
The Flooding Time Synchronization Protocol
Miklós Maróti Branislav Kusy Gyula Simon Ákos Lédeczi

Institute for Software Integrated Systems
Vanderbilt University

2015 Terrace Place, Nashville, TN 37203, USA
Phone: (+1) 615-343-7472

e-mail: {miklos.maroti, branislav.kusy, gyula.simon, akos.ledeczi}@vanderbilt.edu

ABSTRACT
Wireless sensor network applications, similarly to other
distributed systems, often require a scalable time synchronization
service enabling data consistency and coordination. This paper
describes the Flooding Time Synchronization Protocol (FTSP),
especially tailored for applications requiring stringent precision
on resource limited wireless platforms. The proposed time
synchronization protocol uses low communication bandwidth and
it is robust against node and link failures. The FTSP achieves its
robustness by utilizing periodic flooding of synchronization
messages, and implicit dynamic topology update. The unique high
precision performance is reached by utilizing MAC-layer time-
stamping and comprehensive error compensation including clock
skew estimation. The sources of delays and uncertainties in
message transmission are analyzed in detail and techniques are
presented to mitigate their effects. The FTSP was implemented on
the Berkeley Mica2 platform and evaluated in a 60-node, multi-
hop setup. The average per-hop synchronization error was in the
one microsecond range, which is markedly better than that of the
existing RBS and TPSN algorithms.

Categories and Subject Descriptors
C.2 [COMPUTER-COMMUNICATION NETWORKS]: Network
Architecture and Design, Network Protocols.

General Terms
Algorithms, Design, Performance, Reliability, Experimentation.

Keywords
Sensor Networks, Time Synchronization, Clock Synchronization,
Clock Drift, Multi-hop.

1. INTRODUCTION
The advances in micro electro-mechanical systems (MEMS)
technology, in digital circuits design, integration and packaging,
and in wireless communication are leading to smaller, cheaper and
low-power sensing and computing devices. Cell phones and

handheld computers already enjoy the increased popularity of the
public. These trends point towards radically new systems of
thousands or even millions of tiny computing devices interacting
with the environment and communicating with each other.
Research teams are working on incorporating sensing, processing
and communication in a volume of less than one cubic millimeter
[6], while devices of the size of a coin built from off-the-shelf
components are commercially available already. The UC Berkeley
Mica2 and Mica2Dot motes are popular research platforms of this
emerging technology [19].

Complex networks built from thousands of such devices are
expected to affect many aspects of our lives. The potential
applications of wireless sensor networks (WSN) include:

• Monitoring applications: Non-intrusive and non-disruptive
environmental monitoring helps biologists to study sensitive
wildlife habitats and people with certain medical conditions
can receive constant monitoring through sensors [12]. Sensor
networks monitor the structural health of the Golden Gate
Bridge in San Francisco and the microclimates on Great Duck
Island, Maine [9].

• Mobile commerce, inventory management: by measuring
continuously changing conditions, WSN will influence the
movement of commodities to locations where the need exists.

• Smart office, kindergarten: systems containing wireless sensors
will be an integral part of our office space. They would
improve the education process by tailoring it to the individual
needs of a child [14], adapt to context, and coordinate
activities of multiple children.

• Military applications: potential applications include
surveillance, target tracking [15], countersniper systems [10] or
battlefield monitoring that propagates information to the
soldiers and vehicles involved in combat.

WSN are large-scale distributed systems, yet their unique
characteristics, especially the severe resource constraints, require
the reevaluation of traditional distributed algorithms for problems
once considered to be solved. One of the basic middleware
services of sensor networks is time synchronization. Time
synchronization is required for consistent distributed sensing and
control. Furthermore, common services in WSN, such as
coordination, communication, security, power management or
distributed logging also depend on the existence of global time.

In this paper, we describe the Flooding Time Synchronization
Protocol (FTSP) for WSN in detail. When designing the FTSP,
our goals were to achieve network-wide time synchronization
with error in the micro-second range and scalability up to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SenSys’04, November 3–5, 2004, Baltimore, Maryland, USA.
Copyright 2004 ACM 1-58113-879-2/04/0011…$5.00.

39

hundreds of nodes, while being robust to network topology
changes and link and node failures. The proposed algorithm
compensates for the relevant error sources by utilizing the
concepts of MAC layer time-stamping [3], [7] and skew
compensation with linear regression [2]. While these ideas have
been utilized before, their unique combination and its effective
implementation yield significantly better precision and somewhat
lower communication overhead than existing approaches on the
same platform. Finally, the implicit dynamic topology
management of the FTSP provides rapid convergence and
robustness.

