
Collection Tree Protocol

Omprakash Gnawali
Stanford University & University of Southern California

gnawali@cs.stanford.edu

Rodrigo Fonseca
Brown University & Yahoo! Research

rfonseca@cs.brown.edu

Kyle Jamieson
University College London

k.jamieson@cs.ucl.ac.uk

David Moss
Rincon Research

dmm@rincon.com

Philip Levis
Stanford University

pal@cs.stanford.edu

Abstract
This paper presents and evaluates two principles for wire-

less routing protocols. The first is datapath validation: data
traffic quickly discovers and fixes routing inconsistencies.
The second is adaptive beaconing: extending the Trickle al-
gorithm to routing control traffic reduces route repair latency
and sends fewer beacons.

We evaluate datapath validation and adaptive beaconing
in CTP Noe, a sensor network tree collection protocol. We
use 12 different testbeds ranging in size from 20–310 nodes,
comprising seven platforms, and six different link layers, on
both interference-free and interference-prone channels. In all
cases, CTP Noe delivers > 90% of packets. Many experi-
ments achieve 99.9%. Compared to standard beaconing, CTP
Noe sends 73% fewer beacons while reducing topology re-
pair latency by 99.8%. Finally, when using low-power link
layers, CTP Noe has duty cycles of 3% while supporting ag-
gregate loads of 30 packets/minute.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-

work Architecture and Design—Wireless communication;
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Design, Experimentation, Performance

Keywords
Collection, CTP, Sensor Network, Routing

1 Introduction
This paper describes two principles for wireless routing

protocol design: datapath validation and adaptive beaconing.
It evaluates these principles in the context of CTP Noe, an
implementation of the Collection Tree Protocol (CTP) [10].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’09, November 4–6, 2009, Berkeley, CA, USA.
Copyright 2009 ACM 978-1-60558-748-6 ...$5.00

CTP is a routing protocol that computes anycast routes to a
single or a small number of designated sinks in a wireless
sensor network. Four goals motivate the need for datapath
validation and adaptive beaconing:

Reliability: a protocol should deliver at least 90% of
end-to-end packets when a route exists, even under challeng-
ing network conditions. 99.9% delivery should be achievable
without end-to-end mechanisms.

Robustness: it should be able to operate without tun-
ing or configuration in a wide range of network conditions,
topologies, workloads, and environments.

Efficiency: it should deliver packets with the minimum
amount of transmissions across the network and requiring
little state.

Hardware Independence: it should achieve the three
above goals without assuming specific radio chip features,
as sensor networks use a wide range of platforms.

Achieving these goals depends on link estimation accu-
racy and agility. At the packet level, wireless links can have
coherence times as small as 500 milliseconds [29]. Being ef-
ficient requires using these links when possible, but avoiding
them when they fail. The four-bit link estimator, for example,
is able to reduce delivery costs by up to 44% by changing its
estimates as quickly as every five packets [11].

Such dynamism is inherently challenging. Rapid topol-
ogy changes necessitate distance-vector, rather than link-
state, algorithms. Simple distance-vector protocols, however,
suffer from routing loops and other problems that harm reli-
ability and efficiency. The two principles we present allow a
routing protocol to react at the same timescales as the topol-
ogy changes while remaining efficient and robust.

The first, datapath validation, actively uses data pack-
ets to validate the routing topology and detect loops. Each
data packet contains the link-layer transmitter’s estimate of
its distance. A node detects a possible routing loop when it
receives a packet to forward from a node with a smaller or
equal distance to the destination. Rather than drop such a
packet, the routing layer repairs the topology and forwards
the packet normally. Data packets detect routing inconsisten-
cies precisely when a route is needed, even when the control
traffic rate is very low.

The second, adaptive beaconing, extends the Trickle [18]
algorithm, originally designed for code updates, to dynam-

1

ically adapt control traffic. Adaptive beaconing can react in
tens of milliseconds to topology changes, yet send a few con-
trol packets per hour when the topology is stable.

While the CTP specification [10] describes protocol
packet formats and interoperability requirements, several as-
pects are left open for an implementation to decide, such as
the timings for routing and forwarding packets. This paper
describes and evaluates the algorithms and mechanisms that
one particular implementation, called CTP Noe, uses. In ad-
dition to incorporating adaptive beaconing and datapath val-
idation, CTP Noe includes additional mechanisms and al-
gorithms to improve performance. These include re-transmit
timers, a hybrid queue for forwarded and local packets, per-
client queuing, and a duplicate suppression cache.

We evaluate CTP Noe on 12 different testbeds ranging in
size from 20–310 nodes and comprising seven hardware plat-
forms. While not deployments in the field, the testbeds com-
prise diverse environmental conditions beyond our control,
provide reproducibility, and have enough diversity to give us
confidence that CTP Noe achieves the above goals. Anecdo-
tal reports from several deployments support this belief. In
two testbeds that have Telos nodes, we evaluate CTP Noe us-
ing three link layers: full power, low power listening [25] and
low power probing [22]. In one Telos-based testbed where
there is exceptionally high 802.11b interference, we evaluate
CTP Noe on an interference-prone and an interference-free
channel. Evaluating CTP Noe, we find:

• Across all testbeds, configurations, and CSMA layers,
CTP Noe’s end-to-end delivery ratio ranges from 90.5%
to 99.9%. CTP Noe supports median duty cycles of 3%
while sustaining aggregate loads of 30 pkts per minute.

• Compared to MultihopLQI, a collection protocol used
in recent deployments [36], CTP Noe drops 90% fewer
packets while sending 29% fewer packets.

• Compared to MultihopLQI’s fixed 30 second beacon in-
terval, CTP Noe’s adaptive beaconing and datapath val-
idation sends 73% fewer beacons while cutting loop re-
covery latency by 99.8%.

• Testbeds vary significantly in their density, connectiv-
ity, and link stability, and the dominant cause of CTP
Noe’s packet loss varies across them correspondingly.

This paper makes three research contributions. First, it
describes two key principles, adaptive beaconing and data-
path validation, which enable routing layers to remain effi-
cient, robust, and reliable in highly dynamic topologies on
many different link layers. Second, it describes the design
and implementation of CTP Noe, a collection protocol that
uses these two mechanisms. Third, by evaluating CTP Noe
on 12 different testbeds, it provides a comparative study of
their behavior and properties. The variation across testbeds
suggests that protocols designed for and evaluated on only
a single testbed are prone to failures when they encounter
different network conditions.

In Section 2, we identify two main challenges in im-
plementing robust and efficient wireless network protocols,
namely link dynamics and transient loops. Based on these
observations, we present adaptive beaconing and datapath

validation in Section 3. Section 4 follows by giving detailed
descriptions of how CTP Noe implements these two mecha-
nisms, while Section 5 describes CTP Noe’s data plane. Sec-
tion 6 presents a comprehensive experimental evaluation of
CTP Noe on 12 testbeds. Section 7 presents prior work. Sec-
tion 8 discusses our experiences with CTP Noe, and Sec-
tion 9 concludes.

2 Motivation
Having a robust, highly reliable, and efficient collection

protocol benefits almost every sensor network application to-
day, as well as the many transport, routing, overlay, and ap-
plication protocols that sit on top of collection trees. At first
glance, collection protocols may appear very simple. They
provide best-effort, unreliable, anycast packet delivery to one
of the data sinks in the network.

However, despite providing a simple service that is fun-
damental to so many systems, and being in use for almost
a decade, collection protocols today typically suffer from
poor performance. Deployments observe delivery ratios of
2-68% [16, 21, 31, 36].

Furthermore, it is unclear why collection performs well in
controlled situations yet poorly in practice, even at low data
rates. To better understand the causes of these failures, we
ran a series of experiments on 12 different testbeds and found
two phenomena to be the dominant causes: link dynamics
and transient loops.

2.1 Link Dynamics
Protocols typically use periodic beacons to maintain their

topology and estimate link qualities. The beaconing rate in-
troduces a tradeoff between agility and efficiency: a faster
rate leads to a more agile network but higher cost, while a
lower rate leads to a slower-to-adapt network and lower cost.
Early protocol designs, such as MintRoute, assumed that in-
termediate links had stable, independent packet losses, and
used this assumption to derive the necessary sampling win-
dow for an accurate estimate [38]. But in some environments,
particularly in the 2.4 GHz frequency space, links can be
highly dynamic. Experimental studies have found that many
links are not stationary, but bursty on the time scale of a few
hundred milliseconds [29].

Protocols today, however, settle for beacon rates on the
order of tens of seconds, leading to typical rate mismatches
of two to three orders of magnitude. This means that at low
beacon rates, while data packets might observe contiguous
periods of 0% and 100% reception ratios, periodic control
packets might observe a reception ratio of 50%. The periods
of 0% cause many wasted retransmissions and packet drops.
For a periodic beacon to be able to sample these link varia-
tions, the beacon period would have to be in the order of few
hundred milliseconds.

Link dynamics also poses a challenge in routing protocol
design - how should a routing protocol be designed when the
underlying link topology can change in the order of a few
hundred milliseconds?

