

(lane=2) & (carCrash=false)) ?true:false);
endmodule

Fig. 6. Modules implementation

5 Results

Finally, the model built using the PRISM language can be verified. The idea is
to check the correctness of IDM code and analyze di↵erent situations about the
modeled scenario. The experiments have been performed in an Intel(R) Xeon(R)
CPU X3323 , 2.50 GHz which has 16 GB of RAM memory. The model presented
has 386 243 states, 386 243 transitions and 38 400 initial states. For some prop-
erties we have varied the number of initial states through filters. The longest

Christiano Braga
29

12 A PMC Analysis of a Realistic Vehicular Networks Mobility Model

time to build the model was 2 360.838 s. The longest time to check a property
was for Property 8 of Figure 11, taking 5.418 s.

In order to analyze some situations about the scenario, several interesting
questions can be made. For example, the first property (Figure 7) checks the
probability of a car-crash. The result was: [0.0, 1.0] for a range of values
over initial states. The answer shows that there are situations without accident,
however there are cases of car-crash.

The third property (Figure 7) checks the average probability of an accident
taking into account all initial states. Thus, this scenario has a 98% chance of
collision. The fourth property only confirms the results of these two previously
mentioned properties. It is a non-probabilistic query and the result was true for
the question “Are there situations without accidents?”. The E (Exists) operator
asks whether some path from a state satisfies a particular path formula. If the
result is true, a witness will be generated. In this case, it was provided the
following counter-example: (0, 0, 0, 1, 1, false, 1, 19), which represents
the initial state with values for the respective variables v c1, v c2, v l, pos c1,
lane, carCrash, pos c2 and pos l.

The second property shows another analysis, having calculated the result
[0.0,1.0] considering the range of values over initial states for the question “Is
it possible to finish the scenario without overtake?”, in other words, the leader
reaches the finish before c1. Thus, there are cases with and without overtake.

Car-crash Scenario Properties

(1) P=? [F (carCrash=true)]
What is the probability of an accident occurs?

(2) P=? [((pos_c1<RS & carCrash=false) U (pos_l>=RS & carCrash=false))]
What is the probability of not occurring overtakes in this scenario?

(3) filter(avg, P=? [F carCrash=true], "init")
What is the average probability of an accident occurs?

(4) E [F (carCrash=false)]
Is there, at least, one path which does not lead to the accident?

Fig. 7. Properties of Overtake Maneuver

As we have mentioned above, the operator E generates a counter-example
(a path reaching the “goal” state). Using this witness, for instance for Property
4, we can analyze in detail the situation of accidents in the scenario. Since we
have included rewards in our model, we are able to quantify the speed, accelera-
tion and movement over time using the I (instant) operator. Some implemented
rewards and properties are shown in Figure 8, the latter using the filter com-
mand to check specifically the counterexample available. The operator R is the
responsible to get the reward values.

Figure 9 shows the result of analysis, showing the position of the three vehicles
over time. The red line varies between 10 and 20 and it represents the lane of the
vehicle car1 during overtaking. The first value means that car1 is in the default
lane (right lane), the value 20 means that the vehicle is traveling in the left lane
to overtake. The Figure 9.1 shows the behavior of vehicles without collision. Note

Christiano Braga
30

A PMC Analysis of a Realistic Vehicular Networks Mobility Model 13

Movement and

Lane Rewards

rewards "dLeader"
true : pos_l;

endrewards

rewards "dCar"
true : pos_c1;

endrewards

rewards "dCarOpposite"
true : pos_c2;

endrewards

rewards "laneCar"
true : lane;

endrewards

Movement and Lane Quantitative Properties

(5) filter(max, R{"dCar"}=? [I=T],
(pos_l=19)&(pos_c1=1)&(pos_c2=1)&(lane=1)&
(v_c1=0)&(v_c2=0)&(v_l=0)&(carCrash=false))

What is the expected distance reward for the vehicle c1 on
the road at time T?

(6) filter(max,R{"laneCar"}=? [I=T],
(pos_l=19)&(pos_c1=1)&(pos_c2=1)&(lane=1)&
(v_c1=0)&(v_c2=0)&(v_l=0)&(carCrash=false))

What is the expected lane reward for the vehicle c1 on the
road at time T?

(7) filter(max,RS-R{"dCarOpposite"}=? [I=T],
(pos_l=50)&(pos_c1=1)&(pos_c2=1)\&(lane=1)&
(v_c1=0)\&(v_c2=0)\&(v_l=0)&(carCrash=false))

What is the expected distance reward for the vehicle c2 on
the road at time T? (With different initial conditions)

Fig. 8. Movement and Lane Rewards, and Quantitative Properties.

9.1 Motion in a normal overtake 9.2 Motion with accident

Fig. 9. Scenario analysis

that car1 overcomes the leader at the instant 7.5 and when the positions of car1
and car2 overlap, the first car already returned to the right lane. However, in
the Figure 9.2 can be seen that the positions overlap at time 10 and car1 is in
the left lane, meaning that there was a collision.

Figure 10 shows the evolution of the acceleration and velocity of car1 and
leader (truck) in the scenario of overtaking without collision. Speeds rise ac-
cording to acceleration until reaching the maximum limit of the road. As the
acceleration and the speed limit are lower, the car can overtake easier. It is
interesting to note that the acceleration modeled with IDM is a↵ected by lane
change of car1. Right at the instant 2, the acceleration of the car1 rises abruptly,
because in this moment, the driver concludes to be more advantageous changing
to the left lane, instead of maintaining in its lane. As the car1 is reaching the
desired speed, the acceleration is decreasing, which happens linearly. The truck
also reduces the acceleration linearly as the desired speed is reached. At time 8,
the deceleration is slightly more accentuated due to the entrance of the car1 on
the default lane, as soon as the overtaking is completed.

Analysis regarding to the time spent during overtake or going through the
entire route for each vehicle can also be computed. The Figure 11 shows two
examples of this type of verification. These properties use the reward “step”,
responsible for providing the value 1 for each change of state in the model, which
is equivalent to 1 second in a real scenario. These properties use the operator

Christiano Braga
31

14 A PMC Analysis of a Realistic Vehicular Networks Mobility Model

10.1 Acceleration evolution 10.2 Speed evolution

Fig. 10. Analysis in a free car-crash overtake

F (reachability), which is associated with the reward “step”. According to [18],
the reward property “F prop” corresponds to the reward accumulated along a
path until a satisfactory state is reached. In the case, where the probability of
reaching a state satisfying prop is less than 1, the reward is equal to infinity.

Time Reward

rewards "steps"
true : 1;

endrewards

Time Properties

(8) filter(print, R{"steps"}=? [F carCrash=true], ‘init’)
The lowest and highest time to c1 collide during its journey.

(9) filter(print, R{"steps"}=? [F carCrash=false & pos_c1=RS
], ‘init’)
The maximum and minimum time to c1 completes the path without
collision.

Fig. 11. Time Rewards and Properties

Property 8 calculates the overtake time, which results in a possible colli-
sion for all initial states, thus the presented result was a value range of [8.0,
infinity] seconds. The infinity value represents the initial states without col-
lision, i.e. initial states that have probability less than 1. Therefore, to find the
maximum time limit for the collision it is enough to analyze the PRISM output
log file which will have the travel time for all initial states and their successors,
which is available due to the parameter “print” in the filter command.

The range of minimum and maximum time of collision is [8.0, 11.0], i.e.
the shortest time of an accident is 8 seconds and the greatest time is at instant 11.
Thus, they can be simulated, respectively with the following initial states (1,

6, 1, 2, 2, false, 6, 20) and (0, 0, 1, 1, 1, false, 1, 19), for the
following variable v c1, v c2, v l, pos c1, lane, carCrash, pos c2 and pos l.

In a similar way, the Property 9 calculates the minimum and maximum time
of a successful overtake. This also takes into account all possible initial states.
Thus, the range of values presented were between [13.0, Infinity] seconds.
Again, for all initial states which the probability of F to be satisfied is less than
1, it is assigned the infinity value. Thus, analyzing the PRISM log file, we can
identify the new range of values, and the infinity value is [13.0, 16.00]. Their
respectively counter-examples are (4, 0, 0, 1, 1, false, 1, 40) and (0,

0, 0, 1, 1, false, 1, 19), for the same variables presented in Property 8.

6 Conclusions

It is essential to test and analyze VANETs in order to prevent loss of life. Simu-
lations are used to check protocols and applications, however, they have to deal

Christiano Braga
32

A PMC Analysis of a Realistic Vehicular Networks Mobility Model 15

with two unconnected worlds – network and tra�c – which must work together.
In this context, there are challenges that must be addressed by the academic
community. A complementary tool to simulations is model checking, a technique
that automatically and exhaustively explores a model. However, researchers can
use simulation to large-scale analysis and model checking to test thoroughly in
a smaller proportion. Thus, they can supply solutions to known problems for
simulations and model checking, such as determining exact probabilities and
avoiding the state explosion, respectively.

In this article we have presented the formal modeling and analysis of mobility
models using probabilistic model checking to represent an overtake situation. A
microscopic vision was presented to provide a detailed analysis. This was possible
using analytical formulas to represent position, speed, and acceleration. The
model shows that there is a huge chance of an accident (98% in some scenarios),
however there are situations without collision.

In general, during implementation we have noticed some limitations in the
PRISM language, e.g., the absence of some mathematical functions, the lack of
subroutine (function and procedure) and formal parameters. This fact impairs
the legibility of the model and makes di�cult to implement and maintain the
models. However, the IDM and MOBIL models can be perfectly implemented
and used in PRISM.

The implementation of motion provides important information such as in-
stantaneous speed, acceleration and position through rewards, besides answering
questions regarding the probability of events. Our model follows the framework
shown in Figure 2, presenting smooth motion and human driving patterns, fur-
thermore following speed constraints and considering obstacles. All of this is
provided by IDM and the MOBIL.

The motion patterns are not considered because we are analyzing specific
situations instead of a large flow of vehicles. Furthermore, the mobility modules
can be easily coupled with network protocols. In addition, the modeling is easily
adaptable under various situations, such as multilane highway or an intersection.
For example, to implement a curve road with a higher abstraction level, it is
simply necessary to change the limited speed to a value less than a straight
road, thus vehicles will reduce the speed while they are crossing a curve.

Future works: explore more mobility scenarios following the concepts and
examples presented here and couple them with models that represent commu-
nication and signal propagation using a probabilistic method, such as [6], thus,
making it possible to do a complete analysis of the VANET in a stochastic way.

References

1. http://www.dcc.ufmg.br/

~

bruno.ferreira/sbmf2014/

2. Alves, R., et al.: Redes veiculares: Prinćıpios, aplicações e desafios. in Minicursos
do Simpósio Brasileiro de Redes de Computadores - SBRC’2009 (May 2009)

3. Bai, F., Krishnan, H., Sadekar, V., Holland, G., Elbatt, T.: Towards Characterizing
and Classifying Communication-based Automotive App. from a Wireless Network-
ing Perspective. In: In Proc. of IEEE Workshop on Automotive Networking (2006)

Christiano Braga
33

16 A PMC Analysis of a Realistic Vehicular Networks Mobility Model

4. Boban, M., Vinhoza, T.T.V.: Modeling and simulation of vehicular networks: To-
wards realistic and e�cient models. In: Mobile Ad-Hoc Networks: Applications.
Intech (2011)

5. Bouassida, M.S., Shawky, M.: A cooperative congestion control approach within
vanets: formal verification and performance evaluation. EURASIP J. Wirel. Com-
mun. Netw. 2010, 11:1–11:12 (apr 2010)

6. Boulis, A., Fehnker, A., Fruth, M., McIver, A.: Cavi – simulation and model check-
ing for wireless sensor networks. QEST (2008)

7. Cho↵nes, D.R., Bustamante, F.E.: An integrated mobility and tra�c model for
vehicular wireless networks. In: Laberteaux, K.P., Hartenstein, H., Johnson, D.B.,
Sengupta, R. (eds.) Vehicular Ad Hoc Networks. pp. 69–78. ACM (2005)

8. Christian, A.: Reliable model checking for wsns. In: Proc. of the 8th GI/ITG KuVS
Fachgesprach (2009)

9. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
10. Dirk Helbing, T., Martin, A.K.: General lane-changing model mobil for car-

following models. In: Transp. Research Record: Journal of the Transp. Research
Board. pp. 86–94. Transp. Research Board of the National Academies (2007)

11. Ferreira, M., Fernandes, R., Conceição, H., Viriyasitavat, W., Tonguz, O.K.: Self-
organized tra�c control. VANET ’10, ACM, New York, NY, USA (2010)

12. Gipps, P.G.: A model for the structure of lane-changing decisions. Transportation
Research Part B: Methodological 20(5), 403–414 (1986)

13. Harri, J., Filali, F., Bonnet, C.: Mobility models for vehicular ad hoc networks: a
survey and taxonomy. IEEE Communications Surveys & Tutorials 11 (Dec 2009)

14. Hartenstein, H., Laberteaux, K., Ebrary, I.: VANET: vehicular applications and
inter-networking technologies. Wiley Online Library (2010)

15. Helbing, D.: Tra�c and related self-driven many-particle systems. Rev. Mod. Phys.
73, 1067–1141 (Dec 2001)

16. Kesting, A., Treiber, M., Helbing, D.: Enhanced intelligent driver model to ac-
cess the impact of driving strategies on tra�c capacity. Royal Society of London
Philosophical Transactions Series A 368, 4585–4605 (Sep 2010)

17. Khosroshahy, M.: IEEE 802.11 and propagation modeling: A survey and a practical
design approach (2007)

18. Kwiatkowska, M., Norman, G.: PRISM - Property Specification.
http://www.prismmodelchecker.org/manual/PropertySpecification/

Reward-basedProperties (2011), access date: 28 jan. 2014
19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic

real-time systems. In: Proc. CAV. Springer (2011)
20. Lomuscio, A., Strulo, B., Walker, N.G., Wu, P.: Model checking optimisation based

congestion control algorithms. Fundam. Inf. 102(1) (Jan 2010)
21. M. Altho↵, O. Stursberg, M.B.: Safety assessment of driving behavior in multi-

lane tra�c for autonomous vehicles. In: Proc. of the IEEE Intelligent Vehicles
Symposium. Shaanxi, China (June 2009)

22. Mangharam, R., Weller, D.S., Stancil, D.D., Rajkumar, R., Parikh, J.S.:
Groovesim: a topography-accurate simulator for geographic routing in vehicular
networks. In: Vehicular Ad Hoc Networks. pp. 59–68. ACM (2005)

23. Parker, D.: Implementation of Symbolic Model Checking for Probabilistic Systems.
Ph.D. thesis, University of Birmingham (2002)

24. Treiber, M., Hennecke, A., Helbing, D.: Congested tra�c states in empirical ob-
servations and microscopic simulations. Rev. E 62, Issue 62, 2000 (2000)

Christiano Braga
34

Towards completeness in Bounded Model

Checking through Automatic Recursion Depth

Detection

Grigory Fedyukovich and Natasha Sharygina

Faculty of Informatics, University of Lugano
Via Guiseppe Bu� 13, CH-6904 Lugano, Switzerland

Abstract The presence of recursive function calls is a well-known bot-
tleneck in software model checking as they might cause infinite loops
and make verification infeasible. This paper proposes a new technique for
sound and complete Bounded Model Checking based on detecting depths
for all recursive function calls in a program. The algorithm of detection
of recursion depth uses over-approximations of function calls. It proceeds
in an iterative manner by refining the function over-approximations un-
til the recursion depth is detected or it becomes clear that the recursion
depth detection is infeasible. We prove that if the algorithm terminates
then it guarantees to detect a recursion depth required for complete pro-
gram verification. The key advantage of the proposed algorithm is that
it is suitable for generation and/or substitution of function summaries
by means of Craig Interpolation helpful to speed up consequent verifi-
cation runs. We implemented the algorithm for automatic detection of
recursion depth on the top of our SAT-based model checker FunFrog and
demonstrate its benefits on a number of recursive C programs.

1 Introduction

Model checking plays an important role in both proving program correctness
and finding bugs. It provides a powerful fully automated engine which is able to
search for an assertion violation among all possible combinations of the input val-
ues. These advantages are however hindered by the high complexity of analysis,
known as the state-space explosion phenomenon. To combat this problem, many
e�ective state-space reduction solutions have been developed to allow model
checking to scale to verification of complex systems. The most successful solu-
tions are symbolic model checking among which are Bounded Model Checking
(BMC) [2], and abstraction-based approaches such as predicate abstraction [8],
interpolation-based reasoning [11], and function summarization [12,13,1,19].

BMC has been shown to be particularly successful in safety analysis of
software. The state-of-the-art BMC-based tools such as CBMC [3], LLBMC [14],
VeriSoft [9], FunFrog [18], just to name a few, have been successfully applied
to verification of industrial-size programs. The well-known limitation of BMC is
that it is aimed at searching for errors in a program within the given number

Christiano Braga
35

(bound) of loop iterations and recursion depth. For this reason, BMC is suitable
only for program falsification, while for complete verification it requires finding a
su�cient bound. This problem remains open: the BMC tools analyze an under-
approximation of a program using some particular bound, defined a priori by
the user or set by the tool to some constant, and check the program only up to
this bound.

There exists a number of (direct and indirect) solutions for the automatic loop
bound detection (i.e., constant propagation, k-induction, loop summarization,
etc). However, dealing with recursive function calls is more complicated and
more expensive in practice. This paper proposes an approach for the automatic
recursion depth detection in BMC and shows its applicability in practice.

In particular, we present a BMC algorithm enhanced with automated con-
struction of the su�cient unwinding1. The algorithm iteratively explores the
program calltree and over-approximates recursive function calls while treating
precisely the other ones. The entire abstraction of the calltree is then checked on-
the-fly with respect to a given assertion. If the assertion holds in the current level
of abstraction then the corresponding unwinding is su�cient to guarantee com-
plete verification (and the length of the longest unwinding chain constitutes the
recursion depth). Otherwise, the algorithm identifies which over-approximated
function calls are responsible for the assertion violation. These function calls are
going to be refined and the algorithm goes to the next iteration.

Our approach is developed to reach e�ciency in BMC. At each iteration, it
refines only a minimal set of over-approximated function calls, i.e., only those
responsible for spuriousness of the error on the previous iteration. Clearly, the
algorithm is not guaranteed to terminate when there are unbounded sequences of
recursive calls in the program. But if for every possible value of input parameters,
every recursive function in the real program is called a fixed number of times,
the algorithm automatically detects this number and terminates.

We further demonstrate how our algorithm can be made practical by extend-
ing our earlier work on construction and reusing of interpolation-based function
summaries in BMC [19] for checking di�erent assertions. In the current work,
aside from checking user-provided assertions, we use a heuristic called assertion

decomposition to artificially implant helper-assertions into the recursive program.
These assertions are then checked incrementally to generate function summaries
that will be reused to speed up verification of the user-provided assertions.

We implemented the approach on the top of FunFrog BMC, previously re-
stricted to work only for a user-supplied recursion depth. We evaluated it on a
range of academic and industrial recursive programs requiring bitwise and non-
linear reasoning. Our experimentation confirmed that the summarization-based
recursion depth detection in many cases makes BMC complete and dramatically
improves its performance compare to the classical BMC approach (e.g., CBMC).

Algorithmically, the closest body of work is the Corral [10] tool (see related
work section for detailed comparison). It is a solver for a restricted version of the

1The algorithm relies on the output of a loop bound detection routine (e.g., con-
version loops to recursion) done by an external tool or set by the user.

Christiano Braga
36

reachability-modulo-theories problem, and it also uses summaries in its bounded
analysis to guarantee a practical solution. Unlike in our approach, in the Corral,
1) the depth of recursion is bounded by a user-supplied recursion depth and 2) an
external tool [7] is used to generate function summaries which in general may
not be helpful to verify the given assertion. Our approach is able to generate
relevant function summaries by itself. Moreover, it forces summaries to be bit-
precise and highly related to the given assertion. It makes our algorithm converge
more e�ectively and faster.

The rest of the paper is structured as follows. Sect. 2 defines the notation and
presents background on BMC, function summarization and refinement. Sect. 3
presents the BMC algorithm with automatic detection of recursion depth, proves
its correctness and demonstrates its application to function summarization-based
model checking. Sect. 4 discusses di�erent experimentation scenarios of the ap-
proach including the assertion decomposition heuristic. Sect. 5 provides a com-
parison with the related work and Sect. 6 concludes the paper.

2 Preliminaries and Previous Work

We first define basic constructs required to present the new algorithm. In par-
ticular, we explicitly define recursion, function summaries and basic BMC steps.

2.1 Programs, function calls, recursion depth

Definition 1 (cf. [19]). An unwound program for a depth ‹ is a tuple P
‹

=
(F̂

‹

, f̂main, child), such that F̂
‹

is a finite set of function calls, unwound up to

the depth ‹, f̂main œ F̂
‹

is a program entry point and child ™ F̂
‹

◊ F̂
‹

relates

each function call f̂ to all function calls invoked directly from it.

There is a fixed set F to represent functions declared in the program and a
possibly unbounded set F̂ to represent function calls. A call f̂ œ F̂ corresponds
to a call of a target function, determined by a mapping target : F̂ æ F . A
subset F̂

‹

™ F̂ is introduced to help handling recursion. There is exactly one
call of function fmain, but there may be several calls of the other functions. For
simplicity, later we will use primes (i.e., f̂ Õ, f̂ ÕÕ,..) and indexes (i.e., f̂

1

, f̂
2

,..) to
di�erentiate the calls of the same function f œ F in the unwound program.

The set of function calls F̂ together with the relation child can be represented
by a corresponding calltree with the root f̂main. We also use relation subtree ™
F̂ ◊F̂ , a reflexive transitive closure of child. Now we can define recursive functions
using this notation.

Definition 2. A function f is recursive if for every call f̂
i

, there is another call

f̂ Õ
i

in its subtree, and target(f̂
i

) = target(f̂ Õ
i

) = f .

According to Def. 2, the calltree of a program with recursive functions is
infinite. As detailized later in this section, for classical BMC it has to be bounded.
A recursive function f is unwound ‹ times if there is a sequence of function calls

Christiano Braga
37

(later called an unwinding chain) f̂
0

, f̂
1

,.. f̂
‹

, where 1 Æ i Æ ‹, target(f̂
i

) = f ,
and each f̂

i+1

is in the subtree of f̂
i

. The set of function calls F̂
‹

and the relation
child define a finite corresponding calltree. If there are no recursive function calls
in the program P

‹

= (F̂ , f̂main, child) then F̂
‹

© F̂ for any ‹.
BMC is aimed at checking assertions in a program within the given bound

of loop iterations and recursion depth. If the unwinding number ‹ is provided
a priori, BMC unrolls the loops and recursion up to ‹, encodes the program
symbolically and delegates the checking to a SAT solver. If the number is not
provided a priori, BMC may go into an infinite loop and not terminate. Typically
in the absence of the number or when the number is set too high, a predefined
timeout is used to cope with this problem.

BMC encodes the program into the Static Single Assignment (SSA) form,
where each variable is assigned at most once. The SSA form is then conjoined
with the negation of the assertion condition and converted into a logical formula,
called a BMC formula. The BMC formula is checked for satisfiability, and every
its satisfying assignment identifies an error trace. Otherwise, the program is safe
up to ‹. Notably, this unwinding number may not be su�cient for complete
verification. A program can be proven safe for ‹, but buggy for ‹ + 1.

Fig. 1 illustrates BMC encoding for a simple C program (Fig. 1a) with a
recursive function f. For this example, the recursion depth ‹ = 5 guarantees
complete verification.2 In this setting, it is assumed that this recursion depth is

int f(int a) {

if (a < 10)

return f (a + 1);

return a - 10;

}

void main() {

int y = 1;

int x = nondet();

if (x > 5)

y = f(x);

assert(y >= 0);

}

(a) C code

y0 = 1;

x0 = nondet();

if (x0 > 5) {

a0 = x0;

// f (unwind 1)

if (a0 < 10)

// f (unwind 2)

...

// end f (unwind 2)

ret0 = ...;

else

ret1 = a0 - 10;

ret2 = phi(ret0, ret1);

// end f (unwind 1)

y1 = ret2;

}

y2 = phi(y0, y1);

assert(y2 >= 0);

(b) SSA form

y0 = 1 ·
x0 = nondet0 ·
a0 = x0 ·
ret0 = ... ·
... ·
ret1 = a0 ≠ 10 ·
(x0 > 5 · a0 < 10 ∆

ret2 = ret0) ·
(x0 > 5 · a0 Ø 10 ∆

ret2 = ret1) ·
y1 = ret2 ·
(x0 > 5 ∆ y2 = y1) ·
(x0 Æ 5 ∆ y2 = y0) ·
y2 < 0

(c) BMC formula

Figure 1: BMC formula generation

2see more details on termination in Sect. 3.1

Christiano Braga
38

given a priori. During unwinding (Fig. 1b), a call of function f is substituted
by its body. There will be five such nested substitutions, and the sixth call is
simply skipped in the example. The encoded BMC formula is shown on Fig. 1c.

Classical BMC algorithms use a monolithic BMC formula, as described in
details in [3]. For specialized BMC algorithms (such as in our earlier work on
function summarization [19] and upgrade checking [6], and the new algorithm
for automatic detection of recursion depth) it is convenient to use a so called
Partitioned BMC formula, which is going to be presented in Sect. 2.2.

2.2 PBMC encoding

Definition 3 (cf. [19]). Let F̂
‹

be an unwound calltree, fi encodes an assertion,

„
ˆ

f

symbolically represent the body of a function f , a target of the call f̂ . Then

a partitioned BMC (PBMC) formula is constructed as ¬fi ·
w

ˆ

fœ ˆ

F‹
„

ˆ

f

.

Fig. 2 demonstrates creation of a PBMC formula for the example from
Fig. 1a. In the example program, unwound 5 times, the partitions for func-
tion calls f

1

,f
2

,..f
5

and main are generated separately. They are bound together
using a special boolean variable callstart

ˆ

f

for every function call f̂ . Intuitively,
callstart

ˆ

f

is equal to true i� the corresponding function call f̂ is reached. Note
that the assertion fi is not encoded inside „

ˆ

fmain
, as in classical BMC, but sepa-

rated from the rest of the formula, such that it helps interpolation.3
Formula „

ˆ

f1
that encodes the function call f

1

aims to symbolically represent
the function output argument ret

0

by means of the function input argument a
0

,
symbolically evaluated in „

ˆ

fmain
. At the same time, „

ˆ

f1
relies on the value of ret

3

defined in „
ˆ

f2
by means of a

1

. Similar reasoning is applied to create each of the
following partitions: „

ˆ

f2
,.. „

ˆ

f5
.

y0 = 1 ·
x0 = nondet0 ·
a0 = x0 ·
x0 > 5 … callstartf̂1 ·
y1 = ret0 ·
(x0 > 5 ∆ y2 = y1) ·
(x0 Æ 5 ∆ y2 = y0)

(a) formula „f̂main

y2 Ø 0 … fi

(b) definition of fi

(a0 < 10 … callstartf̂2) ·
a1 = a0 + 1 ·
ret1 = ret3 ·
ret2 = a0 ≠ 10 ·
(callstartf̂1 · a0 < 10 ∆ ret0 = ret1) ·
(callstartf̂1 · a0 Ø 10 ∆ ret0 = ret2)

(c) formula „f̂1

Figure 2: PBMC formula generation

3see more details on interpolation in Sect. 2.3

Christiano Braga
39

2.3 Craig Interpolation and Function Summarization

Definition 4 (cf. [4]). Given formulas A and B, such that A · B is unsatis-

fiable. Craig Interpolant of A and B is a formula I such that A æ I, I · B is

unsatisfiable and I is defined over the common alphabet to A and B.

For mutually unsatisfiable formulas A and B, an interpolant always exists [4].
For quantifier free propositional logic, an interpolant can be constructed from a
proof of unsatisfiability [16]. Interpolation is used to generate function summaries
to speed up incremental verification (see our earlier work [19,18]).

Definition 5 (cf. [19]). Function summary is an over-approximation of the

function behavior defined as a relation over its input and output variables.

A summary contains all behaviors of the function and (due to its over-
approximating nature) possibly more. The infeasible behaviors (detected dur-
ing analysis of abstract models) have to be refined by means of the automated
procedure, as will be described in Sect. 2.4.

If the program is safe with respect to an assertion fi, then the PBMC formula
representing the program is unsatisfiable. The interpolation procedure is applied
repeatedly for each function call f̂ . It splits the PBMC formula into two parts,
„subtree

ˆ

f

and „env
ˆ

f

(1). The former encodes the subtree of f̂ . The latter corresponds
to the rest of the encoded program including a negation of assertion fi.

„subtree
ˆ

f

©
fi

ĝœ ˆ

F :subtree(

ˆ

f,ĝ)

„
ĝ

„env
ˆ

f

© ¬fi ·
fi

ˆ

hœ ˆ

F :¬subtree(

ˆ

f,

ˆ

h)

„
ˆ

h

(1)

Since „subtree
ˆ

f

· „env
ˆ

f

is unsatisfiable, the proof of unsatisfiability can be used
to extract an interpolant I

ˆ

f

for „subtree
ˆ

f

and „env
ˆ

f

. Such formula I
ˆ

f

is then consid-
ered as a summary for the function call f̂ . While verifying another assertion fiÕ,
the entire part „subtree

ˆ

f

of the PBMC formula will be replaced by the summary
formula I

ˆ

f

.

2.4 Counter-Example Guided Refinement

Definition 6 (cf. [19]). A substitution scenario for function calls is a function

œ : F̂ æ {inline, sum, havoc}.

For each function call, a substitution scenario determines a level of approxi-
mation as one of the following three options: inline when it processes the whole
function body; sum when it substitutes the call by an existing summary, and
havoc when it treats the call as a nondeterministic function. Since havoc ab-
stracts away the function call, it is equivalent to using a summary true.

In the incremental abstraction-driven analyses [19,6], substitution scenarios
are defined recurrently. Algorithms start with the least accurate initial scenario

Christiano Braga
40

œ
0

, and iteratively refine it. In (2) and (3), we adapt the definitions from [19]
to the recursive case.

œ
0

(f̂) =
I

sum, if there exists a summary of

ˆ

f

inline, if

ˆ

f is not recursive or ‹ is not exceeded

havoc, if

ˆ

f is recursive and ‹ is exceeded

(2)

œ
i+1

(f̂) =
Ó

inline, if œi(

ˆ

f) ”= inline and callstartf̂ = true
œi(

ˆ

f), otherwise

(3)

When a substitution scenario œ
i

leads to a satisfiable PBMC formula (i.e.,
there exists an error trace ‘), an analysis of ‘ is required to shows that the
error is either real or spurious. By construction of the PBMC formula, for each
function call f̂ , a variable callstart

ˆ

f

is evaluated to true i� f̂ appears along ‘.
Consequently, each f̂ might be responsible for spuriousness of ‘ if f̂ was not
precisely encoded and callstart

ˆ

f

= true. If there is no function call, satisfying
the above mentioned conditions, ‘ is real and must be reported to the user.

3 Bounded Model Checking with Automated Detection

of Recursion Depth

This section presents an iterative abstraction-refinement algorithm for BMC
with automated detection of recursion depth. We first present a basic algorithm,
where all function calls are treated nondeterministically (Sect. 3.1). Then we
strengthen this algorithm to support generation and use of interpolation-based
function summaries (Sect. 3.2).

3.1 Basic Algorithm

An overview of the algorithm is depicted in Alg. 1. The algorithm starts with a
preset recursion depth ‹4 and iterates until it detects the actual recursion depth,
needed for complete proof of the program correctness, or a predefined timeout
is reached. Notably, at each iteration of the algorithm, ‹ gets updated and is
equal to the length of the longest unwinding chain of recursive function calls. In
the end of the algorithm, all recursive calls are unwound exactly same number
of times as they would be called during the execution of the program.

The details of the computation are given below. First, the algorithm aims to
construct a PBMC formula „ using the sets F̂

‹

and T. Every function call f̂ œ F̂
‹

is encoded precisely, every function call ĝ œ T is treated nondeterministically. In
particular, bodies of function calls from set F̂

‹

are encoded into the SSA forms
(i.e., method CreateFormula) and put together into separate partitions (one
partition per each function call) of „ (line 3). At the same time, all function

4The algorithm can be initialized with any number value as demonstrated in our
experiments.

Christiano Braga
41

Algorithm 1: BMC with automatic detection of recursion depth
Input: Initial recursion depth ‹; Program unwound ‹ times: P‹ = (

ˆ

F‹ ,

ˆ

fmain, child);

Assertion to be checked: fi; TimeOut
Output: Verification result: {SAFE, BUG, TimeOut}; Detected recursion depth ‹; Error

trace: ‘

Data: „: PBMC formula; T: temporary set of function calls to be refined

1 while ¬TimeOut do
2 T Ω {ĝ /œ ˆ

F‹ | child(

ˆ

f, ĝ),

ˆ

f œ ˆ

F‹ }; // get refinement candidates
3 „ Ω ¬fi ·

w
f̂œF̂‹

CreateFormula(

ˆ

f) ·
w

ĝœT Nondet(ĝ);

4 result, sat_assignment Ω Solve(„); // run SAT solver
5 if result = UNSAT then
6 return SAFE, ‹;

7 else
8 ‘ Ω extract_CE(sat_assignment); // extract error trace from the sat.assignment
9 T Ω T fl extract_calls(‘); // filter out calls which do not affect SAT

10 if T = ÿ then
11 return BUG, ‹, ‘;

12 else
13 ˆ

F‹ Ω ˆ

F‹ fi T; // unwind the calltree on demand
14 ‹ Ω max_chain_length(

ˆ

F‹); // update the depth
15 end
16 return TimeOut

calls from T are replaced by true (i.e., method Nondet). In total, „ encodes a
program abstraction containing precise and over-approximated parts, conjoined
by negation of an assertion fi (line 3). Fig. 3a demonstrates a calltree of a program
with a single recursive function called twice at the first iteration of the algorithm.
In the example, F̂

‹

= {f̂main, ĝ
1

, ĥ
1

, f̂
1

, f̂
2

} (grey nodes) are encoded precisely,
and T = {f̂

3

, f̂ Õ
2

} (white nodes) are treated nondeterministically.
After the PBMC formula „ is constructed, the algorithm passes it to a SAT

solver. If „ is satisfiable, and the SAT solver returns a satisfying assignment
(line 7), function calls from T are considered as candidate calls to be refined.
To refine, the satisfying assignment is used to restrict T on the calls, appeared
along the error trace ‘ (i.e., in the satisfying assignment) (line 9). In the next
iteration of the algorithm, the calls from T are encoded precisely in the updated
PBMC formula. Technically, the algorithm extends F̂

‹

by adding function calls
from T (line 13), as shown, for example, on Fig. 3b. There, f̂ Õ

2

appears along ‘
and therefore it has to be refined; f̂

3

does not appear in ‘, so it will be encoded
nondeterministically. If T = ÿ then no nondeterministically treated recursive
calls were found along the error trace, so the real bug is found (line 11), and the
algorithm terminates.

If the SAT solver proves unsatisfiability of „ then the program abstraction,
and consequently the program itself, are safe (line 6). This case is represented on
Fig. 3c. The final recursion depth ‹ is detected, and the algorithm terminates.

Theorem 1. Given the program P and an assertion fi, if Alg. 1 terminates with

an answer SAFE (BUG) then fi holds (does not hold) for P .

Proof (Proof sketch). The proof is divided into two parts, for SAFE (line 6) and
BUG (line 11) outputs of the algorithm (and respectively, the PBMC formula „
proven UNSAT or SAT).

Christiano Braga
42

f̂main

f̂1

f̂2

ĝ1 ĥ1 1

2

3

0

�

� � 1

(a) (b) (c)
f̂main

f̂1

f̂2

f̂��1

ĝ1 ĥ1

f̂ �
2

f̂main

f̂1

f̂2

ĝ1 ĥ1

f̂ �
2

f̂ �
3

f̂�

f̂3f̂3f̂3 f̂ �
3

f̂ �
2

?

?

?

!
!
!

!

!

Figure 3: Illustration of the individual steps of the Alg. 1 on the example with a single recursive

function f , called twice.

a) First iteration:

ˆ

F‹ = { ˆ

fmain, ĝ1,

ˆ

h1,

ˆ

f1,

ˆ

f2} (grey nodes) are encoded precisely, T = { ˆ

f3,

ˆ

f

Õ
2} (white

"?" nodes) are treated nondeterministically; the initial recursion depth is equal to 1.

b) Second iteration: solver returns SAT (corresponding to error trace ‘ = { ˆ

fmain,

ˆ

f1,

ˆ

f

Õ
2}), set T is

updated to contain only one function call ({ ˆ

f

Õ
2} (black "!" nodes)). All calls from T are added to

current

ˆ

F‹ . The current recursion depth is incremented, and equal to 2.

c) Final iteration: solver returns UNSAT or T = ÿ, the detected recursion depth is equal to ‹ ≠ 1.

Case SAFE. In this case „ is unsatisfiable. The formula „ represents some
abstraction of P which contains precise and over-approximated components (as
described in section 3.1). Since every abstracted formula can be strengthened
and turned into the corresponding precise encoding, and since unsatisfiability of
a weaker formula implies unsatisfiability of a stronger formula, then the PBMC
formula „inline encoding P without abstraction is also unsatisfiable, i.e., fi holds.

Case BUG. In this case, „ is satisfiable, and the satisfying assignment rep-
resents an error trace. At the same time, the algorithm did not detect any non-
deterministically treated recursive function calls along the error trace (line 10).
It means that fi is indeed violated within the current recursion depth. ÙÛ

Note on Termination. The algorithm is guaranteed to terminate within a
given timeout when it finds an error or proves that the assertion holds. Similar
to classical BMC, Alg. 1 terminates if the recursion depth is su�cient to disprove
the assertion. Classical BMC can prove the assertion up to some fixed recursion
depth, but the result might be incomplete if the recursion depth is insu�cient. In
contrast, by Theorem 1, if our algorithm does not yield a timeout, it guarantees
that the detected recursion depth is complete to prove (disprove) the assertion.
The other benefit of our algorithm is that it does not require the recursion depth
to be given a priori, but instead it is detected automatically.

Based on our observations, termination of Alg. 1 depends on the termination
of the recursive program it was applied to. For example, the program with one

Christiano Braga
43

Algorithm 2: Summarization in BMC with Automatic Detection of Re-
cursion Depth

Input: Initial recursion depth ‹; Program unwound ‹ times: P‹ = (

ˆ

F‹ ,

ˆ

fmain, child);

Assertion to be checked: fi; Set of summaries: summaries; TimeOut
Output: Verification result: {SAFE, BUG, TimeOut}; Error trace: ‘

Data: „: PBMC formula; T: set of function calls; œ: substitution scenario

1 „ Ω ¬fi; // initialize „

2 T Ω ˆ

F‹ fi {ĝ /œ ˆ

F‹ | child(

ˆ

f, ĝ),

ˆ

f œ ˆ

F‹ }; // unwind the calltree initially
3 œ Ω init; // use (2) from Sect. 2.4 to create initial scenario
4 while ¬ TimeOut do
5 „ Ω „ ·

w
f̂œT:œ(f̂)=inline

CreateFormula(

ˆ

f) ·
w

ĝœT:œ(ĝ)=sum
ApplySummaries(ĝ) ·w

ĥœT:œ(ĥ)=havoc
Nondet(

ˆ

h); // add partitions to „ (inline, summarize, havoc)
6 result, proof, sat_assignment ΩSolve(„) ;

7 if result = UNSAT then
8 foreach ˆ

f œ T : do // split „ © „

subtree

f̂
· „

env

f̂
as in Sect. 2.3

9 summaries (

ˆ

f) Ω Interpolate(proof,

ˆ

f);

10 end
11 return SAFE;

12 else
13 ‘ Ω extract_CE(sat_assignment);

14 if { ˆ

f œ extract_calls(‘) | œ(

ˆ

f) ”= inline} = ÿ then
15 return BUG, ‘;

16 else
17 œ Ω Refine(œ, T, extract_calls(‘)); // use (3) from 2.4
18 T Ω T fi {ĝ /œ T | child(

ˆ

f, ĝ),

ˆ

f œ T, œ(

ˆ

f) = inline}; //
// unwind the calltree on demand

19 end
20 return TimeOut

single recursive function from Fig. 1a terminates for any values of input data.
The recursion termination condition, ¬(a < 10) defines the upper bound 10 for
the value of a, and at the same time the function f monotonically increments
the value of a. Hence, the recursive function f is called a fixed number of times
and the program eventually terminates. Clearly, for complete analysis of this
program it is enough to consider the maximum possible number of recursive
function calls for every initial value of a which in this example is equal to 5.
At the same time, it introduces an upper bound for the size of the constructed
PBMC formula which is a su�cient condition to the SAT solver to terminate
while solving it.

3.2 Optimizations and Applications of Alg. 1

Incremental Formula Construction and Refinement. Possible optimiza-
tions of Alg. 1 are 1) the incremental construction of the PBMC formula „ and
2) more e�cient handling of a set of the refinement candidates, T.

In the first optimization, „ is created in an incremental manner. At each iter-
ation, „ is not recomputed from scratch, but gets conjoined with new partitions.
These partitions precisely encode the refined function calls from the set T. In
this manner the PBMC formula is updated at the beginning of each iteration.

In the second optimization, the set of refinement candidates T is merged with
the whole set of unwound function calls F̂

‹

. Instead of handling those two sets,

Christiano Braga
44

it is enough to handle one. To distinguish function calls which were present in
T from the others present in F̂

‹

the substitution scenario œ is used.

Summarization. The proposed algorithm for recursion depth detection can be
exploited for e�cient incremental program verification (i.e., verification of the
same program with respect to di�erent assertions [19].5 In this setting, function
summaries are computed by means of Craig Interpolation.

Alg. 2 shows how the optimized Alg. 1 can be integrated with summarization-
based verification. Interpolating procedure (line 9), that employs the PBMC
formula „ and its proof of unsatisfiability, is run after each assertion is proven.
The use of summaries makes the verification more flexible. Instead of treating
recursive function calls nondeterministically, the algorithm might apply existent
summaries, thus making entire program abstraction more accurate. Moreover,
the use of substitution scenario (line 5)6 enables summarization of any (not
necessarily recursive) function calls.

4 Experimental Evaluation

We implemented the automatic Recursion Depth Detection (RDD) and Summarization-
based RDD (SRDD) inside of the BMC tool FunFrog [18] and make its bi-
nary (FunFrog+(S)RDD) available7. FunFrog supports interpolation-based func-
tion summarization for C programs and uses the SAT-solver PeRIPLO [17] for
solving propositional formulas, proof reduction and interpolation. FunFrog fol-
lows CProver’s8 paradigm. In particular, it accepts a precompiled goto-binary,
a representation of the C program in an intermediate goto-cc language, and
runs the analysis on it.

We evaluated the new algorithms on a set of various recursive C programs
(taken from the SVCOMP’149 set (Ackermann X McCarthy, GCD, EvenOdd), ob-
tained from industry10 (P2P_Joints X), crafted by USI students for evaluation
of interpolation-based abstractions). We provide two verification scenarios to
evaluate the algorithms. In the first one, FunFrog+RDD verifies a single asser-
tion in each benchmark and detects the recursion depth. In the second one,
FunFrog+SRDD incrementally verifies a set of assertions and reuses function sum-
maries between its checks. In our experiments loop handling was done by means
of CProver (see Sect. 5 for more details).

5Recall that the analysis in [19] is restricted to programs, unwound fixed number
of times (i.e., without recursion).

6For simplicity, line 5 shows the construction of the whole PBMC formula „. In
practice, it does not recompute partitions of „ constructed in the previous iteration.

7
http://www.inf.usi.ch/phd/fedyukovich/funfrog_srdd.tar.gz

8
http://www.cprover.org

9
http://sv-comp.sosy-lab.org/2014/

10in scope of FP7-ICT-2009-5 — project PINCETTE 257647

Christiano Braga
45

http://www.inf.usi.ch/phd/fedyukovich/funfrog_srdd.tar.gz
http://www.cprover.org
http://sv-comp.sosy-lab.org/2014/

benchmark FunFrog+RDD FunFrog CBMC
In©1 1 < In < ‹ In© ‹

name #R T Result In Time #It ‹ #Calls In Time #It In Time #It Time Time

Array A 5 a SAFE 1 664.02 15 15 75 10 513.986 6 15 121.381 1 3600+ 3600+

Array B 12 a SAFE 1 777.432 24 24 71 2 1781.92 23 24 3600+ — 3600+ 3600+

Array C 3 a SAFE 1 1113.68 27 16 106 14 991.724 3 16 557.281 1 3600+ 3600+

Ackermann A 2 b SAFE 1 55.758 34 20 2169 7 3493.64 10 20 3600+ — 3600+ 3600+

Ackermann B 2 b BUG 1 56.772 30 17 1942 7 3547.29 10 17 3600+ — 3600+ 3600+

Alternate A 2 c SAFE 1 35.068 50 50 100 30 22.206 20 50 0.902 1 3600+ 3600+

Alternate B 2 c BUG 1 92.314 77 77 154 50 53.315 28 77 1.681 1 3600+ 3600+

Multiply 10 a SAFE 1 710.517 110 10 110 7 569.559 4 10 226.659 1 3600+ 3600+

InterleaveBitsRec 1 a SAFE 1 150.053 33 33 33 15 125.241 19 33 8.188 1 3600+ 3600+

BitShiftRec A 1 a SAFE 1 128.074 64 64 64 20 13.416 45 64 2.413 1 3600+ 3600+

BitShiftRec B 2 b SAFE 1 65.537 12 12 4285 3 65.399 10 12 3600+ – 3600+ 3600+

P2P_Joints A 1 a SAFE 1 1234.71 4 4 4 2 1195.31 3 4 1092.26 1 3600+ 3600+

P2P_Joints B 1 a BUG 1 1266.38 4 4 4 2 1222.11 3 4 1120.03 1 3600+ 3600+

Table 1: Verification statistics for various BMC tools with and without auto-
mated detection of recursion depth.

4.1 Evaluating RDD

Table 1 summarizes the verification statistics of a set of benchmarks with dif-
ferent types (T) of recursion (a - single recursion, b - multiple recursion, c -
indirect recursion). The number of recursive functions present in each bench-
mark is depicted in the column marked #R. Each benchmark was verified using
CBMC, FunFrog11 without recursion depth detection and 3 di�erent versions of
FunFrog+RDD. The first configuration of FunFrog+RDD performs the algorithm
with the initial recursion depth set to 1 (denoted as In © 1 in the table), de-
tects recursion depth (‹) and also reports the number of unwound recursive calls
as #Calls. Then, in purpose of comparison, the second and the third configura-
tions perform the same algorithm with the another values of the initial recursion
depths (1 < In < ‹ and In © ‹ respectively). For each experiment, we report
total verification time (in seconds) and a number of iterations of FunFrog+RDD
(#It). The verification results (SAFE/BUG) were identical for experiments with
all configurations and we placed them in the table in the section describing the
benchmarks.

