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Abstract. This paper presents an approach to describe, deploy and manage 
component-based applications having dynamic functional and non-functional 
requirements. The approach is centered on architectural descriptions and 
associated high-level contracts. Besides specifying non-functional (or QoS) 
requirements, these contracts are used to guide architecture customizations 
required to enforce the requirements. The infrastructure required to manage the 
contracts follows an architectural pattern, which can be directly mapped to 
specific components included in a supporting reflective middleware. This 
approach allows designers to write a contract and to follow a standard recipe to 
insert the extra code required to its enforcement in the supporting middleware. 

1   Introduction 

The current software development technology offers a rich diversity of options to 
specify the interfaces and write the functional code of program components. Once 
built and made available, these components can be used to compose different 
applications, having specific non-functional requirements, that should be deployed in 
diverse operating environments. However, the specification of non-functional 
requirements and the implementation of the corresponding management strategies are, 
generally, embedded in the code of the components in an ad-hoc manner, mixed with 
the application’s specific code. This lack of modularity makes component reuse 
difficult, also making difficult verification and debugging tasks. In this context, there 
is a growing interest for handling non-functional aspects in a specific abstraction level 
[2, 5, 11]. This approach would allow to single out the resources to be used and the 
specific mechanisms that will be required to support the non-functional aspects, and, 
if possible, turn automatic the configuration and management of those resources. 

Besides requirements normally associated to communication system level 
performance, non-functional (sometimes called QoS) requirements (or aspects) 
include characteristics such as availability, reliability, security, real-time, persistency, 
coordination and debugging support. Such kind of aspect can be handled by reusable 
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services provided by middleware infrastructures or native systems support. This 
approach makes feasible to design a software system based on its architectural 
description, which includes the functional components, the interactions among those 
components and also the non-functional requirements, which depend on the properties 
of the supporting infrastructure. To this end, it has to be provided a means to specify 
those requirements in the context of the application’s architecture description and, 
also, there is to be available an environment that allows to deploy those requirements 
over the system resources even during running time. 

Among the available techniques to specify non-functional constraints, we highlight 
the concept of contract [7]. A contract establishes a formal relationship between two 
or more parts that use or provide resources, where rights, obligations and negotiation 
rules over the used resources are expressed. For instance, a parallel computing 
application can have a contract defining rules to replicate processing resources, in 
order to guarantee a maximum execution time constraint.  

In the previous context, this work presents the CR-RIO framework (Contractual 
Reflective - Reconfigurable Interconnectable Objects) [5, 1] conceived to specify and 
support non-functional contracts, associated to the architectural description of an 
application. The approach helps to achieve separation of concerns [10] facilitating the 
reuse of components that implement the functional computation in other application 
systems, and allows the non-functional requirements to be handled separately during 
the system design process. The framework includes a contract description language, 
which allows the definition of a specialized view of a given software architecture. The 
supporting infrastructure required to impose the contracts during running time follows 
an architectural pattern that can be implemented by a standard set of components 
included in a middleware. The results of our investigation point out that the code 
generation of these components can be automated, unless of some explicit parts of 
code related to specific contract and resources classes.  

In the rest of this paper, we initially describe the key elements of the framework 
including the architecture description language with support to contracts. Next, we 
present the supporting infrastructure and demonstrate the validity of the framework 
through an example. Complementing the article we present some related proposals 
and provide some conclusions. 

2   Basic Framework  

The CR-RIO framework integrates the software architecture paradigm, which is 
centered in an architecture description language (ADL), with concepts such as 
reflection and dynamic adaptation capability [10], which are generally provided in an 
isolated fashion in middleware proposals described in the literature. This integration 
facilitates the achievement of separation of concerns, software component reuse and 
dynamic adaptation capability of applications. CR-RIO includes the following 
elements (see Figure 1):  

a) CBabel, an ADL used to describe the functional components of the application 
and the interconnection topology of those components. CBabel also caters for the 
description of non-functional aspects, such as coordination, distribution and different 
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types of QoS requirements. A CBabel specification corresponds to a meta-description 
of an application that is available in a repository and is used to deploy the architecture 
in a given operating environment; these descriptions can be submitted to formal 
verification procedures [3]. 