2.2 Transient Loops
Rapid link topology changes can have serious adverse

effects on existing routing protocols, causing losses in the

2

data plane or long periods of disconnection while the topol-
ogy adjusts. In most variations of distributed distance vec-
tor algorithms, link topology changes may result in transient
loops which causes packet drops.1 This is the case even in
path-vector protocols like BGP, designed to avoid loop for-
mation [23].

The MultihopLQI protocol, for example, discards pack-
ets when it detects a loop until a new next hop is found. This
can take a few minutes, causing a significant outage. We ex-
perimentally examine this behavior of MultiHopLQI in Sec-
tion 6.3. In DSDV, designed to avoid loops, when a link goes
down, the entire subtree whose root used that link is discon-
nected until an alternate path is found [24]. This happens
only when the global sequence number for the collection root
changes: rapid link dynamics require quick sequence number
progression, introducing a significant control packet load.

In both cases, the problem is that topology repairs hap-
pen at the timescale of control plane maintenance, which op-
erates at a time scale orders of magnitude longer than the
data plane. Since the data plane has no say in the routing de-
cisions, it has to choose between dropping packets or stop-
ping traffic until the topology repairs. This, in turn, creates
a tension on the control plane between efficiency in stable
topologies and delivery in dynamic ones.
3 Design Overview

A collection protocol builds and maintains minimum-
cost trees to nodes that advertise themselves as tree roots.
Collection is address-free: when there are multiple base sta-
tions, it sends to the one with the minimum cost without
knowing its address. In this paper, we assume all data packets
are simple unicast frames.

Rapidly changing link qualities cause nodes to have stale
topology information, which can lead to routing loops and
packet drops. This section presents two mechanisms that en-
able a routing protocol to be robust to stale route information
and agile to link dynamics while also having a low overhead
when the topology is stable. The first is datapath validation:
using data packets to dynamically probe and validate the
consistency of its routing topology. The second is adaptive
beaconing, which extends the Trickle code propagation algo-
rithm so it can be applied to routing control traffic. Trickle’s
exponential timer allows nodes to send very few control bea-
cons when the topology is consistent, yet quickly adapt when
the datapath discovers a possible problem.
3.1 Datapath Validation

Every node maintains an estimate of the cost of its route
to a collection point. We assume expected transmissions
(ETX) as the cost metric, but any similar gradient metric can
work just as well. A node’s cost is the cost of its next hop
plus the cost of its link to the next hop: the cost of a route is
the sum of the costs of its links. Collection points advertise a
cost of zero.

Each data packet contains the transmitter’s local cost esti-
mate. When a node receives a packet to forward, it compares
the transmitter’s cost to its own. Since cost must always de-
crease, if a transmitter’s advertised cost is not greater than

1RAM limitation and high cost for update propagation precludes
the use of link-state protocols in sensor networks.

the receiver’s, then the transmitter’s topology information is
stale and there may be a routing loop. Using the data path to
validate the topology in this way allows a protocol to detect
possible loops on the first data packet after they occur.

3.2 Adaptive Beaconing
We assume that the collection layer updates stale routing

information by sending control beacons. As with data pack-
ets, beacons contain the transmitter’s local cost estimate. Un-
like data packets, however, control beacons are broadcasts. A
single beacon updates many nearby nodes.

Collection protocols typically broadcast control beacons
at a fixed interval [2,38]. This interval poses a basic tradeoff.
A small interval reduces how stale information can be and
how long a loop can persist, but uses more bandwidth and
energy. A large interval uses less bandwidth and energy but
can let topological problems persist for a long time.

Adaptive beaconing breaks this tradeoff, achieving both
fast recovery and low cost. It does so by extending the
Trickle algorithm [18] to maintaining its routing topology.

Trickle is designed to reliably and efficiently propagate
code in a wireless network. Trickle’s basic mechanism is
transmitting the version number of a node’s code using a
randomized timer. Trickle adds two mechanisms on top of
this randomized transmission: suppression and adapting the
timer interval. If a node hears another node advertise the
same version number, it suppresses its own transmission.
When a timer interval expires, Trickle doubles it, up to a
maximum value (τh). When Trickle hears a newer version
number, it shrinks the timer interval to a small value (τl).

If all nodes have the same version number, their timer in-
tervals increase exponentially, up to τh. Furthermore, only a
small subset of nodes transmit per interval, as a single trans-
mission can suppress many nearby nodes. When there is new
code, however, the interval shrinks to τl , causing nodes to
quickly learn of and receive new code.

Unlike algorithms in ad-hoc routing protocols such as
DSDV [24], adaptive beaconing does not assume the tree
maintains a global sequence number or version number that
might allow a simple application of Trickle. Instead, adaptive
beaconing uses the routing cost gradient to control when to
reset the timer interval. The routing layer resets the interval
to τl on three events:

1. It is asked to forward a data packet from a node
whose ETX is not higher than its own. The protocol
interprets this as neighbors having a significantly out-
of-date estimate and possibly a routing loop. It beacons
to update its neighbors.

2. Its routing cost decreases significantly. The protocol
advertises this event because it might provide lower-
cost routes to nearby nodes. In this case, “significant”
is an ETX of 1.5.

3. It receives a packet with the P bit set. The “Pull” bit
advertises that a node wishes to hear beacons from its
neighbors, e.g., because it has just joined the network
and needs to seed its routing table. The pull bit provides
a mechanism for nodes to actively request topology in-

3

formation from neighbors. Section 4.3 provides greater
detail on the P bit.

In a network with very stable links, both the first and sec-
ond events are rare. As long as nodes do not set the P bit,
the beacon interval increases exponentially, up to τh. When
the topology changes significantly, however, affected nodes
reset their intervals to τl , and transmit to quickly reach con-
sistency. While it could, we assume that adaptive beaconing
does not use Trickle’s suppression mechanism.2

3.3 Other Details
Datapath validation and adaptive beaconing allow a rout-

ing layer to maintain an efficient yet agile topology, but are
insufficient by themselves. Numerous systems issues arise in
packet forwarding that affect efficiency, reliability, and ro-
bustness, such as self-interference, link-layer duplicate sup-
pression, retransmission policies, and queuing. We defer pre-
senting these systems and implementation issues to Sec-
tion 5, which discusses the data plane. The next section gives
a detailed description of the implementation of these tech-
niques in CTP Noe’s control plane.

4 Control Plane Design
This section describes how CTP Noe discovers, selects,

and advertises routes.

4.1 Route Computation and Selection
TEP 123 specifies the CTP routing packet format nodes

use to exchange topology information [10], which we sum-
marize here. A CTP routing frame has two fields and two
control bits. The two fields advertise the node’s current par-
ent and routing cost. The two control bits are the pull bit (P)
and the congested bit (C). We discuss the meaning and use
of the P bit below. The C bit is for signaling higher-layer
congestion control and is not relevant for this paper.

Changing routes too quickly can harm efficiency, as deal-
ing with noise in link estimates requires time. To dampen
the topology change rate, CTP Noe employs hysteresis in
path selection: it only switches routes if it believes the other
route is significantly better than its current one, where “sig-
nificantly” better is having an ETX at least 1.5 lower. While
hysteresis has the danger of allowing CTP Noe to use sub-
optimal routes, it can be shown that noise in link estimates
causes better routes to dominate a node’s next hop selection.

4.2 Control Traffic Timing
When CTP Noe’s topology is stable, it relies on data

packets to maintain, probe, and improve link estimates and
routing state. Beacons, however, form a critical part of rout-
ing topology maintenance. First, since beacons are broad-
casts, they are the basic neighbor discovery mechanism and
provide the bootstrapping mechanism for neighbor tables.
Second, there are times when nodes must advertise informa-
tion, such as route cost changes, to all of their neighbors.

Because CTP Noe separates link estimation from its con-
trol beacons, its estimator does not require or assume a fixed
beaconing rate. This allows CTP Noe to adjust its beacon-
ing rate based on the expected importance of the beacon in-
formation to its neighbors. Minimizing broadcasts has the

2In Trickle terminology, CTP Noe sets k = ∞.

additional benefit that they are typically much more expen-
sive to send with low-power link layers than unicast packets.
When the routing topology is working well and routing cost
estimates are accurate, CTP Noe slows its beaconing rate.
However, when the routing topology changes significantly,
or CTP Noe detects a problem with the topology, it quickly
informs nearby nodes so they can react accordingly.

CTP Noe sends routing packets using a variant of the
Trickle algorithm [18]. It maintains a beaconing interval
which varies between 64 ms and one hour. Whenever the
timer expires, CTP Noe doubles it, up to the maximum (one
hour). Whenever CTP Noe detects an event which indicates
the topology needs active maintenance, it resets the timer to
the minimum (64 ms). These values are independent of the
underlying link layer. If a packet time is larger than 64 ms,
then the timer simply expires several times until it reaches a
packet time.
4.3 Resetting the Beacon Interval

As Section 3.2 above mentions, three events cause CTP
Noe to reset its beaconing interval to the minimum length.