Notably, for all di�erent types of recursion, the experiments with CBMC and
pure FunFrog failed as they reached the timeout (3600+) of 1 hour without
producing the result. This in general was not a problem for any of the ex-
periments when FunFrog+RDD was used. We compare di�erent configurations
of FunFrog+RDD in order to demonstrate possible behaviors of FunFrog+RDD de-
pending on the structure of benchmarks. The benchmarks Multiply, Alternate
A/B, Array A/C, InterleaveBitsRec and BitShiftRec A witness the overhead
of the procedure. In InterleaveBitsRec and BitShiftRec A there is a single
recursive function called one time; in Multiply and Alternate A/B there are
several recursive calls requiring the same recursion depth; in Array A and Array
C there are several recursive calls requiring di�erent, but relatively close recursion
depths. That is, if we compare the first configuration with the third one, we can

11
CBMC and FunFrog were run with default parameters

Christiano Braga
46

benchmark FunFrog+RDD FunFrog+SRDD
name #R T Result ‹ In TotalTime #It In #A TotalTime ItpTime #It

Arithm 1 a SAFE 100 1 128.47 100 1 20 9.676 2.036 119

McCarthy 2 b SAFE 11 1 3600+ — 1 5 10.495 4.859 24

GCD 3 b SAFE 11 1 145.381 64 1 4 54.185 0.409 37

EvenOdd 2 c SAFE 25 1 38.621 50 1 8 27.99 4.49 82

P2P_Joints C 1 a SAFE 4 1 1531.38 4 1 4 1151.72 68.10 4

P2P_Joints D 1 a SAFE 4 1 1192.28 4 1 4 1089.04 87.08 4

Table 2: Verification statistics of FunFrog+RDD and FunFrog+SRDD

see that such overhead exists. The first configuration takes more time to com-
plete verification than the second one, and the second configuration takes more
time to complete verification than the third one. This is because FunFrog+RDD
executes more iterations in the first configuration than in the second one and
more iterations in the second configuration than in the third one. Again, the
di�erence and the advantage is in the fact that the first and the second config-
urations do not know the recursion depth needed for verification and the third
one gets it provided (as an initial recursion depth for FunFrog+RDD). Therefore,
for the third configuration it is always enough to execute one iteration.

The benchmarks Array B, Ackerman A/B and BitShiftRec B show the op-
posite behavior, where the first configuration takes less time to complete than
the second and the third ones. These cases demonstrate the benefits of using
minimality feature of the FunFrog+RDD, since they require di�erent recursion
depths for each recursive function call appearing in the code. In all configura-
tions we specify In by a fixed number which may fit well some of the recursive
calls, but for other ones it may be bigger than needed. In this case, FunFrog+RDD
creates unnecessary PBMC partitions, blows up the formula and consequently
slows down the verification process. While using In = 1, incremental unwinding
automatically finds depths for each recursive function call. It means that for such
cases the new approach for BMC not only detects the recursion depth su�cient
for verification but that it also performs it e�ciently and allows to slice out parts
of the system which are redundant for verification purpose.

Interesting results are demonstrated by experimentation with the industrial
benchmark P2P_Joints A/B. It contains expensive nonlinear computations, a
complex calltree structure with relatively trivial recursion requiring unrolling 4
times. The experiments show that the di�erence in timings between di�erent
FunFrog+RDD configurations is minor.

4.2 Evaluating SRDD

Another set of experiments of verifying recursive programs by applying FunFrog+SRDD
is summarized in Table 2. There are two configurations of FunFrog compared in
the table. The first one, FunFrog+RDD, is similar to the first configuration
in Table 1. The second one, FunFrog+SRDD, is SRDD driven by assertion

decomposition.

Christiano Braga
47

We explain the idea of assertion decomposition on the example from Fig. 1.
The assertion assert(y >= 0) (A1) can be used to derive a set the following
helper-assertions assert(x < 5 || y >= 0) (A2), assert(x < 7 || y >= 0)
(A3) and so on. It is clear that if A1 holds, then both A2 and A3 hold as well;
and if A2 holds then A3 holds as well. We will say that A3 is weaker than A2,
and A2 is weaker than A1.

In this experiment, we derive helper-assertions (number of them is denoted
#A in the table) by guessing values of the input parameters of recursive func-
tions, then order assertions by strength and begin verification from the weakest
one. If the check succeeds, the summaries of all (even recursive) functions are
extracted. They will be reused in verification of stronger assertions. This proce-
dure is repeated until the original assertion is proven valid. We summarize total
timings (TotalTime) for verification of each weaker assertion, which includes
the timings for interpolation (ItpTime).

For all benchmarks in the table, FunFrog+SRDD outperforms FunFrog+RDD.
Technically, it means that checking a single assertion may be slower than check-
ing itself and also several other assertions.12 The strongest result, we obtained, is
verifying a well-known McCarthy function. Running FunFrog+SRDD for it takes
around 10 seconds, while FunFrog+RDD, pure FunFrog and CBMC exceed time-
out. Notably, the interpolation may take up to a half of whole verification time.
In some cases, summarization increases the number of iterations. But in total,
FunFrog+SRDD remains more e�cient that FunFrog+RDD.

5 Related Work

To the best of our knowledge, there is very little support for computing recur-
sion depths in BMC algorithms. One of the most successful BMC tools, CBMC [3],
attempts to find unwinding recursion depths using constant propagation. This
approach works only if the number of recursive calls is explicitly specified in the
source code (i.e., as a constant number in a termination condition of a recursive
call). If it cannot be detected by constant propagation, the tool gets into an
infinite loop and fails to complete verification. CBMC also supports explicit defi-
nition of a recursion depth ‹ which may lead to incomplete verification results.
In order to check correctness of the current unwinding, CBMC inserts and checks
so called unwinding assertions. If all unwinding assertions hold, the currently
used recursion depth is su�cient. If there is a violated unwinding assertion, the
current recursion depth has to be increased. To our knowledge, CBMC does not
have the refinement procedure and error trace analysis to make the recursion
depth detection complete.

The idea of processing function calls on demand was also researched by [10]
in the tool Corral. The method, called stratified inlining, relies on substituting
bodies of function calls by summaries, and checking the resulting program using
a theorem prover. If the given level of abstraction is not accurate enough, the

12A reader can find all these benchmarks with already inserted helper-assertions at
http://www.inf.usi.ch/phd/fedyukovich/funfrog_srdd.tar.gz

Christiano Braga
48

http://www.inf.usi.ch/phd/fedyukovich/funfrog_srdd.tar.gz

algorithm refines function calls in a similar way to our refinement. Despite some
similarity to Alg. 1, Corral relies on the external tool [7] to generate function
summaries. In contrast, our method automatically generates summaries using
Craig Interpolation inside Alg. 2 after an assertion is successfully checked, and
use already constructed summaries to check other assertions.

There are techniques designed to deal with recursion. For instance, [20] is able
to verify recursive programs in milliseconds, but it is limited only to functional
programs. BMC, in contrast, is not designed to deal with recursion, but it has
been applied to a wide range of verification tasks. FunFrog+(S)RDD itself is not a
standalone recursive model checker, but an extension of the existent SAT-based
BMC tool. In our previous work [18], it was already shown applicable to verify
industrial-size programs, supporting complete ANSI C syntax. Conversion to
SAT formulas allows to perform bit-precise checks, i.e., verify assertions in the
programs using bitwise operators.

Craig Interpolation is applicable to verification of recursive programs in a
rather di�erent scenario. In Whale [1], it is used to guess summaries generated
from under-approximations of the function bodies behavior. Unfortunately, the
tool is not available for use, so we are unable to compare it with FunFrog+(S)RDD.

k-induction [5,15] is another under-approximation-driven technique for check-
ing recursion. First, it proves an induction base (i.e., that there is no assertion
violation in the unwinding chain with the length k). Then, if successful, it proves
an induction step (i.e., whenever the assertion holds in an unwinding chain with
the length k, it also holds in the unwinding chain with the length (k+1)). Fi-
nally, the approach is able to find an inductive invariant, which can be treated
as function summary. To our knowledge, there is no incremental model checker
based on k-induction which (re-)uses function summaries.

The overview of other summarization approaches to program analysis can be
found in our earlier work published at [19].

6 Conclusion and Future Work

This paper presented the new approach to automatically detect recursion depths
for BMC and applies it to function summarization-based approaches to model
checking. In principle, a similar idea may be applied to solve the problem of loop
bound detection where an algorithm abstracts away loop bodies and iteratively
refines one more body at a time. One can develop such algorithm in future. We
believe, there is a strong mapping between program termination and analysis
termination which can be investigated in future. In cases of multiple recursion,
the algorithm may be improved by using SAT solvers with support for Minimal
SAT. The approach of the summarization-based BMC might be extended to
support SMT theories. This way, the analysis in general might become more
e�cient, but will lose bit-precision.

Acknowledgments. We thank Antti Hyvärinen for his notable contribution
during the work on this paper.

Christiano Braga
49

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: Whale: An interpolation-based al-
gorithm for inter-procedural verification. In: VMCAI. LNCS, vol. 7148, pp. 39–55.
Springer-Verlag (2012)

2. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without
BDDs. In: TACAS ’99. LNCS, vol. 1579, pp. 193–207. Springer-Verlag (1999)

3. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS. pp. 168–176. LNCS, Springer-Verlag (2004)

4. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. In: J. of Symbolic Logic. pp. 269–285 (1957)

5. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software Verification Using
k-Induction. In: SAS. pp. 351–368. LNCS, Springer-Verlag (2011)

6. Fedyukovich, G., Sery, O., Sharygina, N.: eVolCheck: Incremental Upgrade Checker
for C. In: TACAS. LNCS, vol. 7795, pp. 292–307. Springer-Verlag (2013)

7. Flanagan, C., Leino, K.R.M.: Houdini, an Annotation Assistant for ESC/Java. In:
FME. pp. 500–517. LNCS, Springer-Verlag (2001)

8. Graf, S., Saïdi, H.: Construction of Abstract State Graphs with PVS. In: Computer
Aided Verification, CAV ’97. pp. 72–83. LNCS, Springer-Verlag (1997)

9. Ivancic, F., Yang, Z., Ganai, M.K., Gupta, A., Ashar, P.: E�cient SAT-based
bounded model checking for software verification. In: Theor. Comput. Sci. vol.
404, pp. 256–274 (2008)

10. Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories. In:
CAV. LNCS, vol. 7358, pp. 427–443. Springer-Verlag (2012)

11. McMillan, K.L.: Applications of Craig Interpolation in Model Checking. In:
TACAS. pp. 1–12. LNCS, Springer-Verlag (2005)

12. McMillan, K.L.: Lazy abstraction with interpolants. In: Computer Aided Verifica-
tion (CAV ’06). pp. 123–136. LNCS, Springer-Verlag (2006)

13. McMillan, K.L.: Lazy annotation for program testing and verification. In: Com-
puter Aided Verification (CAV’ 10). pp. 104–118. LNCS, Springer-Verlag (2010)

14. Merz, F., Falke, S., Sinz, C.: LLBMC: Bounded Model Checking of C and C++ Pro-
grams Using a Compiler IR. In: VSTTE. LNCS, vol. 7152, pp. 146–161. Springer-
Verlag (2012)

15. Morse, J., Cordeiro, L., Nicole, D., Fischer, B.: Handling Unbounded Loops with
ESBMC 1.20 - (Competition Contribution). In: TACAS. LNCS, vol. 7795, pp.
619–622. Springer-Verlag (2013)

16. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. In: Journal of Symbolic Logic. vol. 62, pp. 981–998 (1997)

17. Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO:
A Framework for Producing E�ective Interpolant-based Software Verification. In:
LPAR. LNCS, vol. 8312, pp. 683–693. Springer-Verlag (2013)

18. Sery, O., Fedyukovich, G., Sharygina, N.: FunFrog: Bounded Model Checking with
Interpolation-based Function Summarization. In: ATVA. LNCS, vol. 7561, pp. 203–
207. Springer-Verlag (2012)

19. Sery, O., Fedyukovich, G., Sharygina, N.: Interpolation-based Function Summaries
in Bounded Model Checking. In: HVC. LNCS, vol. 7261, pp. 160–175. Springer-
Verlag (2012)

20. Unno, H., Terauchi, T., Kobayashi, N.: Automating relatively complete verification
of higher-order functional programs. In: POPL. pp. 75–86. ACM (2013)

Christiano Braga
50

A Types of recursion

Fig. 4 demonstrates di�erent types of possible recursive function calls up to the
depth ‹.

Fig. 4a shows an example with a single recursive function f called two times,
once from function g and once from function f

main

. In this example, the calltree
contains two chains of calls of function f : the first one consisting of one function
call {f̂

2

}, the other consisting of ‹ calls: {f̂
1

, f̂ Õ
2

, ..f̂
‹

}, where the numbers 1 and
‹ are recursion depths.

Fig. 4b shows an example with a recursive function f called multiple times
from itself (in the example, it is called 2 times). There are many chains of function
calls possible for such scenario, and every one consists of at most ‹ calls of f , as
demonstrated by a sample unwinding in the example. Notably, their unwinding
depths can be di�erent (and our algorithm will be able to detect the longest
ones and stop exploring the chains for which the smaller depth is su�cient for
verification).

Fig. 4c shows an example with indirect recursive functions f and g, such that
each function is called not by itself, but by another function that it called. In the
example, both f an g are unwound at most Â ‹

2

Ê times (i.e., ‹ times altogether).

f̂main
f̂main f̂main

f̂1f̂1

f̂2 f̂2 f̂ �
2

f̂� f̂� f̂�f̂ �
� f̂ ��

� f̂ ���
�

f̂ �
��1f̂��1 f̂��1 f̂ ��

��1 ĝ��1

ĝ1 ĝ1 f̂1ĥ1

f̂ �
2 ĝ2

f̂3 f̂3f̂3 f̂ �
3

1

2

3

0

�

� � 1

(a) (b) (c)

Figure 4: A program calltree with recursive functions unwound at most ‹ times:
a) single recursion; b) multiple recursion; c) indirect recursion

Christiano Braga
51

Completeness and decidability results for

hybrid(ised) logics

Renato Neves1, Manuel A. Martins2, and Luís S. Barbosa1

1 HASLab INESC TEC & Univ. Minho
{nevrenato, lsb}@di.uminho.pt

2 CIDMA - Dep. Mathematics, Univ. Aveiro
martins@ua.pt

Abstract. Adding to the modal description of transition structures the
ability to refer to specific states, hybrid(ised) logics provide an inter-
esting framework for the specification of reconfigurable systems. The
qualifier ‘hybrid(ised)’ refers to a generic method of developing, on top
of whatever specification logic is used to model software configurations,
the elements of an hybrid language, including nominals and modalities.
In such a context, this paper shows how a calculus for a hybrid(ised)
logic can be generated from a calculus of the base logic and that, more-
over, it preserves soundness and completeness. A second contribution
establishes that hybridising a decidable logic also gives rise to a decid-
able hybrid(ised) one. These results pave the way to the development of
dedicated proof tools for such logics used in the design of reconfigurable
systems.

1 Introduction

1.1 Motivation

The need to master ubiquitous and increasingly complex software systems, of-
ten of a safety–critical nature, has brought proof and verification to a central
place in Computer Science and Software Engineering. Logics, as formal reasoning
frameworks, provide tools for a rigorous specification (and analysis) of software
systems, as opposed to more conventional practices in software development
which are often pre-scientific and unable to prove the absence of error designs.

Ideally, the working software engineer seeks for logics that can effectively
provide “yes–or–no” answers to queries regarding properties of the system (i.e.
decidable logics), as well as logics with a calculus providing enough syntactic
rules to derive falsehood from any false statement (i.e. a complete calculus).
The engineer also looks for logics with the right expressive power to specify the
system at hand, a job made difficult by the complex and heterogeneous nature
of current software systems which typically require a number of different logics
to be suitably specified. For example, some form of equational logic may be used
for data type specifications, while transitional behaviour my resort to a modal or
temporal logic and fuzzy requirements may become in order to express contex-
tual constraints. Actually, this justifies the quest for methodologies in which a

Christiano Braga
52

specification framework can be tailored by combining whichever logics are found
suitable to deal with the different nature of the requirements in presence. As
Goguen and Meseguer put it in a landmark paper [11],

“The right way to combine various programming paradigms is to

discover their underlying logics, combine them, and then base a

language upon the combined logic.”

This line of research has been particularly active for the last twenty years.
Finger and Gabbay, for example, showed in [9] how to add a temporal dimension
to an arbitrary logic, and proved that decidability and completeness is preserved
along this process. Baltazar [2] did similar work but with respect to adding a
probabilistic dimension. Other, similar results include e.g. [6], [7], as well as a
hybridisation method [14], in whose development the current authors have been
involved, and constitutes the starting point of the work reported in the sequel.

1.2 Context

Essentially hybridisation turns a given logic, defined as an institution, into a
hybrid logic, a brand of modal logics that adds to the modal description of
transition structures the ability to refer to specific states (cf. [1, 3]). This paves
the way to an expressive framework, proposed in [13], for the specification of
reconfigurable systems, i.e., systems which may evolve through different execu-
tion modes, or configurations, along their lifetime. Specification proceeds in two
steps:

– globally the system’s dynamics is represented by a transition structure de-
scribed in a hybrid language, whose states correspond to possible configura-
tions;

– locally each state is endowed with a structure modelling the specification of
the associated configuration.

The logic used locally, i.e. the one to be hybridised, depends on the appli-
cation requirements. Typical candidates are equational, partial algebra or first-
order logic (FOL), but one may equally resort to multivalued logics or even
to hybrid logic itself equipping, in the last case, each state with another (local)
transition system. Verification resorts to a parametrised translation to FOL (de-
veloped in [14] and [15]), but at the cost of losing decidability and adding extra
complexity.

The generic character of this hybridisation process is achieved through its
rendering in the context of institution theory [10]. Such a theory formalises the
essence of what a logical system actually is, by encompassing syntax, semantics
and satisfaction. However, its classical definition, the one in which the hybridi-
sation method is based, does not include an abstract structure to represent a
logic calculus. The problem was addressed in [8] with the introduction of ⇡–

institutions, and, more recently, in [5] with the notion of an institution with

proofs, a more general version of the previous work.

Christiano Braga
53

1.3 Contributions and roadmap

This paper starts by recasting the hybridisation method in the theory of institu-
tions with proofs, which makes possible the systematic generation of a calculus
when hybridising a given logic.

Then, we prove that, under certain conditions, this method preserves de-
cidability, and furthermore that the generated calculus is sound and complete
whenever the one corresponding to the base logic is. Those are the paper’s main
contributions. Besides their theoretical relevance, from a pragmatic point of view
they pave the way to the development of effective verification algorithms.

The paper is organised as follows. Institutions with proofs are briefly reviewed
in Section 2. Then, Section 3 introduces the generation of an hybrid calculus from
a base one. Section 4 establishes decidability and completeness. Finally, Section
5 concludes the paper and hints at future lines of research.

2 Background

We first recall the notion of an institution [10]. As already mentioned, it for-
malises the essence of a logical system, encompassing syntax, semantics and
satisfaction. Put forward by J. Goguen and R. Burstall in the late seventies,
its original aim was to develop as much as Computer Science as possible in a
general uniform way independently of particular logical systems. This has now
been achieved to an extent even greater than originally thought, with the theory
of institutions becoming the most fundamental mathematical theory underly-
ing algebraic specification methods, and also increasingly used in other areas of
Computer Science. Formally,

Definition 1. An institution is a tuple (SignI
,Sen

I
,Mod

I
, (|=I

⌃)⌃2|SignI |),
where:

– Sign

I
is a category whose objects are signatures and arrows signature mor-

phisms,

– Sen

I
: Sign

I ! Set, is a functor that, for each signature ⌃ 2 |SignI |,
returns a set of sentences over ⌃,

– Mod

I
: (SignI)op ! Cat, is a functor that, for each signature ⌃ 2 |SignI |,

returns a category whose objects are models over ⌃,

– |=I
⌃ ✓ |Mod

I(⌃)|⇥ Sen

I(⌃), or simply |=, if the context is clear, is a sat-

isfaction relation such that, for each signature morphism ' : ⌃ ! ⌃

0
,

Mod

I(')(M 0) |=I
⌃ ⇢ iff M

0 |=I
⌃0 Sen

I(')(⇢), for any

M

0 2 |Mod

I(⌃0)| and ⇢ 2 Sen

I(⌃). Graphically,

⌃

'

✏✏

Mod

I(⌃)
|=I

⌃
Sen

I(⌃)

SenI(')
✏✏

⌃

0
Mod

I(⌃0)

ModI(')

OO

|=I
⌃0

Sen

I(⌃0)

Christiano Braga
54

Intuitively, this property means that satisfaction is preserved under change of
notation.

Definition 2. Consider an institution I and signature ⌃ 2 |SignI |. We say

that a sentence ⇢ 2 Sen

I(⌃) is ⌃–valid (or simply, valid) if for each model

M 2 |Mod

I(⌃)|, M |=I
⌃ ⇢. Usually we prefix such sentences by |=I

⌃ or, simply

by |=I
or just |=.

Definition 3. An institution I has the negation property if, for any signature

⌃ 2 |SignI | and sentence ⇢ 2 Sen

I(⌃), there is a sentence, ¬⇢ 2 Sen

I(⌃),
such that for any model M 2 |Mod

I(⌃)|, M |=I
⌃ ⇢ iff M 6|=I

⌃ ¬⇢.
If this property holds, satisfiability of sentences may be rephrased as follows,

Definition 4. Consider institution I with the negation property and a signature

⌃ 2 |SignI |. For any sentence ⇢ 2 Sen

I(⌃),

⇢ is ⌃–unsatisfiable iff ¬⇢ is ⌃–valid.

Similarly,

Definition 5. An institution I has the explicit satisfaction property, if for any

signature ⌃ 2 |SignI | and sentence ⇢ 2 Sen

I(⌃), satisfiability of ⇢ entails the

existence of a model M 2 |Mod

I(⌃)| such that M |=I
⌃ ⇢.

Note that this last property holds in the most common logics used in speci-
fication, e.g., propositional, fuzzy, equational, partial and first-order.

Definition 6. An institution I has the conjunction property if, for any sig-

nature ⌃ 2 |SignI | and sentences ⇢, ⇢

0 2 Sen

I(⌃), there is sentence ⇢ ^ ⇢

0 2
Sen

I(⌃), such that for any model M 2 |Mod

I(⌃)|, M |=I
⌃ ⇢ ^ ⇢

0
iff M |=I

⌃ ⇢

and M |=I
⌃ ⇢

0

Note that with the conjunction property we are able to define a sentence (⇢^
¬⇢) 2 Sen

I(⌃), denoted by ?, that is not satisfied by any model of |Mod

I(⌃)|.
An institution for which both the negation and conjunction properties hold,

is said to have the typical boolean connectives.
In order to better grasp this rather abstract concept of an institution let us

analyse some typical examples.

Example 1. Many sorted first order logic (FOL)

– Signatures. SignFOL is a category whose objects are triples (S, F, P), con-
sisting of a set of sort symbols S, a family, F = (Fw!s)w2S⇤,s2S , of function
symbols indexed by their arity, and a family, P = (Pw)w2S⇤ , of relational
symbols also indexed by their arity.
A signature morphism in this category is a triple ('st,'op,'rl) : (S, F, P) !
(S0

, F

0
, P

0) such that if � 2 Fw!s, then 'op(�) 2 F

0
'st(w)!'st(s)

, and if
⇡ 2 Pw then 'rl(⇡) 2 P

0
'st(w).

Christiano Braga
55

– Sentences. For each signature object (S, F, P) 2 |SignFOL|,
Sen

FOL
�
(S, F, P)

�
is the smallest set generated by:

⇢ 3 ¬⇢ | ⇢ ^ ⇢ | t = t | ⇡(X) | 8x : s . ⇢0

where t is a term of sorts with the syntactic structure �(X) for � 2 Fw!s

and X a list of terms compatible with the arity of �. ⇡ 2 Pw and X is a
list of terms compatible with the arity of ⇡. Finally, ⇢0 2 Sen

FOL
�
(S, F]

{x}!s, P)
�
. SenI('), for ' a signature morphism, is a function that, given

a sentence ⇢ 2 Sen

I
�
(S, F, P)

�
, replaces the signature symbols in ⇢ under

the mapping corresponding to '.
– Models. For each signature (S, F, P) 2 |SignFOL|,Mod

FOL
�
(S, F, P)

�
is

category with only identity arrows and whose objects are models with a
carrier set |Ms|, for each s 2 S; a function M� : |Mw| ! |Ms|, for each
�w!s 2 Fw!s; a relation M⇡ ✓ |Mw|, for each ⇡ 2 Pw.

– Satisfaction. Satisfaction of sentences by models is the usual Tarskian
satisfaction.

Example 2. Equational logic (EQ)
The institution EQ is the sub-institution of FOL in which sentences are

restricted to those of the type 8x : s . t = t

0

Example 3. Propositional logic (PL)
Institution PL is the sub–institution of FOL in which signatures with no

empty set of sorts are discarded.

As seen above, no notion of a proof system is considered in the definition
of an institution. This is a limitation if one is interested in logical systems with
calculi, as is the case in this paper which aims at introducing the systematic
generation of calculi for hybridised logics. To overcome this we resort to the
following extended definition of an institution with proofs [5].

Definition 7. An institution with proofs adds to the original definition a functor

Prf

I : Sign

I ! Cat such that, for each ⌃ 2 |SignI |, Prf(⌃) (called the

category of ⌃–proofs) has subsets of Sen

I(⌃) (i.e., |Prf(⌃)| = |P�
Sen

I(⌃)
�|)

as objects, and the corresponding proofs as arrows. The latter are preserved along

signature morphisms. In addition, for A,B 2 |Prf

I(⌃)|, if A ✓ B then there

is an arrow B �! A; if A \ B = ; and there is � 2 |Prf

I(⌃)| such that

p : � �! A and q : � �! B, then there is a unique proof hp, qi making the

following diagram to commute

A (A]B)
i2 //i1oo

B

�

p

cc

q

;;

h p,q i
OO

Note that the restrictions imposed to the proof arrows oblige Prf

I to follow
the basic properties of a proof system. In particular, we have

Christiano Braga
56

1. Reflexivity (if A 2 � , then � ` A) follows from the fact that {A} ✓ � and
therefore � �! A.

2. Monotonicity (if � ` A and � ✓ � then � ` A), follows from composition of
proofs, where � �! � is given by inclusion and � �! A by the assumption.

3. Transitivity (if � ` A and {�, A} ` B then � [� ` B), follows from the
product of disjoint sets, reflexivity and monotonicity,

�

//
A

//
A

0

(� [�)

;;

//

++

�]A

0 //

OO

✏✏

(� [A) //
B

�

where A

0 = A� (A \�) (A

0 ✓ A and (� [A) ✓ (� [A

0)).

Note that functor Prf

I distinguishes different proofs between the same pair
of objects, as opposed to entailment systems3. In this work, however, we restrict
ourselves to entailment systems in which Prf

I(⌃) has at most one arrow for
each pair of objects, i.e. that Prf

I(⌃) is thin. Such restriction makes showing
the uniqueness of hp, qi trivial. Also for the sake of simplicity, when a singleton
set of sentences is presented in a proof arrow, we may drop the curly brackets.

Definition 8. Let I be an institution with proof system Prf

I
. We say that Prf

I

is sound if, for any signature ⌃ 2 |SignI | and sentence ⇢ 2 Sen

I(⌃),

if arrow, ; �! ⇢, is in Prf

I(⌃) then |=I
⇢.

Definition 9. Let I be an institution with proof system Prf

I
.We say that Prf

I

is complete if, for any signature ⌃ 2 |SignI | and sentence ⇢ 2 Sen

I(⌃),

if |=I
⇢ then arrow, ; �! ⇢, is in Prf

I(⌃)

Hence, soundness and completeness of Prf

I entails the equivalence, for any
signature ⌃ 2 |SignI | and sentence ⇢ 2 Sen

I(⌃),

|=I
⇢ iff ; �! ⇢ is in Prf

I(⌃)

We can now show that

Theorem 1. If an institution I has classical boolean connectives, and a sound

and complete calculus Prf

I
, with the reductio ad absurdum property, then, for

any signature, ⌃ 2 |SignI |, and sentence, ⇢ 2 Sen

I(⌃),

⇢ is satisfiable iff ⇢ �! ? is not in Prf

I(⌃)

3 Typically, in an entailment system � ` A means that � derives (or entails) A.

Christiano Braga
57

Proof.

|=I
⇢ iff ; �! ⇢ is in Prf

I(⌃)

, { defn. of satisfiability }
¬⇢ is unsat iff ; �! ⇢ is in Prf

I(⌃)

, { soundness, completeness of Prf

I(⌃) and r.a.a}
¬⇢ is unsat iff ¬⇢ �! ? is in Prf

I(⌃)

, { defn. of negation }
⇢ is unsat iff ⇢ �! ? is in Prf

I(⌃)

, { de Morgan’s law}
⇢ is sat iff ⇢ �! ? is not in Prf

I(⌃)

Corollary 1. In the context of theorem 1, if I has the explicit satisfaction prop-

erty, then

⇢ is sat iff ⇢ �! ? is not in Prf

I(⌃)

, { explicit satisfaction property }
⇢ has a model iff ⇢ �! ? is not in Prf

I(⌃)

This last result will be essential in the sequel for proving completeness of
hybridised logics.

3 Hybridisation of logics and their calculi

As mentioned before, the existence of software products that are built and main-
tained with respect to requirements of different nature calls for techniques that
favour combination of logics. Hybridisation [14] was born in this context. It
aims at providing a framework to specify reconfigurable systems, whose execu-
tion modes are described by whatever logic the engineer finds suitable, whereas
the transition structure is expressed in a hybrid language.

From a point of view of verification, however, the engineer is not only in-
terested in having a hybridised logic, but also, in a very pragmatic way, in its
calculus. This section addresses such issue. It starts by revisiting hybridisation
and then, through the notion of institutions with proofs, it shows how to lift the
calculus in the base logic to its hybridised counterpart.

3.1 Hybridisation revisited

Definition 10. The category Sign

H
is the category Set⇥Set whose objects are

pairs (Nom,⇤), with Nom denoting a set of nominal symbols and, ⇤, a set of

modality symbols.

Christiano Braga
58

Definition 11. Given an institution I = (SignI
, Sen

I
,Mod

I
, |=I) its hybridised

version HI = (SignHI
, Sen

HI
,Mod

HI
, |=HI) is defined as follows,

– Sign

HI = Sign

H ⇥ Sign

I
,

– given a signature (�,⌃) 2 |SignHI |, SenHI�(�,⌃)
�

is the least set gener-

ated by

⇢ 3 ¬¬⇢ | ⇢^⇢ | i |@i⇢ | h�i⇢ | 8x ⇢0 | | A ⇢

for i a nominal, � a modality, 2 Sen

I(⌃) and ⇢

0 2 Sen

HI
�
(�] {x},⌃)

�

where x is a nominal. We use non standard boolean connectives (¬¬,^)4 in

order to distinguish them from the boolean connectives that the base logic

may have.

– given a signature (�,⌃) 2 |SignHI |, a model M 2 |Mod

HI
�
(�,⌃)

�| is a

triple (W,R,m) such that,

• W is a non–empty set of worlds,

• R is a family of relational symbols indexed by the modality symbols, such

that for each � 2 ⇤ (where � = (�,⇤)), R� ✓ W ⇥W ,

• and m : W ! |Mod

I(⌃)|,
and for each i 2 Nom, (W,R,m)i is interpreted as a world in W .

– given a signature (�,⌃) 2 |SignI |, a model M = (W,R,m) 2 |Mod

I
�
(�,⌃)

�|
and a sentence ⇢ 2 Sen

HI
�
(�,⌃)

�
, the satisfaction relation is defined as,

M |=HI
(�,⌃) ⇢ iff M |=w

⇢, for all w 2 W

where,

M |=w ¬¬⇢ iff M 6|=w
⇢

M |=w
⇢^⇢0 iff M |=w

⇢ and M |=w
⇢

0

M |=w
i iff Mi = w

M |=w @i⇢ iff M |=Mi
⇢

M |=w h�i⇢ iff there is some w

0 2 W such that (w,w0) 2 R� and M |=w0
⇢

M |=w A⇢ iff M |=w 8x@x⇢

M |=w
 iff m(w) |=I

⌃

M |=w 8x ⇢ iff for all M

0
, M

0 |= ⇢

for (W,R,m) = M

0 2 |Mod

HI
�
(�] {x},⌃)

�| a model expansion of M , with the

only difference between them being the interpretation of nominal x: while it is

defined in M

0
, in M it is not.

Note that sentence ⇢ being satisfiable means that there is a model (W,R,m) =
M 2 |Mod

HI
�
(�,⌃)

�| such that M |=w
⇢ for some w 2 W . Hence, hybridised

logics do not have the explicit satisfaction property. One can, however, redefine
the satisfaction relation in the hybridisation method to,

M |=HI
(�,⌃) ⇢ iff M |=w

⇢, for some w 2 W

which then provides to logics hybridised in this alternative way the explicit
satisfaction property.

A weak hybridisation of an institution I, denoted by H0
I, is obtained as HI,

but the omission of syntax constructor 8x ⇢. The following decidability results
are formulated with respect to weak hybridisation.
4 implication ()) and biimplication (,) are built in the usual way.

Christiano Braga
59

3.2 Hybridising a calculus

We now present the hybridisation of calculi in the context of institutions with
proofs. Let us assume that I has a proof system, i.e., that Prf

I is well defined,
and that, in particular, it is an entailment system, i.e., Prf

I only defines thin
categories. Then we define Prf

HI as follows:
For any

�
(Nom,⇤),⌃

� 2 |SignHI |,
1. for any ⇢ 2 Sen

I(⌃), if ; �! ⇢ is in Prf

I(⌃) then
; �! ⇢ is in Prf

HI((Nom,⇤),⌃),
2. for any nominal i, j 2 Nom, modality � 2 ⇤, ⇢, ⇢0 2 Sen

HI
�
(Nom,⇤),⌃

�
,

proof arrows in Table 1 are in Prf

HI((Nom,⇤),⌃)
3. finally, Prf

HI((Nom,⇤),⌃) has all the inclusion proof arrows and for each
A,B,� 2 |Prf

HI((Nom,⇤),⌃)| if � �! A, � �! B then � �! A [B.

Prf

HI is maintained thin in its construction process in order to have it as
an entailment system.

Axioms

(CT) All substitution instances of classical tautologies
(Dist) ; �! @i(⇢) ⇢

0) , (@i⇢) @i⇢
0)

(?) ; �! @i?) ?
(Scope) ; �! @i@j⇢) @j⇢

(Ref) ; �! @ii

(Intro) ; �! (i^⇢)) @i⇢

(⇤E) ; �! ([�]⇢^h�ii)) @i⇢

(8E) ; �! 8x ⇢) ⇢[i/x]
Rules

(MP) if ; �! ⇢ and ⇢ �! ⇢

0 then ; �! ⇢

0

(N@) if ; �! ⇢ then ; �! @i⇢

(Name) if i does not occur free in ⇢ and ; �! @i⇢ then ; �! ⇢

(⇤I) if i does not occur free in ⇢, ⇢

0 and ; �! (⇢ ^ h�ii)) @i⇢
0

then ; �! ⇢) [�]⇢0

(8I) if i does not occur free in 8x ⇢

0
, ⇢ and ; �! ⇢) ⇢

0[i/x]
; �! ⇢) 8x ⇢

0

Table 1. Axioms and rules for Prf

HI from [3]

4 Decidability and completeness of hybridised logics

Decidability and completeness are properties that one usually looks for when
researching a new logic. From a Computer Science perspective, they are essential
as a basis for tool-supported proofs. Formally,

Definition 12. Decidability of an institution I means that, for each signature

⌃ 2 |SignI | and sentence ⇢ 2 Sen

I(⌃), there is an effective algorithm able to

tell if ⇢ is valid.

Christiano Braga
60

After some preliminary work, we address first this definition in the context
of hybridised logics.

4.1 Preliminaries

Recall that in the sequel we assume that the base institution I has the classi-
cal boolean connectives and the explicit satisfaction property. Furthermore, its
calculus, Prf

I , is sound, complete and has the reductio ad absurdum property.

Notation 1. Consider (�,⌃) 2 |SignHI | and ⇢ 2 Sen

HI
�
(�,⌃)

�
. Let B⇢ =

{ 1, . . . , n} to denote the set of all maximal sentences, i 2 Sen

I(⌃), occurring

in ⇢. Then, the set of base sentences, ⌦⇢, denotes the least set such that for each

a 2 2B⇢
,

(�1 ^ · · · ^ �n) 2 ⌦⇢ ✓ Sen

I(⌃)

where

�i =

(
 i if i 2 a

¬ i if i 62 a

Whenever suitable we abbreviate (�1^ · · ·^�n) to �, and refer to components

of � as �i.

Lemma 1. For any model M 2 |Mod

I(⌃)|, M satisfies exactly one of the sen-

tences in ⌦⇢.

Proof. Suppose that M fails to satisfy a sentence � 2 ⌦⇢. This only happens
when at least one member of � is not satisfied by M . By the definition of ⌦⇢ we
know that ⌦⇢ has another sentence �0 which negates all the failed components
in � and therefore M must satisfy �0.

Suppose that M satisfies a sentence � 2 ⌦⇢. Clearly, by the definition of ⌦⇢
any other sentence �0 2 ⌦⇢ must negate at least one of the components of �.
Since M cannot satisfy a component and its negation, �0 cannot be satisfied by
M .

Notation 2. If ⌦⇢ is not empty, Lemma 1 allows the use of notation ⌦

M
⇢ to

denote the sentence in ⌦⇢ which is satisfied by a model M 2 |Mod

I(⌃)|.

Next, in order to take advantage of the well known decidability and complete-
ness results for hybrid propositional logic, HPL, we define a function between
HI and HPL sentences,

Definition 13. Consider a signature (�,⌃) 2 |SenHI |, a sentence ⇢ 2 Sen

HI
�
(�,⌃)

�
,

and a PL signature Prop that, for each i 2 Sen

I(⌃), has a propositional sym-

bol ⇡ i . Then a function � : SenHI
�
(�,⌃)

� ! Sen

HPL
�
(�, P rop)

�
is defined

to replace the base sentences that occur in ⇢ and B⇢ by propositions from Prop.

Formally,

Christiano Braga
61

�(¬¬⇢) = ¬¬�(⇢)
�(⇢^⇢0) = �(⇢)^�(⇢0)
�(i) = i

�(@i⇢) = @i�(⇢)
�(h�i⇢) = h�i�(⇢)
�(8x ⇢) = 8x �(⇢)
�(A⇢) = A �(⇢)
�(i) = ⇡ i

Definition 14. For each � 2 ⌦⇢ we define function �

0 : � ! Sen

PL(Prop)
such that,

�

0(�i) =

(
¬⇡ i if �i = ¬ i

⇡ i if �i = i

and denote by �

0[�] the result of applying �

0
to each member of �.

Note that both � and �0 are injective.

4.2 Decidability

Lemma 2. Consider a signature (�,⌃) 2 |SignHI | and ⇢ 2 Sen

HI
�
(�,⌃)

�
.

For any � 2 ⌦⇢, if � is satisfiable �

0[�] is also satisfiable.

Proof. Unsatisfaction of �0[�] may only come from the following cases:

1. A component of �0[�] is unsatisfiable,
2. two components of �0[�] contradict each other.

A component in �

0[�] is ⇡ i or ¬⇡ i , hence the first case never happens. If
two elements contradict each other, that is, if one is ⇡ i and the other ¬⇡ i then
surely � has elements i and ¬ i, which renders it unsatisfiable.

Theorem 2. Consider signature (�,⌃) 2 |SignHI | and ⇢ 2 Sen

HI
�
(�,⌃)

�
. If

⇢ is satisfiable, �(⇢) is also satisfiable.

Proof. If ⇢ is satisfiable we have a model M = (W,R,m) 2 |Mod

HI
�
(�,⌃)

�|
such that M |=w

⇢ for some w 2 W . Through this assumption and Lemma 2, we
define a model (W,R,m

0) 2 |Mod

HPL
�
(�,⌃)

�| as follows: for any w 2 W , m0(w)
is a model satisfying �0[⌦m(w)

⇢] (recall that Lemma 2 proves that �0[⌦m(w)
⇢] is

satisfiable).
It remains to show that (W,R,m

0) |=w
�(⇢), for some w 2 W . Since models

(W,R,m) and (W,R,m

0) have the same Kripke structure and ⇢,�(⇢) only differ
in the base sentences, we just need to check that for all � 2 ⌦⇢, m(w) |= �

entails that m0(w) |= �

0[�] for any w 2 W . Actually, this is a direct consequence
of condition, m(w) |= ⌦

m(w)
⇢ entails that m

0(w) |= �

0[⌦m(w)
⇢] for all w 2 W ,

which is freely given by the definition of (W,R,m

0).

Now, we want to show the converse of Theorem 2. For this we need yet an-
other definition to cater for the “preservation” of information with respect to
satisfiability of the base sentences; information that is “lost” by �(⇢). Thus,

Christiano Braga
62

Definition 15. Let Sat

I
be an effective decision procedure of I, and

W
denote

the disjunction operator, built from ^,¬¬. Then define

⌘(⇢) =

(W{� 2 ⌦⇢ | SatI(�) is “unsat” }, if B⇢ 6= ;
?, otherwise

Corollary 2. Clearly, satisfiability of ⇢ entails satisfiability of ⇢^A¬¬⌘(⇢), which

in turn, by Theorem 2, entails satisfiability of �

�
⇢^ A¬¬⌘(⇢)�.

Lemma 3. Consider a model (W,R,m) 2 |Mod

HPL
�
(�, P rop)

�| such that

(W,R,m) |= �

�
⇢^ A¬¬⌘(⇢)�. For any � 2 ⌦⇢, if �

0[�] is satisfied by a model in

img(m), � is satisfiable.

Proof. If � is unsatisfiable then, by definition of ⌘, occurs as one of the literals
in ⌘(⇢), hence no model in img(m) may satisfy it.

Theorem 3. Consider signature (�,⌃) 2 |SignHI | and ⇢ 2 Sen

HI
�
(�,⌃)

�
. If

�(⇢^ A¬¬⌘(⇢)) is satisfiable, then ⇢ is satisfiable.

Proof. If �(⇢ ^ A¬¬⌘(⇢)) is satisfiable we have a model M = (W,R,m) 2
|Mod

HPL
�
(�, P rop)

�| such that M |=w
�(⇢ ^ A¬¬⌘(⇢)) for some w 2 W .

Through this assumption, and by Lemma 3, we define a model (W,R,m

0) 2
|Mod

HI
�
(�,⌃)

�| as follows: for any w 2 W , m

0(w) is a model satisfying �

where �

0[�] = �

0[⌦m(w)
⇢]

It remains to show that (W,R,m

0) |=w
⇢ for some w 2 W . Since models

(W,R,m) and (W,R,m

0) have the same Kripke structure satisfied by the sen-
tences ⇢, �(⇢^A¬¬⌘(⇢)), we just have to show that for all � 2 ⌦⇢, m(w) |= �

0[�]
entails that m

0(w) |= � for any w 2 W . Actually, this is a direct consequence of
condition, m(w) |= �

0[⌦m(w)
⇢] entails m

0(w) |= ⌦

m(w)
⇢ , for all w 2 W , which is

given by the definition of (W,R,m

0).

Corollary 3. From Corollary 2 and Theorem 3 we have that

⇢ is satisfiable iff �(⇢^ A¬¬⌘(⇢)) is satisfiable.

Then, since H0
PL was already proved to be decidable [12], we may use an ef-

fective decision procedure of H0
PL to check for satisfiability of sentences written

in H0
I. This leads to the expected result

Corollary 4. If I is decidable then H0
I is also decidable.

Note that the proof of Theorem 3 paves the way for an example decision
algorithm, that is, an algorithm able not only to answer “yes” or “no” to the
question “Is ⇢ satisfiable?”, but also to build a model that satisfies sentence ⇢,
if it exists. Technically, to construct such an algorithm one also needs to have
example decision algorithms for both I and H0

PL. The latter has at least one
prover that meets this requirement [12]. Then, as indicated in the proof, through
a H0

PL’s decision procedure, one extracts a Kripke frame for ⇢ in which suitable
models of I are “attached” given its example decision algorithm for I.

Christiano Braga
63

Finally, note that the decision algorithm for H0
I, conceptualised in Theorem

3, may be computationally hard. Indeed, in order to define ⌘(⇢) the decision
algorithm for I must be executed 2n times where n = |B⇢|.

In addition, if we want the algorithm to give example models, the decision
procedure for I must also be executed a number of times that can be equal the
number of worlds in the model built by the decision procedure for H0

PL.

4.3 Soundness and completeness

In this section we focus on the entailment system for HI, i.e., on functor Prf

HI ,
to show that the rules in Prf

HI are both sound and complete. Recall that
hybridised logics have the typical boolean connectives and that Prf

HI has the
reductio ad absurdum property. Of course, this means that proving soundness
and completeness of Prf

HI boils down to show the equivalence,

⇢ is satisfiable iff ⇢ �! ? is not in Prf

HI
�
(�,⌃)

�

Recall also that it is assumed that the base institution has the typical boolean
connectives and the explicit satisfaction property, as well as that its proof system,
Prf

I , is sound, complete and has the reductio ad absurdum property.

Theorem 4. If Prf

I
is sound, then Prf

HI
is also sound.

Proof. Consider signature (�,⌃) 2 |SignHI | and ⇢ 2 Sen

HI
�
(�,⌃)

�
.

If Prf

HI is sound then sentence ⇢, being satisfiable means that there is no
proof arrow ⇢ �! ? in Prf

HI((�,⌃)
�
. If such an arrow exists, however, it

must come from some of the conditions imposed to Prf

HI((�,⌃)
�
, i.e., some

of these conditions must be unsound. We check each one:

1. the condition that proof arrows ; �! ⇢ in Prf

I(⌃) come to
Prf

HI((�,⌃)
�

is, by assumption, sound.
2. the axioms and proof rules from Table 1 were already proved to be sound

(cf. [3]).
3. composition, inclusion and product rules are, by definition, sound.

The proof of completeness is more complex. For this we resort to a procedure
similar to the one used for proving decidability.

Theorem 5. Consider a signature (�,⌃) 2 |SignHI | and ⇢ 2 Sen

HI
�
(�,⌃)

�
.

If there is no arrow ⇢ �! ? in Prf

HI
�
(�,⌃)

�
then there is also no arrow

�(⇢) �! ? in Prf

HPL
�
(�, P rop)

�
,

Proof. First notice that rules in Table 1 do not distinguish ⇢ from �(⇢), that is,
any such rules may be applied to both sentences. Then observe that, since Table
1 contains all classical tautologies, Prf

PL does not bring new rules to Prf

HPL

and therefore rules in Prf

HPL are also in Prf

HI . Both remarks entail that if
there are rules in Prf

HPL that can generate arrow �(⇢) �! ?, then the same
set of rules (also present in Prf

HI) can surely generate it there.

Christiano Braga
64

Next, we show the converse of Theorem 5 holds as well. For this we define a
function to play a role similar to that played by ⌘ in sub-section 4.2.

Definition 16. Consider a signature (�,⌃) 2 |SignHI | and ⇢ 2 Sen

HI
�
(�,⌃)

�
.

Then define,

⌘

0(⇢) =

(W{� 2 ⌦⇢| � �! ? is in Prf

I}, if B⇢ 6= ;
?, otherwise

Corollary 5. Clearly if there is no arrow ⇢ �! ? in Prf

HI
�
(�,⌃)

�
then there

is also no arrow (⇢^ A¬¬⌘0(⇢)) �! ? in Prf

HI
�
(�,⌃)

�
.

Lemma 4. Consider a model (W,R,m) 2 |Mod

HPL
�
(�, P rop)

�| such that

(W,R,m) |= �

�
⇢^ A¬¬⌘0(⇢)�. For any � 2 ⌦⇢, if �

0[�] is satisfied by a model

member of img(m), � is satisfiable.

Proof. If � is unsatisfiable then, by definition of ⌘0 and completeness of Prf

I ,
occurs as one of the literals in ⌘

0(⇢), hence no model member of img(m) may
satisfy it.

Theorem 6. If Prf

I
is complete then Prf

HI
is also complete.

Proof. We want to prove that given a signature (�,⌃) 2 |SignHI | and a sentence
⇢ 2 Sen

HI
�
(�,⌃)

�
, if no arrow ⇢ �! ? exists in Prf

HI
�
(�,⌃)

�
then ⇢ is

satisfiable.
Hence, let us assume that there is no arrow ⇢ �! ? in Prf

HI
�
(�,⌃)

�
,

which by Corollary 5, entails that there is no proof arrow �(⇢^A¬¬⌘0(⇢)) �! ?
in Prf

HPL
�
(�, P rop)

�
and therefore means that �(⇢^ A¬¬⌘0(⇢)) is satisfiable.