b) An architecture-oriented component model, that allows programming the 
software configuration of the application; (i) Modules (or components), which 
encapsulate the application's functional aspects; (ii) Connectors, used in the 
architecture level to define relationships between modules; in the operation level 
connectors mediate the interaction between modules; and (iii) Ports, which identify 
access points through which modules and connectors provide or require services. This 
component model can be mapped to available implementation technologies; in our 
experiments components were mapped  to Java and Corba objects. 

c) A simple software design methodology that stimulates the designer to follow a 
simple meta-level programming discipline, where functional aspects are concentrated 
in modules (base level) and non-functional aspects are encapsulated in connectors 
(meta-level). It is worth to point out that some QoS requirements can be directly 
mapped into connectors, which are equivalent to meta-level components, and can be 
configured in an application’s architecture. 

d) The Configurator, a reflective element that provides services to instantiate, 
execute and manage applications with distributed configurations. The Configurator 
provides two APIs: configuration and architectural reflection, through which these 
services are used, and a persistent architecture description repository, where the two 
APIs reflect their operations. A specialized module can consult the architecture's 
description repository and decide to make adaptations, for instance, in face of changes 
in the QoS support level. 

To specify non-functional aspects CBabel employs the concept of architectural 
contract. In our approach, an architectural contract is a description where two parts 
express their non-functional requirements, through services and parameters, 
negotiation rules and adaptation policies for different contexts. The CR-RIO 
framework provides the required infrastructure to impose and manage the contracts 
during running time. Regarding QoS aspects we propose an architectural pattern that 
simplifies the design and coding of the components of the supporting infrastructure, 
consistently establishing the relationship between the Configurator and the QoS 
contract supporting entities. 
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Fig. 1. The CR-RIO framework 
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3   The QoS Contract Language 

In our proposal a functional service of an application is considered a specialized 
activity, defined by a set of architectural components and theirs interconnection 
topologies; with requirements that generally do not admit negotiation [2]. Non-
functional services are defined by restrictions to specific non-functional activities of 
an application, and can admit some negotiation including the used resources. A 
contract regulating non-function aspects can describe, at design time, the use of 
shared resources the application will make and acceptable variations regarding the 
availability of these resources. The contract will be imposed at run-time by an 
infrastructure composed by a set of components that implement the semantics of the 
contract. Our proposal incorporates concepts from the QML (QoS Markup Language) 
[7], which were reformulated for the context of software architecture descriptions [5]. 
A QoS contract includes the following elements:  
 

a) QoS Categories are related to specific non-functional aspects and described 
separately from the functional components. For example, if processing and 
communication performance characteristics are critical to an application, associated 
QoS categories, Processing and Transport, could be described as in Figure 2. 
 

01  QoScategory Processing { 
02    cpuUse: decreasing numeric ; %
03    cpuSlice: increasing numeric %; 
04    priority: increasing numeric; 
05    memAvaliable: increasing numeric Mbytes; 
06    memReserv: increasing numeric Mbytes; 
07  } 
08  QoScategory  { Transport
09    delay: decreasing numeric ms; 
10    bandwidth: increasing numeric Mbps; 
11    slidingWindowSize: increasing numeric; 
12    MSS: increasing numeric; 
13  } 
Fig. 2. Processing and Transport QoS Categories 

The Processing category (lines 1-7) represents processor and memory resources 
where the cpuUse property is the used percentage of the total CPU time (low values 
are preferred – decreasing), the cpuSlice property represents the time slice to be 
reserved / available to a given process (high values are preferred – increasing), 
priority represents a priority for its utilization, memAvaliable and memReserv 
represent, respectively the available memory in the node and the memory (to be) 
reserved for a process. The Transport category (lines 8-13) represents the information 
associated to transport resources used by clients and servers. The bandwidth property 
represents the available/required bandwidth for network connections and the delay 
property represents the transmission delay of one bit between two peer components. 
The use of those categories, and of the other elements of the language to be described 
next, is presented in Section 4. 
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b) A QoS profile quantifies the properties of a QoS Category. This quantification 
restricts each property according to its description, working as an instance of 
acceptable values for a given QoS Category. A component, or a part of an 
architecture, can define QoS profiles in order to constrain its operational context.  

c) A set of services can be defined in a contract. In a service, QoS constraints that 
have to be applied in the architectural level are described, and can be associated to 
either (i) the application’s components or (ii) the interaction mechanism used by these 
components. In that way, a service is differentiated from others by the desired / 
tolerated QoS levels required by the application, in a given operational context. A 
QoS constraint can be defined by associating a specific value of a property to an 
architecture declaration or associating a QoS profile to that declaration. 

d) A negotiation clause describes a negotiation policy and acceptable operational 
contexts for the services described in a contract. As a default policy, the clause 
establishes a preferred order for the utilization of the services. Initially the preferable 
service is used. According to the described in the clause, when a preferable service 
cannot be maintained anymore, the QoS supporting infrastructure tries to deploy a 
service less preferable, following the described order. The supporting infrastructure 
can deploy a more preferable service again if the necessary resources are again 
available. 