The simplest one is the P bit. CTP Noe resets its bea-
con interval whenever it receives a packet with the P bit set.
A node sets the P bit when it does not have a valid route.
For example, when a node boots, its routing table is empty,
so it beacons with the P bit set. Setting the P bit allows a
node to “pull” advertisements from its neighbors, in order to
quickly discover its local neighborhood. It also allows a node
to recover from large topology changes which cause all of its
routing table entries to be stale.

CTP Noe also resets its beacon interval when its cost
drops significantly. Though this is not necessary for correct-
ness, a node whose cost drops quickly may suddenly be a
much more desirable next hop. Resetting its beacon interval
allows the node’s neighbors to quickly learn this information.

The final and most important event is when CTP Noe de-
tects that there might be a routing topology inconsistency.
CTP Noe imposes an invariant: the cost of each hop must
monotonically decrease. Let p be a path consisting of k links
between node n0 and the root, node nk, such that node ni for-
wards its packets to node ni+1. For the routing state to be
consistent, the following constraint must be satisfied:

∀i ∈ {0,k−1}, ET X(ni) > ET X(ni+1),

where ETX(x) is the path ETX from node x to the root.
CTP Noe forwards data packets in a possible loop nor-

mally: it does not drop them. However, it introduces a slight
pause in forwarding, the length of the minimum beacon inter-
val. This ensures that it sends the resulting beacon before the
data packet, such that the inconsistent node has a chance to
resolve the problem. If there is a loop of length L, this means
that the forwarded packet takes L− 1 hops before reaching
the node that triggered topology recovery. As that node has
updated its routing table, it will pick a different next hop.

If the first beacon was lost, then the process will repeat. If
it chooses another inconsistent next hop, it will trigger a sec-
ond topology recovery. In highly dynamic networks, packets
occasionally traverse multiple loops, incrementally repairing
the topology, until finally the stale node picks a safe next
hop and the packet escapes to the root. The cost of these rare

4

Send Queue!

Transmit Cache!

Transmit Timer!

Link!Link!

Client Queues!Pool!

?!
duplicate!

Figure 1. The CTP Noe’s forwarding path.

events of a small number of transient loops is typically much
less than the aggregate cost of general forwarding: improv-
ing routes through rare transient loops is worth the cost.
5 Data Plane Design

In the previous section we described the important role
that the control plane plays in detecting inconsistencies in the
topology and resetting the beacon interval to fix them. This
section describes CTP Noe’s data plane. Unlike the control
plane, which is a set of consistency algorithms, the concerns
of the data plane are much more systems- and implemen-
tation-oriented. This section describes four mechanisms in
the data plane that achieve efficiency, robustness, and reli-
ability: per-client queuing, a hybrid send queue, a transmit
timer, and a packet summary cache. Figure 1 shows the CTP
Noe data path and how these four mechanisms interact.

A CTP data frame has an eight byte header [10]. The data
frame header shares two fields with the routing frame, the
one byte control field (P and C bits) and the two byte route
ETX field. The one byte time has lived (THL) is the opposite
of a TTL: it starts at zero at an end point and each hop incre-
ments it by one. A one-byte dispatch identifier called Collect
ID, allows multiple clients to share a single CTP Noe layer.
A two byte origin field contains the identifier of the node
that originated the packet, and a node increments a one byte
sequence number on each packet it originates.

CTP Noe uses a very aggressive retransmission policy.
By default, it will retransmit a packet up to 32 times. This
policy stems from the fact that all packets have the same
destination, and, thus, the same next hop. The outcome of
transmitting the next packet in the queue will be the same
as the current one. Instead of dropping, CTP Noe combines
a retransmit delay with proactive topology repair to increase
the chances of delivering the current packet. In applications
where receiving more recent packets is more important than
receiving nearly all packets, the number of retransmissions
can be adjusted without affecting the routing algorithm.
5.1 Per-client Queuing

CTP Noe maintains two levels of queues. The top level
is a set of one-deep client queues. Each client can have a
single outstanding packet. If a client needs additional queu-
ing, it must implement it on top of this abstraction. These
client queues do not actually store packets; they are simple
guards that keep track of whether a client has an outstand-
ing packet. When a client sends a packet, the client queue
checks whether it is available. If so, the client queue marks
itself busy and passes the packet down to the send queue.

These client queues provide isolation, as a single client can-
not fill the send queue and starve others; this is in contrast to
TinyOS 1.x collection layers, which used a shared queue.
5.2 Hybrid Send Queue

CTP Noe’s lower level queue contains both route
through- and locally-generated traffic (as in ARC [37]),
maintained by a FIFO policy. This hybrid send queue is of
length C+F , where C is the number of CTP Noe clients and
F is the size of the forwarding buffer pool. Following this
policy means that, technically, the send queue never rejects
a packet. If it is full, this means the forwarding path is using
all of its buffers and all clients have an outstanding packet.

When CTP Noe receives a packet to forward, it first
checks if the packet is a duplicate: Section 5.4 describes this
process below. If the packet is a duplicate, it discards the
packet. If the packet is not a duplicate, CTP Noe checks if
it has a free packet buffer in its memory pool. If so, it puts
the received packet on the send queue to be forwarded. Oth-
erwise, it discards the packet.
5.3 Transmit Timer

Multihop wireless protocols encounter self-interference,
where a node’s transmissions collide with prior packets it has
sent which other nodes are forwarding. For a route of nodes
A→ B→ C → . . ., self-interference can easily occur at B
when A transmits a new packet at the same time C forwards
the previous one [19].

CTP Noe prevents self interference by rate-limiting its
transmissions. In the idealized scenario above where only the
immediate children and parent are in the transmission range
of a transmitter, if A waits at least two packet times between
transmissions, then it will avoid self-interference, as C will
have finished forwarding [37]. While real networks are more
complex (the interference range can be greater than the trans-
mit range), two packet times represents the minimum timing
for a flow longer than two hops.

The transmission wait timer depends on the packet rate
of the radio. If the expected packet time is p, then CTP Noe
waits in the range of (1.5p,2.5p), such that the average wait
time is 2p but there is randomization to prevent edge condi-
tions due to MAC backoff or synchronized transmissions.
5.4 Transmit Cache

Link layer acknowledgments are not perfect: they are
subject both to false positives and false negatives. False neg-
atives cause a node to retransmit a packet which is already
in the next hop’s forwarding queue. CTP Noe needs to sup-
press these duplicates, as they can increase multiplicatively
on each hop. Over a small number of hops, this is not a sig-
nificant issue, but in face of the many hops of transient rout-
ing loops, this leads to an exponential number of copies of a
packet that can overflow all queues in the loop [17].

Since CTP Noe forwards looping packets in order to ac-
tively repair its topology, CTP Noe needs to distinguish link-
layer duplicates from looping packets. It detects duplicates
by examining three values: the origin address, the origin se-
quence number, and the THL. Looping packets will match
in the address and sequence number, but will have a differ-
ent THL (unless the loop was a multiple of 256 hops long),
while link-layer duplicates have matching THL values.

5

Testbed Location Platform Nodes Physical size Degree PL Cost Cost Churn
m2 or m3 Min Max PL node·hr

Tutornet (16) USC Tmote 91 50×25×10 10 60 3.12 5.91 1.90 31.37
Wymanpark Johns Hopkins Tmote 47 80×10 4 30 3.23 4.62 1.43 8.47
Motelab Harvard Tmote 131 40×20×15 9 63 3.05 5.53 1.81 4.24
Kanseia Ohio State TelosB 310 40×20 214 305 1.45 - - 4.34
Mirage Intel Research Mica2dot 35 50×20 9 32 2.92 3.83 1.31 2.05
NetEye Wayne State Tmote 125 6×4 114 120 1.34 1.40 1.04 1.94
Mirage Intel Research MicaZ 86 50×20 20 65 1.70 1.85 1.09 1.92
Quanto UC Berkeley Epic-Quanto 49 35×30 8 47 2.93 3.35 1.14 1.11
Twist TU Berlin Tmote 100 30×13×17 38 81 1.69 2.01 1.19 1.01
Twist TU Berlin eyesIFXv2 102 30×13×17 22 100 2.58 2.64 1.02 0.69
Vinelab UVA Tmote 48 60×30 6 23 2.79 3.49 1.25 0.63
Tutornet (26) USC Tmote 91 50×25×10 14 72 2.02 2.07 1.02 0.04
Blazeb Rincon Research Blaze 20 30×30 9 19 1.30 - - -

a Packet cost logging failed on 10 nodes.
b Blaze instrumentation does not provide cost and churn information.

Table 1. Testbed configuration and topology properties, from most to least dynamic. Cost is transmissions per delivery
and PL is Path Length, the average number of hops a data packet takes. Cost/PL is the average transmissions per link.
There are two entries for Tutornet with TMotes: one is 802.15.4 channel 16 the other channel 26.