In other words, we have a model M = (W,R,m) 2 |Mod

HPL
�
(�, P rop)

�| such
that M |=w

�(⇢^A¬¬⌘0(⇢)) for some w 2 W . Then, by Lemma 4, we are able to
define a model (W,R,m

0) 2 |Mod

HI
�
(�,⌃)

�|, in which, for any w 2 W , m0(w)
is a model for � where �

0[�] = �

0[⌦m(w)
⇢].

It remains to show that (W,R,m

0) |=w
⇢ for some w 2 W . Since models

(W,R,m) and (W,R,m

0) have the same Kripke structure satisfied by sentences
⇢ and �(⇢^ A¬¬⌘0(⇢)), it is enough to show that, for all � 2 ⌦⇢, m(w) |= �

0[�]
entails that m

0(w) |= � for any w 2 W . Actually, this is a direct consequence of
the fact that m(w) |= �

0[⌦m(w)
⇢] entails m

0(w) |= ⌦

m(w)
⇢ , for all w 2 W , which

comes from the definition of (W,R,m

0).

5 Conclusions and future work

This paper lays the first steps towards the development of (dedicated) proof
tools for hybridised logics, by providing an effective decision algorithm for the
satisfiability problem. Additionally the systematic hybridisation of the calcu-
lus of a base logic was addressed, and shown to preserve both soundness and
completeness.

Christiano Braga
65

The next step, from an engineering point of view, is, of course, to develop
such a generic, dedicated prover for hybridised logics. A comparison with the
strategy of using the parametrised translation to FOL will then be due.

In a similar line of research, lies the development of an alternative decision
algorithm, that potentially overcomes the problem detected in the definition of ⌘,
which involves calling the decision procedure of the base logic 2n times, for n the
number of base sentences in the sentence under consideration. Such an algorithm
may be based on the tableau technique (for instance, the one implemented in
[12]) which opens a number of branches as the possible ways to build a model
satisfying a given sentence. If the sentence is unsatisfiable then all branches must
be closed. If any branch remains open then the decision procedure of the base
logic is called to try to close it. Thus, the number of times the decision procedure
of the base logic is called is much smaller than in the approach discussed here.

Other results in the literature abstract the combination of logics pattern
by considering the “top logic” itself arbitrary. Such is the case of what is called
parametrisation of logics in [4] by C. Caleiro, A. Sernadas and C. Sernadas. Sim-
ilarly , the recent method of importing logics suggested by J. Rasga, A. Sernadas
and C. Sernadas [16] aims at formalising this kind of asymmetric combinations
resorting to a graph-theoretic approach. In both cases some decidability and
completeness results are given. It should be interesting to see in which ways the
hybridisation method relates to these works.

Acknowledgements. This work is funded by ERDF - European Regional De-
velopment Fund, through the COMPETE Programme, and by National Funds
through FCT within project FCOMP-01-0124-FEDER-028923. M. A. Martins
was also supported by the project PEst-OE/MAT/UI4106/2014.

References

1. C. Areces and B. ten Cate. Hybrid logics. In P. Blackburn, F. Wolter, and J. van
Benthem, editors, Handbook of Modal Logics. Elsevier, 2006.

2. Pedro Baltazar. Probabilization of logics: Completeness and decidability. Logica
Universalis, 7(4):403–440, 2013.

3. T Braüner. Proof-Theory of Propositional Hybrid Logic. Hybrid Logic and its
Proof-Theory, 2011.

4. Carlos Caleiro, Cristina Sernadas, and Amílcar Sernadas. Parameterisation of
logics. In WADT, pages 48–62, 1998.

5. Răzvan Diaconescu. Institution-independent Model Theory. Birkhäuser Basel, 2008.
6. Răzvan Diaconescu. Institutional semantics for many-valued logics. Fuzzy Sets

Syst., 218:32–52, May 2013.
7. Răzvan Diaconescu and Petros Stefaneas. Ultraproducts and possible worlds se-

mantics in institutions. Theor. Comput. Sci., 379(1-2):210–230, July 2007.
8. José Fiadeiro and Amílcar Sernadas. Structuring theories on consequence. In

D. Sannella and A. Tarlecki, editors, Recent Trends in Data Type Specification,
volume 332 of Lecture Notes in Computer Science, pages 44–72. Springer Berlin
Heidelberg, 1988.

9. Marcelo Finger and Dov Gabbay. Adding a temporal dimension to a logic system.
Journal of Logic, Language and Information, 1(3):203–233, 1992.

Christiano Braga
66

10. Joseph A. Goguen and Rod M. Burstall. Institutions: abstract model theory for
specification and programming. J. ACM, 39:95–146, January 1992.

11. Joseph A. Goguen and José Meseguer. Models and equality for logical program-
ming. In Hartmut Ehrig, Robert Kowalski, Giorgio Levi, and Ugo Montanari,
editors, TAPSOFT ’87, volume 250 of Lecture Notes in Computer Science, pages
1–22. Springer Berlin Heidelberg, 1987.

12. Guillaume Hoffmann and Carlos Areces. Htab: a terminating tableaux system for
hybrid logic. Electr. Notes Theor. Comput. Sci., 231:3–19, 2009.

13. Alexandre Madeira, José M. Faria, Manuel A. Martins, and Luís Soares Barbosa.
Hybrid specification of reactive systems: An institutional approach. In G. Barthe,
A. Pardo, and G. Schneider, editors, Software Engineering and Formal Methods
(SEFM 2011, Montevideo, Uruguay, November 14-18, 2011), volume 7041 of Lec-
ture Notes in Computer Science, pages 269–285. Springer, 2011.

14. Manuel A. Martins, Alexandre Madeira, Răzvan Diaconescu, and Luís Soares Bar-
bosa. Hybridization of institutions. In A. Corradini, B. Klin, and C. Cîrstea,
editors, Algebra and Coalgebra in Computer Science (CALCO 2011, Winchester,
UK, August 30 - September 2, 2011), volume 6859 of Lecture Notes in Computer
Science, pages 283–297. Springer, 2011.

15. Renato Neves, Alexandre Madeira, Manuel A. Martins, and Luís S. Barbosa. Hy-
bridisation at work. In CALCO TOOLS, volume 8089 of Lecture Notes in Computer
Science. Springer, 2013.

16. J. Rasga, A. Sernadas, and C. Sernadas. Importing logics: Soundness and com-
pleteness preservation. Studia Logica, 101(1):117–155, 2013.

Christiano Braga
67

A coinductive animation of Turing Machines

Alberto Cia↵aglione

Dipartimento di Matematica e Informatica
Università di Udine, Italia

alberto.ciaffaglione@uniud.it

Abstract. We adopt corecursion and coinduction to formalize Turing
Machines and their operational semantics in the proof assistant Coq. By
combining the formal analysis of converging and diverging evaluations,
our approach allows us to certify the implementation of the functions
computed by concrete Turing Machines. Our e↵ort may be seen as a
first step towards the formal development of basic computability theory.

1 Introduction

In this paper we present and discuss a formalization of Turing Machines (TMs)
and their semantics in the Coq implementation of the Calculus of (Co)Inductive

Constructions (CC(Co)Ind). Actually, we do not find in the literature much mech-
anization work dealing with computability theory, a foundational, major area of
computer science, whereas several other domains have benefited, in recent years,
from formal developments carried out within mechanized environments.

As far as we know, the most recent contributions are [10, 2, 1, 13]. Norrish
[10] develops a proof of equivalence between the recursive functions and the �-
calculus computational models, and formalizes some computability theory results
in the HOL4 system. Other two works are more related to the present one, as
focusing on TMs. Asperti and Ricciotti [1] develop computability theory up
to the existence of a universal machine, by carrying out their e↵ort from a
perspective oriented to complexity theory in Matita. Xu, Zhang and Urban [13]
prove the correctness of concrete TMs used to address computability theory, and
relate TMs to register machines and recursive functions in Isabelle/HOL.

The present work is in fact a departure from the two existing formalizations of
TMs, due to the two following reasons. On the one hand, we adopt corecursion
as definition principle and coinduction as proof principle (which are not used
by the alternative contributions). On the other hand, inspired by our previous
e↵ort on unlimited register machines [2], we encode TMs and their operational
semantics from the perspective of program certification: i.e., we introduce and
justify a methodology for addressing the correctness of concrete TMs.

Actually, TMs form an object system which is challenging in several respects.
First, TMs may be completely unstructured. Second, the paper tape, used by TMs
as workspace for computing, is infinite in both directions. Moreover, the evalu-
ation of TMs may give rise to diverging computations. Therefore, TMs provide
with a typical scenario where the user is required to define and reason about
infinite objects and concepts. To address formally such an object system, in this
paper we settle within Intuitionistic Type Theory. In this framework, infinite

Christiano Braga
68

2

structures are managed via coinductive types: these, roughly speaking, are col-
lections of elements whose construction requires an infinite numbers of steps.
In particular, a handy technique for dealing with corecursive definitions and
coinductive proofs in CC(Co)Ind was introduced by Coquand [4] and refined by
Giménez [6]. Such an approach is particularly appealing, because proofs carried
out by coinduction are accommodated as any other infinite, corecursively defined
object. This technique is mechanized in the proof assistant Coq [11].

The motivations to carry out our formalization of TMs in Coq are the fol-
lowing. As it is well-known, traditional papers and textbooks about TMs treat
the topic at a more superficial level of detail, and in particular the arguments
why particular TMs are correct are often left out. Therefore, the mechanization
e↵ort in a proof assistant, besides o↵ering the possibility to discover errors, may
typically improve the confidence on the subject (e.g., the correctness proofs for
concrete TMs in [13] are acknowledged as the most important contribution). Our
work has an educational objective as well: on the one hand we try to illustrate
the practice of corecursion and coinduction through suggestive examples; on the
other hand we develop our formalization methodology step by step, by justifying
it in an analytical way and with ramifications at the proof-theoretical level.

We have used, as starting point for our development, the textbooks by Cut-
land [5] and by Hopcroft et al. [7]. As an e↵ort towards a broader audience,
we display rarely Coq code in this paper, but present the encoding at a more
abstract level (however, the formalization is available as a web appendix [3]).

Synopsis. In the next section we recall TMs, then in the two following
sections we introduce their formalization and illustrate the implementation of
coinduction in Coq. In the two central Sections 5 and 6 we define a big-step
operational semantics for TMs and justify the encoding choices via a small-step
semantics, respectively. In the core Section 7 we prove the correctness of three
sample TMs, then we state final remarks and discuss related and future work.

2 Turing Machines

Turing Machines (TMs), one among the frameworks proposed to set up a formal
characterization of the intuitive ideas of computability and decidability, perform
algorithms as carried out by a human agent using paper and pencil. In this work
we address deterministic, single tape TMs, as introduced by Cutland [5].

Alphabet and tape. TMs operate on a paper tape, which is infinite in
both directions and is divided into single squares along its length. Each square
is either blank or contains a symbol from a finite set of symbols s

0

, s
1

, . . . , sn,
named the alphabet A (in fact, the “blank” B is counted as the first symbol s

0

).
Specification and computation. At any given time, TMs both scan a

single square of the tape (via a reading/writing head) and are in one of a finite

number of states q
1

, . . . , qm. Depending on the current state qi and the symbol
being scanned sh, TMs take actions, as indicated by a specification

1, i.e. a finite

1 As said above, we deal with deterministic TMs, i.e., non-ambiguous specifications:
for every pair qi, sh there is at most one quadruple of the form hqi, sh, x, qji.

Christiano Braga
69

3

collection of quadruples hqi, sh, x, qji, where i, j2[1..m], h2[0..n], x2{R,L}[A:

hqi, sh, x, qji , 1) if x=R then move the head one square to the right
else if x=L then move the head one square to the left
else if x=sk (k2[0..n]) then replace sh with sk

2) change the state from qi into qj

When provided with a tape, a specification becomes an individual TM, which is
capable to perform a computation: it keeps carrying out actions by starting from
the initial state q

1

and the symbol scanned by the initial position of the head.
Such a computation is said to converge if and only if, at some given time,

there is no action specified for the current state qi and the current symbol sh
(that is, there is no quadruple telling what to do next). On the other hand, if
this never happens, such a computation is said to diverge.

Computable functions. TMs may be regarded as devices for computing
numerical functions, according to the following conventions. First, a natural
number m is represented on a tape by an amount of m+1 consecutive occur-
rences of the “tally” symbol 1 (in such a way, the representation of the 02N is
distinguished from the blank tape). Further, a machine M computes the partial

function f : N*N when, for every a, b2N, the computation under M , by starting
from its initial state and the leftmost 1 of the a representation, stops with a
tape that contains a total of b symbols 1 if and only if a2dom(f) and f(a)=b
(it is apparent that f is undefined on all inputs a that make the computation
diverge). n-ary partial functions g: Nn*N are computed in a similar way, where
the representations of the n inputs are separated by single blank squares.

In this way, computability theory is developed via TMs, leading to the well-
known characterization of the class of e↵ectively computable functions.

3 Turing Machines in Coq

As described in the previous section, TMs are formed by two components: the
specification and the tape, whose content in fact instantiates the former, making
it executable. Specifications and tapes actually work together, but are evidently
independent of each other from the point of view of the formalization matter.

Our encoding of TMs in Coq reflects such an orthogonality: in the present
work we are mainly involved in the formal treatment of the tape, which is
more problematic and particularly delicate; conversely, we do not pursue the
specification-component treatment (automata are actually supported by Coq’s
library), thus keeping that part of the formalization down to a minimum.

Specification and tape. Concerning the specification part, we represent
states via natural numbers, while alphabet symbols and operations performed
by the head are finite collections of elements (we fix the alphabet by adding the
“mark” symbol 0 to the “blank” B and the “tally” 1 of previous section). Finally,
specifications are finite sequences (i.e., lists) of actions (i.e., quadruples)2:

State : p, q, i 2 N={0, 1, 2, . . .} state

2 The middle columns display the metavariables and the datatypes they range over.

Christiano Braga
70

4

Sym : a, b, c 2 {B, 1, 0} alphabet symbol
Head : x 2 {R,L,W (a)} head operation
Act : ↵ 2 State⇥ Sym⇥ State⇥Head action
Spec : T, U, V ::= (◆ 7!↵◆)◆2[0..n] (n2N) specification

To deal with the tape, whose squares are scanned by the head and contain
the alphabet symbols, we adopt a pair of streams (a.k.a. infinite sequences), a
datatype borrowed from the Haskell community, where is named “zipper”:

HTape : l, r, h, k ::= (◆ 7!a◆)◆2[0..1] half tape (stream)
Tape : s, t, u ::= hh l, r ii full tape (zipper)

The intended meaning of this encoding is that the second stream (r = r
0

:r
1

: . . .)
models the infiniteness of the tape towards the right, while the first stream
(l = l

0

:l
1

: . . .) is infinite towards the left. At any time, the head “+” will be
scrutinizing the first symbol of r, which corresponds physically to:

+
· · · | l

1

| l
0

| r
0

| r
1

| · · ·

This representation allows for a direct access to the content of the tape, an
operation which has therefore constant complexity.

Transitions. In Cutland’s presentation [5], reported in the previous section,
specifications are non-ambiguous lists of actions. To make specifications con-
cretely compute, it is hence necessary, given the current state and tape symbol,
to extract from such lists the corresponding head operation and target state.

In our encoding, we delegate the responsibility to guarantee the determinism

of TMs to a transition function tr: Spec⇥State⇥Sym ! (State⇥Head). At the
moment (to develop the operational semantics of TMs and its metatheory), we
postulate just the existence of such a function, without implementing it. Since
tr is, in general, partially defined (as TMs may either converge or diverge), we
assume also the existence of an “halting” output, to handle the convergence:

Parameter tr: Spec -> State -> Sym -> (State * Head).
Parameter halt: (State * Head).

The motivation of our encoding choice, as said at the beginning of the section,
is to keep the formal development, when feasible, as minimal as possible, being
the modelling and the management of the tape the focus of our work.

4 Coinduction in Coq

The formal treatment of circular, infinite data and relations is supported by Coq
via the mechanism of coinductive types. These are types that have been conceived
to provide finite representations of infinite structures.

First of all, one may represent concrete, infinite objects (i.e., data) as elements
of coinductive sets

3, which are fully described by a set of constructors. From a
pure logical point of view, the constructors can be seen as introduction rules;

3 Coinductive sets are coinductive types whose type is the sort Set.

Christiano Braga
71

5

these are interpreted coinductively, that is, they are applied infinitely many
times, hence the type being defined is inhabited by infinite objects:

a 2 Sym h 2 HTape

a:h 2 HTape
(HTape)1

In this example we have formalized infinite sequences, i.e., streams, of symbols
in the alphabet Sym={B, 1, 0}, the coinductive set HTape which we have in-
troduced in the previous section to model the tape of Turing Machines.

Once a new coinductive type is defined, the system supplies automatically
the destructors, that is, an extension of the native pattern-matching capability,
to consume the elements of the type itself. Therefore, coinductive types can also
be viewed as the largest collection of objects closed w.r.t. the destructors. We use
here the standard match destructor to extract the head and tail from streams:

head(h) , match h with a:k) a tail(h) , match h with a:k) k

However, the destructors cannot be used for defining functions by recursion

on coinductive types, because their elements cannot be consumed down to a
constant case. In fact, the natural way to allow self-reference with coinductive
types is the dual approach of building objects that belong to them. Such a goal
is fulfilled by defining corecursive functions, like, e.g., the following ones:

Bs , B:Bs same(a) , a:same(a) blink(a, b) , a:b:blink(a, b)
merge(h, k) , match h with a:h0) match k with b:k0) a:b:merge(h0, k0)

Corecursive functions yield infinite objects and may have any type as domain
(notice that in the last definition we have applied the match destructor to the
parameters). To prevent the evaluation of corecursive functions from infinitely
looping, their definition must satisfy a guardedness condition: every corecursive
call has to be guarded by at least one constructor, and by nothing but con-
structors4. This way of regulating the implementation of corecursion is inspired
by lazy functional languages, where the constructors do not evaluate their ar-
guments. In fact, corecursive functions are never unfolded in Coq, unless their
components are explicitly needed, “on demand”, by a destruction operation.

Given a coinductive set (such as HTape above), no proof principle can be
automatically generated by the system: actually, proving properties about infi-
nite objects requires the potential of building proofs which are infinite too. What
is needed is the design of ad-hoc coinductive predicates

5 (i.e., relations); these
types are in fact inhabited by infinite proof terms. The traditional example is
bisimilarity, that we define on streams and name ' ✓ HTape⇥HTape:

a 2 Sym h, k 2 HTape h ' k

a:h ' a:k
(')1

4 Syntactically, the constructors guard the corecursive call “on the left”; this captures
the intuition that infinite objects are built via the iteration of a productive step.

5 Coinductive predicates are coinductive types whose type is the sort Prop.

Christiano Braga
72

6

Two streams are bisimilar if we can observe that their heads coincide and, re-
cursively, i.e., coinductively, their tails are bisimilar. Once this new predicate is
defined, the system provides a corresponding proof principle, to carry out proofs
about bisimilarity: such a tool, named guarded induction principle [4, 6], is par-
ticularly appealing in a context where proofs are managed as any other infinite
object. In fact, a bisimilarity proof is just an infinite proof term built by core-
cursion (hence, it must respect the same guardedness constraint that corecursive
functions have to). The mechanization of the guarded induction principle pro-
vides a handy technique for building proofs inhabiting coinductive predicates;
such proofs can be carried out interactively through the cofix tactic6. This tac-
tic allows the user to yield proof terms as infinitely regressive proofs, by assuming
the thesis as an extra hypothesis and using it later carefully, i.e., provided its
application is guarded by constructors. In this way the user is not required to
pick out a bisimulation beforehand, but may build it incrementally, via tactics.

To illustrate the support provided by the cofix tactic, we display below
the proof of the property 8a, b2Sym. merge(same(a), same(b)) ' blink(a, b), in
natural deduction style7. Mimicking Coq’s top-down proof development, first the
coinductive hypothesis is assumed among the hypotheses8; then, the corecursive
functions same, blink and merge, in turn, are unfolded to perform a computa-
tion step; finally, the constructor (')1 is applied twice. Hence, the initial goal
is reduced to merge(same(a), same(b)) ' blink(a, b), i.e., an instance of the
coinductive hypothesis. Therefore, the user is eventually allowed to exploit (i.e.,
discharge) such a hypothesis, whose application is now guarded by the construc-
tor (')1. The application of the coinductive hypothesis in fact completes the
proof, and intuitively has the e↵ect of repeating ad infinitum the initial fragment
of the proof term, thus realizing the “and so on forever” motto:

a, b2Sym [merge(same(a), same(b)) ' blink(a, b)]
(1)

a, b2Sym a:b:merge(same(a), same(b)) ' a:b:blink(a, b)
(')1, twice

a, b2Sym merge(a:same(a), b:same(b)) ' a:b:blink(a, b)
(comp.: merge)

a, b2Sym merge(same(a), same(b)) ' blink(a, b)
(comp.: same, blink)

8a, b2Sym. merge(same(a), same(b)) ' blink(a, b)
(1), (introduction)

5 Operational semantics

As stressed in Sections 2 and 3, the semantics of TMs’ specifications is parametric
w.r.t. tapes: computations, induced by specifications, may either converge or
diverge, depending on the supplied tape and the initial position of the head
(while the initial state is 12N). In Section 3 we have also chosen an encoding for
tapes (via a zipper, made of two streams) such that the position of the head is

6 A tactic is a command to solve a goal or decompose it into simpler goals.
7 As usual, local hypotheses are indexed with the rules they are discharged by.
8 According to Gentzen’s notation, we write such an hypothesis (among the leaves of
the proof tree) within square brackets, to bear in mind that it can be discharged,
i.e., cancelled, in the course of a formal proof, as it represents a local hypothesis.

Christiano Braga
73

7

implicit within the tape itself. Therefore, the semantics of TMs may be defined
by considering configurations (T, p, s), where T is a specification, p a state, and
s=hhl, r=r

0

:r
1

: . . .ii a tape. Some configurations make actually a computation
stop, because there is no action specified by T for the current state p and symbol
r
0

: these configurations will play the role of the values of our semantics. In the
following, we will denote with tr(T, p, s) the application of the transition function
tr, introduced in Section 3: in particular, we will write tr(T, p, s)= # for (tr T
p r0)=halt, and tr(T, p, s)=hi, xi for (tr T p r0)=(i,x).

In this section we define a big-step semantics for TMs, which we will argue to
be appropriate and then use in the rest of the paper. The potential divergence
of computations provides us with a typical scenario which may benefit from the
use of coinductive specification and proof principles. In fact, a faithful encoding
has to reflect the separation between converging and diverging computations,
through two di↵erent judgments. Hence, we define the inductive predicate b⇤ ✓
Spec⇥Tape⇥State⇥Tape⇥State to cope with converging evaluations, and the
coinductive b1 ✓ Spec⇥Tape⇥State to deal with diverging ones.

Definition 1. (Evaluation) Assume T2Spec, s=hhl=l
0

:l
1

: . . . , r=r
0

:r
1

: . . .ii and
t2Tape, p, q, i2State. Then, b⇤ is defined by the following inductive rules:

tr(T, p, s)= #
b⇤(T, s, p, s, p)

(stop)
tr(T, p, s)=hi, Ri b⇤(T, hhr0:l, tail(r)ii, i, t, q)

b⇤(T, s, p, t, q)
(right)⇤

tr(T, p, s)=hi, Li b⇤(T, hhtail(l), l0:rii, i, t, q)
b⇤(T, s, p, t, q)

(left)⇤

tr(T, p, s)=hi,W (a)i b⇤(T, hhl, a:tail(r)ii, i, t, q)
b⇤(T, s, p, t, q)

(write)⇤

And b1 is defined by the following rules, (this time) interpreted coinductively

9

:

tr(T, p, s)=hq,Ri b1(T, hhr
0

:l, tail(r)ii, q)
b1(T, s, p)

(right)1

tr(T, p, s)=hq, Li b1(T, hhtail(l), l
0

:rii, q)
b1(T, s, p)

(left)1

tr(T, p, s)=hq,W (a)i b1(T, hhl, a:tail(r)ii, q)
b1(T, s, p)

(write)1

Notice that in the rules above we write r
0

and l
0

for head(r) and head(l), re-
spectively (see Section 4 for the definitions of the head and tail functions). ut

9 The relation b1 is the greatest fixed-point of the above rules, or, equivalently, the
conclusions of infinite derivation trees built from such rules.

Christiano Braga
74

8

In our semantics, given a specification T , a tape s and a state p, we capture on
the one hand the progress of both the head and the states transitions, and on
the other hand the e↵ect of the operations performed by the head itself.

In detail, the intended meaning of b⇤(T, s, p, t, q) is that the computation un-
der the specification T , by proceeding with the tape s and from the state p, stops
in the state q, by transforming s into t. Conversely, b1(T, s, p) asserts that the
computation under T , by proceeding with the tape s and from the state p, loops :
i.e., there exists a state i (reachable from p) such that, afterwards, the computa-
tion comes again at state i after a non-zero, finite number of actions. Therefore,
a final tape cannot exist for b1, because the initial tape s is scrutinized (and
possibly updated) “ad infinitum” in the course of a diverging computation.

Since TMs are not structured, we have embedded in the big-step semantics
one alternative structuring criterion, i.e., the number of evaluation steps implicit
amount. In fact, we have defined a constant (i.e., non-recursive) rule for b⇤ (the
computation stops because no next action exists) and (co)inductive rules for
both b⇤ and b1, to address how moving the head and writing on the tape is
carried out, respectively, within a converging computation and a diverging one.

We remark again that the benefit of the zipper encoding of tapes (introduced
in Section 3) is that every operation of the head may be carried out via basic
functions on streams, whose complexity is minimal and constant.

6 Adequacy

To justify our big-step semantics for TMs, we introduce here an alternative,
small-step semantics à la Leroy [9], and prove that they are equivalent.

We first define a one-step reduction concept, to express the three basic ac-
tions of TMs (i.e., moving the reading head and writing on the current square).
Formally, it is defined as a predicate !✓ Spec⇥Tape⇥State⇥Tape⇥State, that
we write more suggestively as (T, s, p) ! (T, t, q). Note (again) that, since TMs
are not structured, we do not need to define contextual reduction rules.

Afterwards, we can formalize the small-step semantics of interest as reduction
sequences: finite reductions

⇤! are the reflexive and inductive transitive closure
of !, while infinite reductions

1! its coinductive transitive closure. We introduce

also finite positive reductions
+!, a tool that we will exploit in Section 7.

Definition 2. (Reduction) Assume T2Spec, s=hhl=l
0

: . . . , r=r
0

: . . .ii2Tape, and
p, q2State. The one-step reduction relation ! is defined by the following rules

10

:

tr(T, p, s)=hq,Ri
(T, hhl, rii, p) ! (T, hhr

0

:l, tail(r)ii, q)
(!R)

tr(T, p, s)=hq, Li
(T, hhl, rii, p) ! (T, hhtail(l), l

0

:rii, q)
(!L)

10 We keep using here the notation for transitions defined in Sections 3 and 5.

Christiano Braga
75

9

tr(T, p, s)=hq,W (a)i
(T, hhl, rii, p) ! (T, hhl, a:tail(r)ii, q)

(!W)

For t, u2Tape, i2State, finite reduction ⇤! is defined by induction, via the rules:

(T, s, p)
⇤! (T, s, p)

(
⇤!

0

)
(T, s, p) ! (T, u, i) (T, u, i)

⇤! (T, t, q)

(T, s, p)
⇤! (T, t, q)

(
⇤!

+

)

For t, u2Tape, i2State, finite positive reduction

+! is defined by induction:

(T, s, p) ! (T, t, q)

(T, s, p)
+! (T, t, q)

(
+!

1

)
(T, s, p) ! (T, u, i) (T, u, i)

+! (T, t, q)

(T, s, p)
+! (T, t, q)

(
+!

+

)

And infinite reduction

1! is defined by the following coinductive rule:

(T, s, p) ! (T, t, q) (T, t, q)
1!

(T, s, p)
1!

(
1!1)

We can prove that evaluation and reduction are equivalent concepts, both in
their converging and diverging versions. We remark that our proofs are construc-
tive, whereas Leroy [9] had to postulate the “excluded middle” for divergence.

Proposition 1. (Equivalence) Let be T2Spec, s, t, u2Tape, and p, q, i2State.

1. If (T, s, p) ! (T, u, i) and b⇤(T, u, i, t, q), then b⇤(T, s, p, t, q)
2. If (T, s, p)

⇤! (T, u, i) and b⇤(T, u, i, t, q), then b⇤(T, s, p, t, q)
3. b⇤(T, s, p, t, q) if and only if (T, s, p)

⇤! (T, t, q) and tr(T, q, t)= #
4. b1(T, s, p) if and only if (T, s, p)

1!
5. If (T, s, p)

+! (T, u, i) and (T, u, i)
+! (T, t, q), then (T, s, p)

+! (T, t, q)

Proof. 1) By inversion of the first hypothesis. 2) By structural induction on the

derivation of (T, s, p)
⇤! (T, u, i), and point 1. 3) Both directions are proved by

structural induction on the hypothetical derivation, but the direction (() requires

also point 1. 4) Both directions are proved by coinduction and hypothesis inver-

sion. 5) By structural induction on the derivation of (T, s, p)
+! (T, u, i). ut

The above results point out that the proof practice of reduction and evaluation
is very similar in Coq. In fact, the small-step predicate

⇤! is slightly less handy,
because, to perform a TM action, the user is required to exhibit the witness tape,
besides the target state; obviously, the small-step version lacks the “halting”
concept (i.e., tr(T, q, t)= #), which is internalized by the big-step judgment.

Streams vs. lists. We complete this section with a digression about a dif-
ferent encoding for tapes that we pursued in a preliminary phase of our research.

Even if streams are a datatype which captures promptly and naturally the
infiniteness of tapes, a formalization approach via (finite) lists may also be de-
veloped. The choice of lists makes apparent the constraint that, when a com-
putation starts, only a finite number of squares is allowed to contain non-blank

Christiano Braga
76

10

symbols (in this case the empty list is intended to represent an infinite sequence
of blanks). We note that the representation of numerical functions in Cutland’s
setting, that we have adopted at the end of Section 2, respects such a constraint.

Therefore, we proceed by encoding the tape through a pair of lists:

HTapeL : ll, rl ::= (◆ 7!a◆)◆2[0..n] half tape (list, n2N)
TapeL : sl, tl ::= hh ll, rl ii full tape (list-pair)

Afterwards, big-step semantics predicates, playing the role of the ones that
deal with streams in Section 5, can be introduced. However, since lists (conversely
to streams) might be empty, such predicates must take into consideration this
extra pattern and manage it via additional rules. Without going into the full
details (for lack of space), we display here the rules for the move-R action11:

bL⇤(T, hhB:ll, [] ii, i, t, q)
bL⇤(T, hh ll, [] ii, p, t, q)

(r
[]

)⇤
bL⇤(T, hh a:ll, rl ii, i, t, q)
bL⇤(T, hh ll, a:rl ii, p, t, q)

(rL)⇤

The inductive convergence predicate bL⇤ ✓ Spec⇥TapeL⇥State⇥TapeL⇥State
has the same intended meaning of b⇤. The coinductive divergence predicate
bL1 ✓ Spec⇥TapeL⇥State, corresponding to b1, is defined analogously.

We remark that alternative formalizations of the predicates bL⇤ and bL1 are
feasible, as we could keep just one rule for each action (like for b⇤ and b1) by
defining two headL and tailL functions from scratch to work on list-tapes. In
fact, these functions would behave di↵erently than the ones given by Coq library,
because in this encoding the empty list represents an infinite sequence of blank
symbols. After experimenting with this second solution and experiencing that
the complexity of proofs does not change, we have selected the former encoding
solution, because in such a way we may delegate to the rules themselves the
explicit distinction between the empty list and the non-empty one.

In the end we can prove, via the predicates bL⇤, bL1, that the semantics with
streams may mimic that with lists, and a limited form of the opposite result (in
the Proposition below we denote with Bs the stream of blank symbols and with
“::” a recursive function that appends a list in front of a stream).

Proposition 2. (Tape) Let be T2Spec, ll, rl, ll0, rl02HTapeL, and p, q2State.

1. bL⇤(T, hh ll, rl ii, p, hh ll0, rl0 ii, q)) b⇤(T, hh ll::Bs, rl::Bs ii, p, hh ll0::Bs, rl0::Bs ii, q)
2. bL1(T, hh ll, rl ii, p) if and only if b1(T, hh ll::Bs, rl::Bs ii, p)

Proof. 1) By structural induction on the hypothetical derivation. 2) Both the

directions are proved by coinduction and hypothesis inversion. ut

The di�culty of proving the reverse implication of point 1 above depends on
the fact that the representation of the tape through lists is not unique (actually,
one may append to any list blank symbols at will). Hence, it seems necessary to
introduce an equivalence relation on list-tapes, to develop their metatheory.

11 We omit from both the rules the transition conditions, i.e., the premise
tr(T, p, hh ll, [] ii)=hi, Ri from (r[])⇤ and tr(T, p, hh ll, a:rl ii)=hi, Ri from (rL)⇤.

Christiano Braga
77

11

For this reason (and because lists demand to double the length of proofs, as
the predicates involving them have two constructors for every action), we prefer
working with streams. In any case, when addressing concrete TMs, in Section 7,
we will guarantee that only a finite number of tape squares is non-blank.

7 Certification

In this section we use the big-step predicates b⇤ and b1, introduced in Section
5 and justified in Section 6, to address the certification of the partial functions
computed by individual TMs. This “algorithmic” approach is significant because
it realizes a methodology for the formal development of computability theory.

To make concrete TMs compute we must, first of all, instantiate the transition
function tr, which we have taken as a parameter of our semantics in Section
3. Simply, we assume that specifications (i.e., lists of quadruples) record the
transitions by respecting the order of the source states (i.e., first the transitions
for state 1, then those for state 2, and so on). Consequently, we implement the
transition function as a recursive function that visits such lists: in particular, it
is undefined as soon as it finds a state which is greater than the one it is looking
for (or, less e�ciently, when it reaches the end of a list)12. Concerning the states,
we use the 0 to represent the halting state, for which no transition is provided;
clearly, also other states may act as halting ones.

Now that our machinery is ready to address the correctness of TMs, we
point out that their divergence may be caused by di↵erent kinds of behavior. It
is easy to manage TMs that diverge by scanning a finite portion of a tape. The
interesting case is when TMs scan an infinite area of the tape; this may happen
by moving the reading head infinitely either just in one direction or in both
directions. In this section we address one example for each pattern of behavior,
to convey to the reader the intuition that we can master all of them.

First example: R moves. The first partial function that we work out
computes the half of even natural numbers, and is not defined on odd ones:

div2(n) ,
⇢
n/2 if n 2 E
" if n 2 O

One algorithm that implements the div2 function is conceived as follows. Erase
the first “1” (which occurs by definition) and move the head to the right; then
try to find pairs of consecutive “1”: if this succeeds, erase the second “1” and
restart the cycle, otherwise (a single “1” is found) move indefinitely to the right.
Such an algorithm can be realized, e.g., by the following specification T :

{h1, 1,W (B), 1i, h1, B,R, 2i, h2, 1, R, 3i, h3, B,R, 3i, h3, 1,W (B), 4i, h4, B,R, 2i}

This implementation of the div2 function is then certified through the predicates
b⇤ and b1; the computation starts from the state 1 and the following tape13:

12 The specification component of TMs might be also represented through automata,
for which suitable formalizations can be picked out from Coq’s library.

13 From now on, we will use “a | �” to represent an infinite amount of “a” symbols.

Christiano Braga
78

12

+
� | B | 1 | 1 |� | 1| {z }

n

| B | � (1)

which is formalized as 8n. hhBs, 1:ones(n)::Bsii, where Bs is the stream of blank
symbols, ones(n) a list of n “1” symbols, “:” the cons operation on lists, and
“::” a function that appends a list in front of a stream.

To fulfill our goal we carry out, via tactics, a top-down formal development
that simulates the computation of the TM at hand. First, we perform a write-B
and a move-R action from the starting configuration14 (state 1 and tape (1),
that represents the input n), thus reaching the state 2 with the tape:

+
� | B | 1 |� | 1| {z }

n

| B | � (2)

Proving the divergence requires a combination of coinductive and inductive
reasoning. The core property is the divergence when proceeding from the state
3 and a right-hand blank tape, a lemma which is proved by coinduction15:

l2HTape tr(T, 3, hhl, B:Bsii)=h3, Ri [b1(T, hhB:l, Bsii, 3)]
(1)

l2HTape b1(T, hhl, B:Bsii, 3)
(right)1

l2HTape b1(T, hhl, Bsii, 3)
(computation: Bs)

8 l2HTape. b1(T, hhl, Bsii, 3)
(1), (introduction)

If n is odd, we prove by induction on k that the tape (2) leads to divergence:

8 l2HTape. b1(T, hh l, ones(2k+1)::Bs ii, 2)
If k=0, carry out a move-R and apply the lemma above; if k=h+1, complete a
cycle (by erasing the second “1”) and conclude via the induction hypothesis.

We address the convergence in the complementary scenario (an even input
n in (2)) by proving the following property, again by induction on k:

8 l2HTape. b⇤(T, hh l, ones(2k)::Bs ii, 2, hh repeat(k):: l, Bs ii, 2)

where repeat(k) in the final tape stands for a list of k consecutive pairs “B:1”.
ut

Second example: R and L moves. The second sample function that we
choose is partially defined on input pairs, and may be named “partial minus”:

pminus(m,n) ,
⇢
m� n if m � n
" if m < n

To compute it, we devise the following algorithm. First scan the tape towards the
right till reaching the B that separates the two inputs; then erase the leftmost
“1” from the representation of n and the rightmost “1” from that of m (both the

14 Given a specification T , a configuration will be a pair hstate, tapei from now on.
15 As at the end of Section 4, we display coinductive proofs in natural deduction-style:

the coinductive hypothesis is indexed with the rule it is discharged by.

Christiano Braga
79

13

“1s” must occur) by replacing them, respectively, with a mark symbol “0” (on
the right, for n) and a B (on the left). The core of the computation is repeating
this cycle, which leads to one of two possible situations: if the end of n is reached
(i.e., we are scanning the first B on the right of a 0-block), then stop; on the
other hand, replacing m with B symbols may cause that the head (looking for
“1s”) moves indefinitely on the left. The specification is the following:

U , {h1, 1, R, 1i, h1, B,R, 2i, h2, 0, R, 2i, h2, 1,W (0), 3i, h3, 0, L, 3i,
h3, B, L, 4i, h4, B, L, 4i, h4, 1,W (B), 5i, h5, B,R, 5i, h5, 0, R, 2i}

The initial part of the formal development (erasing the first pair of “1s”, so
moving from state 1 to 5) is common to the divergence and convergence cases16:

+ +
� | B | 1 |� | 1| {z }

m+1

| B | 1 |� | 1| {z }
n+1

| B | � ⇤
=) � | B | 1 |� | 1| {z }

m

| B | B | 0 | 1 |� | 1| {z }
n

| B | �

At this point of the proof, the key pattern to be mastered is shaped as follows:

+
� | B | 1 |� | 1| {z }

m

| B |� | B| {z }
k+2

| 0 |� | 0| {z }
k+1

| 1 |� |1| {z }
n

| B | � (3)

Starting from this tape and the state 5, we can discriminate between divergence
and convergence by distinguishing the case m<n from m�n. Notice that we have
introduced the variable k to obtain a more general induction hypothesis.

When we come to the state 5 and an instance (for k=1) of the above tape (3)
we prove the divergence, under the hypothesis m<n, by nested induction on n
and m. This proof requires auxiliary lemmas, to scan the “0s” and “Bs” blocks
(by induction on k) and for assuring the divergence from state 4 with a tape of
“Bs” towards the left. One key point is that we can use the predicate b1 in a
compositional way (i.e., we split a divergent computation into a convergent one,
which can be proved easily, and another divergent one, which becomes our goal);
e.g., we scan a 0-block via the following lemma, proved by induction on k:

8 k2N, 8 l, r2HTape. b1(U, hh blanks(k)::l, r ii, 5)) b1(U, hh l, blanks(k)::r ii, 5)

Conversely, it is not possible to use the predicate b⇤ in a compositional way to
manage the convergence scenario. The problem is that b⇤ requires to exhibit the
final tape, but in this case, due to the complexity of the proof, we cannot master
it tout-court as we have done in Example 1. Therefore, we need an extra tool to
accomplish the convergence. Actually, such a tool is provided by the small-step

predicate
⇤!: by applying the Proposition 1.2, we may decompose a convergent

computation and address separately the intermediate steps. In the end, we carry
out the proof from (3), under the hypothesis m�n, by nested induction on n
and m and by means of lemmas similar to those used for b1. ut
16 Informally, we represent with

⇤
=) the e↵ect of a finite number of actions on a tape.

Christiano Braga
80

14

Third example: R and L moves, infinitely. In this example we consider
the unary function f;, undefined on every input, for which we devise an imple-
mentation that points out a problem about the mechanization of coinduction.

In fact, our algorithm to compute f; is simple: first scan the 1-block towards
the right and replace the first blank with a “1”; then move back to the left till
reaching the first blank and replace it again with a “1”; then proceed infinitely
in the same way. The specification we pick out is minimal:

V , {h1, 1, R, 1i, h1, B,W (1), 2i, h2, 1, L, 2i, h2, B,W (1), 1i}
The idea beneath the formal divergence proof is nesting a couple of inductions

inside the main coinduction; that is, by using the notation introduced in the
previous Example 2 to display the modification of the tape, we want to perform
the two computations (passing to state 2 and then coming back to state 1):

+ + +
� | B | 1 |� | 1| {z }

n+1

| B | � ⇤
=) � | B | 1 |� | 1| {z }

n+2

| B | � ⇤
=) � | B | 1 |� | 1| {z }

n+3

| B | �

It is apparent that, to accommodate this proof, we may assume the coinductive
hypothesis for the initial configuration (state 1 and leftmost tape above) and
then carry out two finite computations, thus reducing to a configuration (state
1 and rightmost tape) which is an instance of the coinductive hypothesis itself.

Nevertheless, the application of the coinductive hypothesis is not allowed by
Coq, because the whole proof (i.e., the proof term built interactively through
tactics, and mainly via cofix) is recognized as non-guarded by constructors.
Essentially, this is caused by the fact the syntactic check does not accept an
induction (i.e., a lemma) nested inside the coinductive development17.

To circumvent the problem, we introduce a new divergence predicate, by
taking advantage of the small-step concepts defined and analyzed in Section 6.
The idea is very direct: a divergent computation may be characterized as the

coinductive transitive closure of the inductive reduction relation
+!.

Definition 3. (Guarded reduction) Assume T2Spec, s, t2Tape, and p, q2State.
The guarded reduction relation

1) is defined by the following coinductive rule:

(T, s, p)
+! (T, t, q) (T, t, q)

1)
(T, s, p)

1)
(
1)1)

Proposition 3. (Infinite reduction) Let be T2Spec, s2Tape, and p2State.

1. If (T, s, p)
1), then (T, s, p)

1!
2. b1(T, s, p) if and only if (T, s, p)

1)

Proof. 1) By coinduction and hypothesis inversion. 2) ()) By coinduction and

hypothesis inversion. (() By Proposition 1.4 and point 1. ut
17 See in [8] the proposal of an alternative, semantic guardedness checking.

Christiano Braga
81

15

Since the reduction predicate
1) is equivalent to b1, we adopt the former

to carry out our divergence proof. Actually,
1) does not su↵er from the non-

guardedness problem, as it is apparent from the following proof tree18:

n2N (V, s, 1)
+! (V, t, 1) [(V, t, 1)

1)]
(1)

n2N (V, s, 1)
1)

(
1)1)

8n2N. (V, s, 1) 1)
(1), (introduction)

The proof of the premise (V, s, 1)
+! (V, t, 1) relies on the transitivity of

+!
(Proposition 1.5) and on two auxiliary lemmas, argued by induction on n. ut

8 Conclusion

In the present contribution we have formalized TMs and their (big-step and
small-step) operational semantics in the Coq proof assistant. Our key choices are
the encoding of tapes as pairs of streams (managed by means of corecursion)
and a clear distinction between converging computations (modeled via induc-
tive predicates) and diverging ones (formalized through coinductive predicates).
In the previous, core section we have pointed out the potential of our machin-
ery, by proving the correctness of representative TMs (that is, by certifying the
implementation of the partial functions computed by them).

Our encoding provides a completely mechanized management of the tran-
sitions (via the auto tactic), with the benefit that we may concentrate on the
formal treatment of the tape and the logic of proofs. Divergence can be proved
very often in a compositional way, via the sole big-step coinductive predicate.
When “non-guardedness” complications arise (essentially because induction is
nested inside coinduction), alternative, equivalent coinductive predicates may
be employed, by taking advantage of their close relationship with the small-
step semantics concepts. On the other hand, it is not always possible to master
convergence proofs by compositionality. When this is not feasible (due to the
di�culty of the proof at hand), the small-step semantics predicates may be used
again as an auxiliary tool, to perform intermediate computation steps.

We note that, in order to carry out either divergence or convergence proofs,
often the user has the responsibility to figure out how to decompose the main
goal. As usual, it is sometimes necessary to generalize the statements to obtain
su�ciently powerful (co)inductive hypotheses. Moreover, some proofs require a
subtle combination of inductive and coinductive reasoning.

Related work. The contributions of the literature mainly related to the
present one are those by Asperti and Ricciotti in Matita [1], Xu, Zhang and
Urban in Isabelle/HOL [13], and Leroy in Coq [9]. Both the first two works
address TMs, achieving the ambitious goals we have reported in Section 1.

Asperti and Ricciotti formalize the tape as a triple, made of two lists plus
the square currently scrutinized. The non-termination is managed by requiring

18 We write s for hhBs, ones(n+1)::Bs ii and t for hhBs, ones(n+3)::Bs ii.

Christiano Braga
82

16

that the total computation function returns an optional value, when it meets an
upper bound of iterations without reaching a final state; the semantics is defined
through a relation between tapes, which may be (weakly) realized by TMs. Xu,
Zhang and Urban represent the tape via a pair of lists. They handle the non-
termination in a similar way, i.e., via the condition that there is no transition
into a halting state; the semantics is then defined by means of Hoare-rules.

None of these two works makes use of corecursion and coinduction (that we
have exploited to deal with stream-tapes and divergence); from this perspective,
our paper is more related to that of Leroy [9], who adopts coinduction in Coq to
capture infinite evaluations and reductions of a call-by-value �-calculus.

Future work. We believe that the main result achieved by our work (i.e.,
the development of a technology for proving the correctness of concrete TMs,
via several versions of big-step and small-step semantics) is a promising tool to
pursue more advanced goals which are outside the scope of the present paper.

In particular, our e↵ort may be seen as a first step towards the development of
computability theory, as the construction of “brick” TMs and their composition
at higher-levels of abstraction is the natural progress of this contribution.

Also, it would be stimulating to relate the present formalization to that of
unlimited register machines, that we have addressed in a previous work [2].

References

1. A. Asperti and W. Ricciotti. Formalizing Turing Machines. In Proc. of WoLLIC,
LNCS 7456, pp. 1–25. Springer, 2012.

2. A. Cia↵aglione. A coinductive semantics of the Unlimited Register Machine. In
Proc. of INFINITY, EPTCS 73, pp. 49–63, 2011.

3. A. Cia↵aglione. The Web appendix of this paper, 2014. Available at
http://sole.dimi.uniud.it/~alberto.ciaffaglione/Turing/.

4. T. Coquand. Infinite objects in Type Theory. In Proc. of TYPES, LNCS 806, pp.
62–78. Springer, 1993.

5. N. J. Cutland. Computability: An Introduction to Recursive Function Theory.
Cambridge University Press, 1980.

6. E. Giménez. Codifying guarded definitions with recursive schemes. In Proc. of
TYPES, LNCS 996, pp. 39–59. Springer, 1994.

7. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata theory,
languages, and computation. Addison-Wesley, 2003.

8. C.-K. Hur, G. Neis, D. Dreyer, and V. Vafeiadis. The power of parameterization
in coinductive proof. In Proc. of POPL, pp. 193–206. ACM, 2013.

9. X. Leroy. Coinductive big-step operational semantics. In Proc. of ESOP, LNCS
3924, pp. 54–68. Springer, 2006.

10. M. Norrish. Mechanised Computability Theory. In Proc. of ITP, LNCS 6898, pp.
297–311. Springer, 2011.

11. The Coq Development Team. The Coq Proof Assistant, version 8.4. INRIA, 2012.
Available at http://coq.inria.fr.

12. A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proc. Lond. Math. Soc., 42, 1936.

13. J. Xu, X. Zhang, and C. Urban. Mechanising Turing Machines and Computability
Theory in Isabelle/HOL. In Proc. of ITP, LNCS 7998, pp. 147–162. Springer, 2013.

Christiano Braga
83

Mechanised Semantics of BSP Routines
with Subgroup Synchronisation

Jean Fortin and Frédéric Gava

Laboratory of Algorithms, Complexity and Logic (LACL), University of Paris-East
{jean.fortin,frederic.gava}@univ-paris-est.fr

Abstract. This paper presents a core language for bsp algorithms with
subgroup synchronisation. We give two mechanised semantics for this
language using coq and prove some common properties on the semantics.

1 Introduction

In this paper, we present di↵erent semantics for a core Bulk-Synchronous Paral-
lel (bsp) language with subgroup synchronisation. The language is the one of our
tool for correctness of bsp programs called bsp-why [9]. Subgroups allow to syn-
chronise only a part of the processors and to avoid global barriers of all the pro-
cessors of the parallel machine. The semantics have been written using the coq

proof assistant and we have proved some common properties on the semantics.

1.1 Motivation

Why use BSP? The Bulk-Synchronous Parallel (bsp) model is a bridging model

between abstract execution and concrete parallel systems [20]. Its initial goal
is to have portable parallel programs with a scalable performance prediction.
Without dealing with low-level details of parallel architectures, the programmer
can focus on algorithm design —complexity, correctness, etc. It is especially
suitable for High-Performance Computing (hpc).

A wide range of current architectures can be seen as bsp computers. For ex-
ample shared memory multi-cores machines could be used so that each core only
accesses a private sub-part of the shared memory and communications could
be performed using a dedicated part of the shared memory. Moreover the syn-
chronisation unit is rarely a hardware entity but rather a software component.
Supercomputers, clusters of pcs [2], multi-cores [25] and gpus [13], etc. can be
thus considered as bsp computers, i.e. these architectures tie in the bsp model.

The Message Passing Interface (mpi) [21] is a standard api for communica-
tion in distributed applications. There are numerous implementations of this api,
both commercial and open source. mpi’s goals are high performance, scalability,
and portability. mpi is de facto the standard for high-performance computing
today. And mpi is the main library used for implementing other parallel lan-
guages such as bsp libraries. mpi in its entirety does not satisfy the bsp model.
However, a large number of mpi programs use only global operations [5]. These
can be viewed as bsp programs, if we allow bsp programs to synchronise over a
subgroup of processes. Some bsp libraries already allow subgroup synchronisa-
tion, such as the Paderborn University bsp library (pub) [4]. In order to be able
to study these kinds of distributed programs, it is thus necessary to extend the
semantics [10, 24] which are the basis of formal verification tools.

Christiano Braga
84

2 Jean Fortin and Frédéric Gava

Why formal semantics? Solving a problem on a parallel machine is often a
complex job. High-level tools (models, languages, etc.) are necessary to simplify
both the design of parallel algorithms and their programming but also to ensure
a better safety of the generated applications [19]. To design tools for proofs of
correctness of programs or certified compilations or optimisation, a classical step
is to provide operational semantics of the language [16]. A recent approach is
to use of theorem provers (e.g. coq) for the development of semantics [16] and
then formally prove the properties of the language and correctness of programs.
This ensures better safety and trust in the generated software.

Why several semantics? What properties? Big-step (natural) semantics are close
to the intuition of the language (a formal specification) and are useful to prove
properties. Small-step semantics describe more closely the interleaving of the
parallel computations, and are useful to prove program transformations.

Several properties are desired when defining semantics of a parallel language.
Because some of the semantics allow to prove some properties easier, if we want
to have a coherent work, we must ensure that all semantics are equivalent. For
example, it is known that confluence is easier to prove using a big-step seman-
tics rather than using a small-step one. Confluence is a property of ordinary
sequential programming languages, but remains an objective for hpc since con-
fluence is a powerful aid in debugging and validating programs even if it limits
the programmers flexibility to code certain algorithms [3].

In this article, we give both big-step and small-step semantics of a core lan-
guage, and we define these semantics using the coq. This allows us to give a
mechanically checked proof of the usual properties that are desired for parallel
semantics, ensuring a better confidence in our definitions.

Why a core language? In this article, we define a core bsp language with sub-
group synchronisation. why-ml is the programming language of the why tool
for the deductive verification of algorithms [7]. bsp-why-ml is the parallel coun-
terpart of our own tool called bsp-why [9, 8] for bsp algorithms. Defining a
core language allows us to focus on the parallel (bsp) aspects of the semantics,
and ignore the language specificities of real-world languages such as c, java,
etc. Subsequently, this work can be extended to a real-world language with a
su�cient team. The bsp model has also concrete implementation in the form
of libraries for programming languages such as [2, 4, 25]. Additionally, there are
existing tools to transform sequential programs from C and Java to why-ml [7],
so we will be able in the future to extend those tools to transform real-world
bsp programs into bsp-why-ml, which first needs operational semantics.

1.2 Outline

We start by giving an introduction to the bsp model (Section 2), and defin-
ing our core language for bsp programming with subgroup synchronisation. We
then define the semantics of the language in Section 3. We show in Section 4
the mechanisation of those semantics in coq, and give some results that were
proved mechanically. Section 5 discusses some related work and finally, Section 6
concludes the paper and gives a brief outlook to future work.

Christiano Braga
85

Mechanised Semantics of BSP Routines with Subgroup Synchronisation 3

2 A Core Language for BSP with Subgroups

2.1 BSP Programming with Subgroup Synchronisation

The BSP model. A bsp computer is seen as a set of p uniform processor-memory
pairs connected through a communication network [2].

local

computations

p
0

p
1

p
2

p
3

communication

barrier

next super-step

...
...

...
...

Fig. 1. A bsp super-step.

A bsp program is logically executed as a
sequence of super-steps (see Fig. 1), each of
which is divided into three successive disjoint
phases: (1) Each processor only uses its local
data to perform sequential computations and
to request data transfers to other nodes; (2)
The network delivers the requested data; (3)
A global synchronisation barrier occurs, mak-
ing the transferred data available for the next
super-step. The bsp model considers commu-

nication en masse. This is less flexible than asynchronous messages, but easier to
debug. Bulk sending also provides better performances since it is faster to send a
block of data rather than individual ones. For performance, a bsp library can also
send messages during the computation phase, but this is hidden to programmers.

Subgroup synchronisation. The bsp model is based on a global synchronisation.
However, in some cases, a parallel algorithm may include problems that can be
solved using only a subset of processors. Some libraries, for instance the pub

library [4], extend the basic bsp model, and allow the definition of subgroups,
which are pairwise disjoint subsets of the set of processors. It is then possible to
write a part of the parallel program with the subgroup acting as an independent
bsp computer. A call to the bsp_sync routine will then synchronise over the
subgroup, instead of the whole parallel computer.

In the left, we show an example of execution of
subgroup synchronisation. In this example, the overall
group of processors S is split into two subgroups (S1
and S2) which run independent bsp computations.
Finally the two subgroups are merged and the whole
machine continues its work doing global barriers.

This means that the communication procedures
need to be able to tell in which group they are work-
ing. This is important for the synchronisation one. An
additional argument is thus added to all the parallel
procedures, representing a group of processors linked
together: a communicator. The mpi standard also al-

lows to create communicators: in this way, collective operations are performed
only on a subset of the processors, those which participate in the communicator.

2.2 Formal Definition of the Core Language

The syntax of bsp-why-ml [8, 9] is the one of why-ml [7] with an additional
syntax for bsp instructions. Fig. 2 gives the core-calculus. We choose bsp rou-

Christiano Braga
86

4 Jean Fortin and Frédéric Gava

Pure terms:
te ::= c | x | !x | �(te, . . . , te)
Expressions:
e ::= te term

| let x = e in e declaration
| let x = ref e in e variable
| if e then e else e conditional
| loop e infinite loop
| raise (E e) exception

| try e with E x ! e end catch it
| fun x ! e pure function
| x := e assignment
| e e application
| bsp push c x registering
| bsp pop c x deregistering
| bsp put c e x y drma writing
| bsp get c e x y drma reading
| bsp send c x e bsmp sending
| ⌦ e Parameters

Fig. 2. Syntax of bsp-why-ml.

tines that are close to the ones defined in most bsp libraries: They o↵er functions
for both Bulk Message Passing (bsmp) and Remote Memory Access (drma).

Programs contain pure terms (te, terms without possible side e↵ects) made
of constants (integers, booleans, void, etc.), variables, dereferences (written !x),
application and application of function symbols � (such as =, , etc.) to pure
terms. A special constant nprocs (equal to p) and a special variable pid (with
range 0, . . . ,p� 1) were also added. In pure terms, we also have introduced the
two special function symbols bsp nmsg(t) and bsp findmsg t

1

t
2

: the former
corresponds to the number of messages received from a processor id t (pub’s
“C routine” bsp nmsgs(t)) and the latter allows to get the t

2

-th message from
processor t

1

(pub’s “C routine” bsp findmsg(t1,t2)).
let, if, raise, try, fun statements are as usual in a ml language. ref e

introduces a new reference initialized with e that could be modified using :=.
loop e is an infinite loop of body e. The while and sequence are not part of the
core language, but can be easily defined from the loop and let instructions.

In the core-calculus, the five parallel operations are (where c is for the sub-
group): (1) bsp push x, registers a variable x for remote access; (2) bsp pop x,
delete x from remote access; (3) bsp put e x y, distant writing of x to y of proces-
sor e; (4) bsp get e x y, distant reading from x to y; (5) bsp send e

1

e
2

, sending
value of e

1

to processor e
2

. In order to simplify the presentation of bsp-why,
parallel operations of the core-calculus (notably drma primitives) take simple
variables as argument, instead of C’s bu↵ers. More details are given in [8].

⌦ defines the “parameters” of the semantics, that is routines for which we do
not know the code (such as �). It is “user defined”: routines can be defined by
the user depending on its library or its semantics study. These routines modify
the environments (the memory) of the processors. In this way, we abstract the
working of some routines: those that can create/delete the subgroups (which are
a little di↵erent in pub and mpi) or those that synchronise the processors, that
is the routines that perform a barrier (what we call the SYNC e↵ect throughout
the paper) and enable communication between processors. An example of such
a parameter is the standard bsp sync(c) routine of the pub library, which per-
forms a barrier (synchronises the processors of the subgroup c), and executes
all the communications requested during the last superstep by the put, get and
send operations (it is painful to define and not really interesting for this work).

Christiano Braga
87

Mechanised Semantics of BSP Routines with Subgroup Synchronisation 5

The use of ⌦ also allows to model mpi programs that use only collective op-
erations: routines that define a global communication that involves a group of
processes [21]. Previous parallel operations are not modeled using ⌦ because
drma operations require a specific treatment with our bsp-why tool [8, 9].

3 Formal Operational Semantics

Values to be sent and distant reading/writing are stored in environments of
communications as simple list of messages. Aside from the usual environment of
variables (here noted E , the usual map from name of variable to values), there are
thus six additional components in the environment (R, Csend, Cput, Cget, Cpop,
Cpush), one per operation that needs communications. Each operation adds a new
value to be send in these environments: e.g., a distant writing adds the pair value
to be write, to which remote variable, to the Cput list. We note s the environment
of a processor. We note s.X the access to the component X of the environment
s, � the update of a component of an environment without modifying other
components and 2 tests the presence of an item in the component.

3.1 Big-step Semantics

Local operations We first define semantics rules for the local execution of a
program, on a processor i. We note s, e +i s0, v for these local reduction rules
(e.g. one at each processor i): s is the environment before the execution, e is the
program to be executed, s0 the environment after the execution and v is the value
after execution. It may also be worth mentioning that this being an inductive
big-step semantics, the local execution relation is undefined for an infinite loop.

In Fig. 3, we give some examples of the rules for local operations. For each
control instruction, it is necessary to give several rules, depending on the result
of the execution of the di↵erent sub-instructions: one when an execution leads
to a synchronisation (when processors finish a super-step, that is SYNC e↵ect),
one for an exception, and one if it returns directly a value. In the first case, we
need to memorise the next instructions of each processor. These intermediate
local configurations are noted SYNC(C, e), if e remains to be executed after a
synchronisation on the subgroup denoted by C.

With the subgroup synchronisation model, bsp operations are done in the
scope of a communicator. Every bsp call thus takes an additional argument, this
communicator, which describes the subset of processors in which the communi-
cations are done. For example, the inductive rule for the “bsp send” primitive
manipulates Csend as follow:

s, e +i s0, to to 2 cmt {x 7! v} 2 s0.E s00 = s0.Csend

cmt � {to, v}
s, bsp send cmt x e +i s00, void

where “cmt” is a valid communicator in the environment. The message to pro-
cessor “to” of the communicator “cmt” is added to the queue of messages.

Christiano Braga
88

6 Jean Fortin and Frédéric Gava

s, pid +i s, i s, nprocs +i s,p

s, e1 +i s0, v s0[x v], e2 +i s00, o
s, let x = e1 in e2 +i s00, o

s, e1 +i s0, E(v)

s, let x = e1 in e2 +i s0, E(v)

s, e1 +i s0, SYNC(C, e0)
s, let x = e1 in e2 +i s0, SYNC(C, let x = e0 in e2)

s, e +i s0, v
s, x := e +i s0[x v], void

s, e +i s0, E(v)

s, x := e +i s0, E(v)

s, e +i s0, SYNC(C, e0)
s, x := e +i s0, SYNC(C, x := e0)

s, e; loop e +i s0, o
s, loop e +i s0, o

Fig. 3. Big-step semantics: examples of local sequential operations.

Global reduction rules Compared to classical bsp semantics (without sub-
group synchronisation), the major changes are located within the parallel rules.
Instead of having all the p processors synchronise together, and communicate
together, it is now possible for a subgroup to synchronize together and make the
needed communications. Several subgroups can also work independently from
each other, and synchronise at the same time. There are two major options for
the semantics in this situation:

1. All processors execute their code locally, until they reach a synchronisation
state or they terminate. We execute all possible subgroup synchronisations,
and then start again the local computations. We call this option AllSub.

2. A subgroup of processors execute their code locally, until they reach their
synchronisation. We execute the synchronisation and the associated commu-
nications, then start again. We call this option Diamond.

With the subgroups, the bsp notion of superstep is less clearly defined, and
the two formulations could be seen as two di↵erent definitions of a superstep in
this model. Fig. 4 illustrates them —with one super-step less for s2 for the Dia-
mond rule; because it is too large otherwise. Dotted lines are used when their is
no evaluation for a group. In theDiamond option we have also give only one pos-
sible interleave. In the AllSub option, we can notice that the subgroup s1 does
nothing during the third superstep since subgroup s2 has one more superstep.

There are pros and cons to both formulations. In the AllSub option, the
rule is complex to write, even more so in coq. However, it is perhaps the rule
matching most closely the execution of a parallel program where all processors
compute in parallel. The Diamond definition is much easier to write and un-
derstand, but artificially gives priority to one subgroup over another one. This
ordering of the subgroup executions leads to another issue: with this definition,
the semantics loses its determinism, since when several subgroup are synchro-
nising, it is possible to choose any subgroup to execute first.

bsp programs are spmd (Single Program Multiple data) ones so an expres-
sion e is started p times. Di↵erent codes can be run by the processors (resp. the
subgroups) using conditionals on the “id” of the processors (resp. subgroups). For
example “if pid=0 then code1 else code2“ for running a di↵erent code on proces-
sor 0. We model this p times executions as a p-vector of e with its environment. A

Christiano Braga
89

Mechanised Semantics of BSP Routines with Subgroup Synchronisation 7

Diamond option AllSub option

Fig. 4. Illustration of the two formulations for the semantics of subgroups.

final global configuration is a value on all processors that is a p-vector of (si, vi),
one pair (environment, value) on each processor i. We note + for this evaluation.

In Fig. 5, we give 3 variations for the synchronisation rule. The first one is
the rule as it would be defined in a semantics without subgroup. The AllComm
function models the exchanges of messages and thus specifies the order of the
received messages depending of the parameter defined in ⌦: it modifies the en-
vironment of each processor i; it is “just” a reordering of the p environments.

The second rule gives the AllSub formulation. In this rule, we first partition
the set of processors in k subsets that will synchronise, plus a subset N of proces-
sors that do not synchronise. AllCommSub is then similar to the AllComm
function of the first rule. However, because there can be several subgroups syn-
chronizing, its exact definition is more complicated. It accepts as argument the
set of communicators used in the synchronisation. In addition, it accepts as argu-
ment the array of the final values vi already reached in the super-step. For i 2 N ,
the i-th processor terminates without synchronisation with the value vi, so the i-
th component of the result ofAllCommSub will be the couple (s0i, vi). For every
set of processors matching a communicator Cj , all the communications corre-
sponding to the communicator are done. Among the messages of these processors,
it only considers the ones that were sent within the matching communicator.

Finally, the third rule corresponds to the Diamond formulation. CommDia
is similar to the AllComm function, with a few di↵erences. It accepts a second
argument (a communicator); it only modifies the environments of the processors
in the range of the communicator; and among the messages of these processors,
it only considers the ones that were sent within the matching communicator.

It is easy to see that even though this semantics leads to non-determinism,
it is still confluent. The reason is that the only source of non-determinism is
the communication rules, for which any matching communicator can be chosen.
However, at any given point, the communications between two communicators

Christiano Braga
90

8 Jean Fortin and Frédéric Gava

BSP without subgroup variation:
8i si, ei +i s0i, SYNC(e

0
i) AllComm{(s00, e00), . . . (s0p�1, e

0
p�1)} + (s000 , v0), . . . (s

00
p�1, vp�1)

(s0, e0), . . . (sp�1, ep�1) + (s000 , v0), . . . (s
00
p�1, vp�1)

AllSub variation:
{0, . . . ,p� 1} = N � C1 � · · ·� Ck 8i 2 Cj si, ei +i s0i, SYNC(Cj , e

0
i) 8i 2 N si, ei +i s0i, vi

AllCommSub{C1 . . . Ck, v, (s
0
0, e

0
0), . . . (s

0
p�1, e

0
p�1)} +All (s

00
0 , v0), . . . (s

00
p�1, vp�1)

(s0, e0), . . . (sp�1, ep�1) +All (s
00
0 , v0), . . . (s

00
p�1, vp�1)

Diamond variation:
9C 8i 2 C si, ei +i s0i, SYNC(C, e

0
i) CommDia{C, (s00, e00), . . . (s0p�1, e

0
p�1)} +Diam (s000 , v0), . . . (s

00
p�1, vp�1)

(s0, e0), . . . (sp�1, ep�1) +Diam (s000 , v0), . . . (s
00
p�1, vp�1)

Fig. 5. Big-step semantics: 3 variations for the synchronisation rule.
One (at least) processor diverges:

9i si, ei +i
1

h(s0, e0), . . . , (sp�1, ep�1)i +1

BSP without subgroup variation :
8i si, ei +i s0i, SYNC(e

0
i) AllComm{h(s00, e00), . . . , (s0p�1, e

0
p�1)i} +1

h(s0, e0), . . . , (sp�1, ep�1)i +1

Diamond variation:
9C 8i 2 C si, ei +i s0i, SYNC(C, e

0
i) CommDia{C, (s00, e00), . . . (s0p�1, e

0
p�1)} +1

(s0, e0), . . . (sp�1, ep�1) +1

Fig. 6. Global rules for the diverging big-step semantics.

are independent, since each processor leads to a synchronisation in one commu-
nicator only. Thus, the diamond property holds.

Co-inductive semantics rules In addition to the standard big-step semantics,
it is often useful to define co-inductive (or infinite) semantics rules. They allow
to characterize the behaviour of a program that runs indefinitely.

Defining divergence (infinite evaluations) is also done using inference rules
but interpreted coinductively. More precisely, the relation is the greatest fixpoint
of the rules, or, equivalently, the conclusions of infinite derivation trees built from
these rules [17]. Throughout this article, double horizontal lines in inference rules
denote inference rules that are to be interpreted coinductively; single horizontal
lines denote the inductive interpretation. The co-inductive rules for the local
control flow can easily be inferred from the regular big-step semantics rules. We
give as an example one of the co-inductive rules for the “if” instruction:

s, e
1

+i s
1

, true s
1

, e
2

+i
1

s, if e
1

then e
2

else e
3

+i
1

The rule can be read as follow: “If e
1

evaluates to true, and if e
2

runs infinitely,
then the program if e

1

then e
2

else e
3

will run infinitely”. Local bsp opera-
tion (push, send, etc.) always terminate, so the co-inductive rules can easily be
inferred from the regular big-step semantics rules.

On the other hand, and more interestingly, we define the co-inductive global
rules in Fig 6. The first rule states that if one of the processors runs infinitely,

Christiano Braga
91

Mechanised Semantics of BSP Routines with Subgroup Synchronisation 9

then the parallel program will run infinitely. In the other rules, it is said that if all
the processors reach a synchronisation barrier, and if the program runs infinitely
starting from the resulting state, then the parallel program runs infinitely.

3.2 Small-step Semantics

Small-step semantics specify the execution of a program, one step at a time. A set
of rules is repeatedly applied on program states (or configurations), until a final
state is reached. If rules can be applied infinitely, it means the program diverges.
If at one point in the execution there is no rule to apply, it is a faulty program.

In our parallel case, we will have two kinds of one-step reductions: local ones
(on each processor) noted i

* and global ones (for the whole parallel machine)
noted *. The whole evaluation *⇤ of a program is the transitive and reflexive
closure of*. For diverging programs, we note the whole (co-inductive) reduction
)
1
. All of our semantics are thus a set of “rewriting” rules. As we will see, the

small-step semantics is harder to define than the big-step one.

Problems As for the big-step semantics, most of the rules are as usual in pro-
gramming language semantics. Synchronisation is the only problem. A naive
solution would be to define a global rule similar to this:

h(s0, bsp sync; e0), . . . , (sp�1, bsp sync; ep�1)i * h(s00, e0), . . . , (s0p�1, ep�1)i
that is all processors are waiting for a synchronisation and then each processor
executes what remains to be done. The problem with this rule is that it cannot
evaluate a synchronisation inside a control structure e.g. if e

1

then bsp sync else e
3

.
Di↵erent solutions exist. First, adding specific global rules for the synchronisa-
tion inside each control instruction; the drawback is that this implies too much
rules. Second, using a global rule with “contexts” (a context is an expression
with a hole, represented with a “ ”): the bsp sync instruction replaces the hole
within a context on each processor; the drawback is that the use of contexts is
not friendly when using a theorem prover such as coq. Third, in [24] the authors

propose the following rule: s, bsp sync
i
* s,Wait(skip) in addition with rules

to propagate this waiting (as the ones of the big-step semantics) and the fol-
lowing rule: h(s0,Wait(e0)), . . . , (sp�1,Wait(ep�1))i * h(s0, e0), . . . , (sp�1, ep�1)i.
But two subtleties persist: (1) the rules add a skip instruction that compli-
cates the proofs; (2) in their work, “(e

1

; bsp sync); e
2

” cannot be evaluated,
only “e

1

; (bsp sync; e
2

)” can. To remedy to the latter problem, in [10] (se-
mantics without subgroups), we choose to add the congruence (equivalence)
“(e

1

; bsp sync); e
2

⌘ e
1

; (bsp sync; e
2

)” but that also complicates the proofs.

Local rules The solution we propose is the use of a “continuation semantics”,
in the spirit of the semantics described in [1]1. This semantics mainly allows a
uniform representation of configurations that facilitates the design of lemmas.

1 Using this semantics we also get for free the evaluation of control structures in c

(e.g. break and continue in loops) if we want to move to a language such as c.

Christiano Braga
92

10 Jean Fortin and Frédéric Gava

s, nprocs • i
* s,p • s, x := e • i

* s, e • (x :=) •
s, pid • i

* s, i • s, loop e • i
* s, e; loop e •

s, v • (let x = in e2) • i
* s[x v], e2 • s, v • (x :=) • i

* s[x v], void •
s, let x = e1 in e2 • i

* s, e1 • (let x = in e2) •
Fig. 7. Small-step semantics: example of local sequential operations.

s, bsp send cmt x e • i
* s, e • bsp send cmt x •

s, to • bsp send cmt x • i
* s0, if to 2 cmt and s0 = s.Csend

cmt � {to, x}
Fig. 8. Small-step semantics: example of local bsp operation.

si, ei • i
i
* s0i, e

0
i • 0

i

h(. . . , (si, ei • i), . . .)i* h. . . , (s0i, e0i • 0
i), . . . i

9C 8i 2 C Oi ⌘ bsp sync C • i

h(s0, O0), . . . , (sp�1, Op�1)i* CommDia{C, h(s0, O0), . . . , (sp�1, Op�1)i}

Fig. 9. Small-step semantics: global reductions.

A configuration is completed with a control stack . The final configuration
is (s, void • ✏), the final environment s with the empty value and with an empty
control stack. The control stack represents what has not been executed —where •
is an associative operator. There are sequential control operators to handle local
control flow. This is close to an abstract machine. In Fig. 7 we give some examples
of local rules of control flow and in Fig. 8 for local bsp operations. In the control
stack we find expressions with holes. Each hole represents the sub-expression that
is currently evaluated and is represented with a “ ”. Most instructions are dealt
with by several rules. Generally, the first rule simply puts the instruction in the
continuation stack, and sets the first basic element of the instruction to compute
as the main program. Then, one or more rules will match the possible results of
this execution, and perform the necessary operations for the control instruction.
For instance, with the first rule of the “if” statement, the “if” continuation is
put in the control stack and, depending on the result of e

1

, the control stack
gives the evaluation of e

2

or e
3

with the rest of the stack. A communication
primitive consists in simply adding a new value in the environment.

Global rules As previously, global rules are mainly used to call local ones and
p configurations have to be reduced. Fig. 9 gives those rules. First, the global
reduction calls a local one. This represents a reduction by a single processor,
which thus introduces an interleaving of computations. Communication and bsp

synchronisation (SYNC e↵ect) are done with the second rule: each processor i of
the communicator C is in the case of a synchronous primitive (such as bsp sync)
with its control stack i; that is noted Oi. CommDia computes the communi-
cation, and returns the new environments. Then what remains to be executed is
only the control stacks since the synchronisation has been performed.

Christiano Braga
93

Mechanised Semantics of BSP Routines with Subgroup Synchronisation 11

Co-inductive semantics rules The whole evaluation *⇤ is defined as the re-
flexive and transitive closure of *. Co-inductive semantics rules are much easier
to define with the small-step one. A program runs indefinitely if it has an infinite
sequence of small-step reductions. The definition of *1 is the same as in [17].

4 Mechanised Semantics in Coq and Properties

4.1 Mechanised BSP Semantics in Coq

In this section, we present the key ideas of our coq development. The full coq
source files are available at http://lacl.fr/gava/sbmf2014_coq.tar.gz. In [8],
more details can be found on the relation between the formalization in coq and
the semantics (of the previous section) at a paper-and-pencil level .

Memory model and environment In bsp-why, all variables exchanged con-
tain data of the generic type value, which can represent any elementary type.
We define a corresponding type in coq. A few special values are also defined,
such as null, void, true, false, etc. The memory is then defined as a function
from memory blocks to values. The blocks are numbered according to numbers.
We represent identifiers as positive numbers. The link between a variable and
its memory block is then stored as a part of the execution environment, which
we will detail more in the next section.

A subgroup is defined as a function from the processor identifiers to the
booleans. A communicator, however, can not be simply seen as a subgroup, as
it is possible that several communicators share the same subgroups of proces-
sors. Instead, we define a communicator as a unique positive number, as we did
for other identifiers. Environments are defined using record types, following the
definition given in Section 3. It is now possible to define our semantics in coq,
according to the rules given in previous sections.

Big-step semantics For the big-step semantics, there are two parts in the se-
mantics. First, we will define the local reduction rules, which represent the eval-
uation on a single processor, and then we will give the parallel reduction rules.

As is usual in coq, the semantics rules are given as an inductive predi-
cate — or co-inductive for infinite reductions. For the local reduction rules,
eval_expr i e a e’ o defines the evaluation of the expression a in the envi-
ronment e on the processor i (which will be globally defined as a coq’s variable):

Variable i: pid.
Inductive eval expr: env ! expr ! env ! outcome ! Prop :=
| eval Elet : 8x a1 a2 e e’ e’’ v o, eval expr e a1 e’ (Outval v) !

eval expr (update e’ x v) a2 e’’ o ! eval expr e (Elet x a1 a2) e’’ o
| eval Eraise : 8a e e’ v ex, eval expr e a e’ (Outval v) !

eval expr e (Eraise ex a) e’ (Outexn ex v)
| eval Esync : 8e, eval expr e (Esync) e (Outsync sync Evoid)
| ...

Christiano Braga
94

12 Jean Fortin and Frédéric Gava

The definition of an outcome directly follows the definition given in Sec-
tion 3: there are three possible outcomes, either the computation returns a value
Outval (case of the “let” rule), raises an exception Outexn (case of “raise”),
or requests a synchronisation Outsync (case of a synchronous operation), with
another expression remaining to be executed.

The definition of the eval_expr predicate closely matches the definition of
the semantics given in Section 3. We thus have several rules for each language
instruction, depending on the kind of outcome obtained during the evaluation
of the sub-expressions. There is typically one rule for a value outcome, one
rule for an exception outcome, one rule for a synchronisation outcome, etc. The
complete rules are available in the coq development: We had two parallel rules
in the definition of the semantics, so we have two matching rules in our coq

development, similarly for the co-inductive rules for the infinite evaluations.

Small-step semantics The small-step semantics use the same environments
and memory model as the big-step semantics.

However, the semantics are significantly di↵erent. Since we chose to use con-
tinuation semantics, we need to define the continuations. For each statement
in the language, zero, one, or several continuations will be defined, depending
on the number of computations that are done sequentially in the statement. For
instance, a “if” statement has one. The continuation stack is defined inductively,
in a similar fashion as a list:
Inductive cont : Type :=
| Kempty: cont
| Klet: expr! cont! cont
| ...

Kempty is the empty continuation, and every
other continuation is linked to a previous con-
tinuation. Klet is the continuation for the “let”
statement (and there is one continuation case for

each di↵erent statement of the language). As show in Fig. 7, the “let” small-step
rule, we need the second expression e

2

of the “let” following the linked continu-
ation and the hole replace e

1

, hence the need of only one expr in the definition.
A major di↵erence with the big-step semantics is the notion of program exe-

cution “state”. For the big-step semantics, a state was simply the association of
a program to execute and an environment. In the small-step semantics however,
we define four kinds of states: (1) a “normal” state is similar to the notion of
state in the big-step semantics; (2) result states are the values returned when
a computation is finished; (3) an Error state is characterized by an error type,
and a parameter value; (4) and finally, the synchronisation state is the result of
a call to a synchronising parameter.

States are thus naturally defined as an inductive type, with four constructors:
Inductive state : Type :=
| State (a : expr) (e : env) (k : cont) : state
| ResState (v : value) (e : env) (k : cont) : state
| ErrState (ex : exn) (v : value) (e : env) (k : cont) : state
| SyncState (c : comm) (e : env) (k : cont) : state.

There is always a continuation in a state, but it can be the empty continuation.
A step in the semantics is defined as an inductive from states to states.

The definition closely matches the rules that were given in Fig. 7. The parallel

Christiano Braga
95

Mechanised Semantics of BSP Routines with Subgroup Synchronisation 13

reduction is defined on parallel states (that is, a function from the pid to the
local states, and a global environment). From there, the transitive closure pstar
is defined in a standard manner. For brevity, we do not give the rules here, they
are available in the source code.

4.2 Properties and Results

First of all, we defined two alternative rules for the big-step semantics. One is
the most direct translation of the bsp model, but is complex to write and to ma-
nipulate. The second one, shorter and simpler, relies on the diamond property.
We proved in coq the following two lemmas:

Lemma 1. The Diamond semantics is confluent that is: 8e, s, s0 s ⇡ s0 if
(s, e) +Diam (s

1

, v
1

) and (s0, e) +Diam (s
2

, v
2

) then (s
1

, v
1

) ⇡ (s
2

, v
2

)

Lemma 2. Both semantics are equivalent that is: 8e, s, s0 s ⇡ s0 if (s, e) +Diam

(s
1

, v
1

) and (s0, e) +All (s2, v2) then (s
1

, v
1

) ⇡ (s
2

, v
2

)

Where we note (s, e) for the p environments and expressions. The lemma jus-
tify our choice of privileging the use of the diamond rule. Note that the proofs
are done by induction on the derivation of the big-step execution and rely on a
novel congruence ⇡ over the states (values and environments): we need equiva-
lence between p processors that can belong to di↵erent subgroups. Confluence
makes also the hypothesis that all unknown operations of ⌦ are deterministic.

We were able to prove some results linking the inductive and co-inductive
semantics, both for big-step and small-step semantics.

Lemma 3. + and +1 are mutually exclusive that is: 8e, s if (s, e) + (s
1

, v
1

) then
8s0 s ⇡ s0 then ¬((s0, e) +1)

Lemma 4. *⇤
and *1 are mutually exclusive that is 8e, s if (s, e) *⇤ (s

1

, v
1

)
then 8s0 s ⇡ s0 then ¬((s0, e) *1)

Co-inductive semantics is also deterministic in the sense that the constructed
infinite tree will always be the same. But as our semantics do not currently give
the execution traces, this property is not relevant.

The small-step semantics have less rules than the big-step ones. But finding
them is much harder and it is thus less a formal specification of the language.
It is thus necessary to ensure that it is correct, which we did by proving the
equivalence with the big-step semantics.

Lemma 5. *⇤
and + (resp. *1 and +1) are equivalent.

The proof has some common ground with classic big-step to small-step equiv-
alences, with two di�culties: (1) The small-step semantics allows operations to
execute on the di↵erent processors in any order, while the big-step semantics
fixes the order; (2) The continuations, coupled with the synchronisation, intro-
duce the need for a notion of equivalence between a program and a continuation.

Christiano Braga
96

14 Jean Fortin and Frédéric Gava

The first implication (big-step to small-step) is done by induction. However,
an induction directly on the stated theorem would not be enough, and we need to
generalize the result by defining a notion of equivalence between pairs (program,
continuation). This is because after a synchronisation, in the big-step semantics
we still have a program to execute, while in the small-step semantics it is a
continuation. It is then a induction on the derivation of the big-step execution.

For the second implication, we rely of the next lemma. Since the small-
step semantics is confluent, we can order the local executions in any order, in
particular the order chosen with the big-step semantics (execution on the first
processor first until the synchronisation barrier, then the second, etc.) The proof
is then done by induction on the derivation.

Lemma 6. * is confluent.

The small-step semantics verifies the diamond property: if from one state two
steps are possible, they can only be local executions on two di↵erent processors.
Since the executions are independent within a super-step, we can reach a common
state by executing the other computation.

We give for measure of di�culty of the proofs, the number of needed coq’s
lines. This is not perfect but easy to count. We compare these numbers to two
other developments: (1) the certified C compiler of [15] without the memory
model; (2) the IMP core language of [17]. We have the following results:

Language def Rules Lemmas: 1 2 3 4 5 6

bsp-why-ml 440 696 170 307 65 53 546 270

CompCert 513 1700 1200 no sense 500 undef 1800 undef

IMP 30 60 12 no sense 14 8 53 11

For our case, confluence is easier to prove. Our language definition and the
rules contain our own memory model hence a bigger size. Proving that the local
(sequential) rules +i are deterministic takes approximately 40 lines. That indi-
cates that the use of the bsp model involves a 4 times increase in the size of the
proof. Using the big-step semantics, for exclusivity of finite and infinite sequential
evaluations, 20 lines are needed: for bsp it is 3 times bigger. For the equivalence
of the semantics of sequential programs, 115 lines are needed: 5 times bigger. In
conclusion, applying this work to the real-world semantics of CompCert unfor-
tunately seems to be a hard task; It would roughly take 4 times longer and thus
need the work of a team bigger than just two researchers.

5 Related Work

To our knowledge, the first work on a formal operational semantic of bsp is
[14]: the author gives a small-step semantics using its own primitives of its own
core language. Neither mechanised work nor applications have been done. The
interests and examples of the use of mechanised semantics for certified program
verifiers are given in [16]. In [11], the author gives a mechanised proof of the
results of the weakest preconditions calculus used in why. A mechanised big-
step semantics of why is given. The author used massively dependent types
whereas we choose a simple model of the language in the spirit of [15].

Christiano Braga
97

Mechanised Semantics of BSP Routines with Subgroup Synchronisation 15

Di↵erent approaches for proofs of bsp programs have been studied. In [10],
we presented the correctness of a classical numerical computation using a mech-
anised operational semantics. In this work, however, we did not study subgroup
synchronisation which is necessary to take into account mpi’s collective opera-
tors. The used of continuations also permits to express easily the synchronisation
of subgroups of processors. We recall that subgroups are necessary to express
many mpi’s operators and also allow to write more e�cient programs —notable
on hierarchical modern architectures, that is clusters of multi-cores. The deriva-
tion of imperative bsp programs using the Hoare’s axiom semantics has also
been studied in [6, 23]. More recently, these works were extended for subgroup
synchronisation in [22]. All of these approaches lack of mechanised proofs.

Another work on concurrent threading with barriers is [12]. The authors have
developed and proved sound in coq a concurrent separation logic for barriers of
threads. The authors also showcase a program verification toolset that automat-
ically applies the logic rules (Hoare logic) and discharges the associated proof
obligations. It is thus a work for derivation of formal specification into correct
parallel programs. The drawback is that only programs with a predefined con-
stant number of threads can be considered. For hpc, we prefer to have correct
programs for an unknown number of processors.

Studying mpi is challenging due to the number of routines, their concurrent
nature and the lack of formal specifications. Even if some works exist [18], some
cases are not taken into account because of too much dependence on the archi-
tecture. This enormous number of routines in the api makes it di�cult to trust
any formal specification of a complete mpi. Moreover, a large number of mpi pro-
grams use only global operations [5] which have an understandable semantics.

6 Conclusion

In this paper, we defined di↵erent operational semantics, in coq, for a bsp kernel
language with subgroup synchronisation. The semantics were proved confluent
and equivalent. The big-step semantics used di↵erent kinds of value to express
the di↵erent situations of the program during its execution: exception, true value
or synchronisation of a subgroup. The small-step semantics used novel continu-
ations to express more easily the synchronisation mechanism of the bsp model.
The proofs were mechanically checked in coq. The semantics can be used as a
basis for verification tools of bsp, as well as for mpi algorithms relying on collec-
tive operations. Studying mechanical semantics in coq of a core language allows
to measure the di�culty to move to a real-world parallel language. Confluence
is an important property that makes easier code analysis and debugging.

The semantics will be used to prove the transformations of bsp-why. Other
roads of work include the possibility to prove compilers for bsp programs, as
well as the verification of tools translating c or java to bsp-why-ml. We will
also work on code analysis for optimisation, for example, to find patterns that
can used subgroups synchronisation in place of global barriers.

Christiano Braga
98

16 Jean Fortin and Frédéric Gava

References

1. A. Appel and S. Blazy. Separation Logic for Small-Step Cminor. In Theorem Prov-
ing in Higher Order Logics (TPHOLs), volume 4732 of LNCS, pages 5–21. 2007.

2. R. H. Bisseling. Parallel Scientific Computation. A Structured Approach using
bsp and mpi. Oxford University Press, 2004.

3. R. L. Bocchino Jr., V. S. Adve, and M. Snir. Parallel Programming Must be
Deterministic by Default. In USENIX, Hot Topics in Parallelism. 2009.

4. O. Bonorden, B. Judoiink, I. von Otte, and O. Rieping. The Paderborn University
bsp (pub) Library. Parallel Computing, 29(2):187–207, 2003.

5. F. Cappello, A. Guermouche, and M. Snir. On Communication Determinism in hpc

Applications. In Comput. Comms. and Networks (ICCCN), pages 1–8. IEEE, 2010.
6. Y. Chen and W. Sanders. Top-Down Design of Bulk-Synchronous Parallel

Programs. Parallel Processing Letters, 13(3):389–400, 2003.
7. J.-C. Filliâtre and C. Marché. The why/Krakatoa/Caduceus Platform for Deduc-

tive Program Verification. In Computer Aided Verification (CAV), LNCS. 2007.
8. J. Fortin. bsp-why: a Tool for Deductive Verification of bsp Programs; Machine-

checked Semantics and Application. PhD thesis, University of Paris-East, 2013.
9. J. Fortin and F. Gava. bsp-why: An Intermediate Language for Deductive

Verification of bsp Programs. In HLPP, pages 35–44. ACM, 2010.
10. F. Gava and J.Fortin. Two Formal Semantics of a Subset of the pub. In Parallel,

Distributed and Network-Based Processing (PDP). IEEE Press, 2009.
11. P. Herms. Certification of a Chain for Deductive Verification. coq Workshop. 2010.
12. A. Hobor and C. Gherghina. Barriers in Concurrent Separation Logic: Now With

Tool Support! Logical Methods in Computer Science, 8(2), 2012.
13. Q. Hou, et al. BSGP: bsp gpu Programming. ACM Trans. Graph., 27(3), 2008.
14. D. S. Lecomber. Methods of bsp Programming. PhD thesis, Oxford. 1998.
15. X. Leroy. Formal Verification of a Realistic Compiler. Comm. of the ACM,

52(7):107-115, 2009.
16. X. Leroy. Mechanized Semantics: with Applications to Program Proof and

Compiler Verification In Logics and Languages for Reliability and Security, p.
195-224. 2010.

17. X. Leroy and H. Grall. Coinductive Big-step Operational Semantics. Inf. Comput.,
207(2):284–304, 2009.

18. G. Gopalakrishnan, et al. Formal Specification of mpi: Case study in Specifying a
Practical Concurrent Programming api. Sci. Comput. Program., 76(2):65-81, 2011.

19. Z. Merali. Computational Science: Error, Why Scientific Programming does not
Compute. Nature, 467(7317):775–777, 2010.

20. D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers about
bsp. Scientific Programming, 6(3):249–274, 1997.

21. M. Snir and W. Gropp. mpi the Complete Reference. MIT Press, 1998.
22. A. Stewart. A Programming Model for bsp with Partitioned Synchronisation.

Formal Asp. Comput., 23(4):421–432, 2011.
23. A. Stewart, M. Clint, and J. Gabarró. Axiomatic Frameworks for Developing

bsp-Style Programs. Parallel Algorithms and Applications, 14:271–292, 2000.
24. J. Tesson and F. Loulergue. Formal Semantics for the drma Programming Style

Subset of the bsplib Library. In PPAM, n. 4967 of LNCS, pages 1122–1129. 2007.
25. A. N. Yzelman and R. H. Bisseling. An Object-oriented bsp Library for Multicore

Programming. Concur. and Comput.: Pract. and Exp., 24(5):533–553, 2012.

Christiano Braga
99

Formalization of Zsyntax to Reason about
Molecular Pathways in HOL4

Sohaib Ahmad1, Osman Hasan1, Umair Siddique1, and Sofiéne Tahar2

1 School of Electrical Engineering and Computer Science (SEECS)
National University of Sciences and Technology (NUST)

Islamabad, Pakistan
{11mseesahmad,osman.hasan,umair.siddique}@seecs.nust.edu.pk

2 Department of Electrical and Computer Engineering
Concordia University

Montreal, Quebec, Canada
tahar@ece.concordia.ca

Abstract. The behavioral characterization of biological organisms is a
fundamental requirement for both the understanding of the physiological
properties and potential drug designs. One of the most widely used ap-
proaches in this domain is molecular pathways, which o↵ers a systematic
way to represent and analyze complex biological systems. Traditionally,
such pathways are analyzed using paper-and-pencil based proofs and
simulations. However, these methods cannot ascertain accurate analysis,
which is a serious drawback for safety-critical applications (e.g., analy-
sis of cancer cells and cerebral malarial network). In order to overcome
these limitations, we recently proposed to formally reason about molec-
ular pathways within the sound core of a theorem prover. As a first step
towards this direction, we formally expressed three logical operators and
four inference rules of Zsyntax , which is a deduction language for molec-
ular pathways. In the current paper, we extend this formalization by
verifying a couple of behavioral properties of Zsyntax based deduction
using the HOL4 theorem prover. This verification not only ensures the
correctness of our formalization of Zsyntax but also facilitates its usage
for the formal reasoning about molecular pathways. For illustration pur-
poses, we formally analyze a molecular reaction of the glycolytic pathway
leading from D-Glucose to Fructose-1,6-bisphosphate.

1 Introduction

Molecular biology is extensively used to construct models of biological processes
in the form of networks or pathways, such as protein-protein interaction net-
works and signaling pathways. The analysis of these biological networks, usually
referred to as biological regulatory networks (BRNs) or gene regulatory networks
(GRNs) [10], is based on the principles of molecular biology to understand the
dynamics of complex living organisms. Moreover, the analysis of molecular path-
ways plays a vital role in investigating the treatment of various human infectious

Christiano Braga
100

2

diseases and future drug design targets. For example, the analysis of BRNs has
been recently used to predict treatment decisions for sepsis patients [15].

Traditionally, the molecular biology based analysis is carried out by biolo-
gists in the form of wet-lab experiments (e.g. [7, 13]). These experiments, despite
being very slow and expensive, do not ensure accurate results due to the inability
to accurately characterize the complex biological processes in an experimental
setting. Other alternatives for deducing molecular reactions include paper-and-
pencil proof methods (e.g. using Boolean modeling [27] or kinetic logic [28]) or
computer-based techniques (e.g. [29]) for analyzing molecular biology problems.
The manual proofs become quite tedious for large systems, where the calculation
of unknown parameters takes several hundred proof steps, and are thus prone
to human errors. The computer-based methods consist of graph theoretic tech-
niques [21], Petri nets [11] and model checking [3]. These approaches have shown
very promising results in many applications of molecular biology (e.g. [8, 14]).
However, these methods are not generic and hence have been used to describe
some specific areas of molecular biology [4]. Moreover, the inherent state-space
explosion problem of model checking [20] limits the scope of this success only to
systems where the biological entities can acquire a small set of possible levels.

Theorem proving [12], i.e., a widely used formal methods technique, does not
su↵er from the state-space explosion problem of model checking, and has also
been advocated for conducting molecular biology based analysis [30]. The main
idea behind theorem proving is to construct a computer-based mathematical
model of the given system and then verify the properties of interest using deduc-
tive reasoning. The foremost requirement for conducting the theorem proving
based analysis of any system is to formalize the mathematical or logical founda-
tions required to model and analyze that system in an appropriate logic. There
have been several attempts to formalize the foundations of molecular biology.
For example, the earliest axiomatization even dates back to 1937 [31] and other
e↵orts related to the formalization of biology are presented in [32, 25]. Recent
formalizations, based on K -Calculus [6] and ⇡-Calculus [22–24], also include
some formal reasoning support for biological systems. But the understanding
and utilization of these techniques is very cumbersome for a working biologist
as highlighted by Fontana in [9].