3.1   Support Architecture 

CBabel described architectures and QoS contracts are stored as meta-level 
information. Based on this information a set of middleware components (see Figure 
9), composing a well-defined architectural pattern [5] is used to instantiate the 
application and to manage the contracts. The Global Contract Manager (GCM) 
interprets a contract description and extracts its service negotiation state machine. 
When a negotiation is initiated the GCM identifies which service will be negotiated 
first and sends the related configuration descriptions, to each participating node, and 
the associated QoS profiles to the Local Contract Managers (LCM). Each LCM is 
responsible for interpreting the local configuration and activating a Contractor to 
perform actions such as resource reservation and method requests monitoring. 

If the GCM receives a positive confirmation from all LCM involved, the service 
being negotiated can be attended and the application can be instantiated with the 
required quality. If not, a new negotiation is attempted in order to deploy the next 
possible service. If all services in the negotiation clause are tried with no success, an 
out-of-service state is reached and a contract violation message is issued to the 
application level. The GCM can also initiate a new negotiation when it receives a 
notification informing that a preferred service became available again.  

The Contractor has several responsibilities: (a) to translate the properties defined 
by the QoS profiles into services of the support system and convey the request of 
those services (with adequate parameters) to the QoS Agents; (b) when required, to 
map each defined interaction scheme (link) into a connector able to match the 
required QoS for the actual interaction, and (c) to receive out-of-spec notifications 
from the QoS Agents. The information contained in a notification is compared against 
the profile and, depending on its internal programming, the Contractor can try to 
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make (local) adjustments to the resource that provides the service. For instance, the 
priority of a streamer could be raised in order to maintain a given frame generation 
rate. In a case where this is not possible an out-of-profile notification is sent to the 
LCM.  

QoS Agents encapsulate the access to system level mechanisms, providing 
adequate interfaces to perform resource requests, initialize local system services and 
monitor the actual values of the required properties. According to the thresholds to be 
monitored, registered by the Contractor, a QoS Agent can issue an out-of-spec 
notification indicating that a resource is not available or does not meet the 
specification defined in the profile. 

4   Example 

During our research we developed some prototype examples to evaluate and refine 
the framework. A virtual terminal in a mobile machine was used to evaluate security 
and communication aspects in the context of a mobile network [6]. In [1] it was 
presented a video on demand application, an application with fault tolerance 
requirements, and the application with timing requirements which will be detailed in 
the next subsections. 

4.1   Data Acquisition-Processing Application 

Let us consider a data acquisition system, which periodically receives data and image 
coming in batches from one or more sensors. The received image and data have to be 
processed and filtered before being stored in a data base. This basic architecture can 
be used in different application contexts and run on different support environments. 
For example, a simple application, with a single data source, can run on a single 
processor, provided that enough processing power is available to execute the required 
pre-processing activities within the required time interval for data acquisition. A 
complex application, where data comes from many geographically-distributed 
sensors, as well as where more complex and time consuming processing and filtering 
activities are performed, will require more processing power in order to meet the 
timing restrictions. Yet, a more complex application could have its processing 
requirements changing considerably along its running time; e.g., because an increase 
in the amount of input data triggered by the occurrence of an external event.  

In such changing scenario, it is desirable to provide concepts and mechanisms to 
allow the basic architecture to be gracefully adapted in order to cater for the 
requirements of each different application context. For example, for the simple 
application a CPU reservation scheme would be enough to guarantee the processing 
power required for the application. For the complex application, assuming that it is 
parallelizable, a solution would be to distribute the execution, for example using a 
master-worker architecture. Such parallel architecture could be deployed on a grid of 
processors provided that some operational requirements are met in order to not hinder 
the application's performance; e. g., the allocated nodes should have enough resources 
and their message transport time to the master should be lower than a given limit. 
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Moreover, considering that the processing requirements can increase or decrease 
along the application running time, the number of parallel workers can be 
dynamically configured. Thus, when the processing demand increases, the number of 
parallel workers could be increased in order to reduce each one individual 
computation time, aiming to achieve an overall speed-up. Accordingly, the number of 
workers can be reduced in order to free system resources when the processing 
demands decreases. 