When CTP Noe receives a packet to forward, it scans its
send queue for duplicates. It also scans a transmit cache con-
taining the 3-tuples of the N most recently forwarded pack-
ets. The cache is necessary for the case where duplicates ar-
rive more slowly than the rate at which the node drains its
queue: in this case, the duplicate will no longer be in the
send queue.

For maximal efficiency, the transmit cache should be as
large as possible. We have found that, in practice and even
under high load, having a cache size of four slots is enough
to suppress most (> 99%) duplicates on the testbeds that we
used for experiments. A larger cache improves duplicate de-
tection slightly but not significantly enough to justify its cost
on memory-constrained platforms.

6 Evaluation
This section evaluates how the mechanisms described

above, namely adaptive control traffic rate, datapath valida-
tion, and the data plane optimizations, combine to achieve
the four goals from Section 1: reliability, robustness, effi-
ciency, and hardware independence.

We evaluate our implementation of CTP Noe, using the
4-bit link estimator from [11], on 12 different testbeds, en-
compassing seven platforms, six link layers, multiple den-
sities and frequencies. Despite having anecdotal evidence
of several successful real-world deployments of CTP Noe,
these results focus on publicly available testbeds, because
they represent at least theoretically reproducible results. The
hope is that different testbed environments we examine suffi-
ciently capture a reasonable degree of variation in hardware
platforms, topology, and RF environment.

6.1 Testbeds
Table 1 summarizes the 12 testbeds we use. It lists the

name, platform, number of nodes, physical span, and topol-
ogy properties of each network. Some testbeds (e.g., Mirage)
are on a single floor while others (e.g., Motelab) are on mul-

tiple floors. Unless otherwise noted, detailed experiments are
on the Tutornet testbed.

The minimum and maximum degree column in Table 1
are the in-degree of the nodes with the smallest and largest
number of links, respectively. To roughly quantify the link-
layer topology of each testbed, we ran an experiment where
each node broadcasts a packet every 16 seconds. The interval
is randomized to avoid collisions. We consider all links that
delivered at least one packet as part of the topology. We use
this very liberal definition of a link because it is what a rout-
ing layer or link estimator must deal with: a single packet
can add a node as a candidate, albeit perhaps not for long.

As the differing Tutornet results indicate, the link stabil-
ity and quality results should not be considered definitive for
all experiments. For example, most 802.15.4 channels share
the same frequency bands as 802.11: 802.15.4 on an inter-
fering channel has more packet losses and higher link dy-
namics than an uninterfering one. For example, Tutornet on
channel 16 has the highest churn, while Tutornet on channel
26 has the lowest. We revisit the implications of this effect in
Section 6.11. All of the values in Table 1 for 802.15.4 test-
beds, with the exception of Quanto and channel 16 Tutor-
net experiment (Mirage, Tutornet, Vinelab, Twist, Wyman-
park, Kansei, Neteye, Motelab) use the non-interfering chan-
nel 26. Channel allocation concerns prevented us from doing
the same in Quanto: it was measured with channel 15.

To roughly quantify link stability and quality, we ran
CTP Noe with an always-on link layer for three hours and
computed three values: PL, the average path length (hops a
packet takes to the collection root); the average cost (trans-
missions/delivery); and the node churn (parent change rate).
We also look at cost/PL, which indicates how any transmis-
sions CTP Noe makes on average per hop. Wide networks
have a larger PL. Networks with many intermediate links or
sparse topologies have a higher cost/PL ratio (sparsity means
a node might not have a good link to use). Networks with
more variable links or very high density have a high churn

6

Testbed Frequency MAC IPI Avg 5th% Loss
Delivery Delivery

Motelab 2.48GHz CSMA 16s 94.7% 44.7% Retransmit
Motelab 2.48GHz BoX-50ms 5m 94.4% 26.9% Retransmit
Motelab 2.48GHz BoX-500ms 5m 96.6% 82.6% Retransmit
Motelab 2.48GHz BoX-1000ms 5m 95.1% 88.5% Retransmit
Motelab 2.48GHz LPP-500ms 5m 90.5% 47.8% Retransmit

Tutornet (26) 2.48GHz CSMA 16s 99.9% 100.0% Queue
Tutornet (16) 2.43GHz CSMA 16s 95.2% 92.9% Queue
Tutornet (16) 2.43GHz CSMA 22s 97.9% 95.4% Queue
Tutornet (16) 2.43GHz CSMA 30s 99.4% 98.1% Queue

Wymanpark 2.48GHz CSMA 16s 99.9% 100.0% Retransmit
NetEye 2.48GHz CSMA 16s 99.9% 96.4% Retransmit
Kansei 2.48GHz CSMA 16s 99.9% 100.0% Retransmit
Vinelab 2.48GHz CSMA 16s 99.9% 99.9% Retransmit
Quanto 2.425GHz CSMA 16s 99.9% 100.0% Retransmit
Twist (Tmote) 2.48GHz CSMA 16s 99.3% 100.0% Retransmit
Twist (Tmote) 2.48GHz BoX-2s 5m 98.3% 92.9% Retransmit

Mirage (MicaZ) 2.48GHz CSMA 16s 99.9% 99.8% Queue
Mirage (Mica2dot) 916.4MHz B-MAC 16s 98.9% 97.5% Ack
Twist (eyesIFXv2) 868.3MHz CSMA 16s 99.9% 99.9% Retransmit
Twist (eyesIFXv2) 868.3MHz SpeckMAC-183ms 30s 94.8% 44.7% Queue
Blaze 315MHz B-MAC-300ms 4m 99.9% - Queue

Table 2. Summary of experimental results across the testbeds. The first section compares how different low-power link
layers and settings affect delivery on Motelab. The second section compares how the 802.15.4 channel affects delivery on
Tutornet. The third section shows results from other TelosB/TMote testbeds, and the fourth section shows results from
testbeds with other platforms. In all settings, CTP Noe achieves an average delivery ratio of over 90%. In Motelab, a
small number of nodes (the 5th percentile) have poor delivery due to poor connectivity.

(density can increase churn because a node has more par-
ents to try and choose from). As the major challenge adap-
tive beaconing and datapath validation seek to address is link
dynamics, we order the testbeds on churn, from highest (Tu-
tornet on channel 16) to lowest (Tutornet on channel 26).

Every experiment uses all available nodes. In some test-
beds, this means the set of nodes across experiments is al-
most but not completely identical, due to backchannel con-
nectivity issues. However, we do not prune problem nodes,
a common approach in experimental studies using Mote-
lab [35]. In the case of Motelab, this approach greatly affects
the computed average performance, as some nodes are barely
connected to the rest of the network.

6.2 Experimental Methodology
We modified three variables across all of the experiments:

the inter-packet interval (IPI) with which the application
sends packets with CTP Noe, the MAC layer used, and the
node ID of the root node. Generally, to obtain longer routes,
we picked roots that were in one corner of a testbed.

We used 6 different MAC layers, as shown in Table 2.
All MAC layers used are the standard TinyOS 2.1.0 imple-
mentations. In the cases where we use low power link layers,
we report the interval. For example, “BoX-1s” means BoX-
MAC with a check interval of 1 second, while “LPP-500ms”
means low-power probing with a probing interval of 500ms.

Evaluating efficiency is difficult, as temporal dynamics
prevent knowing what the optimal route was for each packet.
Therefore, we evaluate efficiency as a comparative measure.
We compare CTP Noe with the TinyOS 2.1 implementation

of MultihopLQI, a well-established, well-tested, and highly
used collection layer that is part of the TinyOS release. As
MultihopLQI has been used in recent deployments, e.g., on
a volcano in Ecuador [36], we consider it a reasonable com-
parison. Other notable collection layers, such as Hyper [28],
RBC [39] and Dozer [5] are either implemented in TinyOS
1.x (Hyper, RBC), or are closed source and specific to a plat-
form (Dozer, tinynode). As TinyOS 2.x and 1.x have differ-
ent packet scheduling and MAC layers, we found that com-
paring with 1.x protocols unfairly favors CTP Noe. Further-
more, MultihopLQI has been heavily used by a large number
of groups with good success, such that using it unchanged is
reasonable, something which is not typically true of pure re-
search protocols.

6.3 Reliable, Robust, Hardware-independent
Before evaluating the effectiveness of each mechanism to

the overall performance of CTP Noe, we first look at high-
level results from experiments across multiple testbeds, as
well as a long duration experiment. Table 2 shows results
from 21 experiments across the 12 testbeds. In these experi-
ments, we chose IPI values well below saturation, such that
available throughput does not limit the delivery ratio. The
Loss column describes the dominant cause of packet loss: re-
transmit means CTP Noe dropped a packet after 32 retrans-
missions, queue means it dropped a received packet due to a
full forwarding queue, and ack means it heard link layer ac-
knowledgments for packets that did not arrive successfully.

In all cases, CTP Noe maintains an average delivery ratio
above 90%: it meets the reliability goal. The lowest aver-

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

De
liv

er
y

Ra
tio

Time(hours)

max
median

min

(a) Delivery Ratio for CTP Noe

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

De
liv

er
y

Ra
tio

Time(hours)

max
median

min

(b) Delivery Ratio for MultiHopLQI.