The algorithm was implemented on Mica/Mica2 platforms
running the TinyOS operating system [4]. A short overview of the
target platform is given in Section 2. We offer a survey of existing
time synchronization algorithms, emphasizing the algorithms
utilizing similar ideas as FTSP, in Section 3. The possible sources
of errors of radio message based synchronization are described
and analyzed in Section 4. We describe the proposed FTSP
algorithm in details and evaluate it based on a large scale
experiment in Section 5. In Section 6, we compare FTSP to
existing algorithms. Finally, an application using FTSP is
described in Section 7 and we offer our conclusions and plans for
further improvements in Section 8.

2. THE TARGET PLATFORM
One of the most widely used WSN platforms is the Berkeley
Mica2 mote [19], [4]. The Mica2 mote has a 7.37 MHz processor,
4 kB of RAM, 128 kB of flash memory, 433 MHz wireless radio
transceiver (38.4 kbps transfer rate, 500 feet maximum range),
and is powered by two AA batteries. Pluggable sensor boards with
temperature, light, magnetic and other sensors are available.

The Berkeley motes run the TinyOS operating system [4], [17], an
open source, event driven and modular OS designed to be used
with networked sensors. TinyOS handles task scheduling, radio
communication with error detection, clocks and timers, ADC, I/O
and EEPROM abstractions, and power management. Application
developers can select a subset of the modules implementing these
functionalities, extend or override them if necessary, and statically
compile them into the final executable.

3. APPROACHES TO TIME
SYNCHRONIZATION
Time synchronization algorithms providing a mechanism to
synchronize the local clocks of the nodes in the network have
been extensively studied in the past. The most widely adapted
protocol used in the internet domain is the Network Time
Protocol (NTP) devised by Mills [11]. The NTP clients
synchronize their clocks to the NTP time servers with accuracy in
the order of milliseconds by statistical analysis of the round-trip
time. The time servers are synchronized by external time sources,
typically using GPS. The NTP has been widely deployed and
proved to be effective, secure and robust in the internet. In WSN,
however, non-determinism in transmission time caused by the
Media Access Channel (MAC) layer of the radio stack can
introduce several hundreds of milliseconds delay at each hop.
Therefore, without further adaptation, NTP is suitable only for
WSN applications with low precision demands.

Two of the most prominent examples of existing time
synchronization protocols developed for the wireless sensor

network domain are the Reference Broadcast Synchronization
(RBS) algorithm [2] and the Timing-sync Protocol for Sensor
Networks (TPSN) [3].

In the RBS, a reference message is broadcasted. The receivers
record their local time when receiving the reference broadcast and
exchange the recorded times with each other. The main advantage
of RBS is that it eliminates transmitter-side non-determinism. The
disadvantage of the approach is that additional message exchange
is necessary to communicate the local time-stamps between the
nodes. To our best knowledge the algorithm has not been
extended to large multi-hop networks.

The TPSN algorithm first creates a spanning tree of the network
and then performs pairwise synchronization along the edges. Each
node gets synchronized by exchanging two synchronization
messages with its reference node one level higher in the hierarchy.
The TPSN achieves two times better performance than RBS by
time-stamping the radio messages in the Medium Access Control
(MAC) layer of the radio stack [3] and by relying on a two-way
message exchange. The shortcoming of TPSN is that it does not
estimate the clock drift of nodes, which limits its accuracy, and
does not handle dynamic topology changes.

4. UNCERTAINTIES IN RADIO MESSAGE
DELIVERY
Non-deterministic delays in the radio message delivery in WSN
can be magnitudes larger than the required precision of time-
synchronization. Therefore, these delays need to be carefully
analyzed and compensated for. We shall use the following
decomposition of the sources of the message delivery delays first
introduced by Kopetz and Ochsenreiter [7], [8] and later extended
in [3] and [5].

(1) Send Time—time used to assemble the message and issue the
send request to the MAC layer on the transmitter side.
Depending on the system call overhead of the operating
system and on the current processor load, the send time is
nondeterministic and can be as high as hundreds of
milliseconds.

(2) Access Time—delay incurred waiting for access to the
transmit channel up to the point when transmission begins.
The access time is the least deterministic part of the message
delivery in WSN varying from milliseconds up to seconds
depending on the current network traffic.