We highlight that components of our architectural contract support framework can 
encapsulate the access to different available resource management services, in order 
to obtain the information required to enforce the architectural adaptations. In a related 
work we used the contract approach to express and implement contracts related to 
multimedia distributed applications based on services provided by the OpenH323 
framework [12]. For the architectural contracts presented in this paper we consider 
parameters such as CPU reservation / monitoring, CPU availability, network 
bandwidth, and resource discovery that can be provided by available platforms such 
as the WNS framework [14]. 

In the example presented in this section we demonstrate how our approach using 
software architecture and contract concepts can be used to: (a) describe the 
application’s components and respective topology configuration; (b) describe the 
policies on resource usage required to comply with the processing constraints 
imposed by the application and (c) effectively deploy the application with the support 
of middleware components included in the framework. 

4.2   Basic Configuration 

The basic configuration of the application is depicted in Figure 3. A client module 
collects the data from the sensors and sends them to the server for pre-processing. As 
soon as the pre-processing procedure is finished the server signals the client, which 
then can send a new data sample to be processed. The interaction between the client 
and the server (or servers) modules is explicitly mediated by a connector that will 
help to implement the application contract. 

 

c-sprocDataSet procDataSet
Client Server

 
Fig. 3. Data Acquisition-Processing Application 

Figure 4 presents the CBabel description of the application’s architecture, 
composed by a client (client - line 3), a server (server – line 4), and their connection 
topology; interaction is performed through the client’s procDataSet out port and the 
server’s procDataSet in port (line 6). Note that this interconnection could be statically  
defined using a specific connector to mediate the client-server interaction, 
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encapsulating the required communication or interaction mechanism. However, as the 
non-functional requirements include communication, processing and replication 
aspects, the use of connectors in the architecture will be defined separately in a 
contract or automatically selected by the contract support middleware. 
 

01  module Client_Server { 
02    port procDataSet; 
03    module Client {out port procDataSet;} client; 
04    module Server {in  port procDataSet;} server; 
05    instantiate client, server; 
06    link client.procDataSet to server.procDataSet; 
07  } capture_images; 
08  start capture_images; 
Fig. 4. CBabel description of the application’s architecture 

In an initial context we assume that the client and server components are deployed 
in the same node. In this case, to attend the application’s requirements, processing and 
storage resources have just to be reserved for the server module. The QoS contract 
regarding such requirement is described in Figure 5. The prioProc service (lines 14-
16) states that the instantiation of the server module at the host1 node is associated to 
the ProcMem processing QoS profile (lines 19-22). In that case, the server module 
instantiation is conditioned to the availability of enough storage capability (at least 
200 Mbytes) and of a processing slice of at least 0.25 (25%) of the processor’s time. 

The Contractor is responsible for translating the requirements regarding the storage 
and processing resources described in the contract (in this case, 
Processing.cpuSlice >= 0.25; Processing.memReserv >= 200;), into parameters 
that can be passed to the Processing QoS Agent. 

 

13  contract { 
14    service { 
15      instantiate server at host1 with profile PROCMEM; 
16    } prioProc; 
17    negotiation {prioProc -> out-of-service;}; 
18  } oneServer; 
19  profile { 
20    Processing.cpuSlice >= 0.25; 
21    Processing.memReserv >= 200; 
22  } ProcMem; 

Fig. 5. prioProc contract description 

In this first context, the requirements are static and if the Global Contract Manager 
receives a service violation notification, an out-of-service state is reached and no 
other service is attempted according the associated QoS contract (line 17). Thus, the 
application cannot execute given the lack of resources. 
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4.3   Second Configuration - Distributed Parallel Workers 

In a second context the servers are replicated though a master-worker architecture in 
order to distribute the processing load, based on a slightly modified Master-Slave 
design pattern [4]. To this end a Replication QoS category (Figure 6) is introduced. 
When this category is used, a special connector is selected to provide the services 
related to group communication and maintenance, according to the value of the 
groupComm property (line 20). The numberOfReplicas and maxReplicas properties 
(lines 17-18) describe respectively the number of replicas to be deployed and the 
maximum number of replicas allowed. This last property can be used with 
replicaMaint (line 19) in the case of a contract that will handle dynamically creation 
of replicas. The distribPolicy property (line 21) indicates a policy to be adopted for 
the distribution of replicas (in this case, driven by the best memory, CPU or transport 
operating status, or an optimization of these parameters).  