Figure 2. CTP Noe has a consistently higher delivery ra-
tio than MultiHopLQI. In these plots we show for each
time interval the minimum, median, and maximum de-
livery ratio across all nodes.

age delivery ratio is for Motelab using low power probing
(500ms), 90.5%. The second lowest is Motelab using BoX-
MAC (50ms), at 94.4%. In Motelab, packet loss is the dom-
inant cause of failure: retransmission drops represent CTP
Noe sending a packet 32 times yet never delivering it. Ex-
amining the logs, this occurs because some Motelab nodes
are only intermittently and sparsely connected (its compar-
atively small minimum degree of nine in Table 1 reflects
this). Furthermore, CTP Noe maintains this level of reliabil-
ity across all configurations and settings, and requires con-
figuration of a single constant, the expected packet transmis-
sion time, when used on different radio platforms. Thus, it
meets the robustness and hardware independence goals. We
therefore focus comparative evaluations on MultihopLQI.

To show the consistency of delivery ratio over time, in
Figure 2(a), we show the result from one experiment when
we ran CTP Noe for over 37 hours. The delivery ratio re-
mains consistently high over the duration of the experiment.
Figure 2(b) shows the result from a similar experiment with
MultihopLQI. Although MultihopLQI’s average delivery ra-
tio was 85%, delivery is highly variable over time, occasion-
ally dipping to 58% for some nodes. In the remainder of
this section, we evaluate through detailed experiments how
the different techniques we use in CTP Noe contribute to its
higher delivery ratio, while maintaining low control traffic
rates and agility in response to changes in the topology.

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

CTPMultiHopLQI

De
liv

er
y

co
st

 p
er

 p
ac

ke
t

Protocol

Control cost
Data cost

Figure 3. CTP Noe’s cost is 24% lower than MultiHo-
pLQI and the portion of that is control is 73% lower.

 0

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5To
ta

l n
um

be
r o

f b
ea

co
ns

 /
no

de
Time(hours)

MultiHopLQI
CTP

Figure 4. CTP Noe’s beaconing rate decreases and stabi-
lizes over time. It is significantly smaller than Multiho-
pLQI’s over the long run.

6.4 Efficiency
A protocol that requires a large number of transmissions

is not well-suited for duty-cycled network. We measure data
delivery efficiency using the cost metric which accounts for
all the control and data transmissions in the network normal-
ized by the packets received at the sink. This metric gives a
rough measure of the energy spent delivering a single packet
to the sink. Figure 3 compares the delivery cost for CTP Noe
and MultiHopLQI. CTP Noe’s cost is 24% lower than that
of MultiHopLQI. The figure also shows that control packets
for CTP Noe occupy a much smaller fraction of the cost than
MultiHopLQI (2.2% vs. 8.4%). The decrease in data trans-
missions is a result of good route selection and agile route
repair. The decrease in control transmissions is due to CTP
Noe’s adaptive beaconing.

6.5 Adaptive Control Traffic
Figure 4 shows CTP Noe’s and MultihopLQI’s control

traffic from separate seven-hour experiments on Tutornet.
CTP Noe’s control traffic rate is high at network startup as
CTP Noe probes and discovers the topology, but decreases
and stabilizes over time. MultiHopLQI sends beacons at a
fixed interval of 30 seconds. Using a Trickle timer allows
CTP Noe to send beacons as quickly as every 64 ms and
quickly respond to topology problems within a few packet
times. By adapting its control rate and slowing down when
the network is stable, however, CTP Noe has a much lower
control packet rate than MultiHopLQI. At the same time,

8

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120

To
ta

l n
um

be
r o

f b
ea

co
ns

Time(minutes)

Node 38
Node 39
Node 40
Node 41

Figure 5. Number of beacons for selected nodes in the
neighborhood of the new node. There is a big jump in
control traffic shortly after four new nodes are intro-
duced and it levels off.

it can respond to topology problems in 64 ms, rather than
30 seconds, a 99.8% reduction in response time.

Lower beacon rates are generally at odds with route
agility. During one experiment, we introduced four new
nodes in the network 60 minutes after the start. Figure 5
shows that the control overhead for selected nodes in the
vicinity of the new nodes increases immediately after the
nodes were introduced as beacons are sent rapidly. The bea-
con rate decays shortly afterward. The increase in beaconing
rate (in response to the pull bit) was localized to the neigh-
borhood of the nodes introduced, and produced fast conver-
gence. New nodes were able to send collection packets to the
sink within four seconds after booting.

6.6 Topology Inconsistencies
Next we look at how route inconsistencies are distributed

over space and time, and their impact on control overhead.
Figure 6(a) shows inconsistencies detected by each node
in an experiment over a 6.5-hour period. Inconsistencies
are temporally correlated across nodes, and typically con-
strained to a subset of nodes. The lowest curve in Figure 6(b)
shows the cumulative count of route inconsistencies in the
same experiment, and how the rate decreases over time. In
the beginning, most of the inconsistencies are due to discov-
ery and initial rounds of path selection. Over time, link dy-
namics are the dominant cause of inconsistencies. We have
also observed a similar trend in number of parent changes:
frequent changes in the beginning as the nodes discover new
links and neighbors and fewer changes once the network has
selected high quality routes.

When a node detects such an inconsistency, it resets its
beacon timer. The top curve in Figure 6(b) shows the total
number of routing beacons sent (Total Beacons). The mid-
dle curve, Churn Beacons, is the subset of these beacons
sent by the Trickle timer when a parent change resets the
interval. The difference between these two curves provides
an upper bound on the number of beacons sent due to in-
consistencies. It is an upper bound because the area between
these two curves includes the beacons that would have been
sent normally, at the slowest beacon interval, and some oc-
casional beacon caused by packets with the pull bit set. In
6.5 hours, the nodes sent 12,299 total beacons while they

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7

No
de

 id

Time(hours)

(a) Inconsistent routing states over time and
by node; each point is a detected route incon-
sistency.

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7
To

ta
l n

um
be

r o
f e

ve
nt

s
/ n

od
e

Time(hours)

Total Beacons
Churn Beacons
Inconsistencies

(b) Breakdown of control overhead from route
inconsistencies.

Figure 6. Route inconsistencies and repair

detected 3,025 inconsistencies and triggered 4,485 beacons
due to parent change: CTP Noe sent 2.6 beacons per incon-
sistency detected in order to re-establish the path to the root.

6.7 Robustness to Failure
To measure how effectively the routes can adapt to node

failures, we ran CTP Noe for two hours with an IPI of 8s.
After 60 minutes, we removed the ten nodes that were for-
warding the most packets in the network. CTP Noe uses the
four-bit link estimator, which reflects changes in the topol-
ogy in a few packet times. This resets the trickle timers and
causes rapid route convergence around the failure.

Figure 7(a) plots the minimum, median, and maximum
delivery ratio across node over time. The figure shows only
a tiny change in delivery ratio due to the disruption: the
minimum delivery ratio across the network drops to 98%.
15 nodes dropped one or two packets each right after the
disruption, and most nodes found new routes in under one
second. The 10-minute dip in the graph is an artifact of the
sliding window we used to calculate average delivery ratio.
The median delivery ratio remained at 100%.

Figure 7(b) shows the result of a similar experiment with
MultiHopLQI. After 80 minutes we removed ten nodes that
were forwarding the most packets. The resulting disruption,
caused the delivery ratio of some nodes to drop as low as
60%, while the median delivery ratio dropped to 80%.

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

De
liv

er
y

Ra
tio

Time(minutes)

max
median

min

(a) Nodes fail at 60 minutes and CTP Noe
does not observe any significant disruption.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

De
liv

er
y

Ra
tio

Time(minutes)

max
median

min

(b) Nodes fail at 80 minutes: MultihopLQI’s
median delivery drops to 80% for 10 minutes.

Figure 7. Robustness of CTP Noe and MultiHopLQI when the 10 most-heavily-forwarding nodes fail.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10 11
 15
 20
 25
 30
 35
 40
 45
 50

De
liv

er
y

Ra
tio

G
oo

dp
ut

 (p
kt

s/
s)

Wait time[x,2x]ms

Delivery
Goodput

Figure 8. Effect of a per-hop rate-limiting transmit timer
on goodput and delivery ratio on the CC2420 radio. Wait
time between packets is [x,2x] ms.

6.8 Agility
The prior experiment shows that CTP Noe can quickly

route around node failures when there is a constant stream of
traffic. To delve deeper into how CTP Noe adapts to sud-
den topology changes, we ran a different experiment. We
ran CTP Noe on Tutornet with each node generating a data
packet every eight seconds for six minutes, allowing it to
settle on a good routing tree delivering 100% of the pack-
ets. Then we stopped generating data traffic on all the nodes
for 14 minutes. At the 20th minute, we removed (erased the
program running on the mote) node 26 from the network
and shortly thereafter made node 53 (node 26’s child in the
routing tree) start sending data packets. As expected, packet
transmissions from node 53 to non-existent node 26 failed.