In order to develop a biologist friendly formal deduction framework for rea-
soning about molecular reactions, we propose to formalize the Zsyntax [4] lan-
guage in higher-order logic. Zsyntax is a formal language that supports modeling
and logical deductions about any biological process. The main strength of Zsyn-
tax is its biologist-centered nature as its operators and inference rules have been
designed in such a way that they are understandable by the biologists. Tradi-
tionally, logical deductions about biological processes, expressed in Zsyntax ,
were done manually based on the paper-and-pencil based approach. This limits
the usage of Zsyntax to smaller problems and also makes the deduction process
error-prone due to the human involvement. As a first step towards overcom-
ing this limitation, we formalized the logical operators and inference rules of
Zsyntax in higher-order logic [2]. In the current paper, we build upon these for-

Christiano Braga
101

3

mal definitions to verify a couple of key behavioral properties of Zsyntax based
molecular pathways using the HOL4 theorem prover. The formal verification of
these properties raises the confidence level in our definitions of Zsyntax opera-
tors and inference rules, which have complex interrelationships. Moreover, these
formally verified properties can be used to facilitate the formal reasoning about
chemical reactions at the molecular level. In order to illustrate the usefulness and
e↵ectiveness of our formalization for analyzing real-world problems in molecular
biology, we present the formal analysis of a molecular reaction of the glycolytic
pathway leading from D-Glucose to Fructose-1,6-bisphosphate [4].

Our current framework handles static reactions but it can be further extended
to study the reaction kinetics [4] due to the flexibility of Zsyntax . The main
motivation behind using higher-order-logic theorem proving in our work is to
be able to leverage upon the high expressiveness of higher-order logic and thus
reason about di↵erential equations and probabilistic properties, which form an
integral part of reaction kinetics. However, the scope of the current paper is on
the formalization of Zsyntax based deduction calculus for molecular pathways
but this formalization can later be extended to support reaction kinetics as well
because it is done in a higher-order-logic theorem prover.

The rest of the paper is organized as follows: Section 2 provides an introduc-
tion to Zsyntax and the HOL4 theorem prover. The higher-order-logic formaliza-
tion of Zsyntax operators and inference rules using HOL4 is described in Section
3. This is followed by the descriptions of the behavioral properties of Zsyntax
along with their formal proof sketches in Section 4. The illustrative case study
on the glycolytic pathway is presented in Section 4. We conclude the paper in
Section 5 while highlighting some interesting potential applications of our work.

2 Preliminaries

2.1 Zsyntax

Zsyntax [4] exploits the analogy between biological processes and logical deduc-
tion. Some of the key features of Zsyntax are: 1) the ability to express molecular
reactions in a mathematical way; 2) heuristic nature, i.e., if the conclusion of a
reaction is known, then one can deduce the missing data from the initialization
data; 3) computer implementable semantics. Zsyntax consists of the following
three operators:
Z-Interaction: The interaction of two molecules is expressed by the Z-Interaction
(⇤) operator. In biological reactions, Z-interaction is not associative.
Z-Conjunction: The aggregate of same or di↵erent molecules (not necessarily
interacting with each other) is formed using the Z-Conjunction (&) operator.
Z-Conjunction is fully associative.
Z-Conditional: A path from A to B under the condition C is expressed using
the Z-Conditional (!) operator as: A ! B if there is a C that allows it.

Zsyntax supports four inference rules, given in Table 1, that play a vital role
in deducing the outcomes of biological reactions:

Christiano Braga
102

4

Table 1. Zsyntax Inference Rules

Inference Rules Definition

Elimination of Z-conditional(!E) if C ` (A ! B) and (D ` A) then (C&D ` B)
Introduction of Z-conditional(!I) C&A ` B then C ` (A ! B)
Elimination of Z-conjunction(&E) C ` (A&B) then (C ` A) and (C ` B)
Introduction of Z-conjunction(&I) (C ` A) and (D ` B) then (C&D) ` (A&B)

Besides the regular formulas that can be derived based on the above men-
tioned operators and inference rule, Zsyntax also makes use of Empirically Valid

Formulae (EVF). These EVFs basically represent the non-logical axioms of
molecular biology and are assumed to be validated empirically in the lab.

It has been shown that any biological reaction can be mapped and their final
outcomes can be derived using the above mentioned three operators and four
inference rules [4]. For example, consider a scenario in which three molecules
A, B and C react with each other to yield another molecule Z. This can be
represented as a Zsyntax theorem as follows:

A & B & C ` Z

The Z-Conjunction operator & is used to represent the given aggregate of mol-
ecules and then the inference rules from Table 1 are applied on these molecules
along with some EVFs (chemical reactions verified in laboratories) to obtain the
final product Z. For the above example, these EVFs could be:

A * B ! X and X * C ! Z

meaning that A will react with B to yield X and X in return will react with C
to yield the final product Z.

The main contribution of our paper is the formal verification of the Zsyntax
based deduction method based on the higher-order-logic formalization of the
above-mentioned operators and inference rules using the HOL4 theorem prover.
This work will in turn facilitate the derivation of biological reactions within the
sound core of HOL4.

2.2 HOL4 Theorem Prover

HOL4 is an interactive theorem prover developed at the University of Cambridge,
UK, for conducting proofs in higher-order logic. It utilizes the simple type theory
of Church [5] along with Hindley-Milner polymorphism [17] to implement higher-
order logic. HOL4 has been successfully used as a verification framework for
both software and hardware as well as a platform for the formalization of pure
mathematics.

In order to ensure secure theorem proving, the logic in the HOL4 system is
represented in the strongly-typed functional programming language ML [19]. An
ML abstract data type is used to represent higher-order logic theorems and the

Christiano Braga
103

5

only way to interact with the theorem prover is by executing ML procedures
that operate on values of these data types. The HOL4 core consists of only 5
basic axioms and 8 primitive inference rules, which are implemented as ML func-
tions. Soundness is assured as every new theorem must be verified by applying
these basic axioms and primitive inference rules or any other previously verified
theorems/inference rules.

A HOL4 theory is a collection of valid HOL4 types, constants, axioms and
theorems, and is usually stored as a file in computers. Users can reload a HOL4
theory in the HOL4 system and utilize the corresponding definitions and theo-
rems right away. Various mathematical concepts have been formalized and saved
as HOL4 theories by the HOL4 users. We utilize the HOL4 theories of Booleans,
arithmetics and lists extensively in our work. Table 2 provides the mathemati-
cal interpretations of some HOL4 symbols and functions frequently used in this
paper.

Table 2. HOL4 Symbols and Functions

HOL Symbol Standard Symbol Meaning

^ and Logical and
_ or Logical or
¬ not Logical negation
:: cons Adds a new element to a list

++ append Joins two lists together
HD L head Head element of list L
TL L tail Tail of list L
EL n L element n

th element of list L
MEM a L member True if a is a member of list L
LENGTH L length Length of list L

FST fst (a, b) = a First component of a pair
SND snd (a, b) = b Second component of a pair
SUC n n+ 1 Successor of a num

3 Formalization of Zsyntax

We modeled the molecules as variables of arbitrary data types (↵) in our formal-
ization of Zsyntax [2]. A list of molecules (↵ list) represents the Z-Interaction
or a molecular reaction among the elements of the list. The Z-Conjunction op-
erator forms a collection of non-reacting molecules and can now be formalized
as a list of list of molecules (↵ list list). This data type allows us to apply
the Z-Conjunction operator between individual molecules (a list with a single
element) or multiple interacting molecules (a list with multiple elements). The
Z-Conditional operator is used to update the status of molecules, i.e., generate

Christiano Braga
104

6

a new set of molecules based on the available EVFs (wet-lab verified reactions).
Each EVF is modeled in our formalization as a pair (↵ list # ↵ list list) where
the first element is a list of molecules (↵ list) indicating the reacting molecules
and the second element is a list of list of molecules (↵ list list) indicating the
resulting set of molecules after the reaction between the molecules of the first
element of the pair has taken place. A collection of EVFs is represented as a list
of EVFs ((↵ list # ↵ list list)list) in our formalization.

The elimination of Z-Conditional rule is the same as the elimination of im-
plication rule (Modus Ponens) in propositional logic and thus it can be directly
handled by the HOL4 simplification and rewriting rules. Similarly, the introduc-
tion of Z-Conditional rule can also be inferred from the rules of propositional
logic and can be handled by the HOL4 system without the introduction of a
new inference rule. The elimination of the Z-Conjunction rule allows us to infer
the presence of a single molecule from an aggregate of inferred molecules. This
rule is usually applied at the end of the reaction to check if the desired molecule
has been obtained. Based on our data types, described above, this rule can be
formalized in HOL4 by returning a particular molecule from a list of molecules:

Definition 1. Elimination of Z-Conjunction Rule
` 8 L m. z conj elim L m = if MEM m L then [m] else L

The function z conj elim has the data type (↵ list ! ↵ ! ↵ list). The
above function returns the given element as a single element in a list if it is a
member of the given list. Otherwise, it returns the argument list as it is.

The introduction of Z-Conjunction rule along with Z-Interaction allows us to
perform a reaction between any of the available molecules during the experiment.
Based on our data types, this rule is equivalent to the append operation of lists.

Definition 2. Intro of Z-Conjunction and Z-Interaction
` 8 L m n. z conj int L m n = FLAT [EL m L; EL n L]::L

The above definition has the data type (↵ list list ! num ! num !
↵ list list). The HOL4 functions FLAT and EL are used to flatten a list of list
to a single list and return a particular element of a list, respectively. Thus, the
function z conj int takes a list L and appends the list of two of its elements m
and n on its head.

Based on the laws of stoichiometry [4], the reacting molecules using the Z-
Conjunction operator have to be deleted from the aggregate of molecules. The
following function represents this behavior in our formalization:

Definition 3. Reactants Deletion
` 8 L m n. z del L m n = if m > n

then del (del L m) n

else del (del L n) m

Here the function del L m deletes the element at index m of the list L and returns
the updated list as follows:

Christiano Braga
105

7

Definition 4. Element Deletion
` 8 L. del L 0 = TL L ^

8 L n. del L (n + 1) = HD L::del (TL L) n

Thus, the function z del L m n deletes the m

th and n

th elements of the given
list L. We delete the higher indexed element before the lower one in order to
make sure that the first element deletion does not e↵ect the index of the second
element that is required to be deleted. The above data types and definitions can
be used to formalize any molecular pathway (which is expressible using Zsyntax
) and reason about its correctness within the sound core of the HOL4 theorem
prover.

Our main objective is to develop a framework that accepts a list of initial
molecules and possible EVFs and allows the user to formally deduce the final
outcomes of the corresponding biological experiment. In this regard, we first
develop a function that compares a particular combination of molecules with all
the EVFs and upon finding a match introduces the newly formed molecule in
the initial list and deletes the consumed instances.

Definition 5. EVF Matching
` 8 L E m n.
z EVF L E 0 m n =

if FST (EL 0 E) = HD L
then (T,z del (TL L ++ SND (EL 0 E)) m n
else (F,TL L) ^

8 L E p m n.
z EVF L E (p + 1) m n =

if FST (EL (p + 1) E) = HD L
then (T,z del (TL ++ SND (EL (p + 1) E)) m n

else z EVF L E p m n

The data type of the function z EVF is: (↵ list list ! (↵ list#↵ list list) list
! num ! num ! num ! bool # ↵ list list). The function LENGTH

returns the length of a list. The function z EVF takes a list of molecules L and
recursively checks its head, or the top most element, against all elements of
the EVF list E. If there is no match, then the function returns a pair with its
first element being false (F), indicating that no match occurred, and the second
element equals the tail of the input list L. Otherwise, if a match is found then
the function replaces the head of list L with the second element of the EVF pair
and deletes the matched elements from the initial list as these elements have
already been consumed. This modified list is then returned along with a true (T)
value, which acts as a flag to indicate an element replacement.

Next, in order to deduce the final outcome of the experiment, we have to call
the function z EVF recursively by placing all the possible combinations of the
given molecules at the head of list L one by one.

Definition 6. Recursive Function for calling z EVF
` 8 L E m n. z deduction recur L E m n 0 = (T,L) ^

8 L E m n q. z deduction recur L E m n (q + 1) =

Christiano Braga
106

8

if FST (z recur2 L E m n) , T
then z deduction recur (SND (z recur2 L E m n)) E

(LENGTH (SND (z recur2 L E m n)) - 1)
(LENGTH (SND (z recur2 L E m n)) - 1) q

else (T,SND (z recur2 L E (LENGTH L - 1) (LENGTH L - 1)))

The data type of function z deduction recur is (↵ list list ! (↵ list #↵

list list) list ! num ! num ! num ! bool # ↵ list list). It accepts
the list of molecules L and the list of EVFs E along with their corresponding
indices m and n, respectively, and a recursion variable q. It returns a pair with
the first element being a Boolean flag, which becomes true when there are no
more remaining reactions, and the second element being the list of molecules rep-
resenting the post-reaction state. The function z decuction recur recursively
calls the function z EVF for all possible molecule combinations using the function
z recur2, which in turn uses the function z recur1 for this purpose. The argu-
ments m and n of functions z recur1 and z recur2 are initialized with LENGTH

L and the sole purpose of these functions is to exhaust all possible combinations
of the variables m and n for the function z conj int, given in Definition 5. The
formalization of the above mentioned functions and more details about their
behavior can be obtained from [1, 2].

In order to model a complete experiment for a given list of molecules, the
variable of recursion in the function z deduction recur should be assigned a
value that is greater than the total number of EVFs so that the application
of none of the EVF is missed. Similarly, the variables m and n of the function
z deduction recur should be assigned the values of (LENGTH L - 1) to ensure
that all combinations of the list L are checked against the elements of the list of
EVFs. Thus, the final deduction function for Zsyntax can be expressed in HOL4
as follows:

Definition 7. Final Deduction Function for Zsyntax
` 8 L E. z deduction L E =

SND (z deduction recur L E (LENGTH L - 1) (LENGTH L - 1) LENGTH E)

The data type of function z deduction is (↵ list list ! (↵ list # ↵ list list)
list ! ↵ list list). It accepts the initial list of molecules and the list of valid
EVFs and returns a list of final outcomes of the experiment under the given
conditions, by calling the function z decuction recur.

The formal definitions, presented in this section, allow us to recursively check
all the possible combinations of the initial molecules against the first elements of
given EVFs. In case of a match, the corresponding EVF is applied by replacing
the reacting molecules with their outcome in the molecule list and the process
restarts again to find other possible matches from the new list of molecules.
This process terminates when no more molecules are found to be reacting with
each other and at this point we will have the list of post-reaction molecules. The
desired result can then be obtained from these molecules using the elimination of
Z-Conjunction rule, given in Definition 1. The main benefit of the development,
presented in this section, is that it facilitates automated reasoning about the
molecular biological experiments within the sound core of a theorem prover.

Christiano Braga
107

9

4 Formal Verification of Zsyntax Properties

In order to ensure the correctness and soundness of our definitions, we use them
to verify a couple of properties representing the most important characteristics
of molecular reactions. The first property deals with the case when there is no
combination of reacting molecules in the list of molecules and in this case we
verify that after the Zsyntax based experiment execution both the pre and post-
experiment lists of molecules are the same. The second property captures the
behavior of the scenario when the given list of molecules contains only one set
of reacting molecules and in this case we verify that after the Zsyntax based
experiment execution the post-experiment list of molecules contains the product
of the reacting molecules minus its reactants along with the remaining molecules
provided initially. We represent these scenarios as formally specified properties
in higher-order logic using our formal definitions, given in the previous section.
These properties are then formally verified in HOL4.

4.1 Scenario 1: No Reaction

We verify the following theorem for the first scenario:

Theorem 1.
` 8 E L.

⇠(NULL E) ^ ⇠(NULL L) ^
(8 a m n. MEM a E ^ m < LENGTH L ^ n < LENGTH L

) ⇠MEM (FST a) [HD (z conj int L m n)])

) z deduction L E = L

The variables E and L represent the lists of EVFs and molecules, respectively.
The first two assumptions ensure that both of these lists have to be non-empty,
which are the pre-conditions for a molecular reaction to take place. The next
conjunct in the assumption list of Theorem 1 represents the formalization of the
no-reaction-possibility condition as according to this condition no first element
of any pair in the list of EVFs E is a member of the head of the list formed
by the function z conj int, which picks the elements corresponding to the two
given indices (that range over the complete length of the list of molecules L) and
appends them as a flattened single element on the given list L. This constraint
is quantified for all variables a, m and n and thus ensures that no combination of
molecules in the list L matches any one of the first elements of the EVF list E.
Thus, under this constraint, no reaction can take place for the given lists L and
E. The conclusion of Theorem 1 represents the scenario that the output of our
formalization of Zsyntax based reaction would not make any change in the given
molecule list L and thus verifies that under the no-reaction-possibility condition
our formalization also did not update the molecule list.

The verification of this theorem is interactively done by ensuring the no-
update scenario for all molecule manipulation functions, i.e., z EVF, z recur1,
z recur2 and z deduction recur, under the no-reaction-possibility condition
[1]. For example, the corresponding theorem for z EVF function is as follows:

Christiano Braga
108

10

Theorem 2.
` 8 E L m n P.

⇠(NULL E) ^ ⇠(NULL L) ^ m < LENGTH L ^ n < LENGTH L ^
P < LENGTH E ^ (8 a. MEM a E) ⇠MEM (FST a) [HD L])

) z EVF L E P m n = (F,TL L)

The assumptions of above theorem ensure that both lists L and E are not
empty and the arguments of the function z EVF are bounded by the LENGTH of L
and E. The last conjunct in the assumption list models the no-reaction-possibility
condition in the context of the function z EVF. The conclusion of the theorem
states that no update takes place under the given conditions by ensuring that the
function z EVF returns a pair with the first element being F (False), representing
no match, and the second element being equal to TL L, which is actually equal
to the original list L since an element was appended on head of L by the parent
function.

4.2 Scenario 2: Single Reaction

The second scenario complements the first scenario and caters for the case when
a reaction is possible and we verify that the molecules list is indeed updated
based on the outcomes of that reaction. In order to be able to track the reaction
and the corresponding update, we limit ourselves to only one reaction in this
scenario but since we verify a generic theorem (universally quantified) for all
possibilities our result can be extended to cater for multiple reactions as well.
The theorem corresponding to this scenario 2 is as follows:

Theorem 3.
` 8 E L z m’ n’.

⇠NULL E ^ ⇠NULL (SND (EL z E)) ^ 1 < LENGTH L ^
m’ 6= n’ ^ m’ < LENGTH L ^ n’ < LENGTH L ^ z < LENGTH E ^
ALL DISTINCT (L ++ SND (EL z E)) ^
(8 a b. a 6= b) FST (EL a E) 6= FST (EL b E)) ^
(8 K m n. m < LENGTH K ^ n < LENGTH K ^
(8 j. MEM j K) MEM j L _ 9 q. MEM q E ^ MEM j (SND q)))

if (EL m K = EL m’ L) ^ (EL n K = EL n’ L)
then HD (z conj int K m n) = FST (EL z E)
else 8 a. MEM a E) FST a 6= HD (z conj int K m n))

) z deduction L E = z del (L ++ SND (EL z E)) m’ n’

The first two assumptions ensure that neither the list E, i.e., the list of EVFs,
nor the second element of the pair at index z of the list E is empty. Similarly, the
third assumption ensures that the list L, i.e., the list of initial molecules, contains
at least two elements. These constraints ensure that we can have at least one
reaction with the resultant being available at index z of the EVF list. The next
four assumptions ensure that the indices m’ and n’ are distinct and these along
with the index z fall within the range of elements of their respective lists of
molecules L or EVFs E. According to the next assumption, i.e., ALL DISTINCT

Christiano Braga
109

11

(L ++ SND (EL z E)), all elements of the list L and the resulting molecules of
the EVF at index z are distinct, i.e., no molecule can be found two or more times
in the initial list L or the post-reaction list E. The next assumption, i.e., (8 a b.

a 6= b) FST (EL a E) 6= FST (EL b E)), guarantees that all first elements
of the pairs in list E are also distinct. Note that this is di↵erent from the previous
condition since the list E contains pairs as elements and the uniqueness of the
pairs does not ensure the uniqueness of its first elements. The final condition
models the presence of only one pair of reactants scenario. According to the
assumptions of this implication condition, the variable K is used to represent a
list that only has elements from list L or the second elements of the pairs in list E.
Thus, it models the molecules list in a live experiment. Moreover, the variables
m and n represent the indices of the list K and thus they must have a value less
than the total elements in the list K (since the first element is indexed 0 in the
HOL4 formalization of lists). Now, if the indices m and n become equal to m’

and n’, respectively, then the head element of the z conj int K m n would be
equal to FST of EL z E. Otherwise, for all other values of indices m and n, no
combination of molecules obtained by HD(Z conj int K m n) would be equal
to the first element of any pair of the list E. Thus, the if case ensures that the
variables m’ and n’ point to the reacting molecules in the list of molecules L and
the variable z points to their corresponding resultant molecule in the EVF list.
Moreover, the else case ensures that there is only one set of reacting molecules
in the list L. The conclusion of the theorem formally describes the scenario when
the resulting element, available at the location z of the EVF list, is appended to
the list of molecules while the elements available at the indices m’ and n’ of L
are removed during the execution of the function z deduction on the given lists
L and E.

The proof of Theorem 3 is again based on verifying sub-goals corresponding
to this scenario for all the sub-functions, i.e., z EVF, z recur1, z recur2 and
z deduction recur. The formal reasoning for all of these proofs involved various
properties of the del function for a list element and some of the key theorems
developed for this purpose in our development are given in Table 3 and more
details can be found in [1].

The formalization described in this section consumed about 500 man hours
and approximately 2000 lines of HOL4 code, mainly due to the undecidable
nature of higher-order logic. However, this e↵ort raises the confidence level on
the correctness of our formalization of Zsyntax . This fact distinguishes our
work from all the other formal methods based techniques used in the context of
BRNs, where the deduction rules are applied without being formally checked.
Moreover, our formally verified theorems can also be used in the formal analysis
of molecular pathways. The assumptions of these theorems provide very useful
insights about the constraints under which a reaction or no reaction would take
place. To the best of our knowledge, this is the first time that properties, like
Theorems 1 and 3, about a molecular pathway experiment have been formally
verified. Thus, the identification of these properties and their formal verification
both constitute contributions of this paper.

Christiano Braga
110

12

Table 3. Formally Verified Properties of the del Function

Signature Theorem

del ASSOC THM ` 8 L E m. m < LENGTH L
) del (L ++ E) m = del L m ++ E

del LENGTH THM ` 8 L E m. m < LENGTH L
) LENGTH (del L m) = LENGTH L� 1

del EL THM ` 8 L m n. m < n ^ n < LENGTH L ^ 1 < LENGTH L
) EL m L = EL m (del L n)

del DISTINCT THM ` 8 L n. n < LENGTH L ^ ALL DISTINCT L
) ALL DISTINCT (del L n)

del MEM THM ` 8 L a m. m < LENGTH L ^ MEM a (del L m)
) MEM a L

del NOT MEM THM ` 8 L m. ALL DISTINCT L ^ m < LENGTH L
)⇠ MEM (EL m L) (del L m)

5 Case Study: Pathway leading to Fructose-1,6-
bisphosphate

Formation of Fructose-1,6-bisphosphate (F1,6P) is an intermediate step in gly-
colysis, i.e., a sequence of enzyme catalyzed reaction that breaks down glucose
and forms pyruvate, which is then used to supply energy to living cells through
the citric acid cycle [18]. In this section, we show how this pathway involving
F1,6P can be formally verified in HOL4 using our formalization of Zsyntax .

The theorem representing the reaction of the glycolytic pathway leading from
D-Glucose to F1,6P [4] can be described in classical Zsyntax format as follows:

Glc & HK & GPI & PFK & ATP & ATP ` F1,6P

Using our formalization, this theorem can be defined in HOL4 as follows:

` DISTINCT [Glc; HK; GPI; PFK; ATP; ADP; G6P; F6P; F16P] =)
(z conj elim (z deduction [[Glc];[HK];[GPI];[PFK];[ATP];[ATP]]

[([Glc;HK],[[HK;Glc]]);
([HK;Glc;ATP],[[HK];[G6P];[ADP]]);
([G6P;GPI],[[F6P];[GPI]]);
([F6P;PFK],[[PFK;F6P]]);
([PFK;F6P;ATP],[[PFK];[F16P];[ADP]])]) [F16P]

= [[F16P]]

The first list argument of the function z deduction is the initial aggregate
(IA) of molecules that are available for reaction and the second list argument of
the function z deduction represents the valid EVFs for this reaction. The EVFs
mentioned in the form of pairs and involving the molecules (G6P, F6P, etc.) are
obtained from wet lab experiments, as reported in [4]. The DISTINCT function
used above makes sure that all molecule variables (from initial aggregate and
EVFs) used in this theorem represent distinct molecules. Thus, the function

Christiano Braga
111

13

z deduction would deduce the final list of molecules under these particular
conditions. The function z conj elim will return the molecule F1,6P if it is
present in the post-reaction list of molecules, as previously described.

Figure 1 shows the pathway leading to F1,6P in a step-wise manner. The
gray-coloured circles show the chemical interactions and black colour represents
the desired product in the pathway, whereas each rectangle shows total number
of molecules in the reaction at a given time. It is obvious from the figure that
whenever a reaction yields a product, the reactants get consumed (no longer
remain in the list) hence satisfying the stoichiometry of a reaction.

`Glc HK GPI PFKATP ATP

Glc * HK PFK ATPATP GPI

Glc * HK * ATP PFK ATPGPI

PFK ATPG6P HK ADP GPI

G6P * GPI ATPHK ADP PFK

ATPGPIF6P PFKHK ADP

F6P * PFK ATPGPIADPHK

GPIF6P * PFK *
ATP ADPHK

F1,6P GPI PFK ADPHK ADP

1

2

3

4

5

6

7

Fig. 1. Reaction Representing the Formulation of F1,6P

As part of this work, we also developed a simplifier Z SYNTAX SIMP [1] that
simplifies the proof with a single iteration of the function z deduction recur

and works very e�ciently with the proofs involving our functions. The proof
steps can be completely automated and the proof can be done in one step as
well. However, we have kept the reasoning process manual purposefully as this
way users can observe the status of the reaction at every iteration, which is a

Christiano Braga
112

14

very useful feature to get an insight of what is happening inside a reaction. Each
application of Z SYNTAX SIMP on the reaction, depicted in Figure 1, would result
in moving from a state n to n+ 1.

The verification time required for each iteration step is given in Table 4.
HOL4 was running on a linux based machine (Intel Core i5, 4GB RAM). The
iteration time depends on the total number of molecules (elements of list) present
at a given iteration. Low number of molecules translate to less number of possible
combinations, which in turn leads to less time required to move to the next
iteration.

Table 4. Runtime per Iteration

Iteration Duration (Seconds)

1 ! 2 11.996
2 ! 3 7.376
3 ! 4 12.964
4 ! 5 12.756
5 ! 6 9.240
6 ! 7 0.048

Our HOL4 proof script is available for download [1], and thus can be used
for further developments and analysis of di↵erent molecular pathways. It is im-
portant to note that formalizing Zsyntax and then verifying its properties was
a very tedious e↵ort. However, it took only 10 lines of code to define and verify
the theorem related to the above case study in HOL4, which clearly illustrates
the usefulness of our foundational work.

We have shown that our formalization is capable of modeling molecular re-
actions using Zsyntax inference rules, i.e., given a set of possible EVFs, our
formalism can derive a final aggregate B from an initial aggregate A automat-
ically. In case of a failure to deduce B, the proposed method still provides the
biologist with all the intermediate steps so that one can examine the reaction in
detail and figure out the possible cause of failure.

The evident benefit of our reasoning approach is its automatic nature as
the user does not need to think about the proof steps and which EVFs to apply
where. However, the most useful benefit of the proposed approach is its accuracy
as the theorems are being verified in a formal way using a sound theorem prover.
Thus, there is no risk of human error or wrong application of EVFs. Finally, due
to the computer-based analysis, the proposed approach is much more scalable
than the paper-and-pencil based analysis presented in [4].

6 Conclusion

Most of the existing formal verification research related to molecular biology
has been focussed on using model checking. As a complementary approach, the

Christiano Braga
113

15

primary focus of the current paper is on using a theorem prover for reason-
ing about molecular pathways. The main strength of this approach, compared
to existing model checking related work, is that the underlying methods and
deduction rules can also be formally verified besides the verification of a partic-
ular molecular pathway case. Leveraging upon this strength, we formally verified
two key behavioral properties of molecular pathways based on the Zsyntax lan-
guage, which presents a deduction style formalism for molecular biology in the
most biologist-centered way. Besides ensuring the correctness of our formaliza-
tion of the Zsyntax operators and inference rules, the formally verified properties
also play a vital role in reasoning about molecular pathways in the sound core
of a theorem prover. The practical utilization and e↵ectiveness of the proposed
development has been shown by presenting the automatic analysis of Glycolytic
pathway leading to Fructose-1,6-bisphosphate.

The proposed work opens the doors to many new directions of research.
Firstly, we are developing a GUI to add more biologist friendly features in it.
Moreover, we are also targeting some larger case studies, such as Dysregulation of
the cell cycle pathway during tumor progression [16] and Fanconi Anemia/Breast
Cancer (FA/BRCA) pathway [26]. Another interesting future direction is to
leverage the high expressiveness of higher-order-logic and utilize calculus and
di↵erential theoretic reasoning to add reaction kinetics support in our formalism.

References

1. S. Ahmad. Formal Reasoning about Molecular Pathways - HOL Proof Script.
http://save.seecs.nust.edu.pk/projects/holsyntax/holzsyntax.html, 2014.

2. S. Ahmad, O. Hasan, and U. Siddique. Towards Formal Reasoning about Molec-
ular Pathways in HOL. In International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises, pages 378–383. IEEE, 2014.

3. C. Baier and J. Katoen. Principles of Model Checking. MIT Press, 2008.
4. G. Boniolo, M. D’Agostino, and P. Di Fiore. Zsyntax: a Formal Language for Molec-

ular Biology with Projected Applications in Text Mining and Biological Prediction.
PloS ONE, 5(3):e9511–1–e9511–12, 2010.

5. A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic
Logic, 5(2):56–68, 1940.

6. V. Danos and C. Laneve. Formal Molecular Biology. Theoretical Computer Science,
325(1):69–110, 2004.

7. N.H. Hunt et al. Immunopathogenesis of Cerebral Malaria. International Journal
for Parasitology, 36(5):569–582, 2006.

8. L. Trilling Fab. Corblin, E. Fanchon. Applications of a Formal Approach to Deci-
pher Discrete Genetic Networks. BMC Bioinformatics, 11(1):385, 2010.

9. W. Fontana. Systems Biology, Models, and Concurrency. SIGPLAN Notices,
43(1):1–2, January 2008.

10. F. Cassez et al. G.Bernot. Semantics of Biological Regulatory Networks. Electronic
Notes Theoretical Computer Science, 180(3):3–14, 2007.

11. Peter J. E. Goss and J. Peccoud. Quantitative Modeling of Stochastic Systems
in Molecular Biology by using Stochastic Petri Nets. Proceedings of the National
Academy of Sciences, 95(12):6750–6755, 1998.

Christiano Braga
114

16

12. J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, 2009.

13. K. Hirayama. Genetic Factors Associated with Development of Cerebral Malaria
and Fibrotic Schistosomiasis. Korean J. Parasitol, 40(4):165–172, Dec 2002.

14. M. Magnin L. Paulevé and O. Roux. Abstract Interpretation of Dynamics of
Biological Regulatory Networks. Electronic Notes Theoretical Computer Science,
272(0):43–56, 2011.

15. C.J. Langmead. Generalized Queries and Bayesian Statistical Model Checking
in Dynamic Bayesian Networks: Application to Personalized Medicine. In Proc.
International Conference on Computational Systems Bioinformatics, pages 201–
212, 2009.

16. R. Maglietta, V. Liuzzi, E. Cattaneo, E. Laczko, A. Piepoli, A. Panza, M. Carella,
O. Palumbo, T. Staiano, F. Bu↵oli, A. Andriulli, G. Marra, and N. Ancona. Molec-
ular Pathways Undergoing Dramatic Transcriptomic Changes During Tumor De-
velopment in the Human Colon. BMC Cancer, 12(1):608, 2012.

17. R. Milner. A Theory of Type Polymorphism in Programming. Journal of Computer
and System Sciences, 17(3):348–375, 1977.

18. D. Nelson. Lehninger Principles of Biochemistry. W.H. Freeman, New York, 2008.
19. L.C. Paulson. ML for the Working Programmer. Cambridge University Press,

1996.
20. R. Pelánek. Fighting State Space Explosion: Review and Evaluation. In Formal

Methods for Industrial Critical Systems, volume 5596 of Lecture Notes in Computer
Science, pages 37–52. Springer, 2008.

21. J. Pospchal and V. Kvasnika. Reaction Graphs and a Construction of Reaction
Networks. Theoretica Chimica Acta, 76(6):423–435, 1990.

22. A. Regev and E. Shapiro. Cells as Computation. Nature, 419:343, 2002.
23. A. Regev and E. Shapiro. The ⇡-Calculus as an Abstraction for Biomolecular

Systems. In Modelling in Molecular Biology, Natural Computing Series, pages
219–266. Springer, 2004.

24. A. Regev, W. Silverman, and E. Y. Shapiro. Representation and Simulation of Bio-
chemical Processes Using the pi-Calculus Process Algebra. In Pacific Symposium
on Biocomputing, pages 459–470, 2001.

25. M. Rizzotti and A. Zanardo. Axiomatization of Genetics. 1. Biological Meaning.
Journal of Theoretical Biology, 118(1):61–71, 1986.

26. A. Rodŕıguez, D. Sosa, L. Torres, B. Molina, S. Fŕıas, and L. Mendoza. A Boolean
Network Model of the FA/BRCA Pathway. Bioinformatics, 28(6):858–866, 2012.

27. L. Thomas and R. d’ Ari. Biological Feedback. CRC Press, USA, 1990.
28. R. Thomas. Kinetic Logic: A Boolean Approach to the Analysis of Complex Reg-

ulatory Systems, volume 29 Lecture Notes in Biomathematics. Springer-Verlag,
1979.

29. J.J Tyson, C.A. Nagy, and B. Novak. The Dynamics of Cell Cycle Regulation.
Bioessays, 24(12):1095–1109, 2002.

30. O. Wolkenhauer, D. Shibata, and M.D. Mesarovic. The Role of Theorem Proving
in Systems Biology. Journal of Theoretical Biology, 300(0):57–61, 2012.

31. J.H. Woodger, A. Tarski, and W.F. Floyd. The Axiomatic Method in Biology. The
University Press, 1937.

32. A. Zanardo and M. Rizzotti. Axiomatization of Genetics 2. Formal Development.
Journal of Theoretical Biology, 118(2):145–152, 1986.

Christiano Braga
115

Towards a Family of Test Selection Criteria for
Symbolic Models of Real-Time Systems

Diego R. Almeida1, Alan Moraes2,3,
Wilkerson L. Andrade2, and Patŕıcia D. L. Machado2

1 IFPE, Afogados da Ingazeira, PE, Brazil
diego.rodrigues@afogados.ifpe.edu.br

2 Software Practices Laboratory (SPLab), UFCG, Campina Grande, PB, Brazil
{wilkerson,patricia}@computacao.ufcg.edu.br

3 Informatics Center, UFPB, João Pessoa, PB, Brazil
alan@ci.ufpb.br

Abstract. In model-based testing, test cases are generated from a spec-
ification model. To avoid an exhaustive search for all possible test cases
that can be obtained, usually an expensive and infeasible activity, test
case generation may be guided by a test selection criterion. The ob-
jective of a test selection criterion is to produce a minimal test suite
and yet e↵ective to reveal faults. However, the choice of a criterion is
not straightforward specially for real-time systems, because most criteria
presented in the literature are general-purpose. Moreover, the relation-
ship between general-purpose and specific criteria for real-time systems
is not clear. In this paper, we investigate the criteria that can be applied
for test case generation in the scope of model-based testing of real-time
systems, specifically of Timed Input-Output Symbolic Transition Sys-
tems (TIOSTS) models. We formalize a family of 19 test selection crite-
ria ordered by strict inclusion relation for TIOSTS models. The family
combines general-purpose data-flow-oriented and transition-based crite-
ria with specific reactive and real-time systems criteria. We also perform
an empirical study to compare the e↵ectiveness of selected criteria. Re-
sults of the empirical study indicate that failure detection capability of
the generated test suite may vary, but di↵erences are not significant for
time failures. We conclude that more e↵ective criteria for the model-
based testing of real-time systems are still needed.

1 Introduction

Model-Based Testing is a testing approach that relies on the design of abstract
models of an application to generate, execute and evaluate tests [10, 22, 27]. It
has been applied with success in industry, with special emphasis in the avionic,
railway and automotive domains [21].

Test case generation algorithms are based on test selection criteria that guide
how to search for test cases and when to stop the test case generation process.
Di↵erent test suites can be generated depending on the chosen test selection
criterion [29]. They may vary in size, behavior coverage and failure detection

Christiano Braga
116

capability. While it is more likely that larger (and possibly with higher model
coverage) test suites have better failure detection capability than smaller (and
possibly with lower model coverage) ones, they are usually more expensive to
manage and to execute. Therefore, test selection criteria need to establish how
to guarantee the generation of test suites that are ultimately cost-e↵ective.

Real-time systems are reactive systems whose behavior is constrained by
time [18]. They usually combine concurrent execution of processes, consequently
the nature of their failures is complex. The testing of these systems should un-
cover time-related faults that may require specific test cases to be exercised.

Most test selection criteria for real-time systems at model level are based on
structural elements of a model behavior and its data usage [14]. Some specific
test selection criteria for real-time systems have been proposed, such as covering
all clock resets and all guard bounds [12]. However, the choice of a criterion is not
straightforward, because the relationship between general-purpose and specific
criteria for real-time systems is not clear [2].

In this paper, we investigate test selection criteria for real-time systems in
the context of model-based testing. We focus on criteria that can be applied to
transition systems, because they are usually the basis for conformance testing of
real-time systems [17,28]. We use Timed Input-Output Symbolic Transition Sys-
tems (TIOSTS) models [5, 6], where system behavior is modeled as a transition
system with data and time symbolically defined.

This paper makes two contributions. First, we formalize a family of 19 crite-
ria partially ordered by strict inclusion relation for TIOSTS models. The fam-
ily combines Transition-Based Criteria, data-flow-oriented criteria,
Reactive Systems Criteria and Real-Time Systems Criteria. We prove
inclusion or incompatibility whenever our family diverges from the known rela-
tionship in other models, because some relation between criteria change when
applied to TIOSTS models.

Second, we conduct a controlled experiment to compare the e↵ectiveness of
selected criteria. The empirical study measures the size, the failure detection ca-
pability and the rate of failures detected by the size of the test suite of di↵erent
criteria. In order to conduct the empirical study, we implemented a selection
of criteria from the family using a depth-first search-based algorithm. Statisti-
cal analyses show that the criteria present di↵erent failure detection capability,
although, significant di↵erences cannot be observed for time-related failures. Fur-
thermore, current specific criteria for real-time systems lack precision, i.e. they
miss important failures, pointing to the need for further research in this area.

The paper is structured as follows. Section 2 introduces the TIOSTS model
and test selection criteria for model-based testing of real-time systems. Section 3
formalizes a family criteria for TIOSTS. Section 4 presents an empirical study
to compare selected criteria. Section 5 discusses related work. Finally, Section 6
presents concluding remarks along with pointers for further research.

Christiano Braga
117

2 Background

This section presents the symbolic model on which this work is based and in-
troduces the concept of test selection criterion in the context of model-based
testing.

2.1 Timed Input-Output Symbolic Transition System Model

Timed Input-Output Symbolic Transition System (TIOSTS) [5,6] is a symbolic
model for real-time systems that handles both data and time. The TIOSTS
model was defined as an extension of two existing models: Timed Automata [3]
and Input-Output Symbolic Transition Systems [15,24]. Basically, a TIOSTS is
an automaton with a finite set of locations where system data and time evolution
are respectively represented by variables and a finite set of clocks. The transitions
of the model are composed of a guard on variables and clocks, an action with
parameters, an assignment of variables, and a set of clocks to reset.

Figure 1 shows an example of TIOSTS that models a machine for refilling a
card for using the subway. Initially, the system is in the Idle location where it
expects the Credit input carrying the desired value to refill, then this value is
saved into the refillValue variable4 and balance is initialized to zero.

Fig. 1. TIOSTS model of a refilling machine

From the Receive location to Verify the client informs the amount to be
credited to the card. This value is accumulated in the balance variable and
the clock is set to zero. If the current balance is less than the desired value
to refill, then the Receive location is reached again and the MissingValue

output is emitted for informing the remaining value (the condition value =

4 Action parameters have local scope, thus their values must be stored in variables for
future references.

Christiano Braga
118

refillValue � balance contained in the guard means “choose a value for the
value parameter that, with the values of refillValue and balance variables,
satisfies the guard”).

From the Verify location, if the balance is greater than refillValue some
value must be returned to the client in less than 5 time units. After that,
the clock is reset to zero again. Then, the RefillCard output action must
be performed in less than 5 time units and the cardBalance is increased by
refillValue. Otherwise, from Verify, if balance is exactly equals to
refillValue the card must be refilled in less than 5 time units. Finally, from the
Print location, the voucher must be printed in less than 15 time units and Idle

location is reached again. A formal definition of TIOSTS models is presented in
Definition 1 [5].

Definition 1 (TIOSTS). A TIOSTS is a tuple W = hV, P,⇥, L, l

0

,⌃, C, T i,
where:

– V is a finite set of typed variables;
– P is a finite set of parameters. For x 2 V [P , type(x) denotes the type of

x;
– ⇥ is the initial condition, a predicate with variables in V ;
– L is a finite, non-empty set of locations and l

0 2 L is the initial location;
– ⌃ = ⌃

? [⌃

! is a non-empty, finite alphabet, which is the disjoint union of
a set ⌃

? of input actions and a set ⌃

! of output actions. For each action
a 2 ⌃, its signature sig(a) = hp

1

, ..., p

n

i is a tuple of distinct parameters,
where each p

i

2 P (i = 1, ..., n);
– C is a finite set of clocks with values in the set of non-negative real numbers,

denoted by R�0;
– T is a finite set of transitions. Each transition t 2 T is a tuple hl, a,G,A, y, l

0i,
where:
• l 2 L is the origin location of the transition,
• a 2 ⌃ is the action,
• G = G

D ^ G

C is the guard, where G

D is a predicate over variables
in V [set(sig(a))5,6 and G

C is a clock constraint over C defined as a
conjunction of constraints of the form ↵#c, where ↵ 2 C, # 2 {<,,

=,�, >}, and c 2 N,
• A = (AD

, A

C) is the assignment of the transition. For each variable
x 2 V there is exactly one assignment in A

D, of the form x := A

D

x

,
where A

D

x

is an expression on V [set(sig(a)). AC ✓ C is the set of
clocks to be reset,

• y 2 {lazy, delayable, eager} is the deadline of the transition,
• l

0 2 L is the destination location of the transition. ⇧

The semantics of a TIOSTS is described by Andrade and Machado [5]. Next
we define the concepts of state, path and test case.

5 GD is assumed to be expressed in a theory in which satisfiability is decidable.
6 Let set(j) be the function that converts the tuple j in a set.

Christiano Braga
119

Definition 2 (State of TIOSTS). In TIOSTS model, a state is a tuple hl, v
1

, ...,

v

n

, c

1

, ..., c

m

i, which consists of a location l 2 L, a specific valuation for all vari-
ables v

i

2 V , and a valuation for all clocks c

i

2 C. ⇧

Definition 3 (Path). A path is a finite sequence of transitions (t
1

, ..., t

k

), k �
1, such that the destination location of transition t

i

is equal to the origin location
of the transition t

i+1

for i = 1, 2, ..., k � 1. ⇧

Definition 4 (Test Case). A test case is a deterministic TIOSTS TC =
hV

TC

, P

TC

,⇥

TC

, L

TC

, l

0

TC

,⌃

TC

, C

TC

, T
TC

i, where ⌃

?

TC

= ⌃

!

S and ⌃

!

TC

= ⌃

?

S
(actions are mirrored w.r.t. specification), equipped with three disjoint sets of
verdict locations Pass, Fail, and Inconclusive. Furthermore, each sequence from
the initial location l

0

TC

to some verdict location is a path. ⇧

According to Definition 4, the execution of a test case can emit one of three
possible verdicts: Pass, Fail, and Inconclusive. Pass means that some targeted
behavior of the system under test has been reached, Fail means rejection of
the SUT, and Inconclusive means that targeted behavior cannot be reached
anymore.

Figure 2 is a test case for the TIOSTS model of the refilling machine. The test
case aims to exercise the scenario where the system emits the RefillCard output
when the amount to be credited to the card (value 2) is equal to desired value
to refill (value 1). In this case, the verdict is Pass. If the amount to be credited
to the card (value 2) is less than the desired value to refill (value 1), and the
system emits the MissingValue output with parameter equals to value 1 �
value 2, then the verdict is Inconclusive. It is Inconclusive because this behavior
is specified in the model, but it is not the scenario the tester would like to observe
in the test case execution. The same applies to ReturnChange output action of
the test case. All other cases lead to the implicit Fail verdict.

2.2 Test Selection Criteria for Real-Time Systems

In model-based testing, test cases are derived from a model which specifies the
expected behavior of a system under test. A Test Selection Criterion defines
which parts of the system are going to be tested, how often and under what
circumstances they will be tested [29]. Test selection criteria are used for two
main purposes: to measure the adequacy of the test suite with respect to the
level of quality required by the context, and to stop the test generation process
after the criterion is reached [29].

We conducted a systematic literature review to identify studies that address
test selection criteria for real-time systems at model level [2]. We considered
studies that a criterion was used at least as part of a test case generation process
in the scope of transition and state-based systems [1,7,9,12–14,16,17,20,26,31].

The results of the review show that most general-purpose test selection cri-
teria may be applied to models of real-time systems. There are also specific
criteria for real-time systems proposed in the literature. However, there is a lack

Christiano Braga
120

Fig. 2. A test case for the refilling machine.

of studies that investigate the theoretical and empirical relationship between
criteria. The theoretical relationship could indicate the relative e↵ort to satisfy
a criterion, while the empirical evaluation could compare criteria e↵ectiveness
with respect to failure detection capability.

En-Nouaary [12] proposes a family of test selection criteria ordered by strict
inclusion relation for Timed Input-Output Automata (TIOA). His family com-
bines Transition-Based Criteria, Reactive Systems Criteria, and
Real-Time Systems Criteria. But data-related criteria are not included
because the TIOA model does not support data abstraction. Conversely, the
TIOSTS model symbolically abstracts both time and data, thus data-related
criteria can be applied to it. Furthermore, to the best of our knowledge, there
is no work on test selection criteria for real-time systems at model level that
evaluate the ability to reveal faults of selected criteria.

3 Towards a Family of Test Selection Criteria for TIOSTS

In this section, we propose a family of test selection criteria for TIOSTS models.
We extend En-Nouaary’s family [12] to include data-related criteria. We choose
to include Data-Flow-Oriented Criteria, because they can be empirically
evaluated with the same failure model employed to compareTransition-Based

Christiano Braga
121

Fig. 3. Family of test selection criteria ordered by strict inclusion relation for TIOSTS
models.

Criteria and Real-Time Systems Criteria in the next section. Thus our
proposed family of criteria combines Transition-Based Criteria, Reac-
tive Systems Criteria, Real-Time Systems Criteria and Data-Flow-
Oriented Criteria. Table 1 describes the criteria we considered in this work.

Test selection criteria are often theoretically compared to each other by three
relations: strict inclusion, equivalence, or incompatibility [23]. The relations are
formalized in Definitions 6, 7 and 8 respectively.