 
16  QoScategory Replication { 
17    numberOfReplicas: increasing numeric; 
18    maxReplicas: numeric; 
19    replicaMaint: enum (add, remove, maintain); 
20    groupComm: enum p, multicast, broadcast); (p2
21    distribPolicy: enum (bestMem, bestCpu, bestTransp, optim); 
22  } 

Fig. 6.  Replication QoS category 

Again, the preprocessing performed in each server should be concluded before a 
new data-set is produced by the client. Here, the communication system transport 
time becomes a relevant performance parameter. As the data-set has to be sampled at 
a given rate, the deadline within which the server task has to be performed is known 
beforehand. So, in a distributed environment, where the communication with the 
server adds to the total preprocessing execution time, the overall deadline should 
include this parameter. Thus, in order to express this fact, we consider in the contract 
a message transport time parameter (line 29, fig.7); the latter aggregated with the 
previous processor reservation parameter will provide a trustful means to impose the 
application timing requirement at run time. The corresponding contract is represented 
in Figure 7. 

 
13  contract { 
14    service { 
15      instantiate server with profile ProcMem, Preplic; 
16      link client to server with profile Pcom; 
17    } repProc; 
18    negotiation {repProc -> out-of-service;}; 
19  } repServer; 
20  profile { 
21    Processing.cpuSlice >= 0.25; 
22    Processing.memReserv >= 200; 
23  } ProcMem; 
24  profile { 
25    Replication.numOfReplicas = 5; 
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26    Replication.distribPolicy = optim; 
27  } Preplic; 
28  profile { 
29    Transport.delay < 5; 
30    Replication.groupComm = multicast; 
31  } Pcom; 

Fig. 7.  QoS contract for the replication configuration 

According to the repProc contract each replica will only be instantiated if the 
ProcMem and Preplic profiles properties are satisfied. The number of replicas and the 
distribution policy described in the Preplic profile (lines 24-27) are controlled by the 
GCM. A number of five replicas were selected (line 25) and the distribution policy 
will try to optimize resources (line 26). Additionally, it can be observed that 
replicating the server module in different processing nodes implies in creating 
instances of this module. This task is also initiated by the GCM as soon as it 
establishes the service, delegating the actual configuration of the instances to the 
Configurator. In this case, the GCM forwards a list of nodes were the replicated 
modules have to be created and the Configurator executes an instantiation batch such 
as: 

 
instantiate Server as repl1 at node1; 
link client.procDataSet to repl1.procDataSet by groupCon; 
instantiate Server as repl2 at node2; 
link client.procDataSet to repl2.procDataSet by groupCon; 
… 
 

The execution of this batch connects the client module to each replica of the server 
(repl1, repl2, …) by a connector composition (groupCon) that provides the group 
communication mechanisms (multicast, in this case – line 30). The Configurator 
dynamically manages the naming of the replicas and makes this information 
consistent for the GCM. For all the established client-replica interconnection this 
connector is used to provide the client-server interaction style and the group 
communication.  

This configuration is robust but still static. If any of the processing or transport 
properties of any replica is out of specification the respective LCM is notified by the 
QoS Agent, which forwards this notification to the GCM. As no other service is 
provided in the contract, the application is terminated. 