We found that after twelve packet transmissions (325
ms), CTP Noe switched to node 40 as its new parent. Thus,
although the beacon rate in the network had decreased to one
beacon every eight minutes, CTP Noe was able to quickly (in
325ms), select a new parent when its existing parent was re-
moved from the network. CTP Noe remains efficient even
when the beacon interval decays tens of minutes, maintain-
ing the ability to react to topology changes within a few
packet transmission times.

6.9 Transmit Timer
CTP Noe pauses briefly between packet transmissions to

avoid self-interference, as described in Section 5.3. Here we
show how we established this value for the CC2420 radio
and quantify its benefit to CTP Noe’s reliability.

Figure 8 shows how the duration of a transmission wait
timer affects a single node flow on channel 26 in the Tutornet
testbed. In this experiment, a single node sends packets as
fast as it can across 3-hops to the data sink. The transmission
timers in Figure 8 range from [1,2] to [10,20]ms. At values
below [7,14]ms, delivery dips below 95%.

Although goodput increases slightly with smaller trans-
mit timers, this benefit comes at a significant cost: the deliv-
ery ratio drops as low as 72%, which does not satisfy the re-
liability requirement. However, as the timer length increases
past [8,16]ms, goodput drops significantly as the timer in-
troduces idleness. Therefore, CTP Noe uses 7–14ms (1.5–3
average packet times) as its wait timer for the CC2420 radio.

Similarly, CTP Noe uses 1.5–3 average packet times as
its transmit timer on other radios. We have found that this
setting works across the platforms and testbeds in these ex-
periments but factors such as load, density, and link qualities
ultimately determine the maximum rate that a path can ac-
commodate. Some MACs might introduce large delays be-
tween the packets, in which case, CTP Noe transmit timers
can be smaller.

Although CTP Noe’s primary goal is not high throughput
traffic, its use of transmit timers allows it to avoid collisions
while under high load. Transmit timers are insufficient for
end-to-end reliability: bottleneck links of low PRR can over-
flow transmit queues. Robust end-to-end reliability requires
higher-layer congestion and flow control [14, 22, 26, 36], but
CTP Noe’s transmit timers make its reliability more robust
to the high load these protocols can generate.

6.10 Transmit Cache
We evaluate the transmit cache by running two exper-

iments on Tutornet. Both experiments use the CSMA link
layer, have an IPI of 8s, and use 802.15.4 channel 16. The
first experiment uses standard CTP Noe; the second disables
its transmit cache. CTP Noe has an average cost of 3.18
packets/delivery. Disabling the transmit cache increases this

10

Chan. Freq. Delivery PL Cost Cost Churn
PL node-hr

16 2.43GHz 95.2% 3.12 5.91 1.894 31.37
26 2.48GHz 99.9% 2.02 2.07 1.025 0.04

Table 3. Results on how channel selection effects CTP
Noe’s performance on Tutornet. Channel 16 overlaps
with Wi-Fi; channel 26 does not.

Figure 9. 802.11 activity captured using the Wi-Spy Spec-
trum Analyzer tool on Tutornet. Channel 1 and 11 are
most heavily used by the building occupants.

to 3.47 packets/delivery, a 9% increase. The transmit cache
improves CTP Noe’s efficiency by 9%.

These cost values are over 50% higher than those re-
ported in Table 1 because channel 16 suffers from 802.11
interference, while the results in Table 1 are on channel 26,
which does not. The next section examines how CTP Noe
responds to external interference in greater detail.
6.11 External Interference

The first two results in the second set of rows in Table 2
are obtained from experiments on Tutornet with the same
link layer, transmission rate, and root node, but differ signif-
icantly in their delivery ratio. This difference is due to the
802.15.4 channel they used. The experiment on channel 26
(2.48 GHz) observed an average delivery ratio of 99.9%; the
experiment on channel 16 (2.43 GHz) observed an average
delivery ratio of 95.2%. Table 3 summarizes the differences
between the two settings.

Using channel 16, the average path length increased
from 2.02 to 3.12 hops and the cost increased from 2.07
to 5.91 transmissions per successfully delivered packet. The
increase in cost is not only due to longer paths but also
a larger number of transmissions per hop, which increased
from 1.025 to 1.894.

Channel 16 overlaps with several 802.11b channels (2-
6), while channel 26 is almost entirely outside the 802.11b
band. Figure 9 shows Wi-Fi activity by Wi-Fi channel on
the Tutornet testbed. RF interference from Wi-Fi causes link
qualities to drop, increases tree depth because longer links
are generally less reliable. It also causes a larger number of
retransmissions, decreasing effective capacity.

To test this hypothesis, we re-ran the channel 16 exper-
iment with inter packet intervals of 22 seconds and 30 sec-
onds. Table 2 shows the results. At 22 seconds, CTP Noe has
an average delivery ratio of 97.9% and at 30 seconds it has
99.4%.CTP Noe achieves high delivery even with high ex-

Link Layer Average PL Cost Cost Duty Cycle
Delivery PL Median Mean

CSMA 94.7% 3.05 5.53 1.81 100.0% 100%
BoX-50ms 94.4% 3.28 6.48 1.98 24.8% 24.9%
BoX-500ms 97.1% 3.38 6.61 1.96 4.0% 4.6%
BoX-1s 95.1% 5.40 8.34 1.54 2.8% 3.8%
LPP-500ms 90.5% 3.76 8.55 2.27 6.6% 6.6%

Table 4. Detailed Motelab results on how link layer set-
tings affect CTP Noe’s topology and performance.

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250En
er

gy
 C

on
su

m
pt

io
n

(m
Ah

/d
ay

)

Message generation interval (s)

CTP (100ms)
CTP (200ms)
CTP (300ms)

MultiHopLQI (300ms)

Figure 10. Energy consumption for CTP Noe and Multi-
HopLQI for 100ms-300ms sleep intervals.

ternal interference, but achieves lower sustainable data rate
on a busy channel.

6.12 Link Layers
The first section of Table 2 contains six experiments on

the Motelab testbed using the standard TinyOS CSMA layer,
low-power listening with BoX-MAC, and low-power prob-
ing with LPP. Table 4 has further details on these results.

Low-power listening observes longer paths (higher aver-
age PL) and higher end-to-end costs, but the per-link cost
(cost/PL) decreases. Longer sleep intervals cause CTP Noe
to choose longer routes of more reliable links. This shift is
especially pronounced once the interval is above 500ms. The
sleep interval the link layer uses affects the link qualities
that CTP Noe observes. If the signal-to-noise ratio is com-
pletely stable, link qualities are independent of how often a
node checks the channel. There are temporal variations in the
signal-to-noise ratio: this suggests that low-power link layers
should consider the effects of link burstiness [29].

Low-power probing generally under-performs low-
power listening. For the same check interval, it has a lower
delivery ratio and a higher duty cycle. This result should not
be interpreted as a general comparison of the two, however.
Each implementation can of course be improved, CTP Noe
is only one traffic pattern, and we only compared them on
a single testbed with a single traffic rate. Nevertheless, CTP
Noe meets its reliability goal on both.

We also ran CTP Noe with low-power link layers on
both Twist testbeds. For the eyesIFXv2 platform, we used
the SpeckMAC layer, with a check interval of 183 ms. The
lower delivery ratio with SpeckMAC compared to CSMA is
due to queue overflows on the bottleneck links because of
longer transmission times at the MAC layer.

11

6.13 Energy Profile
For a more detailed examination of CTP Noe’s energy

performance, we use the Blaze platform, developed by Rin-
con Research. Blaze has a TI MSP430 microcontroller and a
CC1100 [1] radio.3 We used a 20-node network that Rincon
Research has deployed in a 33×33m space. One node in this
testbed has a precision 1 Ω resistor in series with the battery,
connected to a high precision 24-bit ADC using a data ac-
quisition unit. We later converted this voltage to energy and
extrapolated to per day energy consumption.

We ran a total of 20 experiments for energy profiling,
changing the MAC sleep interval and application data gener-
ation interval. For each experiment, we let the network warm
up for about 15 minutes. We then use a dissemination proto-
col to request the nodes to start sending data at a given mes-
sage interval. We collected energy data for 15 minutes.

The platform consumes 341.6 mAh/day in idle mode
without duty-cycling. The result from figure 10 shows that
the the full CTP Noe stack can run for as little as 7.2 mAh/-
day, compared to 60.8 mAh/day for MultiHopLQI. During
these experiments CTP Noe consistently delivered 99.9% of
the data packets to the sink.

This result shows that CTP Noe with a properly-designed
low power hardware platform can be used in long lasting de-
ployments: even with a moderately-rapid (for a low power
network) message interval of 240 seconds, two AA batteries
(5000 mAh) can supply sufficient energy to run a node for
more than 400 days. This result is significant because it con-
siders the cost for running a full network stack consisting of
dissemination and CTP Noe protocols.