(3) Transmission Time—the time it takes for the sender to
transmit the message. This time is in the order of tens of
milliseconds depending on the length of the message and the
speed of the radio.

(4) Propagation Time—the time it takes for the message to
transmit from sender to receiver once it has left the sender.
The propagation time is highly deterministic in WSN and it
depends only on the distance between the two nodes. This
time is less than one microsecond (for ranges under 300
meters).

(5) Reception Time—the time it takes for the receiver to receive
the message. It is the same as the transmission time. The
transmission and reception times overlap in WSN as pictured
in Figure 1.

40

(6) Receive Time—time to process the incoming message and to
notify the receiver application. Its characteristics are similar
to that of send time.

access transmission

reception

send

receive

sender:

receiver:

propagation

Figure 1. Decomposition of the message delivery delay over a
wireless link.

The RBS approach completely eliminates the send and access
times, and with minimal OS modifications it is also possible to
remove the receive time uncertainty. This leaves the mostly
deterministic propagation and reception time in wireless networks
as the sole source of error. The main strength of RBS is its broad
applicability to commodity hardware and existing software in
sensor networks as it does not need access to the low levels of the
operating system.

As the authors of the TPSN protocol observed, on typical WSN
platforms, such as the Mica2 mote, one has direct access to the
MAC layer, and message time-stamping can be performed during
message transmission and reception. This immediately eliminates
the same three main sources of uncertainties as in RBS. With a
two-way handshake of synchronization messages the TPSN
protocol eliminates the unknown propagation time as well.

Both the RBS and TPSN protocols suffer from the uncertainties of
the overlapping transmission and reception times. To fully
understand the constituents of this uncertainty we shall describe
the message propagation in a typical wireless channel in more
detail. We imagine an idealized point of the transmitted message,
such as the end of a particular byte of the message. Then we
follow the transmission of this idealized point through the
software, hardware and physical levels of the wireless channel
from the sender to the receiver.

First, the message is transferred to the radio chip piece by piece,
usually in a byte oriented fashion. The radio chip signals the
microcontroller that it is ready to obtain the next piece. The radio
chip then encodes the pieces and generates an electromagnetic
wave through the antenna. This wave propagates through space
and the receiver’s radio chip converts it back to binary
representation. Then the radio chip on the receiver side signals the
microcontroller that a new piece of data is ready and can be read
through some protocol. Therefore, we have the following delivery
delays of an idealized point of the message.

(7) Interrupt Handling Time—the delay between the radio chip
raising and the microcontroller responding to an interrupt.
This time is mostly less than a few microsecond (waiting for
the microcontroller to finish the currently executed
instruction), however when interrupts are disabled this delay
can grow large.

(8) Encoding Time—the time it takes for the radio chip to
encode and transform a part of the message to
electromagnetic waves starting from the point when it raised
an interrupt indicating the reception of the idealized point

from the microcontroller. This time is deterministic and is in
the order of a hundred microseconds.

(9) Decoding Time—the time it takes for the radio chip on the
receiver side to transform and decode the message from
electromagnetic waves to binary data. It ends when the radio
chip raises an interrupt indicating the reception of the
idealized point. This time is mostly deterministic and is in
the order of hundred microseconds. However, signal strength
fluctuations and bit synchronization errors can introduce
jitter.

Some radio chips cannot capture the byte alignment of the
transmitted message stream on the receiver side and the radio
stack has to determine the bit offset of the message from the
alignment of a known synchronization byte and then shift the
message accordingly. Since the transmission time of the byte is a
few hundred microseconds at 38.4 kbps, the delay caused by the
incorrect byte alignment must be compensated for. This
compensation is performed by the implementation of TPSN on the
Mica2 platform, but it is not reported in [3].

(10) Byte Alignment Time—the delay incurred because of the
different byte alignment of the sender and receiver. This time
is deterministic and can be computed on the receiver side
from the bit offset and the speed of the radio.

interrupt handling

encoding

propagation

(byte alignment)

interrupt handling

decoding

se
nd

er
re

ce
iv

er
cpu:

radio:

antenna:

antenna:

radio:

radio:

cpu:

Figure 2. The timing of the transmission of an idealized point
in the software (cpu), hardware (radio chip) and physical
(antenna) layers of the sender and the receiver.