Definition 5 (Inclusion Relation). A criterion c

1

includes a criterion c

2

if
any set of test cases that satisfies c

1

also satisfies c

2

[23]. ⇧

Definition 6 (Strict Inclusion Relation). A criterion c

1

strictly includes c
2

,
denoted by c

1

) c

2

, if c
1

includes c
2

but there is a set of test cases that satisfies
c

2

but does not satisfy c

1

. Note that this is a transitive relation [23]. ⇧

Definition 7 (Equivalence Relation). A criterion c

1

is equivalent to a cri-
terion c

2

if c
1

includes c

2

and c

2

includes c

1

. ⇧

Definition 8 (Incompatible Relation). A criterion c

1

is incompatible with
a criterion c

2

if c
1

does not include c

2

and c

2

does not include c

1

. ⇧

Our goal is to produce a sound family of test selection criteria partially
ordered by strict inclusion relation. We do not intend to prove all equivalences
or incompatibilities between criteria. To accomplish this, our strategy is i) to
reuse the proofs of strict inclusion relations from other formalisms if they are
also valid for TIOSTS; ii) to prove new strict inclusion relations resulting from
the combination of classes of criteria; iii) to prove the exclusion of strict inclusion
relations valid for other formalisms but not valid for TIOSTS. The proposed
family is formalized in Theorem 1.

Theorem 1. The family of criteria for TIOSTS is partially ordered by strict
inclusion as shown in Figure 3. Furthermore, c

1

) c

2

i↵ it is explicitly shown
to be so in Figure 3 or follows from the transitivity of the relationship.

Christiano Braga
122

Table 1. Test Selection Criteria for TIOSTS models.

Criterion Description

Transition-Based Criteria

All-Locations [12, 16] Every location of the model must be exercised by at least one test

case.

All-Paths [12, 14] Every path of the model must be exercised by at least one test

case.

All-One-Loop-Paths [29] Every loop-free paths through the model must be exercised, plus

all the paths that loop at least once.

All-Transitions [12, 16] Every transition of the model must be exercised by at least one

test case.

All-States [1, 12,31] Every state of the model must be exercised by at least one test

case.

All-Traces [12] Every trace of the model must be included in the test suite.

Data-Flow-Oriented Criteria

All-Defs [29] At least one def-use pair(dv , uv) for every definition dv must be

exercised by at least one test case, i.e. at least one path from every

definition to one of its use must be covered.

All-DU-Paths [29] Every path for all def-use pairs(dv , uv) must be exercised by at

least one test case, i.e. all paths from every definition dv to every

use uv must be covered.

All-Uses [29] Every def-use pairs(dv , uv) must be exercised by at least one test

case, i.e. at least one path from every definition dv to every use

uv must be covered.

Definition Context [14] All paths from every context of definition of variable x to the

definition of variable x must be exercised by at least one test

case. The context of definition of the variable x are the transitions

where the variables used to define the value of x are defined.

Ordered Context [14] Similar to Definition Context, but the transitions context are

listed in the order of their definitions.

Reactive Systems Criteria

All-Inputs [9, 12] Every input action of the model must be exercised by at least one

test case.

All-Outputs [9, 12] Every output action of the model must be exercised by at least

one test case.

Real-Time Systems Criteria

All-Clock-Bounds [12] Every clock bound of the model must be exercised by at least one

test case. The bound of a clock is the highest value that a clock

can assume.

All-Clock-Guard-Bounds [12] Every clock guard bound of the model must be exercised by at

least one test case. This criterion is similar to All-Clock-Bounds
but considering only the time guards.

All-Clock-Valuations [12] Every clock valuation of the model must be exercised by at least

one test case.

All-Clock-Resets [12] Every clock reset of the model must be exercised by at least one

test.

All-Clock-Zones [12, 26] Every clock zone of the model must be visited through at least

one test case, i.e. all transitions with clock resets or time guards

must be covered.

All-Time-Constraints [12] Every time guard of the model must be exercised by at least one

test case.

Note: The criteria in this table are defined in terms of satisfiable paths, i.e. all data and time guards

in a path must be satisfiable.

Christiano Braga
123

Fig. 4. A TIOSTS model to assist in the proof of All-DU-Paths 6)
All-Transitions.

Proof. We need to prove the relations All-States) All-Locations, All-
One-Loop-Paths) All-Transitions, All-Transitions) All-Clock-
Resets, and All-DU-Paths 6) All-Transitions. All other relations can be
easily checked based on proofs already presented in the literature [12,23,29,32].

1. All-States) All-Locations. Proof follows directly from the defini-
tions of the criteria. We recap that a state of a TIOSTS consists of a lo-
cation, a specific valuation for all variables, and a valuation for all clocks.
Since the All-States criterion demands the all states to be covered, thus
All-States) All-Locations.

2. All-One-Loop-Paths) All-Transitions. Proof follows directly from
the definitions of the criteria. TheAll-One-Loop-Paths criterion demands
that all loop-free paths to be covered plus all loops at least one lap. Since all
transitions must be either in a loop-free path or in a loop, thus All-One-
Loop-Paths) All-Transitions.

3. All-Transitions) All-Clock-Resets. Proof follows directly from the
definitions of the criteria. A clock reset happens within the assignment of a
transition. TheAll-Transitions criterion demand that all transitions to be
covered. Since all transitions with clock resets are a subset of all transitions,
thus All-Transitions) All-Clock-Resets.

4. All-DU-Paths 6) All-Transitions. Proof by contradiction. Let’s assume
that All-DU-Paths) All-Transitions. Consider the TIOSTS model in
the Figure 4. The model has two def-use pairs: {(q

1

, [true], a!, {v := 0}, ;, q
2

),
(q

4

, [p = v], f !(p), ;, ;, q
6

)} and {(q
2

, [true], b?, {v := 1}, ;, q
3

), (q
4

, [p = v],
f !(p), ;, ;, q

6

)}. The test cases7 {{a! ! c? ! d? ! f !(p)}, {a! ! b? ! d? !
f !(p)}} satisfy the All-DU-Paths criterion for this model, but the transi-
tions (q

3

, true, e?, ;, ;, q
5

) and (q
5

, true, g!, ;, ;, q
6

) are not covered. Thus our
assumption is incorrect, and All-DU-Paths 6) All-Transitions. ut

It is important to remark that the relation All-Uses) All-
Transitions does not hold for TIOSTS as it does for other models [23]. In fact,
even All-DU-Paths 6) All-Transitions for TIOSTS. This happens because
a transition in TIOSTS may have neither a definition nor a use of a variable.
Thus not all transitions will be covered by the All-DU-Paths criterion.

7 The last transition in the test case leads to the Accept location.

Christiano Braga
124

4 Empirical Study

In this section we present a controlled experiment to compare the e↵ectiveness
of selected criteria. We follow the guidelines given by Wohlin, Runeson, Höst
and Ohlsson [30]. The main goal of the empirical study is to investigate test
selection criteria for real-time systems by observing the test suite generated
from TIOSTS models according to a given criterion with respect to their size and
failure detection capability from the point of view of the tester in the context
of model-based testing. The research hypothesis is that di↵erent criteria may
generate di↵erent suites of di↵erent sizes that may reveal a number of di↵erent
failures.

Planning. We conducted this experiment in a research laboratory — an of-
fline study with a specific context. As independent variable, we have the test
selection criterion. The treatments are: All-One-Loop-Paths (AOLP), All-
Transitions (AT), All-Locations (AL), All-Clock-Zones (ACZ), All-
Clock-Resets (ACR), All-DU-Paths (ADUP), All-Uses (AU), and All-
Defs (AD). Instead of evaluating all criteria of the family, we choose to evaluate
the most used criteria found in our literature review. The selected criteria are
representative of transition, time and data-related criteria.

The dependent variables are: i) size of the generated test suites (Size); and
ii) failure detection capability, measured as the number of di↵erent failures that
can be detected (Failure). From these dependent variables, for each treatment
and object, we computed two values: i) the percentage of failure, defined as
the relation between the Failure value and the total of possible failures; ii)
the density of failure as the relation between the Failure and the Size values.
For the sake of simplicity, the hypotheses of the study are formulated based on
these measures only as follows. Let %failure

i

= Failurei
TotalFailures

and density

i

=
Failurei
Sizei

, where i is a test criterion and Failure

i

, Size
i

are the average value
of the correspondent dependent variables for each of the considered objects.
Based on statistical testing, the null hypothesis is defined as the equality of all
criteria, whereas the alternative hypothesis is defined as the di↵erence between
all criteria.

Regarding experimental design, this study consists of one factor and eight
levels (eight test criteria) with six repetitions corresponding to six di↵erent mod-
els from three applications of real-time systems presented in the literature. We
considered a confidence of 95% when deciding on hypothesis rejection. As input,
for each criterion, only TIOSTS models are required. Dependent variables are
computed automatically. Therefore, there is no human intervention and no sub-
jects to be considered. Since there are no random choices involved, there is no
need to compute the number of replications required.

The objects (TIOSTS models) were obtained from 3 di↵erent applications: i)
Alarm System — Monitoring and actuation system that can detect invasion and
also the presence of intruders in a building through door, window and movement
sensors [25]; ii) Aircraft Attack System— System that controls attacks to specific
land targets and also threat detection from a missile or another aircraft [19]; and

Christiano Braga
125

iii) Philips Audio Protocol — Protocol that defines control message exchanging
for audio and video devices [8]. Moreover, collisions detection and delivery failure
are handled. From these applications, we created six models and used them
as input to the test case generator we implemented using a depth-first search-
based algorithm. Table 2 presents the metrics of number of locations, transitions,
transitions with time constraints, and transitions with data constraints of the
considered models.

Table 2. Metrics of real-time system models used in the empirical study.

Model Locations Transitions Trans. w/ time constraints Trans. w/ data constraints

Alarm1 7 9 6 7

Alarm2 10 23 13 19

Aircraft1 11 13 8 6

Aircraft2 14 35 20 28

Protocol1 17 29 10 25

Protocol2 17 37 18 25

Notes. Alarm1: Alarm System without power failure. Alarm2: Simplified version of Alarm1 with

power failure treatment. Aircraft1: Aircraft Attack System functionality only. Aircraft2: Simplified

version of Aircraft1 with threat detection functionality. Protocol1: System without failure recovery.

Protocol2: Simplified version of Protocol1 with failure recovery.

It is often di�cult to associate a failure with a single fault at code level,
because a failure may be caused by one or more faults. Therefore, for the purpose
of this study and also to avoid undesired e↵ects in the results, instead of the
number of faults, we opt to measure failures — the number of di↵erent failures
that can be detected by at least one test case in a given test suite. To allow
for a reasonable sample of failures, we defined a failure model that contains
potential failures which can be detected in a real-time system, particularly as a
result of violation of time constraints. This model was based on previous studies
such as the one performed by En-Nouaary, Khendek and Dssouli [11], and by
Andrade and Machado [4]. Two basic types of failures were considered: time
and behavior. The former is necessarily connected to non-conformity with time
constraints, whereas the latter are more related to behavior non-conformity. For
the sake of space, Table 3 presents only considered failures for the Alarm2 model.
Note that there is a di↵erent distribution of faults of the two types. The reason
is that we do not aim to control this factor so that the distribution achieved is
mostly a consequence of potential failures identified by considering each model.

Study execution was conducted according to the following process: 1) For
each input model, a test suite was generated for each of the criteria; 2) For each
test suite, each test case was analysed to determine whether it can fail according
to the failure model; 3) For each test suite, failures from the failure model were
marked when covered by the suite; 4) Data on study variables was collected; 5)
%failure and density values were computed and analysis of results conducted.

Christiano Braga
126

Table 3. Failure Model for Alarm2 model.

Failure Type Description

F04 Time When power failure occurs, sensor status does not change.

F05 Time When power failure is detected, the system does not change power supply on

time.

F06 Behavior After handling power failure, system does not resume execution as expected.

F07 Time When power failure occurs, status change of movement sensor is not detected.

F08 Time When power failure occurs, status change of window sensor is not detected.

F09 Behavior After power failure handling, system does not detect an invaded room.

F10 Behavior After power failure handling, alarm starts without invasion detection.

Threats to Validity. Measures were rigorously taken regarding data treatment
and assumption with a confidence level of 95% that is usually applied in com-
paring studies. Also, to avoid the influence on the kind of applications in the
obtained results, we have chosen specifications constructed by di↵erent authors
— the models have di↵erent structural elements as illustrated in Table 2. More-
over, correctness of the implementation of the algorithms is critical to assess
whether the results are reliable. Therefore, validation was throughly performed
and, to avoid an inconsistent generation of suites, all algorithms are based on the
same basic strategy — a depth-first search — where each criterion is applied as
a stop condition. Furthermore, models used in the study may not be representa-
tive of all kinds of real-time systems, therefore, results can only be interpreted
as specific. However, it is important to remark that they may be considered as
an evidence since results confirm properties already known, particularly for the
general criteria.

Results and Analysis. Data collected in the study as well as test cases generated
can be downloaded from the study web site8. Figure 5 shows the box plots for
the percentage of failure values and Figure 6 shows the box plot for the density
of failures values. As the values do not follow a normal distribution, the Kruskal-
Wallis test was performed and we obtained a p-value of 0.0388 for the percentage
of failures. This means that we can reject the null hypotheses: when compared
together the criteria present a di↵erent failure detection capability. However, if
we consider only “Time” failures, the p-value would be 0.1487. Therefore, we
can observe that, for the considered criteria, significant di↵erences of capability
for this kind of failure cannot be observed.

On the other hand, for the density of failure values, by applying the Kruskal-
Wallis test we obtained a p-value of 0.0670. This means that we cannot reject the
null hypotheses: we cannot observe a significant di↵erence on the failure density
for the considered criteria. It is also important to mention that no significant
correlation between the values of size and failure has been observed for any of
the considered criteria.

8 https://sites.google.com/a/computacao.ufcg.edu.br/rtscoverage/

Christiano Braga
127

AOLP AT AL ACZ ACR ADUP AU AD

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Criterion

Pe
rc

en
ta

ge
 o

f f
ai

lu
re

s

Fig. 5. Boxplot of percentage of failure
detected for each criterion.

AOLP AT AL ACZ ACR ADUP AU AD

0.
0

0.
5

1.
0

1.
5

Criterion

De
ns
ity

Fig. 6. Boxplot of density of failure de-
tected for each criterion.

General Remarks. From this study, we can observe that the more general crite-
ria such as All-One-Loop-Paths and All-Transitions as well as All-DU-
Paths and All-Uses present a better failure coverage even when only time
failures are considered. The reason is that more test cases are generated when
these criteria are considered. However, they do not always present the best fail-
ure density capacity. Which means that a number of test cases may be either
useless or redundant for the purpose of detecting the considered failures. From
the general criteria, All-Uses (followed by All-DU-Paths) seems to present
more consistently the best relation between size and failure detection capabil-
ity. The reason is that they can most e↵ectively explore the relation between
events that are related to a given variable, whereas the structural criteria such
as All-Transitions and All-Locations can miss certain combinations. The
clock related criteria All-Clock-Zones and All-Clock-Resets present con-
siderably smaller test suites and good density failure capacity, particularly the
second one. However, not all failures are covered, even time related ones. Conse-
quently, these criteria may only be considered under severe project constraints.
Otherwise, one might consider using both of them together in order to improve
failure detection capability and still keep a reasonable failure density.

5 Related Work

Test selection criteria for di↵erent kinds of models of real-time systems have
already been investigated in the literature. But most of works just describe a
criterion or a set of criteria without proper theoretical and empirical evaluation.

En-Nouaary [12] proposes a family of test selection criteria ordered by strict
inclusion relation criteria for TIOA models. Our proposal is an extension to his
family including data-related criteria for TIOSTS models. We refine the relation
between All-Clock-Resets and the class of Transition-Based Coverage
criteria. In his family, All-Paths) All-Clock-Resets, but we prove that
the narrow relation All-Transitions) All-Clock-Resets is true too. We
introduce the relation All-States) All-Locations that was missing. En-
Nouaary’s family has neither the All-One-Loop-Paths criterion nor the class

Christiano Braga
128

of Data-Flow-Oriented Coverage criteria. We introduce them below the
All-Paths criterion. Conversely, our family does not have the All-Clock-
Regions criterion, because TIOSTS uses zones instead of regions. Finally, only
we evaluate empirically the failure detection capability of eight criteria.

Zhu, Hall and May [32] surveys the literature for test selection criteria at
source code level. They present several criteria applicable to unit testing, com-
pare them using the strict inclusion relation and provide an axiomatic study of
the properties of criteria. Our work is close to theirs because we also compare
test selection criteria using the strict inclusion relation. But we work at model
level instead of source code level, and we also perform an empirical study to
compare selected criteria.

6 Concluding Remarks

In this paper we presented test selection criteria that can be applied to symbolic
transition models of real-time systems, particularly, the TIOSTS model.

We investigated the literature for test selection criteria applicable to mod-
els of real-time systems. Next we selected the ones applicable to TIOSTS and
formalized a family of 19 test selection criteria partially ordered by the strict
inclusion relation.

We evaluated 8 criteria in an empirical study with six TIOSTS models. Our
results showed that, even though there are di↵erences on the criteria related to
size and failure detection capability, the di↵erences were not significant, partic-
ularly when considering time-related failures and cost-e↵ectiveness measured as
the rate of size by the number of failures.

In general, we can observe that current specific available criteria are still im-
precise, because a number of failures were missed. General criteria were precise,
but test suites were large, with a high percentage of test cases that did not fail.
Therefore, we can conclude that more e↵ective criteria for the model-based test-
ing of real-time systems are still needed, particularly for symbolic models such
as TIOSTS.

As future works, we plan to extend this study to include more test selec-
tion criteria, specially the Control-Flow-Oriented Criteria which exer-
cise data and time guards thoroughly. Based on the analysis of advantages and
weakness of the criteria in a new empirical study, we intend to propose more
precise and e↵ective criteria for TIOSTS.

Acknowledgements. This work was supported by the National Council for Sci-
entific and Technological Development (CNPq) under grants 475710/2013-4,
484643/2011-8, and 560014/2010-4. This work was partially supported by the
National Institute of Science and Technology for Software Engineering9 of CNPq
under grant 573964/2008-4. First author was also supported by CNPq. Finally,
we thank the anonymous reviewers for their constructive comments.

9 www.ines.org.br

Christiano Braga
129

References

1. Alagar, V.S., Ormandjieva, O., Zheng, M.: Specification-based testing for real-
time reactive systems. In: Proceedings of the 34th International Conference on
Technology of Object-Oriented Languages and Systems. pp. 25–36 (2000)

2. Almeida, D.R.: Critérios de Geração de Casos de Teste de Sistemas de Tempo
Real. Master’s thesis, Federal University of Campina Grande, Campina Grande,
PB, Brazil (2012)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994)

4. Andrade, W.L., Machado, P.D.L.: Testing interruptions in reactive systems. Formal
Aspects of Computing 24, 331–353 (2012)

5. Andrade, W.L., Machado, P.D.L.: Generating test cases for real-time systems based
on symbolic models. IEEE Transactions on Software Engineering 39(9), 1216–1229
(2013)

6. Andrade, W.L., Machado, P.D.L., Jéron, T., Marchand, H.: Abstracting time and
data for conformance testing of real-time systems. In: Proceedings of the 8th Work-
shop on Advances in Model Based Testing. pp. 9–17 (2011)

7. Arcuri, A., Iqbal, M.Z., Briand, L.: Black-box system testing of real-time embed-
ded systems using random and search-based testing. In: Proceedings of the 22nd
International Conference on Testing Software and Systems. pp. 95–110 (2010)

8. Bengtsson, J., Gri�oen, W.O.D., Kristo↵ersen, K.J., Larsen, K.G., Larsson, F.,
Pettersson, P., Yi, W.: Verification of an audio protocol with bus collision using
UPPAAL. In: Proceedings of the 8th International Conference on Computer Aided
Verification. pp. 244–256 (1996)

9. Clarke, D., Lee, I.: Automatic test generation for the analysis of a real-time system:
Case study. In: Proceedings of the 3rd IEEE Real-Time Technology and Applica-
tions Symposium. pp. 112–124 (1997)

10. El-Far, I.K., Whittaker, J.A.: Model-based software testing. In: Marciniak, J.J.
(ed.) Encyclopedia of Software Engineering, vol. 1, pp. 825–837. John Wiley &
Sons, Inc. (2002)

11. En-Nouaary, A., Khendek, F., Dssouli, R.: Fault coverage in testing real-time sys-
tems. In: Proceedings of the 6th Real-Time Computing Systems and Applications.
pp. 150–157 (1999)

12. En-Nouaary, A.: Test selection criteria for real-time systems modeled as timed
input-output automata. International Journal of Web Information Systems 3(4),
279–292 (2007)

13. En-Nouaary, A., Hamou-Lhadj, A.: A boundary checking technique for testing real-
time systems modeled as timed input output automata. In: Proceedings of the 8th
International Conference on Quality Software. pp. 209–215 (2008)

14. Hessel, A.: Model-Based Test Case Selection and Generation for Real-Time Sys-
tems. Ph.D. thesis, Uppsala University, Uppsala, Sweden (2007)

15. Jeannet, B., Jéron, T., Rusu, V., Zinovieva, E.: Symbolic test selection based on
approximate analysis. In: Proceedings of the 11th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. pp. 349–364
(2005)

16. Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems.
In: Proceedings of the 11th International SPIN Workshop on Model Checking of
Software. pp. 109–126 (2004)

Christiano Braga
130

17. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Meth-
ods in System Design 34(3), 238–304 (2009)

18. Laplante, P.A.: Real-Time System Design and Analysis. John Wiley & Sons (2004)
19. Locke, C.D., Vogel, D.R., Lucas, L., Goodenough, J.B.: Generic avionics software

specification. Tech. rep., Software Engineering Institute, Carnegie Mellon Univer-
sity (1990)

20. Nielsen, B., Skou, A.: Test generation for time critical systems: Tool and case
study. In: Proceedings of the 13th Euromicro Conference on Real-Time Systems.
pp. 155–162 (2001)

21. Peleska, J.: Industrial-strength model-based testing - state of the art and current
challenges. In: Proceedings of the 8th Workshop on Model-Based Testing. pp. 3–28
(2013)

22. Pretschner, A., Slotosch, O., Aiglstorfer, E., Kriebel, S.: Model-based testing for
real. International Journal on Software Tools for Technology Transfer 5(2), 140–157
(2004)

23. Rapps, S., Weyuker, E.J.: Selecting software test data using data flow information.
IEEE Transactions on Software Engineering 11(4), 367–375 (1985)

24. Rusu, V., du Bousquet, L., Jéron, T.: An approach to symbolic test generation. In:
Proceedings of the 2nd International Conference on Integrated Formal Methods.
pp. 338–357 (2000)

25. Sommerville, I.: Software Engineering. International Computer Science Series,
Addison-Wesley, Boston, MA, USA, 9 edn. (2010)

26. Trab, M.S.A., Alrouh, B., Counsell, S., Hierons, R.M., Ghinea, G.: A multi-criteria
decision making framework for real time model-based testing. In: Proceedings of
the 5th International Academic and Industrial Conference on Testing - Practice
and Research Techniques. pp. 194–197 (2010)

27. Tretmans, J.: Model-based testing and some steps towards test-based modelling.
In: Proceedings of 11th International School on Formal Methods for the Design of
Computer, Communication and Software Systems. pp. 297–326 (2011)

28. Tretmans, J.: Testing concurrent systems: A formal approach. In: Proceedings of
the the 10th International Conference on Concurrency Theory. pp. 46–65 (1999)

29. Utting, M., Legeard, B.: Practical Model Based Testing: A Tools Approach. Else-
vier, San Francisco, CA, USA (2007)

30. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in Software Engineering. Springer, New York, NY, USA (2012)

31. Zheng, M., Alagar, V., Ormandjieva, O.: Automated generation of test suites from
formal specifications of real-time reactive systems. Journal of Systems and Software
81(2), 286–304 (2008)

32. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Computing Surveys 29(4), 366–427 (1997)

Christiano Braga
131

Use Case Analysis based on Formal Methods:

An Empirical Study

Marcos Oliveira Junior, Leila Ribeiro, Érika Cota,
Lucio Mauro Duarte, Ingrid Nunes, and Filipe Reis ?

PPGC - Institute of Informatics – Federal University of Rio Grande do Sul (UFRGS)
PO Box 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

{marcos.oliveira,leila,erika,lmduarte,ingridnunes,freis}@inf.ufrgs.br

Abstract. Use Cases (UC) are a popular way of describing system be-
havior and UC quality impacts the overall system quality. However, they
are presented in natural language, which is usually the cause of issues
related to imprecision, ambiguity, and incompleteness. We present the
results of an empirical study on the formalization of UCs as Graph Trans-
formation models (GTs) with the goal of running tool-supported analyses
on them and revealing possible errors. To evaluate our approach, we ap-
ply it to a set of real UC descriptions obtained from a software developer
company and measured the results through metrics. The final results
demonstrate that this approach can reveal real problems that could oth-
erwise go undetected and, thus, help improve the quality of the UCs.
Keywords. Use Cases, Graph Transformation, Model Analysis.

1 Introduction

Use Cases (UC) [2] are a popular model for documenting software expected
behaviour. In current practice, UC descriptions are typically informally docu-
mented using, in most cases, natural language in a predefined structure. Being
informal descriptions, UCs might be ambiguous and imprecise. Thus, the veri-
fication of UCs normally corresponds to manual inspections and walkthroughs
[4], and detecting problems is not a trivial task. Since software quality is highly
dependent on the quality of the specification, cost-effective strategies to decrease
the number of errors in UCs are crucial. Strategies for the formalization of UCs
have already been proposed, however, many of them assume a particular syn-
tax for UC description tailored for their particular formalisms. This limits the
expression of requirements and, in some cases, also restrains the semantics of
the UC. Our aim is to keep the expressiveness of a description in natural lan-
guage and use a formalism for modeling/analysing UCs that is flexible enough
to maintain the semantics defined by stakeholders.

In this paper, we investigate the suitability of Graph Transformation (GT)
as a formal model to describe and analyze UCs. Some reasons for choosing GT
are: the elements of a UC can be naturally represented as graphs; it is a visual
? This work is partially supported by the VeriTeS project (FAPERGS and CNPq).

Christiano Braga
132

language; the semantics is very simple yet expressive; GT is data-driven; there
are various static and dynamic analysis techniques available for GT, as well as
tools to support them (e.g., [10]). We work towards an approach that integrates
UC formalization and tool-supported analysis, with the objective of improving
the quality of UCs. We applied our approach on a set of real UC descriptions
obtained from a software development company and measured the results.

This paper is organized as follows: Section 2 presents the necessary back-
ground information and a overview of the translation of UCs for GTs.; Section 3
presents the settings of the conducted empirical study; Section 4 presents an
analysis and discussion of results; Section 5 presents an analysis of threats to
the study; Section 6 presents a comparative analysis of our technique with some
related work; and Section 7 concludes the paper and discusses future work.

2 Modeling UCs using GTs

2.1 Background

Use Cases. According to Cockburn (2000) [2], a Use Case (UC) defines a contract
between stakeholders of a system, describing part of the system behavior. The
main purpose of a UC description is the documentation of the expected system
behavior so as to ease the communication between stakeholders, often including
non-technical people, about required system functionalities. For this reason, UC
descriptions are usually described in a textual form.
Graph Transformations. The formalism of Graph Transformations (GT) [7] is
based on defining states of a system as graphs and state changes as rules that
transform these graphs. Our analysis of GTs is based on concurrent rules and
critical pairs, two methods of analysis independent from the initial state of the
system and, thus, they are complementary to any other verification strategy
based on initial states (such as testing).

2.2 Proposed Formalization and Verification Approach

The proposed approach, detailed in [6], takes as input a textual UC description,
from which the entities and actions that will be part of the formal model are
identified. Then, basic verifications can be performed regarding the consistency
of the extracted information. If inconsistencies are detected, the UC must be
rewritten to eliminate them or the analyst can annotate the problem to be
resolved later on. When no basic inconsistencies are found, the GT can then be
generated. In this process, conditions and effects of actions are modeled as states
and a type graph is built. After that, each UC step is modeled as a transition
rule from one state (graph) to another. Having the GT, a series of automatic
verifications can be performed to detect possible problems.

We use the AGG tool [10] to perform the automatic analyses on the GT
model. All detected issues are annotated as open issues (OIs) along with the
solutions (when applicable). Open issues are classified according to their severity

Christiano Braga
133

level: Yellow (for warnings), Orange (for relevant issues), or Red (for critical
issues). The actions to be taken regarding found OIs depend on the analysts,
who can determine whether an OI is in fact a real problem.

3 Empirical Study Settings

In order to adequately evaluate our approach, we followed the principles of Ex-
perimental Software Engineering [11] and the GQM template [1]. Our main study
goal was to demonstrate the usefulness of GTs to improve the quality of UCs by
the identification of OIs, from a perspective of the researcher, in the context of
a single real software development project. From this, we derived two research
questions, which we aimed to answer with our study.

RQ-1 Are system analysts able to detect problems in their own UC descriptions
without additional support?

RQ-2 How effective is our GT-based approach in identifying problems in UCs?

The UC descriptions we used in our study are part of the analysis documen-
tation of an industrial software project. This project involves the development of
a typical system to manage products from a warehouse, with functional require-
ments such as adding new products, creating sale orders, and releasing products
in stock. We do not provide any further details about our target system and its
UCs due to a confidentiality agreement.

3.1 Procedure

The procedure of the study consists of the following steps:
(1) Analysis by System Analyst. We requested a system analyst responsible

for the UC descriptions to carefully revise them, and point out problems, such
as ambiguity, imprecision, omission, incompleteness, and inconsistency.

(2) UC Formalization. Given a set of UCs, we performed the steps detailed
in [6] to formalize them using GTs and used the AGG tool to analyze them,
detecting some OIs.

(3) Evaluation of Open Issues. After identifying OIs, we had evaluated whether
detected OIs were real problems in the analyzed UCs.

(4) Data Analysis. Our aim is that our approach detects all and only real
problems. This can be seen as a classification problem, and thus the effectiveness
of our approach can be measured using the metrics, widely used in the context
of information retrieval, of precision and relative recall [5], whose formulas are
shown below, where true positives are OIs that correspond to real problems;
false positives are OIs that are not real problems; and false negatives are real
problems not identified as OIs.

Precision =
true positives

true positives+ false positives

(1)

RelativeRecall =
true positives

true positives+ false negatives

(2)

Christiano Braga
134

Table 1: Study results

OI UC 1 UC 2 UC 3 UC 4 UC 5 Total
Type #OI #P #OI #P #OI #P #OI #P #OI #P #OI #P

3 2 4 2 2 1 4 2 1 0 14 7
1 1 1 1 1 1 0 0 2 2 5 5
3 3 1 1 3 2 3 3 3 3 13 12

Total 7 6 6 4 6 4 7 5 6 5 32 24
Legend: UC - Use Case; OI - Open Issue; P - Problem.

4 Results and Discussion

After revising the original UCs, the system analyst found no problems. However,
after applying our approach to these UCs, we identified 32 OIs across the 5 UCs,
which gives an average of 6.4 OIs per UC. This is an expressive number, given
that the system analyst stated that the UCs had been correctly specified. In
order to verify whether the identified OIs were false alarms (false positives), the
system analyst was asked to check each one of them. Of the 32 OIs, 24 were
pointed out as real problems and only 8 as false positives.

Table 1 presents our results in detail. It shows the number of OIs found in each
UC (columns labeled with OI) and how many of these OIs were confirmed as real
problems (columns labeled with P). The rows show the number of detected OIs
with respect to their level of severity. The table also presents the total number
of detected OIs and the total number of real problems considering all the 5 UCs.
The symbols , , and represent warnings (severity Yellow), relevant issues
(severity Orange), and critical issues (severity Red), respectively.

We then analyzed these results according to the selected metrics. Because the
system analyst was unable to identify any problem without support, the number
of problems not identified by our approach was 0, leading to relative recall = 1.0.
As for the Precision, we obtained 0.75 (24 true positives and 8 false positives) —
that is, 75% of the OIs identified by our GT-based approach were real problems.
Not only most of the identified issues were actual problems, but also most of the
false alarms (7 of 8) were related to low severity OIs.

By analyzing OIs not identified as problems, we observed that 6 of them were
not necessarily classified as a false positive by the system analyst. They preferred
to leave such issues as they were and postpone changes to future design decisions,
considering that they alone could not decide what was the best approach to tackle
those issues. The other 2 OIs found, confirmed as false positives, were related
to incompleteness or ambiguities due to the lack of knowledge of the modeler
about the problem domain and the internal processes of the company.

Note that OIs were identified without the intervention of any stakeholder.
The only provided input was the software documentation in the form of UC
descriptions and the output was a checklist with OIs to be revised. More impor-
tantly, had these problems been detected before the design and implementation,
when they should have, development costs could have been potentially reduced.

Christiano Braga
135

5 Threats to Validity

During our study we carefully considered validity concerns. This section discusses
the main threats we identified to validate this study and how we mitigated them.

Internal Validity. The main threat to internal validity of this study was the
selection of modeler of UCs in the formalism of graphs. However, we want to
show that, correctly following the steps of our strategy, the modeler does not
need a deep understanding of the formalism. Moreover, we used the AGG tool
to automate the analyses and provide a graphical interface.

Construct Validity. There are different ways of modeling a system through
the formalism of graphs that can produce some threats to construct validity. The
modeler may not follow correctly the modeling steps, being influenced by their
prior knowledge about the formalism. Therefore, we proposed a roadmap, step
by step, on how to model UCs as GTs, for both beginners and experts users.

Conclusion Validity. As the main threat to validity of the conclusion we
highlight potential problems in the generation of the model in the formalism
of graphs. Once again, our step-by-step modeling process should be followed
to prevent the modeler from creating a model that is not consistent with the
textual description. Moreover, the tool-supported verifications can also detect
such modeling errors, thus reducing the risk of this threat.

External Validity. The main threat to the external validity was the selection
of artifacts on which we based our study. We did not use any criteria to select
either the project or the system analyst who participated of our study. We were
aware of this threat during the study. However, we opted for randomly choosing
artifacts to support the applicability of our strategy in different scenarios.

6 Related Work

Some authors have developed approaches for translating UCs to well-known for-
malisms, such as LTS [8], Petri Nets [12], and FSM [9]. Unlike these formalisms,
a GT model is data-driven and we do not need to explicitly determine the control
flow unless it is necessary to guarantee data consistency. The approach presented
in [13] allows the simulation of the execution of the system but do not report
the use of any type of analysis, which, in our opinion, reduces the advantage
of having a formal model. The work described in [3] considers analyses such as
critical pairs and dependencies involving multiple UCs and provides some ideas
on the interpretation of the results. However, we propose a more structured way
of providing diagnostic feedback about single UCs, which serves as a guide to
point out the possible errors as well as their severity level.

7 Conclusions and Future Work

We investigated the suitability of GT as a formal basis for UC description and
improvement. We evaluated our approach through an experiment with real soft-
ware artifacts, where we could detect existing errors, which helped improve the

Christiano Braga
136

original UCs. Making a general analysis of the experiment, we consider the re-
sults promising, since it was possible to identify a large number of real problems
based on a documentation that was produced at an early stage of software de-
velopment. We observed the need for further automating the process, if not all,
at least some steps, which is one of the most immediate planned future work.

A inter-UC analysis is currently being implemented as well as a more detailed
diagnostic feedback. Within the same model frame, other types of validation
and verification techniques on GT models, such as test case generation, model
checking, and theorem proving, are also subject of current work. We plan to
investigate whether we could reduce the impact and cost of changes by identifying
which parts of the description are affected. Finally, note that, although we did
not present any new formal method or verification technique here, a considerable
amount of expertise in formal methods was required to define the OIs: they are
meant to bridge the gap between the informal and formal worlds. We believe that
this type of work is crucial towards the industrial adoption of formal methods.

References

1. Basili, V., Caldiera, C., Rombach, H.: Goal Question Metric Paradigm, Encyclo-
pedia of Software Engineering, vol. 1. John Wiley & Sons (1994)

2. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1st edn. (2000)

3. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional re-
quirements in a use case-driven approach: A static analysis technique based on
graph transformation. In: Proc. of the 24th ICSE. pp. 105–115 (2002)

4. Myers, G., Sandler, C., Badgett, T.: The Art of Software Testing. ITPro Collection,
Wiley (2011)

5. Powers, D.M.: Evaluation: From Precision, Recall and F-Factor to ROC, Informed-
ness, Markedness & Correlation. Tech. Rep. SIE-07-001, Flinders University of
South Australia (2007)

6. Ribeiro, L., Cota, E., Duarte, L.M., Oliveira Jr., M.A.d.: Improving the quality of
use cases via model construction and analysis. In: Proc. of the 22nd WADT (2014)

7. Rozenberg, G. (ed.): Handbook of graph grammars and computing by graph trans-
formation: volume I: Foundations. World Scientific, River Edge, USA (1997)

8. Sinnig, D., Chalin, P., Khendek, F.: LTS semantics for use case models. In: Proc.
of the ACM SAC. pp. 365–370. ACM (2009)

9. Sinnig, D., Chalin, P., Khendek, F.: Use case and task models: An integrated
development methodology and its formal foundation. ACM ToSEM 22(3), 27:1–
27:31 (Jul 2013)

10. Taentzer, G.: AGG: A tool environment for algebraic graph transformation. In: Ap-
plications of Graph Transformations with Industrial Relevance, LNCS, vol. 1779,
pp. 481–488. Springer Berlin Heidelberg (2000)

11. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in Software Engineering. Springer Berlin Heidelberg (2012)

12. Zhao, J., Duan, Z.: Verification of use case with petri nets in requirement analysis.
In: Proc. of the ICCSA: Part II. pp. 29–42. Springer-Verlag (2009)

13. Ziemann, P., Hǎv̀lscher, K., Gogolla, M.: From UML models to graph transforma-
tion systems. ENTCS 127(4), 17 – 33 (2005)

Christiano Braga
137

A dynamic logic for every season

Alexandre Madeira1, Renato Neves1, Manuel A. Martins2 and Lúıs S. Barbosa1

HASLab INESC TEC & Univ. Minho
{madeira@di.uminho.pt, nevrenato@di.uminho.pt, lsb@di.uminho.pt}

CIDMA - Dep. Mathematics, Univ. Aveiro
martins@ua.pt

Abstract. This paper introduces a method to build dynamic logics with
a graded semantics. The construction is parametrized by a structure to
support both the spaces of truth and of the domain of computations.
Possible instantiations of the method range from classical (assertional)
dynamic logic to less common graded logics suitable to deal with pro-
grams whose transitional semantics exhibits fuzzy or weighted behaviour.
This leads to the systematic derivation of program logics tailored to spe-
cific program classes

1 Introduction

Propositions, capturing static properties of program states, and events, or ac-
tions, which are responsible for transitions from a state to another, are the key
ingredients in modelling and reasoning about state-based software systems. The
latter are typically combined through a Kleene algebra to express sequential,
non deterministic, iterative behaviour of systems, while the former brings to the
scene a logical structure.

Dynamic logic [6], a generalisation of the logic of Floyd-Hoare, is a well known
and particularly powerful way of combining these two dimensions into a formal
framework to reason about computational systems. Its potential stems from
blending together classical logic, enriched with a modal dimension to express
system’s dynamics, and a (Kleene) algebra of actions to structure programs.

Over time dynamic logic grew to an entire family of logics increasingly pop-
ular in the verification of computational systems, and able to evolve and adapt
to new, and complex validation challenges. One could mention its role in model
validation (as in e.g. [10]), or the whole family of variants tailored to specific
programming languages (as in e.g. [11,1]), or its important extensions to new
computing domains, namely probabilistic [8] or continuous [13,14].

The latter is particularly relevant from an Engineering point of view: Actu-
ally, Platzer’s hybrid dynamic logic, and its associated tool, KeYmaera, com-
bining an algebra of actions based on real numbers assignments, the standard
Kleene operators and di↵erential equations to specify continuous transitions from
the “real” (physical) world, provides a powerful framework for the design and
validation of cyber-physical systems with increased industrial relevance [16].

Christiano Braga
138

If cyber-physical systems gives rise to the need for ways of dealing with
continuous state spaces, in a number of other cases dealing with some form of
“quantitative” transitions (weighted, probabilistic, etc) is also a must. Hence the
quest for dynamic logics able to capture smoothly these kind of phenomena is
becoming more and more important.

This paper intends to contribute in this path. In particular, our attention
is focussed on graded logics [4,17], in the broad sense of attaching partially
ordered grades to logical formulas to express, in one way or another, uncertain
information. In this broad sense, fuzzy [5], probabilistic [12] or weighted logics
[2] may be brought into the picture.

In this context, the purpose of this work is the development of a generic
method to construct graded dynamic logics. Technically, the definition of these
logics is parametrized by a (specific kind of) an action lattice [7] which combines
a (slight generalisation of a) Kleene algebra with a residuated lattice structure.
The latter captures the graded logic dimension and fits nicely with our objectives.
Moreover, the extension of Kleene algebras with residuation operators, providing
weak right and left inverses to sequential composition as in [15], as well as with
a lattice structure leads to a finitely-based equational variety which, as plain
Kleene algebras, is closed under the formation of square matrices [9].

The relevance of this closure property lies in the fact that several problems
modelled as (weighted) transition systems can be formulated as matrices over a
Kleene algebra or a related structure. Following such a trend, we represent pro-
grams as matrices supporting the information about their e↵ects when executed
from each state in the state space. The interested reader is referred to [3] for a
detailed discussion on the relationship between Kleene algebras, action algebras
and action lattices.

The remaining of this paper is organised as follows. Section 2 recalls from [7]
the definition of an action lattice and introduces a method, parametric on such a
lattice, to generate graded dynamic logics. The construction put forward is illus-
trated with several examples. Then, in section 3, it is shown that the resulting
logic is a dynamic logic indeed, in the sense that all the rules of propositional dy-
namic logic restricted to positive-existential formulas still hold. Finally, section
4 concludes and suggests points for future research.

2 The method

This section introduces a generic method to generate graded dynamic logics para-
metric on a complete action lattice which captures both the structure of the
computational domain and that of the (logical) truth space.

Let us start by recalling from [7] the following definition:

Definition 1. An action lattice is a tuple

A = (A,+, ; , 0, 1, ⇤, ,!, ·)

Christiano Braga
139

where, for A a set, 0 and 1 are constants and +, ; , ⇤, ,! and · are binary

operations in A satisfying the axioms in Figure 1. Relation is the one induced

by + as a b i↵ a+ b = b.

a+ (b+ c) = (a+ b) + c (1)

a+ b = b+ a (2)

a+ a = a (3)

a+ 0 = 0 + a = a (4)

a; (b; c) = (a; b); c (5)

a; 1 = 1; a = a (6)

a; (b+ c) = a; b+ a; c (7)

(a+ b); c = a; c+ b; c (8)

a; 0 = 0; a = 0 (9)

1 + a+ a

⇤; a⇤ a

⇤ (10)

a;x x) a

⇤;x x (11)

x; a x) x; a⇤ x (12)

a;x b , x a! b (13)

x; a b , x a b (14)

(x! x)⇤ = x! x (15)

(x x)⇤ = x x (16)

a · (b · c) = (a · b) · c (17)

a · b = b · a (18)

a · a = a (19)

a+ (a · b) = a (20)

a · (a+ b) = a (21)

Fig. 1. Axiomatisation of action lattices (from [7])

An action lattice is said to be complete when equipped with both a supremum
and an infimum of all subsets of A. Therefore, complete action lattices have
biggest and smallest elements denoted in the sequel by > and ?, respectively.
Note that in any action lattice, ? = 0, since for any a 2 A, a+0 = a, i.e., 0 a.
In this paper we resort to notation

P
for the iterated version of the (join)

operator +, and to notation
Q

for the iterated version of the (meet) operator ·.
The starting point for the method proposed here is thus the choice of an

appropriate action lattice

A = (A,+, ; , 0, 1, ⇤, ,!, ·)

Christiano Braga
140

Additionally, we require A to satisfy the following equality:

a; (b · c) = a; b · a; c (22)

As mentioned above, this structure supports both the computational paradigm
(to distinguish between e.g. imperative, deterministic or non deterministic com-
putations, or between plain or weighted transitions) and the truth space (to
capture e.g. the standard Boolean reasoning or more complex truth spaces). Be-
fore proceeding let us exemplify this structure with a couple of action lattices
typically found in Computer Science applications. In the examples, the logic
generated by an action lattice A will be denoted by GDL(A).

Example 1 (GDL(2) — the standard propositional dynamic logic.). Standard
propositional dynamic logic is generated from the following structure

2 = ({>,?},_,^,?,>, ⇤, ,!,^)

with the standard boolean connectives:

_ ? >
? ? >
> > >

^ ? >
? ? ?
> ? >

! ? >
? > >
> ? >

⇤
? >
> >

and taking a b whenever b ! a. It is not di�cult to see that 2 is an action
algebra. Moreover, the lattice is obviously complete and it satisfy the condition
(22) (note that both composition and the meet operator are realized by ^).

Example 2 (GDL(3) — a dynamic logic to deal with unknown data.). This is
a three-valued logic, with an explicit representative for unknown, or uncertain

information. Note that the three elements linear lattice induces an action lattice

3 = ({>, u,?},_,^,?,>, ⇤, , ,!,^)

where

_ ? u >
? ? u >
u u u >
> > > >

^ ? u >
? ? ? ?
u ? u u

> ? u >

! ? u >
? > > >
u u > >
> ? u >

⇤
? >
u >
> >

and taking a b whenever b! a. It is easy to see all the conditions in Definition
1 hold. Moreover, the lattice is obviously complete and satisfies condition (22).
The refer should note that both composition and meet are realized by ^).

Example 3 (GDL(L) — a dynamic logic to deal with continuous levels of fuzzi-

ness.).

This is based on the well-known Lukasiewicz arithmetic lattice

 L = ([0, 1],max,min, 0, 1, ⇤, ! , , min)

where

Christiano Braga
141

– x! y = min{1, 1� x+ y},
– x y = 1�max{0, x+ y � 1)} and
– ⇤ maps each point of [0, 1] to 1.

Again, this defines a complete action lattice which additionally satisfies condition
(22). Note that both composition and the meet operator are now represented by
function min.

Example 4 (GDL(FW) – a dynamic logic to deal with resource consuming sys-

tems.). This example explores the so called Floyd-Warshall algebra which con-
sists of a tuple

N+

?> = ({?, 0, 1, . . . ,>},max,+,?, 0, ⇤, ^ , ^ , min)

where ^ is the truncated subtraction

a ^ b =

(
a� b, if a � b

? otherwise

and, for any i > 0,

⇤
? 0
0 0
i >

The induced order corresponds to in N (a b i↵ max{a, b} = b). The
lattice is also complete and it satisfies condition (22) because a + min{b, c} =
min{a+ b, a+ c}.

Illustrated the notion of an action lattice, we are now prepared to introduce
the general construction of graded dynamic logics. We consider now its signa-
tures, formulæ, semantics and satisfaction. Thus,

Signatures. Signatures of GDL(A) are pairs (⇧,Prop) corresponding to the
denotations of atomic computations and of propositions, respectively.

Formulæ. A core ingredient of any dynamic logic is its set of programs. There-
fore, let us denote the set of atomic programs by ⇧. The set of ⇧-programs,
denoted by Prog(⇧), consists of all the expressions generated by

⇡ 3 ⇡

0

|⇡;⇡ |⇡ + ⇡ |⇡⇤

for ⇡

0

2 ⇧. Given a signature (⇧,Prop), we define the GDL(A)-formulas for
(⇧,Prop), denoted by FmGDL(A)(⇧,Prop), by the grammar

⇢ 3 > |? | p | ⇢ _ ⇢ | ⇢ ^ ⇢ | ⇢! ⇢ | h⇡i⇢

for p 2 Prop and ⇡ 2 Prog(⇧). Note that this corresponds to the positive

existential fragment of the propositional dynamic logic.