CTP Noe’s low energy profile is possible because it se-
lects efficient paths, avoids unnecessary control traffic, and
actively monitors the topology using the the data plane. Re-
duction in control traffic is especially important in these net-
works because broadcast packets must be transmitted with
long preambles. CTP Noe’s ability to taper off that overhead
using exponentially increasing beacon interval allows it to
achieve much lower energy consumption.
6.14 Testbed Observations

The most salient differentiating dynamics property that
we found across the testbeds is churn. On Motelab and Kan-
sei, the churn is higher than on other testbeds. Analysis of
CTP Noe logs show that some sections of Motelab are very
sparse and have only a few links with very low PRR. These
low-quality links are bursty, such that nodes cycle through
their list of alternative parents and actively probe the network
in search of better parents. These small number of nodes ac-
count for most of the churn in the network—7% of the nodes
accounted for 76% of parent changes on Motelab. This also
explains why most packet losses in Motelab are due to re-
transmission timeouts.

On Tutornet and Kansei, churn is more uniform across
nodes, but for different reasons. When operating on an in-
terfering channel, Tutornet sees bursty links due to bursts of
802.11 interference, causing nodes to change parents often.
On a non-interfering channel, CTP Noe has very low churn

3Rincon Research maintains Blaze support code in the
TinyOS 2.x “external contributions” repository.

on Tutornet. These bursts of interference cause nodes to be
unable to deliver packets for periods of time, causing queue
overflows to be the dominant cause of packet loss. In Kansei,
the high churn is due to the sheer degree of the network.

7 Related Work
The mechanisms we describe in this paper draw on our

experiences using collection layers such as MultihopLQI [2]
and MintRoute [38], and the tradeoff they introduce be-
tween cost and responsiveness. CTP Noe’s forwarding timer
borrows from work on reliable sensornet transport proto-
cols [14, 27, 30, 32] which seek to maximize throughput by
enabling pipelining through transmission timing.

These two mechanisms have been mentioned before in
the literature: the 6lowpan/IP stack by Hui at al. uses both
Trickle-based beaconing and datapath validation [12]. This
networking stack was developed concurrently with CTP
Noe: the two share ideas exchanged on mailing lists in 2005-
7. Where Hui et al.’s paper presented the two techniques as
small parts of a larger system evaluated on a single test-
bed, however, this paper deeply evaluates them across a
wide range of link layers, platforms, workloads, and envi-
ronments, as well as examine the additional low-level sys-
tems issues that arise when incorporating them into a rout-
ing layer. The use of both techniques in two heavily tested,
robust network layers provides greater evidence that these
principles are more general than our specific implementation
of them in CTP Noe.

At a high level, adaptive beaconing and datapath vali-
dation combine elements of proactive and reactive routing
paradigms, proactively maintaining (at low cost) a rough
approximation of the best routing gradient, and making an
effort to improve the paths data traffic traverses. CTP Noe
draws on mesh routing work, using ETX as its routing met-
ric: this work established that minimizing either the expected
number of transmissions (ETX [6]) or a bandwidth-aware
function of the expected number of transmissions (ENT [8])
along a path [38] constructs good routes. While ETX does
not effectively capture throughput – a limitation in IP meshes
– its measurement is perfectly suited to low-power sen-
sor networks, which seek to minimize transmissions. Where
modern WiFi protocols, such as ROMA [7], still struggle
with the discrepancy between periodic beacon measurements
and actual link behavior, CTP Noe avoids this problem by
using the 4-bit link estimator.

Adaptive beaconing extends Trickle [18] to time its rout-
ing beacons. Using Trickle enables quick discovery of new
nodes and recovery from failures, while at the same time en-
abling long beacon intervals when the network is stable. This
approximates beaconless routing [40] in stable and static net-
works without sacrificing agility or new node discovery.

A large body of sensor network protocol work examines
how to mitigate congestion when traffic concentrates around
one node [3,9,13,26,33,34]. CTP Noe’s transmit timers (Sec-
tion 6.9) prevent self-interference by a single transmitter, but
do not coordinate transmitters. CTP Noe provides an under-
lying routing topology and leaves inter-node congestion to
higher or lower layers. Finally, we note Dozer [5], a propri-

12

etary collection protocol running exclusively on Shockfish
hardware, whose source code we could not obtain.

Like IP routing layers, CTP Noe does not provide end-to-
end reliability. In contrast, RAP [20] attempts to deliver data
to a sink within a time constraint, or not at all, a different set
of requirements than is typical to packet routing. However,
RAP uses similar mechanisms as CTP Noe, such as MAC
priorities and queuing mechanisms. RBC [39] attempts to
delivers bursty sensornet data reliably, using similar mecha-
nisms as CTP Noe as well as block acknowledgments.
8 Experiences

CTP Noe is the result of a four-year effort that started
in 2005. In 2005, despite the critical importance of a collec-
tion layer in almost every sensor network deployment, there
was no well-tested and efficient protocol that met the require-
ments described in Section 1. Different research group im-
plemented their own collection protocol, or noted ways in
which existing protocol implementations were insufficient.

As we began looking into the problem, we noted funda-
mental limitations in existing approaches. For example, the
sampling bias of physical layer measurements (e.g., RSSI
or LQI) can lead to inaccurate link estimates, while peri-
odic beacons can lead to poor link choices when links are
bursty [29].

Our measurement studies also exposed how much envi-
ronmental conditions can vary. Table 1 shows the tremen-
dous variation across just indoor testbeds. A protocol tested
in one environment may not work in another. For exam-
ple, while MultihopLQI performs reasonably well in Mi-
rage, in Tutornet its performance is not consistent over time
due to the high exposure to time-varying interference from
802.11b/g networks in the building. Because CTP Noe’s de-
sign and testing was spread across institutions, each contrib-
utor typically had a local testbed whose results differed from
others. Based on these experiences, we believe that testing
and debugging protocols across multiple testbeds is critical
for experimental evidence.

From a system implementation standpoint, the most im-
portant decision we made in CTP Noe’s design was including
a detailed logging layer. This layer reports every major event
(parent change, data packet reception, transmissions, etc.) to
the serial port. Using these logs transformed a guessing game
of the causes of packet failures to a simple science of log in-
spection, where we could track the progress of every packet
in the network.4 These detailed logs, for example, enabled us
to find a memory leak in the forwarding path, where packet
drops would slowly reduce the size of the forwarding pool.

Over the last four years, we have seen CTP Noe de-
ployed in a wide variety of applications and configurations,
some unexpected and unintended. One of the CTP Noe de-
ployments by Rincon uses an intermittently connected sink.
Although we designed CTP Noe for low data rate regime,
and most of its deployments are in that area, researchers
have tried to use CTP Noe on higher data rate applications,
sometimes successfully [15], and sometimes with additional
mechanisms for flow control [4]. These experiences suggest

4http://sing.stanford.edu/gnawali/ctp/ links to a sub-
set of the experiment logs from this effort.

that despite claims that collection is a solved problem, a
significant gap between single experiments and general per-
formance remains: making protocols robust across environ-
ments is an open and critical research challenge.

We hope CTP Noe serves as a demonstration of the im-
portance of serious engineering and deployment effort in
wireless protocol research; it was only with the engineering
and deployment effort by the wider TinyOS community that
we were able to uncover, explore the performance issues and
thus research adaptive beaconing and datapath validation.
9 Conclusions

This paper describes two routing mechanisms, adaptive
beaconing and datapath validation. These mechanisms al-
low a collection protocol to remain efficient, robust, and re-
liable in the presence of a highly dynamic link topology.
Our implementation of these mechanisms, CTP Noe, offers
90-99.9% packet delivery in highly dynamic environments
while sending up to 73% fewer control packets than existing
approaches. It is highly robust to topology changes and fail-
ures. It makes minimal assumptions on the physical and link
layer, allowing it to run on a wide range of platforms with-
out any need for fine-tuning parameters. Minimizing control
traffic, combined with efficient route selection, allows CTP
Noe to achieve duty cycles of < 3% while supporting aggre-
gate loads of 25 packets/minute.

The efficacy of these two techniques suggests that the
limitations of many wireless protocols today may be ad-
dressed by judiciously integrating the data and control
planes. This indicates a way in which wireless protocols
are fundamentally different than their wired siblings. While
these techniques are presented in the context of collection, an
open question worthy of future work is whether they are gen-
eral to distance vector algorithms, and so may have broader
applicability in ad-hoc networking.
Acknowledgments

We thank Alec Woo, Sukun Kim, and the TinyOS 2.x
Network Protocol Working Group for early design discus-
sions. We thank the maintainers of testbeds used in this study
for their contribution of critical research tools to the commu-
nity. Finally, we thank the TinyOS community for filing bug
reports and trusting our code in their deployments.

This work was supported by generous gifts from Mi-
crosoft Research, Intel Research, DoCoMo Capital, Foun-
dation Capital, and the National Science Foundation under
grants #0627126, #0846014, #0121778 and #0520235.
10 References

[1] Texas Instruments, CC1100 Data Sheet. http://focus.ti.
com/lit/ds/symlink/cc1100.pdf, 2003.