4.4   Third Configuration - Dynamic Processing Requirements 

Finally, in a third context, it is assumed that the processing requirements change 
dynamically, either increasing or decreasing. Thus, we add to the contract 
specification three new profiles (maintReplica, addReplica, removeReplica) which 
indirectly capture this behavior, allowing to optimize the number of processors 
processing the application, and also cater for the processing time deadline. These 
profiles include upper and lower bounds to the execution time, which are used to 
control the number of worker replicas. The final contract is presented in Figure 8.  
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13 contract { 
14    service { 
15      instantiate server with profile maintReplica, ProcMem; 
16      link client to server with profile Pcom; 
17    } Smaint; // basically the same service as repProc 
18    service { 
19      instantiate server with profile addReplica,ProcMem,Pmax; 
20      link client to server with profile Pcom; 
21    } Sadd; 
22    service {  
23      remove server with profile removeReplica; 
24    } Sremove; 
25   
26    negotiation { 
27      Smaint -> ((Sremove -> Sremove) || (Sadd -> Sadd)); 
28      Sremove -> Smaint; 
29      Sadd -> Smaint; 
30      Sadd -> out-of-service;  
31      Smaint -> out-of-service; 
32    }; 
33  } dynRepServer; 
34   
35  profile { 
36      Replication.maxReplica = 10; 
37  } Pmax; 
38  profile { 
39    Replication.Maint = maint; 
40    Processing.execution_time >= 500 ms <= 600 ms; 
41  } maintainReplica; 
42  profile { 
43    Replication.Maint = add; 
44    Processing.execution_time > 600 ms; 
45  } addReplica; 
46  profile { 
47    Replication.Maint = remove; 
48    Processing.execution_time < 500 ms; 
49  } removeReplica; 

Fig. 8.  QoS contract for the dynamic replication configuration 

In the dynRepServer contract three services are described. The Smaint service 
(lines 14-17) is the preferred one, where the execution time meets the application 
requirements and no replicas need to be created (profile maintReplica – lines 38-41). 
If the execution time (execution_time property was added to the Processing 
category) is greater than the upper bound, the Smaint service is discontinued and the 
Sadd  service (lines 18-21) is tried. In this case, the addReplica profile is imposed and 
one or more replicas are created (line 43), but the number of replicas is limited by the 
Pmax profile Replication.maxReplica = 10 property. If this limit is reached no 
more replicas can be created and the service cannot be provided. On the other way, if 
the execution time gets bellow the lower bound, the Sremove service (lines 22-24) is 
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deployed in order to release resources, removing one or more replicas. The 
calculation of the actual number of replicas to be added or removed can be performed 
by the GCM using some heuristic based on the information regarded to resource 
availability collected from the LCMs.  

According to the negotiation clause, where the switching modes for the services 
are described, when the Sadd or Sremove services are effective they are renegotiated 
while the measured execution time is out of the required range (i.e, < 500 or > 600). 
When this value fits again in the preferred range, the establishment of the Smaint 
service is again negotiated. Similarly, if any property of the involved profiles is 
invalidated during operation, a new negotiation can be initiated. In the worst case, 
when the Sadd (or Smaint) service is selected, and no configuration of replicas can 
fulfill the contract profiles, an out-of-service state is reached and the application is 
terminated. In the next section we discuss how the described configurations could be 
deployed using our framework. 

4.5   Implementation Details 

Each participant node (Figure 9) has instances of the LCM, of the specific 
Contractor for the application and of the QoS Agents associated to the resources to be 
controlled in each specific platform. The groupCon connector only takes part of the 
configuration when the replication services are deployed. As the first step, the GCM 
retrieves the application’s contract (for the explanation, we consider the third 
configuration only) and creates instances of the LCM in the nodes where the 
application components are to be instantiated. Next, it selects the preferred service 
(Smaint) to be used and initializes a negotiation activity, sending to the LCMs the 
information related to this service, including the associated QoS profiles (ProcMem, 
Pcom and maintReplica). Each LCM instantiates (a) the QoS Agents that provide the 
interfaces (management and event generation) to the resources used by the service, 
and (b) the application specific Contractor, that will interpret the service information 
and will interact with the QoS Agents to impose the desired properties. 

In the server node, the LCM identifies the processing resources that have to be 
managed (instantiate that creates an instance of the server – QoS contract, line 15). 
Also, based on the link primitive that interconnects the client module to the server 
module (QoS contract, line 16), the LCM in the client’s node identifies the need of a 
group communication connector and makes the necessary arrangements to manage 
the transport resources. When the LCM instantiates a Contractor it also sends to it the 
profiles that have to be attended. In the sequence, the Contractor interacts with the 
QoS Agents to request resources and to receive relevant events regarding the status of 
the resources. In this example, the Processing QoS Agent associated to a server node 
is responsible for reserving and monitoring the CPU time slice (cpuSlice) and 
memory (memReserv) for the server module. Also, observe that in addition to monitor 
the communication delay the client-server communication channel could optionally 
use some kind of resource reservation (e.g., the RSVP protocol) put in effect through 
the Transport QoS Agent. After the initial phase, if the required QoS profiles were 
imposed, a Contractor notifies the success to its associated LCM that, by its turn, 
forwards a corresponding notification to the GCM. If all involved LCMs did return a 
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positive confirmation, the GCM concludes that the negotiation was successful and 
that the Smaint service can be established.  