Christiano Braga
142

Semantics. The first step is to introduce the space where the computations of
GDL(A) are to be interpreted. As usual, this corresponds to a Kleene algebra.
Therefore, we consider the structure

M
n

(A) = (M
n

(A),+, ;,0,1,*)

defined as follows:

1. M

n

(A) is the space of the (n⇥ n)-action lattices over A
2. for any A,B 2 M

n

(Q), define M = A+B by M

i,j

= A

i,j

+B

i,j

, i, j n.
3. for any A,B 2 M

n

(Q), define M = A ; B by taking M

i,j

=
P

n

k=1

(A
i,k

;B
k,j

)
for any i, j n.

4. 1 and 0 are the (n ⇥ n)-matrices defined by 1

i,j

= 1 and 0

i,j

= 0, for any
i, j n.

5. for any M =

A B

C D

�
2 M

n

(Q), where A and D are square matrices, we take

M

* =

F

*
F

*
;B ;D

*

C D

*
+D

*
;C ;F

*
;B ;D

*

�

where F = A+B ;D

*
;C. Note that this construction is recursively defined

from the base case (where n = 2) where the operations of the base action
lattice A are used.

Finally, we have to show that,

Theorem 1. The structure M
n

(A) = (M
n

(A),+, ;,0,1,*) defined as above is

a Kleene algebra.

Proof. The structure, and the respective operations, corresponds to the algebra
of matrices over (A,+, ; , 0, 1, ⇤), i.e., the Kleene algebra underlying action lattice
A. A canonical result establishes that Kleene algebras are closed under formation
of matrices (e.g. [9]). Therefore, M

n

(A) constitutes a Kleene algebra. 2

GDL(A)-models for a set of propositions Prop, denoted by ModGDL(A)(Prop),
consists of tuples

A = (W,V, (A
⇡

)
⇡2⇧

)

where

– W is a finite set (of states),
– V : Prop⇥W ! A is a function,
– and A

⇡

2 M
n

(A), with n standing for the cardinality of W .

The interpretation of programs in these models is made by matrices over the
Kleene algebra of A. Each matrix represents the e↵ect of a program executing
from any point of the model. Formally, the interpretation of a program ⇡ 2
Prog(⇧) in a model A 2 ModGDL(A)(⇧,Prop) is recursively defined, from the
atomic programs (A

⇡

)
⇡2⇧

, as follows:

Christiano Braga
143

– A
⇡;⇡

0 = A
⇡

;A
⇡

0

– A
⇡+⇡

0 = A
⇡

+A
⇡

0

– A
⇡

⇤ = A*
⇡

Observe that the set of states W supports the index system of the programs
(adjacency) matrices. In this context, it is important to note, that, for example,

((M
⇡;⇡

0)
ij

=
nX

k=1

{(M
⇡

)
ik

; (M
⇡

0)
kj

}

corresponds to

((M
⇡;⇡

0(w,w0)) =
X

w

002W

{(M
⇡

)(w,w00); (M
⇡

0(w00
, w

0)}

where i and j stands for the adjacency index of w and w

0, respectively. Actually,
the latter characterisation is often used in the sequel.

Example 5 (Computations spaces).

Let us fix an action lattice A = (A,+, ; , 0, 1, ⇤, ,!, ·) and a signature
({⇡,⇡0}, {p}). Then, consider a model A = (W,V, (A

⇡

)
⇡2⇧

), with W = {s
1

, s

2

}
and the following atomic programs

A
⇡

=

? q

12

? q

22

�
A

⇡

0 =

? q

0
12

? ?

�

which can be represented by the following labelled transition system:

s

1

q12

//
s

2

q22

��
s

1

q

0
12

//
s

2

Let us suppose that A is realized by

2 = ({>,?},_,^,?,>, ⇤, ,!,^)

Making q

12

= q

22

= q

0
1,2

= > we get the standard adjacency matrices of the
graph underlying the transition system. In this case, we interpret choice ⇡ + ⇡

0

and composition ⇡;⇡0 by

A
⇡+⇡

0 = A
⇡

+A
⇡

0 =

? >
? >

�
+

? >
? ?

�
=

? _? > _>
? _? > _?

�
=

? >
? >

�

The interpretation of the composition ⇡;⇡0 is computed as follows,

A
⇡;⇡

0 =

? >
? >

�
;

? >
? ?

�
=

(? ^?) _ (> ^?) (? ^>) _ (> ^?)
(? ^?) _ (> ^?) (? ^>) _ (> ^?)

�
=

? ?
? ?

�

Christiano Braga
144

The interested reader can easily verify that, as expected,

A
⇡

0
;⇡

=

? >
? ?

�

For the interpretation of the ⇡ closure, we have

A
⇡

* = (A
⇡

)*

? >
? >

�*
=

f

⇤
f

⇤ ^ > ^ >⇤

? >⇤ _ (>⇤ ^ ? ^ > ^ >)

�

where f = ? _ (> ^>⇤ ^ ?) = ?, hence

A
⇡⇤ =

> >
? >

�

as expected.
The reader is now invited to a small exercise. Taking the same matrix in the

context of
3 = ({>, u,?},_,^,?,>, ⇤, ,!,^)

and considering q

12

= q

22

= > and q

0
12

= u, let us compute composition

A
⇡

0
;⇡

=

? u

? ?

�
;

? >
? >

�
=

(? ^?) _ (u ^ ?) (? ^>) _ (u ^ >)
(? ^?) _ (? ^>) (? ^>) _ (? ^>)

�
=

? u

? ?

�

As expected, the unknown factor a↵ecting transition s

1

! s

2

inA0
⇡

is propagated
to transition s

2

! s

2

in A
⇡

0
;⇡

.
If a continuous space is required to define the “unknown metric”, one may

resort to the Lukasiewicz arithmetic lattice

 L = ([0, 1],max,min, 0, 1, ⇤, ! , , min)

Consider, for instance, q
12

= a, q
22

= b and q

0
12

= c for some a, b, c 2 [0, 1]. In
this case we may, for example, compute choice ⇡ + ⇡

0, making

A
⇡+⇡

0 =

0 a

0 b

�
+

0 c

0 0

�
=

max{0, 0} max{a, c}
max{0, 0} max{b, 0}

�
=

0 max{a, c}
0 b

�

The reader may check that

A
⇡

⇤ =

1 a

0 1

�

Note that the certainty value 1 in the diagonal of the matrix stands for the
reflexive dimension of the reflexive-transitive closure ⇤.

Let us now consider the action lattice

N+

?> = ({?, 0, 1, . . . ,>},max,+,?, 0, ⇤, ^ , ^ , min)

As stated above, the structure N+

?> is suitable to reason about resource con-
suming systems. The value of a transition is > when it costs an infinite amount

Christiano Braga
145

of resources; it is ? when undefined. The composition of actions reflects the
accumulation of sequential costs. For instance A

⇡

0
;⇡

=

? c

? ?

�
;

? a

? b

�
=

max{?+?, c+?} max{?+ a, c+ b}
max{?+?,?+?} max{?+ a,?+ b}

�
=

? c+ b

? ?

�

Moreover, the interpretation of a program ⇡ + ⇡

0 reflects, in each transition the
most expensive choice:

A
⇡

0
+⇡

=

? c

? ?

�
+

? a

? b

�
=

max{?,?}

¯
max{c, a}

max{?,?} max{?, b}

�
=

? max{c, a}
? b

�

Finally, observe the interpretation of the closure of ⇡

A
⇡

⇤ =

? a

? b

�
=

f

⇤
f

⇤ + a+ b

⇤

? max{b⇤, b⇤ +?+?⇤ + a+ b

⇤}

�
=

0 a+ b

⇤

? b

⇤

�

where f = max{?, a+ b

⇤ +?}. Note that for any b > 0, the matrix assumes

0 >
? >

�

which reflects the cost of an undetermined repetition of transition s

2

! s

2

.
Naturally, when the cost of the action is 0, we have

0 a

? 0

�

Satisfaction. Finally, let us characterise the (graded) satisfaction relation. As
mentioned above, the carrier of A corresponds to the space of truth degrees for
GDL(A). Hence, the graded satisfaction relation for a modelA 2 ModGDL(A)(⇧,Prop)
consists of a function

|=: FmGDL(A)(⇧,Prop)⇥W ! A

recursively defined as follows:

– (w |= >) = >
– (w |= ?) = ?
– (w |= p) = V (p, w), for any p 2 Prop
– (w |= ⇢ ^ ⇢

0) = (w |= ⇢) · (w |= ⇢

0)
– (w |= ⇢ _ ⇢

0) = (w |= ⇢) + (w |= ⇢

0)
– (w |= ⇢ ! ⇢

0) = (w |= ⇢) ! (w |= ⇢

0)
– (w |= h⇡i⇢) =

P
w

02W

{A
⇡

(w,w0); (w0 |= ⇢)}

Example 6. In order to make a case for the versatility and generality of this
method, let us consider the evaluation of the very simple sentence h⇡⇤ip in three

Christiano Braga
146

of the dynamic logics constructed in the examples above. Concretely, let us
evaluate h⇡⇤ip in state s

1

. For this we calculate

(s
1

|= h⇡⇤ip) =
X

w

02W

{A
⇡

⇤(s
1

, w

0); (w0 |= p)}

Starting with GDL(2), let us assume V (p, s
1

) = ? and V (p, s
2

) = >. In this
case, as expected

(s
1

|= h⇡⇤ip) =
P

w

02W

{A
⇡

⇤(s
1

, w

0); (w0 |= p)}
=
�
A

⇡

⇤(s
1

, s

1

) ^ (s
1

|= p)
�
_
�
A

⇡

⇤(s
1

, s

2

) ^ (s
2

|= p)
�

= (> ^ V (p, s
1

)) _ (> ^ V (p, s
2

))
= (> ^?) _ (> ^>)
= >

This means that we can achieve p from s

1

through ⇡

⇤. Considering the GDL(L)
and assuming V (s

1

, p) = 0 and V (s
2

, p) = 1, we may calculate

(s
1

|= h⇡⇤ip) =
P

w

02W

{A
⇡

⇤(s
1

, w

0); (w0 |= p)

= max

�
min{A

⇡

⇤(s
1

, s

1

), (s
1

|= p)},min{A
⇡

⇤(s
1

, s

2

), (s
2

|= p)}

= max

�
min{1, 0},min{a, 1}

= max{0, a}
= a

Therefore, we can assure, with a degree of certainty a, that we can achieve p

from s

1

through ⇡

⇤.
Interpreting now the same sentence in logic GDL(N+

?>), assuming that V (s
1

, p) =
? and V (s

2

, p) = 0, we get

(s
1

|= h⇡⇤ip) =
P

w

02W

{A
⇡

⇤(s
1

, w

0); (w0 |= p)

= max

�
A

⇡

⇤(s
1

, s

1

) + (s
1

|= p),A
⇡

⇤(s
1

, s

2

) + (s
2

|= p)

= max{0 +?, a+ b

⇤ + 0}
= a+ b

⇤

Hence, we can say that p can be accessed from s

1

through ⇡

⇤ consuming a+ b

⇤

resources unities.

3 “Dynamisations” are dynamic

Having introduced a generic method for generating dynamic logics, this sec-
tion establishes that the resulting logics behave, in fact, as dynamic logics. In
particular, all the axioms of the propositional dynamic logic involving positive-
existential formulas (see [6]) remain sound in this generic construction.

In the context of graded satisfaction, the verification that a property ⇢ is valid
corresponds to the verification that, for any state w of any model A, (w |= ⇢) =
>. Hence, by (13) and (14), we have that asserting (⇢ $ ⇢

0) = > is equivalent to
prove that, for any w 2 W , that (w |= ⇢) = (w |= ⇢

0); and to proof (⇢ ! ⇢

0) = >
is equivalent to proof that (w |= ⇢) (w |= ⇢

0).

Lemma 1. The following are valid formulas in any GDL(A):

Christiano Braga
147

(1.1) h⇡i(⇢ _ ⇢

0) $ h⇡i(⇢) _ h⇡i⇢0
(1.2) h⇡i(⇢ ^ ⇢

0) ! h⇡i(⇢) ^ h⇡i⇢0

Proof. Axiom (1.1)

(w |= h⇡i(⇢ _ ⇢

0))

= { defn of |=}
X

w

02W

{A
⇡

(w,w0); (w0 |= ⇢ _ ⇢

0)}

= { defn. of |=}
X

w

02W

{(A
⇡

(w,w0);
�
(w0 |= ⇢) + (w0 |= ⇢

0)
�
}

= { (7)}
X

w

02W

{(A
⇡

(w,w0); (w0 |= ⇢) + (A
⇡

(w,w0); (w0 |= ⇢

0))}

= { supremum properties}
X

w

02W

{(A
⇡

(w,w0); (w0 |= ⇢)}+
X

w

02W

{A
⇡

(w,w0); (w0 |= ⇢

0))}

= { defn of |=}

(w |= h⇡i⇢) + (w |= h⇡i⇢)
= { defn of |=}

(w |= h⇡i⇢ _ h⇡i⇢)

Therefore h⇡i(⇢ _ ⇢

0) $ h⇡i⇢ _ h⇡i⇢.

Axiom (1.2)

(w |= h⇡i(⇢ ^ ⇢

0))

= { defn of |=}
X

w

02W

{A
⇡

(w,w0); (w0 |= ⇢ ^ ⇢

0)}

= { defn. of |=}
X

w

02W

{(A
⇡

(w,w0);
�
(w0 |= ⇢) · (w0 |= ⇢

0)
�
}

= { (22)}
X

w

02W

{(A
⇡

(w,w0); (w0 |= ⇢) · (A
⇡

(w,w0); (w0 |= ⇢

0))}

Christiano Braga
148

 { infimum properties}
X

w

02W

{(A
⇡

(w,w0); (w0 |= ⇢)} ·
X

w

02W

{A
⇡

(w,w0); (w0 |= ⇢

0))}

= { defn of |=}

(w |= h⇡i⇢) · (w |= h⇡i⇢)
= { defn of |=}

(w |= h⇡i⇢ ^ h⇡i⇢)

Therefore, h⇡i(⇢ ^ ⇢

0) ! h⇡i⇢ ^ h⇡i⇢.

Lemma 2. The following are valid formulas in any GDL(A):

(2.1) h⇡ + ⇡

0i⇢ $ h⇡i⇢ _ h⇡i⇢
(2.2) h⇡;⇡0i⇢ $ h⇡ih⇡0i⇢
(2.3) h⇡i? $?

Proof. Axiom (2.1)

(w |= h⇡ + ⇡

0i⇢)
= { defn of |=}

X

w

02W

{A
⇡+⇡

0(w,w0); (w0 |= ⇢)}

= { defn of programs interpretation}
X

w

02W

{(A
⇡

(w,w0) +A
⇡

0(w,w0)); (w0 |= ⇢)}

= { (7)}
X

w

02W

{(A
⇡

(w,w0); (w0 |= ⇢) +A
⇡

0(w,w0); (w0 |= ⇢))}

= { distributivity of supremum}
X

w

02W

{(A
⇡

(w,w0); (w0 |= ⇢)}+
X

w

02W

{A
⇡

0(w,w0); (w0 |= ⇢))}

= { defn of |=}

(w |= h⇡i⇢) + (w |= h⇡0i⇢)
= { defn of |=}

(w |= h⇡i⇢ _ h⇡0i⇢)

Therefore h⇡ + ⇡

0i⇢ $ h⇡i⇢ _ h⇡0i⇢.

Christiano Braga
149

Axiom (2.2)

(w |= h⇡ih⇡0i⇢)
= { defn of |=}

X

w

02W

{A
⇡

(w,w0); (w |= h⇡0i⇢)}

= { defn of |=}
X

w

02W

�
A

⇡

(w,w0);
X

w

002W

{A
⇡

0(w0
, w

00); (w00 |= ⇢)}

= { (7)}
X

w

02W

� X

w

002W

{A
⇡

(w,w0);A
⇡

0(w0
, w

00); (w00 |= ⇢)}

= { commutativity}
X

w

002W

� X

w

02W

{A
⇡

(w,w0);A
⇡

0(w0
, w

00); (w00 |= ⇢)}

= { since (w00 |= ⇢) is independent of w0}
X

w

002W

� X

w

02W

{A
⇡

(w,w0);A
⇡

0(w0
, w

00)}; (w00 |= ⇢)

= { defn. of composition}
X

w

002W

�
A

⇡;⇡

0(w,w00); (w00 |= ⇢)

= { defn. of |=}

(w |= h⇡;⇡0i⇢)

Therefore h⇡ih⇡0i⇢ $ h⇡;⇡0i⇢.
Axiom (2.3)

(w |= h⇡i?)

= { defn. of |=}
X

w

02W

{A
⇡

(w,w0); (w |= ?)}

= { defn. of satisfaction}
X

w

02W

{A
⇡

(w,w0);?}

= { (9) and ? = 0}
X

w

02W

{?}

Christiano Braga
150

= { (4)}

?

Therefore h⇡i0 $ 0.

Lemma 3. The following are valid formulas in any GDL(A):

(3.1) h⇡i⇢ ! h⇡⇤i⇢
(3.2) h⇡⇤i⇢ $ h⇡⇤;⇡⇤i⇢
(3.3) h⇡⇤i⇢ $ h⇡⇤⇤i⇢
(3.4) h⇡⇤i⇢ $ ⇢ _ h⇡ih⇡⇤i⇢

Proof. Axiom (3.1) In order to proof this axiom we have first to observe that
for any a, b, c 2 A, a b implies a; c b; c. Supposing a b, i.e., a+ b = b,
we have that

a; c+ b; c ={(8)} (a+ b); c ={by hypothesis a + b = b} b; c

i.e., a; c b; c. Moreover, we have also to check that a a

⇤ which comes
directly from (10) by monotonicity of the supremum and transitivity. Hence
(and since M

n

(A) is an action lattice), we have for any w,w

0 2 W ,

A
⇡

(w,w0) A
⇡

⇤(w,w0)

⌘ { a b implies a; c b; c}

A
⇡

(w,w0); (w0 |= ⇢) A
⇡

⇤(w,w0); (w0 |= ⇢)

⌘ { monotonicity of the supremum}
X

w

02W

{A
⇡

(w,w0); (w0 |= ⇢)}
X

w

02W

{A
⇡

⇤(w,w0); (w0 |= ⇢)}

⌘ { defn of |=}

(w |= h⇡i⇢) (w |= h⇡⇤i⇢)
⌘ { defn of |=}

(w |= h⇡i⇢ ! h⇡⇤i⇢)

Therefore h⇡i⇢ ! h⇡⇤i⇢.
Axioms (3.2),(3.3) and (3.4) We start recalling the following well known

Kleene algebra properties: a⇤ = a

⇤⇤, a⇤ = a

⇤; a⇤ and 1 + a; a⇤ = a

⇤ (see
[9]). By Theorem 1, we have that

A
⇡

⇤(w,w0) = A
⇡

⇤⇤(w,w0) (23)

A
⇡

⇤(w,w0) = A
⇡

⇤
;⇡

⇤(w,w0) (24)

A
1+⇡;⇡

⇤(w,w0) = A
⇡

⇤(w,w0) (25)

The remaining of the first two proofs follows exactly the same steps of the
one for Axiom (3.1). For the third case,

Christiano Braga
151

A
1+⇡;⇡

⇤(w,w0) = A
⇡

⇤(w,w0)

⌘ { program interpretation}

A
1

(w,w0) +A
⇡;⇡

⇤(w,w0) = A
⇡

⇤(w,w0)

⌘ { a b implies a; c b; c in both directions}
�
A

1

(w,w0) +A
⇡;⇡

⇤(w,w0)
�
; (w0 |= ⇢) = A

⇡

⇤(w,w0); (w0 |= ⇢)

⌘ { (7)}

A
1

(w,w0); (w0 |= ⇢) +A
⇡;⇡

⇤(w,w0); (w0 |= ⇢) = A
⇡

⇤(w,w0); (w0 |= ⇢)

⌘ { monotonicity of the supremum}
X

w

02W

{A
1

(w,w0); (w0 |= ⇢) +A
⇡;⇡

⇤(w,w0); (w0 |= ⇢)} =
X

w

02W

{A
⇡

⇤(w,w0); (w0 |= ⇢)}

⌘ { distributivity}
X

w

02W

{A
1

(w,w0); (w0 |= ⇢)}+
X

w

02W

{A
⇡;⇡

⇤(w,w0); (w0 |= ⇢)} =
X

w

02W

{A
⇡

⇤(w,w0); (w0 |= ⇢)}

⌘ { P
w02W {A1(w,w

0); (w0 |= ⇢) = (w |= ⇢)} + program interpretation}

(w |= ⇢) + (w |= h⇡;⇡⇤i⇢) = (w |= h⇡⇤i⇢)
⌘ { (2.2)}

(w |= ⇢) + (w |= h⇡ih⇡⇤i⇢) = (w |= h⇡⇤i⇢)
⌘ { defn of |=}

(w |= ⇢ _ h⇡ih⇡⇤i⇢) = (w |= h⇡⇤i⇢)

Therefore, h⇡⇤i⇢ $ ⇢ _ h⇡ih⇡⇤i⇢.

4 Conclusions

The method introduced in this paper is able to generate several dynamic log-
ics useful for the working Software Engineer. Some of them are documented in
the literature, others freshly new. For instance, for verification of imperative
programs, we may consider a logic whose states are valuations of program vari-
ables. Hence, and as usual, atomic programs become assignments of variables.
In this context, a transition w !x:=a

w

0 means that the state w

0 di↵ers from w

just in the value of variable x, i.e., that w

0(x) = a and for any variable y 6= x,
w(y) = w

0(y).
A very natural direction for future work is to enrich this framework with

tests, i.e., programs ?cond interpretated as A
?cond

= {(w,w)|w |= cond}. As
usual, this provides a way to express if-then-else statements in dynamic logics.
Another topic deserving attention is the characterisation of program refinement

Christiano Braga
152

in this setting, witnessed by some class of action lattice morphisms.

Acknowledgements.

This work is financed by the ERDF - European Regional Development Fund through

the COMPETE Programme (operational programme for competitiveness) and by Na-

tional Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese

Foundation for Science and Technology) within projects FCOMP-01-0124-FEDER-

037281 and FCOMP-01-0124-FEDER-028923 and by project NORTE-07- 0124-FEDER-

000060, co-financed by the North Portugal Regional Operational Programme (ON.2),

under the National Strategic Reference Framework (NSRF), through the European

Regional Development Fund (ERDF).

References

1. B. Beckert. A dynamic logic for the formal verification of java card programs. In
I. Attali and T. P. Jensen, editors, Java Card Workshop, volume 2041 of Lecture
Notes in Computer Science, pages 6–24. Springer, 2000.

2. M. Droste and P. Gastin. Weighted automata and weighted logics. Theor. Comput.
Sci., 380(1-2):69–86, 2007.

3. H. Furusawa. The categories of kleene algebras, action algebras and action lattices
are related by adjunctions. In R. Berghammer, B. M oller, and G. Struth, edi-
tors, RelMiCS, volume 3051 of Lecture Notes in Computer Science, pages 124–136.
Springer, 2003.

4. S. F. Goble. Grades of modality. Logique et Analyse, 13:323–334, 1970.
5. S. Gottwald. A Treatise on Many-Valued Logics. Studies in Logic and Computation

(volume 9). Research Studies Press, 2001.
6. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
7. D. Kozen. On action algebras. manuscript in: Logic and Flow of Information,

Amsterdam, 1991.
8. D. Kozen. A probabilistic PDL. J. Comput. Syst. Sci., 30(2):162–178, 1985.
9. D. Kozen. A completeness theorem for kleene algebras and the algebra of regular

events. Inf. Comput., 110(2):366–390, 1994.
10. B. Lopes, M. Benevides, and E. H. Haeusler. Propositional dynamic logic for petri

nets. Logic Journal of IGPL, 2014.
11. O. Mürk, D. Larsson, and R. Hähnle. Key-c: A tool for verification of c programs.

In F. Pfenning, editor, CADE, volume 4603 of Lecture Notes in Computer Science,
pages 385–390. Springer, 2007.

12. N. J. Nilsson. Probabilistic logic. Artif. Intell., 28(1):71–87, 1986.
13. A. Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for Complex

Dynamics. Springer, 2010.
14. A. Platzer. A complete axiomatization of quantified di↵erential dynamic logic for

distributed hybrid systems. Logical Methods in Computer Science, 8(4), 2012.
15. V. R. Pratt. Action logic and pure induction. In JELIA, volume 478 of Lecture

Notes in Computer Science, pages 97–120. Springer, 1990.
16. S. Suh, U. Tanik, Carbone, and A. J.N., Eroglu. Applied Cyber-Physical Systems.

Springer Verlag, 2014.
17. W. van der Hoek. On the semantics of graded modalities. Journal of Applied

Non-Classical Logics, 2(1), 1992.

Christiano Braga
153

Model-Driven Engineering in the
Heterogeneous Tool Set

Daniel Calegari1, Till Mossakowski2, and Nora Szasz3

1 Universidad de la República, Uruguay
dcalegar@fing.edu.uy

2 Otto-von-Guericke University Magdeburg, Germany
mossakow@iws.cs.uni-magdeburg.de

3 Facultad de Ingenieŕıa, Universidad ORT Uruguay
szasz@ort.edu.uy

Abstract. We have defined a unified environment that allows formal
verification within the Model-Driven Engineering (MDE) paradigm us-
ing heterogeneous verification approaches. The environment is based on
the Theory of Institutions, which provides a sound basis for representing
MDE elements and a way for specifying translations from these elements
to other logical domains used for verification, such that formal experts
can choose the domain in which they are more skilled to address a formal
proof. In this paper we present how this environment can be supported
in practice by the Heterogeneous Tool Set (Hets). We define semantic-
preserving translations from the MDE elements to the core language of
Hets, and we also show how it is possible to move from it to other log-
ics, both to supplement the original specification with other verification
properties and to perform a heterogeneous verification.

Keywords: verification, formal methods, Model-Driven Engineering

1 Introduction

The Model-Driven Engineering (MDE,[1]) paradigm is based on the construction
of models representing di↵erent views of the system to be constructed, and model
transformations as the main activity within the software development process. In
this context, there are multiple properties that can be verified [2], from syntactic
to semantic ones, and at di↵erent abstraction levels. Whenever formal verifica-
tion is mandatory, there is a plethora of verification approaches with di↵erent
objectives, formalisms and supporting tools, which are heterogeneous and not
integrated. With an heterogeneous approach [3], di↵erent formalisms are used
for expressing parts of a problem and semantic-preserving mappings allow the
communication between these formalisms in order to compose di↵erent views to
an overall specification of the whole problem. We have followed this approach by
proposing a theoretical environment for the formal verification of di↵erent MDE
aspects using heterogeneous verification approaches [4], based on the theory of
Institutions [5]. This environment proposes a generic representation of the MDE

Christiano Braga
154

2

elements (by means of institutions) which can be formally (and automatically)
translated into other formalisms, providing the “glue” that formal experts need
to choose the formalism in which they are more skilled to address a formal proof.

In this paper we show how the environment can be supported in practice us-
ing the Heterogenous Tool Set (Hets,[3,6]), which is meant to support heteroge-
neous multi-logic specifications. It also provides proof management capabilities
for monitoring the overall correctness of a heterogeneous specification whereas
di↵erent parts of it are verified using (possibly) di↵erent formalisms. We first
define from a theoretical perspective how MDE elements can be integrated in
this tool by defining semantic-preserving translations to the Common Algebraic
Specification Language (Casl,[7]), which is the core language of Hets. The ex-
istent connections between Casl and other formalisms broadens the spectrum of
formal domains in which verification can be addressed. We also detail the imple-
mentation of a prototype which allows us to specify MDE elements, supplement
them with multi-logic properties, and perform a heterogeneous verification.

The remainder of the paper is structured as follows. In Section 2 we introduce
the main concepts of MDE based on a running example, and in Section 3 we
summarize how these elements can be represented within our institution-based
environment. Then, in Section 4 we present how this environment can be formally
connected with Casl, and in Section 5 we give details about an implementation
of these ideas using Hets. Finally, in Section 6 we discuss related work and in
Section 7 we present some conclusions and an outline of further work.

2 Model-Driven Engineering

In MDE there are two key elements: models specifying di↵erent views of the sys-
tem to be constructed and model transformations allowing the (semi)automatic
construction of the system by processing the models.

Every model conforms to a metamodel which introduces the syntax and se-
mantics of certain kinds of models. The MetaObject Facility (MOF, [8]) is a
standard language for metamodeling, basically defining hierarchical-structured
classes with properties that can be attributes (named elements with an associ-
ated primitive type or class) or associations (relations between classes in which
each class plays a role within the relation). Every property has a multiplicity
which constraints the number of elements that can be related through it. If there
are conditions that cannot be captured by the structural rules of this language,
the Object Constraint Language (OCL, [9]) is used to specify them. These con-
siderations allow defining conformance in terms of structural and non-structural

conformance. Structural conformance with respect to a metamodel means that in
a given model every object and link is well-typed and the model also respects the
multiplicity constraints. Non-structural conformance means that a given model
respects the invariants specified with the supplementary language.

Consider as an example a simplified version of the well-known Class to Re-
lational model transformation [10]. The metamodel in the left side of Figure 1
defines UML class diagrams, where classifiers (classes and primitive types) are

Christiano Braga
155

3

contained in packages. Classes can contain one or more attributes and may be
declared as persistent, and each attribute is typed by a primitive type. Notice
that a class must contain only one or two attributes, and also that the Classifier
class is not abstract. We handle these aspects di↵erently from UML class dia-
grams in order to have a more complete example. In the right side of Figure 1
there is a model composed by a persistent class of name ID within a package of
name Package. The class has an attribute of name value and type String.

Fig. 1. Class metamodel and model of the example

A model transformation takes as input a model conforming to certain meta-
model and produces as output another model conforming to another metamodel
(possibly the same). Query/View/Transformation Relations (QVT-Relations,
[10]) is a relational language which defines transformation rules as mathematical
relations between source and target elements. A transformation is a set of in-
terconnected relations: top-level relations that must hold in any transformation
execution, and non-top-level relations that are required to hold only when they
are referred from another relation. Every relation defines a set of variables, and
source and target patterns which are used to find matching sub-graphs of ele-
ments in a model. Relations can also contain a when clause which specifies the
conditions under which the relationship needs to hold, and a where clause which
specifies the condition that must be satisfied by all model elements participating
in the relation. The when and where clauses, as well as the patterns may contain
arbitrary boolean OCL expressions and can invoke other relations.

The transformation of the example basically describes how persistent classes
within a package are transformed into tables within a schema, and attributes of
a class are transformed into columns of the corresponding table. Below we show
an excerpt of this transformation. There are keys defined as the combination of
those properties of a class that together can uniquely identify an instance of that
class, e.g. there are no two tables with the same name within the same schema.

Christiano Braga
156

4

transformation uml2rdbms (uml : UML , rdbms : RDBMS) {

key RDBMS::Table {name, schema};

top relation PackageToSchema { ... }

top relation ClassToTable {

cn, prefix : String;

checkonly domain uml c : UML::Class {

namespace = p : UML::Package {}, kind = ’Persistent’, name = cn

};

enforce domain rdbms t : RDBMS::Table {

schema = s : RDBMS::Schema {}, name = cn

};

when { PackageToSchema(p, s); }

where { AttributeToColumn(c, t);}

}

relation AttributeToColumn { ... }

}

3 An Institution-Based Environment for MDE

Our environment [4] is based on representing models (from now on SW-models
to avoid confusion), metamodels, the conformance relation, transformations and
verification properties in some consistent and interdependent way without de-
pending on any specific logical domain. We follow an heterogeneous specification
approach [3] which is based on providing Institutions [5] for representing the syn-
tax and semantics of the elements. An institution is defined as:

– a category Sign of signatures (vocabularies for constructing sentences in a
logical system) and signature morphisms (translations between vocabularies)

– a functor Sen : Sign ! Set giving a set of sentences for each signature and
a function Sen(�):Sen(⌃1)! Sen(⌃2) translating formulas to formulas for
each signature morphism � : ⌃1 ! ⌃2;

– a functor Mod : Signop ! Cat , giving a category Mod(⌃) of models (provid-
ing semantics) for each signature ⌃ and a reduct functor Mod(�):Mod(⌃2)!
Mod(⌃1) translating models to models (and morphisms to morphisms) for
each signature morphism;

– a satisfaction relation of sentences by models, such that when signatures
are changed (by a signature morphism), satisfaction of sentences by models
changes consistently, i.e. M2 |=

⌃2 Sen(�)(') i↵ Mod(�)(M2) |=⌃1 '

We provide an institution IQ for QVT-Relations check-only unidirectional trans-
formations (which we called Qvtr). This institution needs a representation of
SW-models and metamodels, therefore we define an institution IM for the struc-
tural conformance relation between them based on a simplified version of MOF
(which we called Csmof). Complete definitions can be found in [11].

Christiano Braga
157

5

The institution IM represents the MOF-based structural conformance rela-
tion between metamodels and SW-models. From any metamodel we can derive
a signature ⌃ = (C,↵,P) declaring: a finite class hierarchy C = (C,

C

) (a par-
tial order between classes representing the inheritance relation between them)
extended with a subset ↵ ✓ C denoting abstract classes; and a properties dec-
laration (attributes and associations) P = (R,P) where R is a finite set of role
names with a default role name “ ”, and P is a finite set of properties of the
form hr1 : c1, r2 : c2i representing a property and its opposite. The type c

i

at-
tached to the role r

i

represents the type of the property, as well the type in
the opposite side represents its owned class. By T(C) we denote the type exten-

sion of C by primitive types (e.g. Boolean) and type constructors (e.g. List).
Formulas represent multiplicity constraints determining whether the number of
elements in a property end is bounded (upper and/or lower). They are defined
as follows: � ::= #C •R = N | N #C •R | #C •R N The #-expressions
return the number of links in a property when some role is fixed. The • operator
represents the selection of the elements linked with another of class C through
a role in R. An interpretation I (or model) contains a semantic representation
for a SW-model, i.e. objects and links. It consists of a tuple (VT

C(O),A) where
VT

C(O) = (V
c

)
c2T (C) is a T(C)-object domain (a family of sets of object identi-

fiers), A contains a relation hr1 : c1, r2 : c2iI ✓ V
c1 ⇥ V

c2 for each relation name
hr1 : c1, r2 : c2i 2 P with c1, c2 2 T (C), and c2 2 ↵ implies O

c2 =
S

c1Cc2
O

c1 .
Finally, an interpretation I satisfies a formula ' with some c• r if for any object
of class c, the number of elements within I related through the role r (of a prop-
erty of the class c) satisfies the multiplicity constraints. The satisfaction relation
checks the multiplicity requirements of the structural conformance relation.

The institution IQ represents QVT-Relations transformations by extend-
ing the Csmof institution. A signature is a pair h⌃M

1 ,⌃M
2 i representing the

source and target metamodels of the transformation, and an interpretation is
a tuple hMM

1 ,MM
2 i of disjoint SignM

i

-interpretations that contains a seman-
tic representation for the source and target SW-models. A formula 'K rep-
resents a key constraint of the form hc, {r1, ..., rn}i (1 n) with c 2 C

i

(i
= 1..n) a class in one of the metamodels, r

j

2 R
i

(j = 1..n) roles defined
in properties in which such class participates (having such role or at the op-
posite side of it). Roles determine the elements within these properties that
together can uniquely identify an instance of the class. A formula 'R rep-
resents a set of interrelated transformation rules, such that, given variables
Xs = (Xs)

s 2(
S

i T (Ci)), the formula is a finite set of tuples representing rules
of the form htop,VarSet,ParSet,Pattern1,Pattern2,when,wherei, where top 2
{true, false} defines if the rule is a top-level relation or not, VarSet ✓ Xs

is the set of variables used within the rule, ParSet ✓ VarSet representing the
set of variables taken as parameters when the rule is called from another one,
Pattern

i

(i = 1, 2) are the source and target patterns, and when/where are the
when/where clauses of the rule, respectively. A pattern is a tuple hE

i

, A
i

, P r
i

i
such that E

i

✓ (Xc)
c 2Ci is a set of class-indexed variables, A

i

is a set of ele-
ments representing associations of the form rel(p, x, y) with p 2 P

i

and x, y 2 E
i

,

Christiano Braga
158

6

and Pr
i

is a predicate over these elements. A when/where clause is a pair
hwhen

c

,when
r

i such that when
c

is a predicate with variables in VarSet, and
when

r

is a set of pairs of transformation rules and their parameters. The satis-
faction relation expresses that the target SW-model is the result of transforming
the source SW-model (both within the interpretation) according to the transfor-
mation rules and also that key constraints hold (both represented as formulas).

Institutions can be formally connected by means of (co)morphisms. Then, by
defining these semantic-preserving translations, it is possible to connect MDE
elements to potentially several logics for formal verification. In this way, we just
specify MDE elements once, then spread this information into other logics to
supplement this specification with additional properties, and finally choose the
verification approach we want to use. To the extent that there are many logics
connected through comorphisms, the capabilities of our environment increases.
The environment supports a separation of duties between software developers
(MDE and formal methods experts) such that a formal perspective is avail-
able whenever it is required. Moreover, comorphisms can be automated, as we
show in the following sections, thus the environment is scalable in terms of the
rewriting of MDE elements in each logic. Although our proposal is aligned with
OMG standards, this idea can be potentially formalized for any transformation
approach and language. This allows extending the approach as far as necessary.

4 Borrowing Proof Capabilities

We make use of the possibility of connecting our institutions to potentially sev-
eral host logics, each one with its own proof system. The host logic allows both to
supplement the information contained within the MDE elements with properties
specified in the host logic, and to borrow its proof calculus for formal verification.
For this, we us generalized theoroidal comorphisms (GTC,[12]). A GTC between
two institutions I and J consists of a functor � : ThI ! ThJ translating the-
ories (pairs of signatures and set of sentences), and a natural transformation
� : (�)op;ModJ ! ModI translating models in the opposite direction.

We do not define GTC from the institutions defined in the last section, but
from extended institutions IM+

and IQ+

. We extend the definition of Csmof
formulas with a syntactic representation of SW-models as follows:

⌦ ::= xc | hr1, x1
c1 , r2, x2

c2i | ⌦ �⌦

with xc 2 Xc a variable representing a typed element, hr1, x1
c1 , r2, x2

c2i repre-
senting a link between two typed elements with their respective roles, and ⌦�⌦
the composition of these elements. In the case of Qvtr, we extend Qvtr for-
mulas by including extended Csmof formulas, i.e. now there is a representation
of multiplicity constraints and SW-models, indexed by the institutions in which
they are defined. These extensions make it possible to use a proof system such
that it is possible to prove that constraints (as a formula) are derived from a syn-
tactic representation of a SW-model, which is the context where the verification
must be done. An exhaustive discussion on this topic can be found in [11].

Christiano Braga
159

7

We defined GTCs from our extended institutions to Casl, a general-purpose
specification language. The institution IC underlying Casl is the sub-sorted
partial first-order logic with equality and constraints on sets SubPCFOL=, a
combination of first-order logic and induction with subsorts and partial func-
tions. Since Casl has a sound proof calculus, and our comorphisms admit bor-
rowing of entailment [3], we can translate our proof goals using the comorphism
into Casl and use its proof calculus also for proving properties of our extended
Csmof and Qvtr specifications. The importance of Casl is that it is the main
language within the Heterogenous Tool Set (Hets, [3]), a tool meant to support
heterogeneous multi-logic specifications. This comorphism not only allows us to
have tool support for the verification of model transformation by using Hets
(as will be introduced in Section 5) but also to move between the graph of logics
within Hets to take advantage of the benefits of each logic.

In what follows we introduce Casl and resume the encoding of the main
components of the extended institutions into it. An example of the encoding is
given in Section 5.1, and a complete version can be found in [11].

4.1 Common Algebraic Specification Language

The institution IC for Casl is defined as follows. Signatures consist of a set
S of sorts with a subsort relation between them, together with a family
{PF

w,s

}
w2S

⇤
,s2S

of partial functions, {TF
w,s

}
w2S

⇤
,s2S

of total functions and
{P

w

}
w2S

⇤ of predicate symbols. Signature morphisms consist of maps taking
sort, function and predicate symbols respectively to a symbol of the same kind
in the target signature, and they must preserve subsorting, typing of function
and predicate symbols and totality of function symbols.

For a signature ⌃, terms are formed starting with variables from a sorted set
X using applications of function symbols to terms of appropriate sorts, while sen-
tences are partial first-order formulas extended with sort generation constraints

which are triples (S0, F 0,�0) such that �0 : ⌃0 ! ⌃ and S0 and F 0 are respec-
tively sort and function symbols of ⌃0. Models interpret sorts as non-empty sets
such that subsorts are injected into supersorts, partial/total function symbols as
partial/total functions and predicate symbols as relations.

The satisfaction relation is the expected one for partial first-order sentences.
A sort generation constraint (S0, F 0,�0) holds in a model M if the carriers of the
reduct of M along �0 of the sorts in S0 are generated by function symbols in F 0.

4.2 Encoding Csmof into Casl

We define a GTC between the extended Csmof institution IM+

and the in-
stitution IC for SubPCFOL=. The class hierarchy represented within a IM+

signature is basically translated into a set of sorts complying with a subsorting
relation, properties are translated into predicates, and an axiom is introduced
to relate predicates derived from bidirectional properties. Formally, every IM+

signature ⌃ = (C,↵,P) with C = (C,
C

) and P = (R,P) is translated into a
theory ((S, TF, PF, P,

S

), E) such that:

Christiano Braga
160

8

– For every class name c in C, there is a sort name c 2 S.
– For every c1

C

c2 with c1, c2 2 C, we have c1
S

c2 with c1, c2 2 S.
– For every c 2 ↵ there is an axiom in E stating that c is the disjoint embedding
of its subsorts (sort generation constraint).

– For every hr1 : c1, r2 : c2i 2 P , there are two predicates r1 : c2 ⇥ c1 and
r2 : c1⇥c2 2 ⇧, and an axiom in E stating the equivalence of the predicates,
i.e. r1(x, y) i↵ r2(y, x) with x 2 S1, y 2 S2. In the case of predicates with the
default role name , we only generate the predicate in the opposite direction
of the default role, i.e. if h : c1, r2 : c2i or hr1 : c1, : c2i we only have r2 :
c1 ⇥ c2 or r1 : c2 ⇥ c1, respectively.

We consider the existence of a built-in extension of the institution IC, e.g. the
Casl standard library. The sets of functions TF and PF within this extension
contain those functions defined for built-in types (like + for strings).

As an example, the signature corresponding to the class metamodel in Fig-
ure 1 is translated into a theory such that there are sorts for each class, e.g.
UMLModelElement and Package, within the subsorting relation, e.g. Package

S

UMLModelElement; and there are predicates for each property, e.g. elements :
Package ⇥ Classifier and name : UMLModelElement ⇥ String. There is a sort
generation constraint stating that UMLModelElement is the disjoint embedding
of its subsorts Attribute, Classifier, and Package. There are also axioms stat-
ing the equivalence of the predicates derived from bidirectional properties, e.g.
8 x : Package, y : Classifier. elements(x, y) , namespace(y, x)

In the case of a SW-model formula ⌦, each variable within the formula
(representing an object) is translated into a total function of the corresponding
type. We also add several axioms in order to represent implicit constraints in
the IM+

institution which are not necessarily kept when representing the basic
elements in SubPCFOL=, as for example the need of distinguishing between
two di↵erent variables (functions in the target institution) and the specification
of the cases in which a property holds (when there is a syntactic link represented
within the formula ⌦). Formally,

– For every xc 2 �(⌦) there is a total function x : c 2 TF with c 2 S
– For every hr1, xc1 , r2, y

c2i 2 !(⌦) with hr1 : c1, r2 : c2i 2 P , there is an axiom
in E stating that the predicate r2 : c1 ⇥ c2 holds for x : c1, y : c2 2 TF .
Notice that the opposite direction holds by the equivalence of predicates
stated during the signature translation.

– E has some additional axioms:
• Distinguishability: {x

i

6= x
j

| i 6= j. x
i

, x
j

: c 2 TF} for all c 2 S
• Completeness of elements: for all x : c we have that x = o

i

for some o
i

:
c 2 TF . When c is a non-abstract class having sub-classes, completeness
must be defined for o

i

: c0 2 TF for all c0 c.
• Completeness of relations: for all x : c1, y : c2 we have that r(x, y) holds
only if x = o1 and y = o2 for some o1 : c1, o2 : c2 for which r(c1, c2) hold.

The “distinguishability” and “completeness of elements” axioms correspond
to the “no junk, no confusion” principle: there are no other values than those
denoted by the functions x : c, and distinct functions denote di↵erent values.

Christiano Braga
161

9

The variables within the class SW-model in Figure 1 are translated into total
functions, e.g. p : Package, c : Class and ID : String. Moreover, for every link
there is an axiom stating that the corresponding predicate holds for the functions
corresponding to the translated elements within the link. This axiom can be
stated in conjunction with the “completeness of relations”, e.g. 8 x : Package, y :
Classifier. elements(x, y) , (x = p ^ y = c) _ (x = p ^ y = pdt). In the case
of the non-abstract class Classifier which has sub-classes, the “completeness of
elements” constraint is stated by the axiom: 8 x : Classifier. x = c _ x = pdt.
Finally, the “distinguishability” constraint must be stated between elements of
sorts related by the subsorting relation. For example, in the case of the elements
within the UMLModelElement hierarchy, we have the following constraint:
¬(a = c) ^ ¬(a = p) ^ ¬(a = pdt) ^ ¬(c = p) ^ ¬(c = pdt) ^ ¬(p = pdt).

For the translation of a multiplicity constraint formula we define the following
predicates for constraining the size of the set of elements in a relation:

– min(n,R : D ⇥ C) holds if for all y : D there exists x1, ..., xn

: C such that
R(y, x

i

) for all i = {1..n}, and x
i

6= x
j

for all i = {1..n� 1}, j = i+ 1.
– max(n,R : D ⇥ C) holds if for all y : D and x1, ..., xn+1 : C, Rel(y, x

i

) for
all i = {1..n+ 1} implies there is some x

i

= x
j

with i = {1..n}, j = i+ 1.

The first predicate states that there are at least n di↵erent elements related to
every element y by the relation R, which represents a minimal cardinality for
the relation. The other predicate states that there are no more than n elements
related to any element y by the relation R, which represents a maximal cardi-
nality for the relation. Using these predicates, we can translate any multiplicity
constraint formula as follows:

– n #D •R is translated into min(n,R : D ⇥ C)
– #D •R n is translated into max(n,R : D ⇥ C)
– #D •R = n is translated into min(n,R : D ⇥ C) ^ max(n,R : D ⇥ C)

such that Q : C ⇥ D,R : D ⇥ C 2 ⇧ are the predicates generated by the
translation of the property hR : C,Q : Di. If the multiplicity constraint involves
the other end, i.e. C •Q, the predicate Q : C ⇥D is used instead of R : D ⇥ C.

As an example, the formula #(UMLModelElement • name) = 1 derived
from Figure 1 is translated into the conjunction of

min(1, name : UMLModelElement⇥ String) =

8 x1 : UMLModelElement. 9 y1 : String. name(x1, y1)

max(1, name : UMLModelElement⇥ String) =

8 x1 : UMLModelElement, y2, y1 : String.

(name(x1, y1) ^ name(x1, y2))) y1 = y2

Given a IM+

theory T = h⌃, i, a IC model M of its translated theory
(⌃0, E) is translated into a ⌃-interpretation denoted I = (VT

C(O),A) such that:
each non-empty carrier set |M |

s

with s 2 S, is translated into the set V
c

in
the object domain VT

C(O), with s the translation of type c 2 T (C); and each
relation p

M

of a predicate symbol r2(c1, c2) 2 P derived from the translation of
a predicate hr1 : c1, r2 : c2i, is translated into the relation pI ✓ V

c1 ⇥ V
c2 2 A.