[2] The MultiHopLQI protocol. http://www.tinyos.net/
tinyos-2.x/tos/lib/net/lqi, 2009.

[3] G.-S. Ahn, E. Miluzzo, A. Campbell, S. Hong, and F. Cuomo.
Funneling MAC: A Localized, Sink-Oriented MAC for Boost-
ing Fidelity in Sensor Networks. In Proc. of the ACM SenSys
Conf., pages 293–306, Boulder, CO, Nov. 2006.

[4] M. Bathula, M. Ramezanali, I. Pradhan, N. Patel, J. Gotschall,
and N. Sridhar. A sensor network system for measur-
ing traffic in short-term construction work zones. In Proc.
of DCOSS ’09, pages 216–230, Berlin, Heidelberg, 2009.
Springer-Verlag.

13

http://sing.stanford.edu/gnawali/ctp/
http://focus.ti.com/lit/ds/symlink/cc1100.pdf
http://focus.ti.com/lit/ds/symlink/cc1100.pdf
http://www.tinyos.net/tinyos-2.x/tos/lib/net/lqi
http://www.tinyos.net/tinyos-2.x/tos/lib/net/lqi

[5] N. Burri, P. von Rickenbach, and R. Wattenhofer. Dozer:
ultra-low power data gathering in sensor networks. In Proc.
of the IPSN Conf., pages 450–459, New York, NY, 2007.

[6] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A
High-Throughput Path Metric for Multi-Hop Wireless Rout-
ing. In Proc. of the ACM MobiCom Conf., San Diego, CA,
Sept. 2003.

[7] A. Dhananjay, H. Zhang, J. Li, and L. Subramanian. Practical,
Distributed Channel Assignment and Routing in Dual-radio
Mesh Networks. In Proc. of the ACM SIGCOMM Conf., Aug.
2009.

[8] R. Draves, J. Padhye, and B. Zill. Comparison of routing met-
rics for static multi-hop wireless networks. In Proc. of the
ACM SIGCOMM Conf., pages 133–144, Portland, OR, Aug.
2004.

[9] C. T. Ee and R. Bajcsy. Congestion control and fairness for
many-to-one routing in sensor networks. In Proc. of the ACM
SenSys Conf., pages 148–161, Baltimore, MD, Nov. 2004.

[10] R. Fonseca, O. Gnawali, K. Jamieson, S. Kim, P. Levis, and
A. Woo. TEP 123: The Collection Tree Protocol, Aug. 2006.

[11] R. Fonseca, O. Gnawali, K. Jamieson, and P. Levis. Four Bit
Wireless Link Estimation. In Hotnets-VI, Atlanta, GA, Nov.
2007.

[12] J. W. Hui and D. E. Culler. IP is dead, long live IP for wireless
sensor networks. In Proc. of the SenSys Conf., pages 15–28,
New York, NY, 2008.

[13] B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating con-
gestion in wireless sensor networks. In Proc. of the ACM Sen-
Sys Conf., pages 134–147, Baltimore, MD, Nov. 2004.

[14] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, P. Levis,
S. Shenker, and I. Stoica. Flush: a reliable bulk transport pro-
tocol for multihop wireless networks. In Proc. of the ACM
SenSys Conf., pages 351–365. ACM, 2007.

[15] J. Ko, T. Gao, and A. Terzis. Empirical Study of a Medical
Sensor Application in an Urban Emergency Department. In
BodyNets ’09: 4th Intl Conference on Body Area Networks.

[16] K. Langendoen, A. Baggio, and O. Visser. Murphy loves pota-
toes: Experiences from a pilot sensor network deployment
in precision agriculture. In 14th Int. Workshop on Parallel
and Distributed Real-Time Systems (WPDRTS), pages 1–8,
apr 2006.

[17] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Simu-
lating large wireless sensor networks of tinyos motes. pages
126–137, Los Angeles, CA, Nov. 2003.

[18] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self-
regulating algorithm for code maintenance and propagation
in wireless sensor networks. In Proc. of the USENIX NSDI
Conf., San Francisco, CA, Mar. 2004.

[19] J. Li, C. Blake, D. S. D. Couto, H. I. Lee, and R. Morris. Ca-
pacity of Ad Hoc wireless networks. In Proc. of MobiCom,
pages 61–69. ACM, 2001.

[20] C. Lu, B. M. Blum, T. F. Abdelzaher, J. A. Stankovic, and
T. He. RAP: A Real-Time Communication Architecture for
Large-Scale Wireless Sensor Networks. In Proc. of the IEEE
RTAS Symposium, San Jose, CA, September 2002.

[21] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and
J. Anderson. Wireless Sensor Networks for Habitat Moni-
toring. In Proceedings of the ACM International Workshop
on Wireless Sensor Networks and Applications, Sept. 2002.

[22] R. Musaloiu-E., C.-J. Liang, and A. Terzis. Koala: Ultra-low
power data retrieval in wireless sensor networks. In Proc.
of the International Conference on Information Processing in
Sensor Networks (IPSN 2008), 2008.

[23] D. Pei, X. Zhao, D. Massey, and L. Zhang. A study of bgp path
vector route looping behavior. In ICDCS ’04: Proceedings of

the 24th International Conference on Distributed Computing
Systems (ICDCS’04), pages 720–729, Washington, DC, USA,
2004. IEEE Computer Society.

[24] C. Perkins and P. Bhagwat. Highly Dynamic Destination-
Sequenced Distance-Vector Routing (DSDV) for Mobile
Computers. Computer Comm. Review, October 1994.

[25] J. Polastre, J. Hill, and D. Culler. Versatile low power media
access for wireless sensor networks. In Proc. of the ACM
SenSys Conf., pages 95–107, Baltimore, MD, Nov. 2004.

[26] S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis.
Interference-aware fair rate control in wireless sensor net-
works. In Proc. of the ACM SIGCOMM Conf., pages 63–74,
Pisa, Italy, Aug. 2006.

[27] Y. Sankarasubramaniam, Özgür Akan, and I. Akyildiz. ESRT:
Event-to-Sink Reliable Transport in Wireless Sensor Net-
works. In Proc. of the ACM Mobihoc Conf., pages 177–189,
Annapolis, MD, June 2003.

[28] T. Schoellhammer, B. Greenstein, and D. Estrin. Hyper: A
routing protocol to support mobile users of sensor networks.
Technical Report 2013, CENS, 2006.

[29] K. Srinivasan, M. Kazandjieva, S. Agarwal, and P. Levis. The
beta-factor: Measuring wireless link burstiness. In Proceed-
ings of the 6th ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2008.

[30] F. Stann and J. Heidemann. RMST: Reliable Data Transport
in Sensor Networks. In Proc. of the IEEE SNPA Workshop,
pages 102–112, Anchorage, AK, May 2003.

[31] G. Tolle, J. Polastre, R. Szewczyk, D. E. Culler, N. Turner,
K. Tu, S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and
W. Hong. A macroscope in the redwoods. In Proc. of the
ACM SenSys Conf., pages 51–63, San Diego, CA, Nov. 2005.

[32] C.-Y. Wan, A. Campbell, and L. Krishnamurthy. PSFQ: a
Reliable Transport Protocol for Wireless Sensor Networks. In
Proc. of the ACM WSNA Workshop, pages 1–11, Atlanta, GA,
2002.

[33] C.-Y. Wan, S. Eisenman, and A. Campbell. CODA: Conges-
tion Detection and Avoidance in Sensor Networks. In Proc.
ACM SenSys, pages 266–279, Nov. 2003.

[34] C. Y. Wan, S. Eisenman, A. Campbell, and J. Crowcroft.
Siphon: Overload Traffic Management using Multi-Radio Vir-
tual Sinks. In Proc. of the ACM SenSys Conf., pages 116–129,
San Diego, CA, Nov. 2005.

[35] G. Werner-Allen, S. Dawson-Haggerty, and M. Welsh. Lance:
Optimizing High-Resolution Data Collection in Wireless Sen-
sor Networks. In Proc. of the ACM SenSys Conf., Nov. 2008.

[36] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh. Fidelity and Yield in a Volcano Monitoring Sen-
sor Network. In USENIX Symposium on Operating Systems
Design and Implementation, Seattle, WA, Nov. 2006.

[37] A. Woo and D. E. Culler. A transmission control scheme
for media access in sensor networks. In Proceedings of the
seventh annual international conference on Mobile comput-
ing and networking, Rome, Italy, July 2001.

[38] A. Woo, T. Tong, and D. Culler. Taming the underlying
challenges of reliable multihop routing in sensor networks.
In Proc. ACM SenSys, pages 14–27, Los Angeles, CA, Nov.
2003.

[39] H. Zhang, A. Arora, Y. R. Choi, and M. Gouda. Reliable
bursty convergecast in wireless sensor networks. Computer
Communications, 30(13):2560–2576, Dec. 2007.

[40] H. Zhang, A. Arora, and P. Sinha. Learn on the fly: Data-
driven link estimation and routing in sensor network back-
bones. In Proc. IEEE INFOCOM, Barcelona, Spain, Apr.
2006.

14