In steady state, if a significant change in the monitored values is detected, the QoS 
Agents notifies the registered Contractors. If the reported values do not violate the 
active QoS profiles, nothing has to be done. If there is a violation, the Contractor can 
try to locally readapt the resource in order to keep the service; for instance, passing 
new parameters to the QoS Agent. If it is not possible to readapt, the Contractor sends 
an out-of-profile notification to the LCM and, in the sequence, another service can be 
negotiated. 

server
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server
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Contractor

Contractor

Contract

instantiate repln
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Fig. 9.  Mapping the application contract in the architectural pattern 

To exemplify an operation, let’s suppose that while the Smaint service is 
operational the Processing QoS Agent in the client node observes that the measured 
execution_time value rises beyond the upper bound defined by the maintReplica 
profile (> 600). The Processing QoS Agent notifies the Contractor triggering a new 
negotiation. The server’s Contractor verifies that a property is out of the ProcMem 
profile specification and sends the respective LCM an out-of-profile notification. This 
information is then propagated to the GCM, along with an out-of-service notification. 
Then the GCM selects the Sadd service and starts the actions required to create a new 
replica. 

The described infrastructure can be adapted to different support environments, 
currently we are working in a prototype using the WNS framework [14]. Many 
optimizations are also feasible. For instance, when a Contractor sends an out-of-
profile notification this could be followed by the set of QoS profiles that could be 
attended at that moment. Receiving this composed information the GCM could select 
the next service to be negotiated, immediately discarding the services with associated 
profiles out of the set. Another point of interest is having resource re-adaptation 
locally managed by a Contractor, using the interface provided by the QoS Agents. 
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This would be suitable for resources that have embedded re-adaptation policies and 
mechanisms. For example, considering the Processing.cpuSlice property, the 
Contractor could try to raise the priority of the local server process to maintain this 
property within the profile specification. We are investigating how to specify this kind 
of concern at the contract level. 

5   Related Works and Conclusions 

The reflective middleware approach [9] allows for the provided services to be 
configured to meet the non-functional properties of the applications. However, the 
approach does not provide clear abstractions and mechanisms to help the use of such 
requirements in the design of the architectural level of an application. This leads to 
the middleware services to be used in an ad-hoc fashion, usually through pieces of 
code intertwined to the application’s program. The proposal described in [8] includes 
basic mechanisms to collect status information associated to non-functional services. 
It also suggests an approach to manage non-functional requirements in the 
architectural level, in a way quite similar to ours. CR-RIO complements this proposal 
providing an explicit methodology based on contracts and proposing extra 
mechanisms to deploy and manage these contracts. More detailed comparisons are 
available in [1]. 

Our approach helps to achieve separation of concerns and component reuse by 
allowing non-functional aspects of an application to be specified separately using 
high-level contracts expressed in an extended ADL. Part of the codification, related to 
a non-functional requirement, can be encapsulated in connectors, which can be 
(re)configured during running time in order to cater for the impositions defined by the 
associated contract. The infrastructure required to enforce a contract follows an 
architectural pattern that is implemented by a standard set of components. We think 
that making these structures explicit and available to designers, the task of mapping 
architecture-level defined contracts to implementations can be simplified. The 
approach has been evaluated through case studies that showed that the code of the 
supporting components can be automatically generated, excepting some localized 
pieces related to specificities of the particular QoS requirement under consideration. 
However, we should notice that the treatment of low-level details always has to be 
considered in any QoS aware application. Our approach can help to identify the 
intervening hot spots and make the required adaptations more rapidly. 

In our proposal, the composition of contracts can be specified combining in a 
unique clause the negotiation clauses of the involved contracts [6]. Contracts 
regarding different non-functional aspects can be orthogonal and cause no 
interference with each other. Contract conflicts can be handled applying a suitable 
decision policy; already assigned resources could then be retaken in order to satisfy 
the preferred contracts. We are also investigating the specification of individual 
contracts for clients and servers [13]. Besides providing the flexibility to support more 
dynamic architectures, this would allow to manage contract composition conflicts 
through lower granularity interventions.  
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