Figure 2 summarizes the decomposition of delivery delay of the
idealized point of the message as it traverses over a wireless
channel. Each line represents the time line of the layer as
measured by an ideal clock. The dots represent the time instance
when the idealized point of the message crosses the layers. The
triangles on the first and last line represent the time when the cpu
makes the time-stamps. Depending on the specific hardware the
time stamp is usually recorded by the microcontroller when it
handles the radio chip interrupts both on the sender and receiver
sides. Alternatively, capture registers provided by some hardware
can be employed to eliminate the interrupt handling time. We do
not consider the effect of various coding techniques, such as
Manchester or SECDEC coding or forward error-correction
schemes, to the timing of message transmission. The codes used

41

in practice are block codes, and we can assume that the idealized
point of the message is at a block boundary.

On the Mica2 platform, the interrupt handling time is typically
around 5µs depending on the length of the code path between the
start of interrupt handler and the part that records the local time.
However, we observed interrupt handling times as high as 30µs.
The sum of encoding and decoding times is between 110µs and
112µs. The byte alignment time is between 0µs (for bit offset 0)
and 365µs (for bit offset 7). In contrast, the propagation time is
under 1µs. Table 1 summarizes the magnitudes and distribution of
the various delays in message transmissions.

Table 1. The sources of delays in message transmissions

Time Magnitude Distribution

Send and
Receive

0 – 100 ms nondeterministic,
depends on the
processor load

Access 10 – 500 ms nondeterministic,
depends on the
channel contention

Transmission /
Reception

10 – 20 ms deterministic,
depends on message
length

Propagation < 1µs for distances
up to 300 meters

deterministic,
depends on the
distance between
sender and receiver

Interrupt
Handling

< 5µs in most
cases, but can be as
high as 30µs

nondeterministic,
depends on interrupts
being disabled

Encoding plus
Decoding

100 – 200µs,
< 2µs variance

deterministic,
depends on radio
chipset and settings

Byte
Alignment

0 – 400µs deterministic, can be
calculated

Using our definitions we can properly express the sources of time-
stamping errors of the RBS and TPSN algorithms. The RBS
protocol is sensitive to the propagation, decoding and interrupt
handling time differences between the two receivers. The main
source of error here is the jitter in interrupt handling and
decoding. The TPSN protocol is sensitive to the encoding,
decoding and interrupt handling time differences between the
sender and receiver. Note that although the propagation time has
been eliminated, the encoding and decoding times are not because
they might not be the same on the sender and receiver side. It is
important to point out that both the RBS and TPSN protocols
suffer from the two largest sources of uncertainty of MAC layer
time-stamping: the jitter of interrupt handling and decoding time.
On the other hand, as we will see in the next section, the FTSP
time-stamping protocol effectively reduces all sources of time-
stamping errors except for the propagation time.

5. FLOODING TIME SYNCHRONIZATION
PROTOCOL
The goal of the FTSP is to achieve a network wide
synchronization of the local clocks of the participating nodes. We

assume that each node has a local clock exhibiting the typical
timing errors of crystals and can communicate over an unreliable
but error corrected wireless link to its neighbors.

The FTSP synchronizes the time of a sender to possibly multiple
receivers utilizing a single radio message time-stamped at both the
sender and the receiver sides. MAC layer time-stamping can
eliminate many of the errors, as observed in [16] and [3].
However, accurate time-synchronization at discrete points in time
is a partial solution only. Compensation for the clock drift of the
nodes is inevitable to achieve high precision in-between
synchronization points and to keep the communication overhead
low. Linear regression is used in FTSP to compensate for clock
drift as suggested in [2].

Typical WSN operate in areas larger than the broadcast range of a
single node; therefore, the FTSP provides multi-hop
synchronization. The root of the network—a single, dynamically
(re)elected node—maintains the global time and all other nodes
synchronize their clocks to that of the root. The nodes form an ad-
hoc structure to transfer the global time from the root to all the
nodes, as opposed to a fixed spanning-tree based approach
proposed in [3]. This saves the initial phase of establishing the
tree and is more robust against node and link failures and dynamic
topology changes.

5.1 Time-stamping
The FTSP utilizes a radio broadcast to synchronize the possibly
multiple receivers to the time provided by the sender of the radio
message. The broadcasted message contains the sender’s time
stamp which is the estimated global time at the transmission of a
given byte. The receivers obtain the corresponding local time
from their respective local clocks at message reception.
Consequently, one broadcast message provides a synchronization
point (a global-local time pair) to each of the receivers. The
difference between the global and local time of a synchronization
point estimates the clock offset of the receiver. As opposed to the
RBS protocol, the time stamp of the sender must be embedded in
the currently transmitted message. Therefore, the time-stamping
on the sender side must be performed before the bytes containing
the time stamp are transmitted.

sender:

receiver:

propagation delay

byte alignment

preamble sync crcdata

preamble sync crcdata

Figure 3. Data packets transmitted over the radio channel.
Solid lines represent the bytes of the buffer and the dashed
lines are the bytes of packets.