Christiano Braga
162

10

4.3 Encoding Qvtr into Casl

We define a GTC between the extended Qvtr institution IQ+

and the institu-
tion IC for SubPCFOL=. Every IQ+

signature h⌃M
1 ,⌃M

2 i is translated by the
functor � into a theory such that each signature ⌃M

i

is translated as defined in
the encoding of Csmof into Casl. We assume that the institution IE of the
expressions language has a correspondence (via a comorphism) with the built-in
extension of the institution IC.

Formulas representing keys and transformation rules are translated into named
first-order formulas. Formulas will be of the form P , F such that P is the pred-
icate naming the formula, and F represents the conditions which must hold in
order to satisfy a key constraint 'K or transformation 'R.

In the case of a formula 'K, the formula F defines that there are not two
di↵erent instances of that class with the same combination of properties con-
forming the key of such class. Formally, any formula hC, {r1, ..., rn}i is translated
into a predicate key C naming a key constraint definition, and a formula of the
form key C , 8x, y 2 C, v

j

: T
j

. x 6= y !
V

i,j

r
i

(x, v
j

) !
W

i,j

¬r
i

(y, v
j

),
with r

i

(,) one of the two predicates from the translation of the property
hr1 : C1, r2 : C2i such that one of the roles is of type C and the other of type T

j

.
The key formula in the example is translated into the expression

key Table , 8x, y 2 Table, v1 : String, v2 : Schema.

x 6= y ! name(x, v1) ^ schema(x, v2) ! ¬name(y, v1) _ ¬schema(y, v2)

In the case of a formula 'R, the formula F declares that top-level rela-
tions must hold, and each individual rule is translated into the set of condi-
tions stated by the checking semantics of QVT-Relations. Formally, every rule
Rule = htop,VarSet,ParSet,Pattern

i

(i = 1, 2),when,wherei 2 'R is translated
into: a predicate Rule : T1⇥ ...⇥T

n

2 P with ParSet = {T1, .., Tn

}, and a predi-
cate Top Rule without parameters (only if top = true), naming the formula; and
a formula 8v1 : T1, ..., vn : T

n

. Rule(v1, ..., vn) , F such that Rule(v1, ..., vn) is
the predicate defined before. In the case of a top rule, there is also a formula
Rule , F . For the formula F there are two cases corresponding to the checking
semantics of QVT-Relations:

1. If WhenVarSet = ;

8 x1, ..., xn

2 (VarSet\2 VarSet)\ParSet. (�(Pattern1) !
9 y1, ..., ym 2 2 VarSet\ParSet. (�(Pattern2) ^ �(where)))

2. If WhenVarSet 6= ;

8 z1, ..., zo 2 WhenVarSet\ParSet. (�(when) !
8 x1, ..., xn

2 (VarSet\(WhenVarSet [2 VarSet))\ParSet.
(�(Pattern1) ! 9 y1, ..., ym 2 2 VarSet\ParSet.

(�(Pattern2) ^ �(where))))

Christiano Braga
163

11

The translation of Pattern
i

= hE
i

, A
i

, P r
i

i is the formula
V

r2(x, y)^�(Pr
i

)
such that r2(x, y) is the translation of predicate p = hr1 : C, r2 : Di for every
rel(p, x, y) 2 A

i

with x : C, y : D; and �(Pr
i

) is the translation of the predicate
into Casl. Moreover, the translation of when = hwhen

c

,when
r

i (or where) is the
formula

V
Rule(v) ^ �(when

c

) such that Rule(v) is the parametric invocation
of the rule (Rule, v) 2 when

r

, and �(when
c

) is the translation of the predicate.
Back to the example, for each rule there is a predicate defining the rule. The

relation ClassToTable is translated into the expression (in Casl syntax):

Top_ClassToTable <=> forall p : Package; s : Schema

. PackageToSchema(p,s) =>

forall c : Class; cn : String . namespace(c,p)

/\ kind(c,Persistent) /\ name(c,cn) =>

exists t : Table . schema(t,s)

/\ name(t,cn) /\ AttributeToColumn(c,t)

This formula says that the top-level relation holds whereas for every package
and schema satisfying the relation PackageToSchema, if there is a persistent class
within that package, there must exists a table in the corresponding schema with
the same class name. Moreover, the attributes and columns of both elements
must be in the relation AttributeToColumn.

Given a IQ+

theory T = h⌃, i, a model M of its translated theory (⌃0, E)
is translated into a ⌃-model M = hMM

1 ,MM
2 i by constructing disjoint models

with an interpretation of elements for each corresponding IM+

theory. Each MM
i

(i = 1, 2) is defined as in Section 4.2.

5 The Environment in Action

We have implemented a prototype of our environment using the Heterogeneous
Tools Set (Hets,[3,6]). Hets is an open source software providing a general
framework for formal methods integration and proof management, based on the
Theory of Institutions, as introduced above. Based on this foundation, Hets
supports a variety of di↵erent logics. More specifically, Hets consists of logic-
specific tools for the parsing and static analysis of basic logical theories written in
the di↵erent involved logics (e.g. our extended Csmof and Qvtr institutions),
as well as a logic-independent parsing and static analysis tool for structured
theories and theory relations. Proof support for other logics can be obtained by
using logic translations defined by comorphisms (e.g. from Csmof to Casl). Our
prototype and examples can be downloaded together with the Hets distribution.

Within this prototype, MDE experts can specify model transformations in
their domain and such specifications can be complemented by verification ex-
perts with other properties to be verified, e.g. non-structural constraints. All
this information is taken by Hets, which performs automatic translations of
proof obligations into other logics and allows selecting the corresponding prover
to be used, whilst a graphical user interface is provided for visualizing the whole
proof. In other words, we provided to MDE practitioners the “glue” they need
for connecting their domain with the logical domains needed for verification.

Christiano Braga
164

12

5.1 Heterogeneous Verification

Our problem is formally stated as a heterogeneous specification using Casl
structuring constructs, with at least three logics: CASL, CSMOF and QVTR. We
also perform logic translations through the implemented comorphisms which
are CSMOF2CASL and QVTR2CASL. Next, there is an excerpt of the heterogeneous
specification of the example.

(1) logic CSMOF

from QVTR/UML get UML |-> UMLMetamodel

from QVTR/UML_WMult get UML |-> UMLConstraints

(2) spec UMLProof = UMLMetamodel

then %implies UMLConstraints end

(3) logic QVTR

from QVTR/uml2rdbms get uml2rdbms |-> QVTTransformation

(4) logic CASL

spec ModelTransformation = QVTTransformation with logic QVTR2CASL

then %implies

. key_RDBMS_Table

. Top_PackageToSchema

. Top_ClassToTable

end

Within the CSMOF logic (1) we create two specifications from standard XMI
files with the information of the class metamodel and SW-model in Figure 1. This
implies the creation of a representation of signatures and formulas according to
the institution defined in Section 3. Another specification is created (2) by ex-
tending UMLMetamodel and stating that UMLConstraints is implied. This means
that every formula (multiplicity constraint) in the second specification can be de-
rived, thus there must be a proof of it. This is how the satisfaction relation of the
Csmof institution is checked. We also use the QVTR logic (3) to create a specifi-
cation from a standard .qvt file according to the institution defined in Section 3.
The only di↵erence with respect to the QVT standard is that instead of using
OCL as the expressions language, we use for now a very simple language contain-
ing boolean connectives, the constants true and false, term equality, strings and
variables. Finally, we move into Casl (through the comorphism QVTR2CASL) for
creating another specification (4) in which the translation of key and rule formu-
las defined in Section 3 are implied by the transformation specification. When
a proposition, e.g. Top_ClassToTable, is called from the Casl specification, a
proof of the implication must be given. We can also translate our specifications
and complement them with other constraints which cannot be stated as formulas
of the former institutions. As an example we can state that there cannot be two
Classifiers with the same name in the UMLMetamodel specification. For this
purpose we are using the CSMOF2CASL comorphism as follows.

Christiano Braga
165

13

spec MoreProofs = UMLMetamodel with logic CSMOF2CASL

then %implies

forall x,y : Classifier; str : String

. name(x,str) /\ name(y,str) => x = y

end

Once our heterogeneous specification is processed, Hets constructs a devel-
opment graph in which nodes correspond to specifications, some of them with
open proof obligations, and arrows to dependencies between them. We have three
proof obligations corresponding to those formulas marked as %implies within
the specifications. Proof goals can be discharged using a logic-specific calculus,
e.g. some prover for Casl in the example. The double arrows are heterogeneous
theorem links, meaning that the logic changes along the arrow. In the example
this corresponds to the extension of specifications by using the comorphisms. It
can be noticed that we can use any other logic within the logics graph of Hets
through comorphisms. This improves the proof capabilities of our environment.

5.2 Verification Properties

There are several properties that can be verified, some of them related to the
computational nature of transformations and target properties of transformation
languages, and other to the modeling nature of transformations [2]. The min-
imal requirement is conformance, i.e. that the source and target models (resp.
the transformation specification) are syntactically well-formed instances of the
source and target metamodels (resp. the transformation language). Our frame-
work provides this verification in three parts. During the construction of Csmof
and Qvtr theories, parsing and static analysis check whether signatures and
formulas are well-formed, and (as we explained before) a SW-model within a
signature is a structurally well-formed instance of the metamodel in the same
signature, as well as a transformation specification given in a formula is well-
formed with respect to the signature containing both source and target meta-
models. Multiplicity constraints are verified when proving the satisfaction of
Csmof formulas. Finally, non-structural constraints are verified by extending
both Csmof and Qvtr specifications using other logics, as Casl in the ex-
ample. Hets also allows for disproving things using consistency checkers. This
provides an additional point of view. In particular, we can check if a set of rules
have contradictory conditions which could inhibit its execution.

In most cases a general-purpose logic, as provided by Casl, is enough to
cover most of the verification approaches in [2]. The future inclusion of OCL
as an institution will provide additional support in this sense. However, the
verification process may depend on the problem to verify, since it is well-known
that there is a “state explosion” problem when using automated checkers. Thus,
automatic proofs are not always possible. InHets it is possible to choose the tool
we want to use. In this sense, we can choose not to use an automated theorem
proving system, but for example an interactive theorem prover.

Christiano Braga
166

14

Verification interests go beyond these kinds of problems. When verifying a
model transformation we want to consider its elements as a whole and not indi-
vidually. In this sense, sometimes the notion of a transformation model is used,
i.e. a model composed by the source and target metamodel, the transformation
specification and the well-formedness rules. We have a transformation model in
a Qvtr theory (QVTTransformation in the example) which allows to add other
properties by combining elements from the source and target metamodels and
SW-models. With this we can state model syntax relations, trying to ensure
that certain elements or structures of any input model will be transformed into
other elements or structures in the output model. This problem arises when,
for example, these relations cannot be inferred by just looking at the individual
transformation rules. We can also state model semantics relations, e.g. tempo-
ral properties and refinement. Besides further work is needed to evaluate the
alternatives, there are languages and tools, as ModalCasl and VSE (based on
dynamic logics) commonly used for verifying these kinds of things. We could
also be interested in working at another abstraction level, i.e. not considering
specific SW-models but only metamodels and the transformation specification.
This can be useful, for example, for proving that a transformation guarantees
some model syntax relations when transforming any valid source SW-model. The
problem here is that we need another institutional representation, e.g. we need
to consider an abstract representation of a SW-model instead of a fixed one.

6 Related Work

There are some works that define environments for the comprehensive verifi-
cation of MDE elements based on a unified mathematical formalism. As an
example, in [13] rewriting logic is used to analyze MOF-like and QVT-like el-
ements. Since rewriting logic was integrated into Hets [14], we can use these
representations instead of using our comorphism into Casl. Nevertheless, since
our institution is logic-independent it provides more flexibility for the definition
of further specific comorphisms into other logics and languages (e.g. UML). In
general, the use of a fixed unified mathematical formalism serving as a unique
semantic basis can be quite restrictive. With our approach we can move between
formalisms, and use a unified mathematical formalism if necessary (e.g. when
transforming the whole specification into Casl).

In [15] the authors define a language-independent representation of meta-
models and model transformations supporting many transformation languages.
They also define mappings to the B and Z3 formalisms. Since they use only one
generic language, only one semantic mapping needs to be defined for each target
formalism. However, the semantic mapping should be semantics-preserving, and
this aspect is not formally addressed in such work. In our case, comorphisms
already preserve the semantics with respect to the satisfaction relation. More-
over, our comorphism into Casl and the corresponding implementation inHets,
provides the possibility of connecting our institutions to several logics and tools.

Christiano Braga
167

15

There are works representing the semantics of UML class diagrams with
first-order logic, as in [16]. Since there are no so many alternatives for this re-
presentation, these works have similarities with our representation of extended
Csmof into Casl. In particular, the work in [16] is the nearest to ours from
which we take many aspects, e.g. the “distinguishability” and “completeness of
elements” axioms. In [17] the authors explain how class diagrams with OCL
constraints can be translated into Casl. However, their definition is informally
presented, and not in terms of a comorphism. In [18] the authors define a comor-
phism from UML class diagrams with rigidity constraints to ModalCASL (an

extension of Casl). Since our IM+

institution is an adaptation of the institution
for UML class diagrams, the comorphisms have some aspects in common, as the
translation of formulas, but without the modal logic particularities.

Several approaches to heterogeneous specification have been developed for
traditional software development, but there is little tool support. CafeOBJ [19]
is a prominent approach based on the theory of institutions. However it provides
a fixed cube of eight logics and twelve projections (formalized as institution mor-
phisms), not allowing logic encodings (formalized as comorphisms). Thus, it is
not an option for the definition of our environment. Moreover, HeteroGenius [20]
is a framework, based on institutions, allowing the interaction between di↵erent
external tools giving the user the possibility of performing hybrid analysis of a
specification. However, the framework is not formally defined or available to be
used as a basis for our environment.

7 Conclusions & Future Work

We have presented the implementation of an environment for the formal verifica-
tion of di↵erent MDE aspects using heterogeneous verification approaches, which
is based on a theoretical definition presented in a previous work [4]. The envi-
ronment was integrated into Hets by defining comorphisms from institutions
representing MDE elements to Casl, the core language of Hets. The existent
connections between Casl and other logics within Hets broadens the spectrum
of logical domains in which the verification of MDE elements can be addressed.

The environment supports a separation of duties between software developers
(MDE and formal methods experts) such that a formal perspective is available
whenever it is required. A developer can import the MDE elements, supplement
this information with verification properties specified in other languages within
the graph of logics supported by Hets, and perform the heterogeneous verifica-
tion assisted by the tool. Since the implementation can generate a heterogeneous
specification from the same files used by MDE practitioners, and there is no need
of rewriting MDE building block in each logic involved, the environment is scal-
able without human assistance. Although our proposal is aligned with OMG
standards, this idea can be potentially formalized for any transformation ap-
proach and language, which allows extending the approach as far as necessary.
Finally, the environment is reliable since it is supported by a well-founded theory
and by a mature tool in which there are several logics already defined.

Christiano Braga
168

16

Nevertheless, we still have some open issues. A current drawback is the inex-
istence of an institution for OCL which is a language in which QVT is strongly
based. For now we have considered a very simple expressions language, but the
definition of an institution for OCL is subject of further work. In the same sense,
we expect to extend the institutions to include some elements not considered
and give them tool support, besides exploring other options for the verification
of transformation properties. This will strengthen the formal environment for
MDE. Since our institutions formalize languages strongly related with those in
the UML ecosystem, it will be interesting to explore the possibility of integrating
them with other languages, as those already defined as institutions in [21].

We need to continue bridging the gap between MDE and formal verification in
terms of tool development in order to practitioners really be able to benefit from
our approach. First, we can connect the definition of the MDE elements in any
popular tool with an automatic generation of the heterogeneous specification,
as explained in Section 5.1, and the execution of Hets using this specification.
Moreover, we could perform an automated verification of some properties (if pos-
sible) by running Hets in the background and providing a better user interface
to show the problems found by Hets. For this to be possible, we need to improve
feedback from existing formal tools. This needs better traceability between the
problem definition and the results given by a verification tool. We can define
some traceability links from comorphisms, interpret the output of the verifica-
tion tool and return something that the MDE practitioner can interpret. This
interpretation is like defining a transformation between the domain of outputs
of the verification tool and the domain of messages in MDE.

Moreover, as described in Section 5.2, the environment deals with many ve-
rification properties, but a deeper understanding of this (as for example about
the behavior of models) is a must. In this sense, we can use the knowledge in [2]
to provide a guide for the selection of the “right” verification approach for the
problem which is of interest to verify. We also need to apply our approach to
industrial, real-size examples for strengthening the results.

A final topic of interest, somewhat related to this work, is to explore the
possibility of leveraging the capabilities of Hets by using MDE elements as a
metalanguage for expressing logics and comorphisms. If metamodels are defined
for di↵erent logics, model transformations can be used to express comorphisms
between them. Models can represent specifications within corresponding logics
and an automatic process can generate their representation to the Hets engine.
This could eventually simplify the definition of logics and comorphisms.

References

1. Kent, S.: Model driven engineering. LNCS, vol. 2335, pp. 286–298. Springer (2002)
2. Calegari, D., Szasz, N.: Verification of model transformations: A survey of the

state-of-the-art. ENTCS, vol. 292, pp. 5–25. Elsevier (2013)
3. Mossakowski, T.: Heterogeneous specification and the Heterogeneous Tool Set.

Technical report, Universitaet Bremen (2005) Habilitation thesis.

Christiano Braga
169

17

4. Calegari, D., Szasz, N.: Institution-based semantics for MOF and QVT-relations.
LNCS, vol. 8195, pp. 34–50. Springer (2013)

5. Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification
and programming. Journal of the ACM 39 (1992) 95–146

6. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set. LNCS,
vol. 4424, pp. 519–522. Springer (2007)

7. Mossakowski, T., Haxthausen, A.E., Sannella, D., Tarlecki, A.: Casl- the com-
mon algebraic specification language: Semantics and proof theory. Computers and
Artificial Intelligence 22 (2003) 285–321

8. OMG: Meta Object Facility (MOF) 2.0 Core Specification. Specification Version
2.0, Object Management Group (2003)

9. OMG: Object Constraint Language. Formal Specification Version 2.2, Object
Management Group (2010)

10. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation. Final
Adopted Specification Version 1.1, Object Management Group (2009)

11. Calegari, D.: Heterogeneous Verification of Model Transformations.
PhD thesis, Universidad de la República - PEDECIBA (2014) url:
https://www.fing.edu.uy/inco/pedeciba/bibliote/tesis/tesisd-calegari.pdf

12. Codescu, M.: Generalized theoroidal institution comorphisms. LNCS, vol. 5486,
pp. 88–101. Springer (2008)

13. Boronat, A., Heckel, R., Meseguer, J.: Rewriting logic semantics and verification
of model transformations. LNCS, vol. 5503, pp. 18–33. Springer (2009)

14. Codescu, M., Mossakowski, T., Riesco, A., Maeder, C.: Integrating Maude into
Hets. LNCS, vol. 6486, pp. 60–75. Springer (2011)

15. Lano, K., Rahimi, S.K.: Model transformation specification and design. Advances
in Computers 85 (2012) 123–163

16. Shan, L., Zhu, H.: Semantics of metamodels in UML. In: Proc. TASE, IEEE
Computer Society (2009) 55–62

17. Bidoit, M., Hennicker, R., Tort, F., Wirsing, M.: Correct realizations of interface
constraints with OCL. LNCS, vol. 1723, pp. 399–415. Springer (1999)

18. James, P., Knapp, A., Mossakowski, T., Roggenbach, M.: Designing domain specific
languages: A craftsman’s approach for the railway domain using CASL. LNCS,
vol. 7841, pp. 178–194. Springer (2013)

19. Diaconescu, R., Futatsugi, K.: CafeOBJ Report: The Language, Proof Tech-
niques, and Methodologies for Object-Oriented Algebraic Specification. Volume 6
of AMAST Series in Computing. World Scientific (1998)

20. Giménez, M., Moscato, M., López, C., Frias, M.: Heterogenius: A framework for
hybrid analysis of heterogeneous software specifications. EPTCS, vol. 139, pp.
65–70. (2018)

21. Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A Heterogeneous Approach
to UML Semantics LNCS, vol. 5065, pp. 383–402. Springer (2008)

Christiano Braga
170

A Proposal for Integrating Formal Methods into
a Lightweight UML-driven Development Process

Thiago C. de Sousa1 and Paulo Sérgio Muniz Silva2

1 State University of Piaúı, Brazil
thiago@uespi.br

2 University of São Paulo, Brazil
paulo.muniz@usp.br

Abstract. The best practices of software engineering indicate that the
verification activity is essential to achieve some quality during the soft-
ware construction. In UML-based development processes, one of their
main focuses is the detection of inconsistencies in diagrams that represent
the software. However, most of these processes, such as ICONIX, apply
only informal techniques (eg. visual model inspection), often implying the
negligence of that activity by developers. Moreover, with the advance of
automated verification tools, formal methods, such as Event-B, are in-
creasingly attracting the attention of software companies. However, it is
still di�cult to convince developers to adopt them, because they are not
acquainted with some of their mathematical concepts. Thus, this paper
presents a proposal for the inclusion of Event-B within ICONIX, giving
rise to BICONIX, an object-oriented development process that supports
inconsistencies formal verification. Specifically, this work shows how this
merger can assist the verification activity in well-defined check points of
the proposed process.

Keywords: Formal Verification, UML, ICONIX, Event-B

1 Introduction

UML has become the “de facto” standard for software modeling and, nowadays,
there are a lot of development processes that use UML diagrams to create partial
models of the system being produced. These models usually describe a system
from di↵erent viewpoints and levels of abstraction and, frequently, lead to a
number of inconsistency issues, which are well-known by the software engineering
community. One of these problems is to make sure that all models respect the
constraints (business rules and functional properties) imposed by the application
domain and/or by the stakeholders. Another issue is how to ensure that each
software model has a unique interpretation (precise semantics), which means that
it cannot be understood in di↵erent ways by two or more developers. Finally,
there is the problem of checking whether the semantics of an abstract model is
preserved by its detailed versions after one or more successive refinements.

On the one hand, most of software development processes based on UML,
such as RUP and ICONIX [1], include the verification of these inconsistencies as

Christiano Braga
171

2 T. C. de Sousa and P. M. Muniz Silva

an essential task. However, many verification techniques are based on inspections
of the models and, as the UML models and the constraints are expressed by
informal languages, the inspections are usually carried out manually and visually,
making them costly and strongly dependent on the skill and experience of the
developer.

On the other hand, formal methods, such as VDM [2], B [3], Event-B [4]
and Z [5], have supported not only to check model inconsistencies precisely and
automatically, but also work as software specification and modeling tools. How-
ever, despite the e↵ectiveness of formal techniques in filling the gap between
requirements specification and implementation and ensuring system correctness
by construction (verification mechanism), industrial practitioners are still reluc-
tant to fully adopt them.

As we can realize, although inconsistencies verification is a critical issue in
software engineering, the widely used software development processes based on
UML have no e�cient mechanism to perform this task. It is also observed that
formal methods provide e↵ective techniques to address this problem, but they do
not attract the attention of the community. So, for many industrial practitioners
it would be very useful to have a well-known UML-based process with support
for formal verification. In this work we present an approach for the integration of
the ICONIX process with the Event-B formal method. More precisely, we show
how the Event-B formalism can be incorporated into the ICONIX steps/stages
in order to provide a mechanism to check for inconsistencies.

In the next section we present some theoretical fundamentals, introducing
the features of the ICONIX process, as well as the main concepts of the Event-B
language. In section 3 we explain our approach named BICONIX in more details,
showing an structure overview and the main tasks of each phase. In section 4,
we show some related work, and finally we reserve the last section for further
discussions about how BICONIX can assist the verification task and directions
for future work.

2 Background

The ICONIX process can be considered a pure, lightweight and practical, but also
powerful methodology. ICONIX is not as bureaucratic as RUP, which means that
it does not generate a lot of documentation. And despite being a simple process
like XP (eXtreme Programming), it does not lack the Analysis and Design phase,
providing a very simple step-by-step guiding rules during the whole process.
Moreover, ICONIX uses only four diagrams (use cases, robustness, sequence and
class), follows the iterative and incremental development cycle and brings the
developer to a “mandatory” and well-defined verification task among its phases
in order to check requirements compliance.

Recently, a variant of the B formal method has been successfully applied in
some companies from di↵erent fields, such as aerospace, services and railways.
Event-B is a state-based formal method for modeling systems based on predicate
logic and set theory where the refinement mechanism, which allow us to build a

Christiano Braga
172

Integrating Formal Methods into a Lightweight UML-driven Process 3

model gradually by making it more and more precise (that is, from an abstract
model to a concrete one), and the consistency checking, which allows us to verify
the validity of the properties of a system, are guaranteed by mathematical proof
obligations. These features have been supported by an open-source platform
(based on Eclipse IDE) named Rodin, that is constantly improved and extended
by the community via plugins.

3 The BICONIX Process

In this section we present an object-oriented development process named BI-
CONIX that support supports formal verification of inconsistencies. The pro-
posed process keeps basically the main characteristics of ICONIX and extends
it by incorporating a specific role (the Event-B Profile) for allowing the addition
of invariants (business rules and functional properties), guards, actions and re-
finement relations among the models generated automatically in each of its first
three phases. An overview of BICONIX can be seen in Figure 1.

Fig. 1. Overview of the BICONIX process

Christiano Braga
173

4 T. C. de Sousa and P. M. Muniz Silva

The BICONIX process has two dimensions: the horizontal axis represents
the temporal order and shows the lifecycle aspects of the development process;
the vertical axis is used to represent both structural and behavioral software
aspects. The first dimension represents the dynamic aspect of the process and is
expressed in terms of phases, milestones and iterations. The second dimension is
the static aspect of the process, as it is described in terms of models, activities,
workflows, artifacts and profiles.

The BICONIX process is purposely very similar to ICONIX in order to invite
regular developers to using it. So, BICONIX has also four sequential phases, each
one concluded by a milestone. At the end of a phase there is an execution of a
critical review in order to determine whether the objectives have been achieved.
A positive evaluation allows the project to move forward to the next stage.
Basically, the artifacts, activities and workflows of the BICONIX process are the
same ones of ICONIX, only including those ones related to the Event-B profile,
keeping the lightweight aspect of ICONIX. Due to space limitations, we will not
detail BICONIX, only focusing on the di↵erences from ICONIX.

One of the main novelties of BICONIX compared to the original process is
the support of formal verification, which appears after the transition between
the ICONIX and Event-B profiles. At the end of each of its first three phases,
the Event-B specialist receives the diagrams produced by the ICONIX developer
and uses the Rodin platform, extended with some transformation rules, for au-
tomatic translation of them into the Event-B language. Basically, the artifacts
that represent the static part of the software (Domain Model, Updated Domain
Model and Class Diagram) generate sets, relations and type invariants in Event-
B, and the artifacts that represent the dynamic part of the software (Use Case,
Robustness and Sequence Diagrams) are mapped to events.

The generated formal model may be augmented with constraints (invari-
ants) and pre/post-conditions (guards/actions). In the first phase (Requirements
Analysis), the Event-B expert can define constraints over the domain model and
pre/post-conditions on the use cases. In the second phase (Analysis and Prelimi-
nary Design), some constraints over the updated domain model (with attributes)
and pre/post-conditions on the robustness diagrams can be described. Finally,
at the stage of Detailed Design, the specialist can include constraints over the
class model (with methods) and pre/post-conditions on the sequence diagrams.

The final formal model produced is then checked automatically by the tool
in order to detect errors. If there are any issues, they are discussed by the two
roles (profiles) during the review activity of each phase (requirements review,
preliminary design review or critical design review). Essentially, the problems
occur due to invariants broken by event actions or due to a detailed model that
is not following the formal refinement rules. For mapping back the Event-B
model errors as ICONIX artifacts issues, the specialists are aided by an implicit
dictionary (e.g. the constraint word in the ICONIX context is synonyms of the
invariant word in the context of Event-B). So, the developers must decide which
steps of the current phase, including the diagram construction, should be redone
in order to correct the errors, before proceeding to the next one.

Christiano Braga
174

Integrating Formal Methods into a Lightweight UML-driven Process 5

4 Related Work

Relevant work present formal UML-based methods. Runde et al. [6] present a
formal method called STAIRS based on Interactions and Sequence diagrams as
defined in UML 2.0 , with the horizontal and vertical refinement notions. Ke et
al. [7] detail a sound process for developing critical systems named rCOS, which
translates some UML diagrams into a formal language and checks them using
the FDR tool. Ahrendt et al. [8] present a formal object-oriented process named
KeY, which uses UML diagrams and OCL annotations to generate verified code
in Java Card format using a tool developed by the authors. However, they are
not based on any known methodology, which may not encourage their use.

Other work use our same approach to provide a mapping from UML to
a well known formal language. Laleau and Mammar [9] provide a method to
generate B specifications from UML (class, state and collaboration diagrams)
and check them using the AtelierB tool. Lausdahl et al. [10] present an approach
to translate Class and Sequence diagrams to VDM++ and check them using
the Overture tool. Miao et al. [11] show how to translate Class, Sequence and
Statecharts diagrams into Object-Z and check them using the OZRose tool. But
there is no mention to integrate them in a di↵used methodology like we do.

5 Discussions and Future Work

In this paper we have proposed an approach for including a formal method
(Event-B) into a lightweight UML-based methodology (ICONIX) in order to aid
industrial practitioners with the verification task. Since there is the formalization
of the artifacts, the user of the BICONIX process has confidence to check both
syntactic (eg. every use case must have a name) and semantic (eg. no cycles in
a use case diagram) modeling issues accurately.

We believe that the introduction of a formal method in a development process
brings, under the technical point of view, two major benefits. The first one
is the discovery of modeling problems at the early stages, which contributes
significantly to the reduction of rework, essential to minimize the technical debt.
A second gain would be the obligation of performing the verification activity in
specific check points of the process, since BICONIX forces the execution of this
task between the transition of its phases, thus contributing to the dissemination
of the formal analysis culture.

From the manager’s viewpoint, it is important to emphasize that the BI-
CONIX process proposes the coexistence of two technical roles to perform its
many activities: the ICONIX and the Event-B profiles. At a glance, this feature
may be considered an additional issue to manager control, impacting negatively
upon the management of projects that follow the process. However, we believe
that the inclusion of a specialist that fits the Event-B profile, for managers who
already have experience in the ICONIX process, should not be a major issue,
since the tasks under the liability of the expert are performed only at the end of
each phase, having no impact on the ICONIX process kernel.

Christiano Braga
175

6 T. C. de Sousa and P. M. Muniz Silva

Finally, this work requires important future improvements, many of them
related to the BICONIX limitations: the inclusion of elements in the Event-
B language for supporting the object-oriented semantics; the addition of other
standard elements of the UML diagrams (eg. messages types of Sequence Dia-
gram); the definition of refinement patterns to accelerate the description of gluing
invariants among the generated Event-B models in each phase; the complemen-
tation of the process to enable the addition of invariants and guards/actions in
the Implementation phase, providing an integration with a language that allows
specifying these details directly in the source code; the integration of an easier
constraint language in order to reduce the responsibilities of Event-B specialist;
the association of a tool for automatic test generation in order to reinforce the
verification mechanism; the incorporation of a mechanism to assist the transition
from requirements specification to Use Cases and Domain models, developing,
for example, a controlled language to express them; the improvement of the
feedback from Event-B errors provided by the Rodin platform to diagrams is-
sues; and the elaboration of a controlled experiment to assess the viability of the
proposed process in real projects.

References

1. Rosenberg, D., Stephens, M.: Use Case Driven Object Modeling with UML: Theory
and Practice. Apress (2007)

2. Bjørner, D., Jones, C.B.: The Vienna Development Method: The Meta-Language.
Lecture Notes in Computer Science 61 (1978)

3. Abrial, J.R.: The B-book: assigning programs to meanings. 1st edn. Cambridge
University Press, New York, NY, USA (1996)

4. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. 1st edn.
Cambridge University Press, New York, NY, USA (2010)

5. Spivey, J.: The Z notation - a reference manual. Prentice Hall International Series
in Computer Science (1989) I–XI, 1–155

6. Runde, R.K., Haugen, O., Stolen, K.: The Pragmatics of STAIRS. In de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.P., eds.: Proceedings of the International
Symposia on Formal Methods for Components and Objects (FMCO). Volume 4111
of Lecture Notes in Computer Science., Springer (2005) 88–114

7. Ke, W., Li, X., Liu, Z., Stolz, V.: rcos: a formal model-driven engineering method
for component-based software. Frontiers of Computer Science 6(1) (2012) 17–39

8. Ahrendt, W., Beckert, B., Hähnle, R., Schmitt, P.H.: KeY: A formal method for
object-oriented systems. In: Procs. of 9th. Intl. Conf. on Formal Methods for Open
Object-Based Distributed Systems, Cyprus, 2007. LNCS, Springer (2007)

9. Laleau, R., Mammar, A.: An Overview of a Method and its Support Tool for
Generating B Specifications from UML Notations. In: Proceedings of the IEEE
International Conference on Automated Software Engineering (ASE ’00), Wash-
ington, DC, USA, IEEE Computer Society (2000) 269–

10. Lausdahl, K., Lintrup, H., Larsen, P.: Connecting UML and VDM++ with open
tool support. In: FM 2009: Formal Methods. Volume 5850 of LNCS. Springer
(2009)

11. Miao, H., Liu, L., Li, L.: Formalizing UML Models with Object-Z. In: Formal
Methods and Software Engineering. Volume 2495 of LNCS. Springer (2002)

Christiano Braga
176

Including Running System Implementations in the
Simulation of System of Systems Models

Kenneth Lausdahl1,
Claus Ballegård Nielsen1, and Klaus Kristensen2

1 Department of Engineering, Aarhus University.
Finlandsgade 22, Aarhus N 8200 Denmark
{lausdahl,clausbn}@eng.au.dk

2 Bang & Olufsen, Denmark
krt@bang-olufsen.dk

Abstract. The formal modelling of System of Systems is challenged by the auto-
nomy of the participating constituent systems as it may not be possible to obtain
the implementation details needed to create a descriptive model. This paper de-
scribes an extension for the Symphony tool that enables formal models of System
of Systems to be connected and simulated with externally running system imple-
mentations. An industrial case study of a Bang & Olufsen sound system is used
to show the application and feasibility of the approach.

Keywords: System of Systems, Formal Modelling, External Systems

1 Introduction

A System of Systems (SoS) is a type of system that is composed of largely independent
constituent systems, which collaborate in order to reach a common goal [4]. In their
nature SoSs consist of distributed constituent systems that have a high degree of auto-
nomy and often are developed and evolved individually. The complex structures and
interactions found in an SoS can be described formally, and the challenges faced by
system developers can be analysed through formal modelling [3].

The COMPASS Modelling Language (CML) is a formal modelling notation aimed
at creating models of SoS architectures and SoS properties in order to help developers
analysing SoS [8]. Despite the tool-support and a formalism aimed at describing SoS,
the modelling of SoS is however still challenging. The two main causes of this is that:
1) the independent owners of the systems may not be willing to share all knowledge
on their system implementation, making it difficult to create models with the correct
behaviour, 2) the systems may be legacy systems with no precise description of their
internals. In this paper, we show how SoS models can incorporate external constituent
systems as part of the model simulation through improved tool-support.

The remainder of this paper is structured as follows: Section 2 gives an overview
of the challenges in formal modelling of SoS. The principles of the simulation between
the CML simulator and the external system, as well as details of the tool extension are
described in Section 3. A small study on using the external simulation in an industrial
case is presented in Section 4, before we draw conclusions in Section 5.

Christiano Braga
177

2 System of Systems Engineering and Formal Modelling
SoS Engineering is challenged by a strong degree of autonomy, evolution and emer-
gence [4]. In order to address this, the use of formal methods has been proposed as
a way of providing better analyses of the system design [1]. The formal languages di-
rectly aimed at SoS modelling are however still challenged by the autonomy constituent
systems. As there can be conflicting interests between the owners of the individual con-
stituent systems, or because parts of the SoS are delivered by a supplier that has no
interest in the SoS, it may be difficult to create sufficiently descriptive formal models.
The owners of the independent constituent systems may not be willing to share im-
plementation details for competitive reasons, and suppliers may just have delivered a
commercial off-the-shelf product for which they have no interest in delivering docu-
mentation on its internals. Finally, some of the constituent systems in the SoS maybe
legacy systems for which documentation of their system implementation is no longer
producible. This creates challenges in the simulation of the executable formal models,
as a meaningful simulation depends on the actual behaviour of the systems involved.

We present a tool extension to simulate SoS models for which the behaviour of
some of the constituent systems can only be obtained via the actual running system, by
establishing connectivity between the simulator and an external system.

Including running systems in the simulation is already possible in other formal
methods. The Overture tool has a mechanism that allows VDM models to delegate
calls to external Java libraries [5], and for Coloured Petri Nets, CPN Tools offers the
Access/CPN functionality which enables the integration of CPN models with external
applications via a TCP/IP stream [7]. These approaches do, however, use a different
approach that either requires modification of the model or for the external system to
control the simulator.

2.1 The COMPASS Modelling Language

CML combines elements from the VDM state-based formal method [2] and the CSP
process-based formal method [6] in order to express both the structure and behaviour of
an SoS. An SoS is modelled as a collection of constituent systems with their behaviour
specified in processes, which have communication channels defined between them.

The CML language is built around collections of types, values, functions, oper-
ations, classes, processes and channels, with the types, values, functions and classes
originating from VDM, while channels are taken from CSP/Circus. The processes are
the central constructs in CML as they act as the constituents in the SoS. A process can
define and maintain state using the VDM based type system. Finally, actions are used to
express the reactive behaviour of a process. Channels are globally defined and are used
for defining the communication and synchronization events between processes.

The Symphony tool3 is an Eclipse-based IDE that provides a CML parser, type-
checker and interpreter & debugger for model simulation, as well as range of static
analyses such as a theorem prover, proof obligation generator and model checking.

An example of a very basic CML model is given in Listing 1.1, which shows the
definition of a channel c carrying a nat type, and three small systems represented by the
processes P , A and B . A parallel composition is made between the A and B processes

3 Symphony Tool webpage: https://github.com/symphonytool/

Christiano Braga
178

as defined by the process P . A process, such as P , that defines the system composition
at the highest level is known as the top process. When making a composition, a range of
channels can be given to denote the channels that the composed process can synchronize
on, based on the events occurring on the channels. In the given example the composition
defines that the processes will synchronise on events occurring on channel c. Process
A and B have a very simple functionality, where A is a system that defines an action
(indicated by @) to synchronize the value 1 on channel c, while B is a system that
synchronizes a value placed on channel c (indicated by ?) and assigns it to x .

Within the simulator, a CML model is represented as a tree structure of model be-
haviours. The top process is used to define the entry point for the simulation, and the
simulation is performed by moving from the top and down the tree to inspect and exe-
cute underlying behaviours. An inspection will reveal the collection of events that the
composed systems can execute. The structure for Listing 1.1 is shown in Figure 1, where
the inspection of the composition results in the collection of possible events. A parent
in the tree structure functions as a coordinator for its children, meaning that it will fil-
ter the collection of events available to the children and thereby control the possible
execution.

channels c : nat

process P = A [|{c}|] B

process A = begin

@ c.1 -> Skip

end

process B = begin

@ c?x -> Skip

end

Listing 1.1: CML example

[| {c} |]

A B

in
sp

ec
t inspect

[| {c} |]
{c.1, c?x}

A
c.1

B
c?x

inspected

Fig. 1: Internal simulator representation
of P from Listing 1.1.

3 Tool Support for Simulation with External Systems

The CML simulator in the Symphony tool has been extended such that systems that
are running externally to the simulation environment can be included in the simulation
of CML models. This means that concrete system implementations can be run and
executed in parallel to the simulation of the model, allowing the behaviour of both
the model and the system to affect each other. The presented approach can be divided
into three subsections: the principles of the approach (Section 3.1), the changes to the
simulator (Section 3.3) and the protocol used to establish the interaction (Section 3.2).

3.1 Principles

When an external running system implementation is going to be part of the simulation
of a CML model, it will act as one of the constituent systems defined in the overall
SoS. As each constituent system is expected to have its own specified behaviour and
have a specified way of communicating with the other constituent systems in the SoS
model, it is possible to make the external system act as a constituent system in the
model. Essentially, the tool extension will replace a process definition in the model
with a skeleton that will delegate the interaction to the external system.

Christiano Braga
179

The Symphony tool will be in control of the simulation and will act as a coordinator
in the simulation, while the external system will act as a client. The coordinator is
responsible for starting the simulation and for controlling the flow of the simulation,
once started. A special debug configuration in the Symphony tool is used to setup the
simulator as a coordinator and for interacting with external systems. In the configuration
of the coordinator the top level process is selected, as well as the processes that will be
handled by an external system. The debug configuration also requires address and port
information to be specified, such that the clients can connect to the coordinator.

During the simulation the coordinator will control the flow of the model execution
according to the model specification. The possible transitions that can be made in the
model are computed in the same way as for a normal simulator. The only change is that
some of the computations are performed by external systems. From a simulation point
of view the executing model is essentially seen as one model, which is not distinguish-
able from a normal simulation.

3.2 Protocol

The connectivity and data exchange between the simulator and the externally running
system is performed via a custom protocol built on top of a TCP connection. The proto-
col for handling the simulation reflects the simulator’s way of inspecting and execution
behaviours, and the protocol has been formally specified in a CML model. To facili-
tate the interoperability between the simulator’s Java implementation and the running
systems, that may be software implemented with different technologies on different
platforms, a data-interchange format is used. The JavaScript Object Notation (JSON)
is used, as this will ensure interoperability. The protocol mirrors the execution flow of
the normal simulator by providing message types for the inspection and execution of
behaviours. The protocol keeps a flow state in order to ensure that an execution message
is only allowed if an inspection message has previously been processed. The protocol
also contains message types that allow clients to register on the coordinator, as well as
messages for disconnecting. The network functions as client–server relationship, with
the coordinator functioning as a server that the clients can connect to during the initial-
isation of the simulation.

3.3 Simulation with External System

The Symphony simulator has been extended such that it changes the way it handles
behaviours. Essentially, all the processes that have been specified as being handled by
an external system in the debug configuration will be replaced with a skeleton that dele-
gates the processing to the external system via a network setup. As the protocol imitates
the inspection and execution calls occurring in the normal simulation, the coordinator
can use most of the existing simulator implementation and function almost like a normal
simulator, just with some calls being delegated over the network.

This is illustrated in Figure 2, that shows: (a) the tree structure of a normal simulator
and (b) the same tree structure for simulation where the process B is an external system.
The dashed line represents the network connection between the simulators.

The external system needs to have an adaptor between the system implementation
and the network setup to the simulator. The adaptor is responsible for connecting to the

Christiano Braga
180

[]

A B []

C D

(a) Standard Simulator

[]

A · · · []

C D

External

(b) Simulation with External System
Fig. 2: Illustration of the internal simulator change.

simulator over the network and for implementing the simulation protocol specifying
the possible interactions (Section 3.2). The implementation of the protocol involves
two steps: 1) a mapping of the types of the concrete programming language to the
CML types described in the simulation protocol, and 2) a mapping from the protocol
messages to operations in the external system itself. Essentially, the external system
needs to provide the simulator with a list of transitions that represents the possible
events that the system can perform given the current system state, and allow for the
simulator to send an execute message that can change the system state. This can be
implemented through the use of a state machine in the adaptor, which is used in the
case study Section 4.

4 Case Study
The approach was examined through an industrial case study involving a Bang &
Olufsen (B&O) home Audio/Video (A/V) network for connecting devices (such as au-
dio, video and legacy audio products) distributed across a user’s home. These devices
may be produced by competing manufacturers, but need to interact in order to deliver a
service to the user. As such, the A/V network forms an SoS of devices that can both be
heterogeneous and legacy systems. The devices may provide stand-alone streaming or
media content rendering services, but the SoS needs to deliver a coherent experience.
A key part of the system is the A/V control that has the task of managing which of the
devices should stream and render media. This behaviour is defined through streaming
contracts that specify the interactions between the devices.

A CML model of the A/V network streaming contracts is used to examine the pre-
sented approach. The CML model contains 2 devices: (1) the AV control representing
the user’s interaction semantics, and (2) a streaming device which renders media on the
basis of control events from the A/V control. The CML model describes the streaming
contracts by defining a set of semantically defined transition rules for distributed state
synchronization and distributed operation calls.

The externally running system used for this case study is a B&O developed C++
implementation of the streaming contract. The implementation makes use of two inter-
faces: 1) a call-back interface where application layer clients will be notified of transi-
tion operations and states changes, and 2) an interface that functions as an application
layer abstraction creating an adaptor towards the platform specific streaming imple-
mentations. These two interfaces maps to the channels defined in the CML model of
the streaming contract, and the semantics of these interfaces’ implementations satisfy
the transition rules defined for the streaming contract. In order to map the externally
running system to the events being described in CML, a state machine has been im-
plemented where the channel events of the CML model are translated into operations

Christiano Braga
181

calls in the C++ implementation. For the network setup between the simulator and the
external system some glue code in the C++ implementation is used to handle the map-
ping for states, types and operation logic. This also works as a wrapper that creates the
needed JSON messages for the external system.

Being able to include the running system as part of the model simulation, enabled
B&O to check the behaviour described in a model against the real system implementa-
tion. In the SoS model a process modelling a constituent system was replaced with the
actual system being modelled. Testing a concrete system up against a model showed
that the behaviour described in the model corresponded to the systems implementation
for the given modelled scenario, and vice versa. This same approach can be used to
replace parts of the SoS model with existing systems from other manufacturers or with
legacy systems.

5 Conclusions
We have presented an approach for including externally running systems in the simu-
lation of formal models of SoSs. By the use of a tool extension it has become possible
to include constituent systems that, for various reasons, cannot be modelled into the
simulation of a complete SoS model. We have shown the application of the approach
through a small industrial case study and have demonstrated its feasibility. Allowing
the simulation of SoS partly consisting of running constituent systems enables develop-
ers to address the challenges of autonomy and legacy often found in SoS development,
while still being able to use a formalism targeted SoS development. We believe that the
approach described in this paper can be used as an inspiration for tool builders of other
formal methods that have tool–support for performing simulations of models.

Acknowledgment
The work presented here is partly supported by the EU Framework 7 Integrated Project:
COMPASS, Grant Agreement 287829. The authors would also like to thank the anony-
mous reviewers for their valuable comments and suggestions.

References

1. D. Drusinksy and M.-T. Shing. Creation and Evaluation of Formal Specifications for System-
of-Systems Development. In IEEE SMC 2005, pages 1864 – 1869 Vol. 2, oct. 2005.

2. John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and Techniques
in Software Development. Cambridge University Press, Second edition, 2009.

3. John Fitzgerald, Peter Gorm Larsen, and Jim Woodcock. Modelling and Analysis Technology
for Systems of Systems Engineering: Research Challenges. In INCOSE, July 2012.

4. Mark W Maier. Integrated modeling: A unified approach to system engineering. Journal of
Systems and Software, 32(2):101–119, 1996.

5. Claus Ballegaard Nielsen, Kenneth Lausdahl, and Peter Gorm Larsen. Combining VDM with
Executable Code. In ABZ2012, volume 7316 of LNCS, pages 266–279, 2012.

6. A. W. Roscoe. Understanding Concurrent Systems. Springer, 2010.
7. Michael Westergaard and Lars Kristensen. The access/cpn framework: A tool for interacting

with the cpn tools simulator. In PETRI NETS 09, pages 313–322, 2009.
8. J. Woodcock, A. Cavalcanti, J. Fitzgerald, P. Larsen, A. Miyazawa, and S. Perry. Features

of CML: a Formal Modelling Language for Systems of Systems. In SoSE 2012. IEEE, July
2012.

Christiano Braga
182

?

1 1,2

1

2

?

Christiano Braga
183

Christiano Braga
184

2 (�1, 3.0] 2 (3.0,+1)

Christiano Braga
185

(2 · 1 + 1, 2 · 3 + 1] = (3, 7]

Christiano Braga
186

Christiano Braga
187

Christiano Braga
188