Message broadcast starts with the transmission of preamble bytes,
followed by SYNC bytes, then with a message descriptor followed
by the actual message data, and ends with CRC bytes. During the
transmission of the preamble bytes the receiver radio synchronizes
itself to the carrier frequency of the incoming signal. From the
SYNC bytes the receiver can calculate the bit offset it needs to
reassemble the message with the correct byte alignment. The
message descriptor contains the target, the length of the data and
other fields, such as the identifier of the application layer that

42

needs to be notified on the receiver side. The CRC bytes are used
to verify that the message was not corrupted. The message layout
is summarized in Figure 3.

The FTSP time-stamping effectively reduces the jitter of the
interrupt handling and encoding/decoding times by recording
multiple time stamps both on the sender and receiver sides. The
time stamps are made at each byte boundary after the SYNC bytes
as they are transmitted or received. First, these time stamps are
normalized by subtracting an appropriate integer multiple of the
nominal byte transmission time, the time it takes to transmit a
byte. The jitter of interrupt handling time is mainly due to
program sections disabling interrupts on the microcontroller for
short amounts of time. This error is not Gaussian, but can be
eliminated with high probability by taking the minimum of the
normalized time stamps. The jitter of encoding and decoding time
can be reduced by taking the average of these interrupt error
corrected normalized time stamps. On the receiver side this final
averaged time stamp must be further corrected by the byte
alignment time that can be computed from the transmission speed
and the bit offset. Note that, even though multiple time stamps are
made, only the final error corrected time stamp is embedded into
the message. The number of bytes put an upper limit on the
achievable error correction using this technique. However, with
only 6 time stamps, the time-stamping precision can be improved
from tens of microseconds to 1.4µs on the Mica2 platform as
measured by the following experiment.

Four motes were sending time-stamped messages to each other for
10 minutes, each with a 5-second sending period. The time-
stamps were recorded both on the sender and receiver sides, and
the pairwise clock offset and skew values were determined off-
line with linear regression. The time-stamping error is the absolute
value of the difference of the recorded receiver side time stamp
and the linearly corrected sender side time-stamp. The average
and maximum time-stamping errors were 1.4µs and 4.2µs,
respectively. Since the FTSP time-stamping employs a single
radio message, it does not and cannot compensate for the
propagation delay. This is not a major limitation of the approach
in typical WSN, however, as the propagation delay is less than
1µs for up to 300 meters.

5.2 Clock drift management
If the local clocks had the exact same frequency and, hence, the
offset of the local times were constant, a single synchronization
point would be sufficient to synchronize two nodes. However, the
frequency differences of the crystals used in Mica2 motes
introduce drifts up to 40µs per second. This would mandate
continuous re-synchronization with a period of less than one
second to keep the error in the micro-second range, which is a
significant overhead in terms of bandwidth and energy
consumption. Therefore, we need to estimate the drift of the
receiver clock with respect to the sender clock.

The offset between the two clocks changes in a linear fashion
provided the short term stability of the clocks is good. We verified
the stability of the 7.37 MHz Mica2 clock by periodically sending
a reference broadcast message that was received by two different
motes. The two motes time-stamped the reference message using
the FTSP time-stamping described in the previous section with
their local time of arrival and reported the time-stamp. For each
transmitted message the offset of the two reported time-stamps

was calculated. The offsets were further examined: linear-
regression was used to find the line L best approximating the
dataset and the errors were analyzed. For a data point (time,offset)
and the regression line L, the error is offset-L(time). A one hour
experiment produced the following results: the average value of
the absolute errors was 0.95µs and the maximum absolute error
was 4.32µs. The distribution of the errors, calculated off-line is
shown in Figure 4. This off-line regression provides the best
prediction that can possibly be achieved, provided the clocks can
be considered stable during the experiment. Naturally this method
cannot be used online; it is used here as a reference to evaluate
online solutions.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

-8 -6 -4 -2 0 2 4 6

Error (us)

H
is

to
g
ra

m
(%

)

 _

off_line
30sec
300s300sec

30sec

error (µs)

h
is

to
rg

ra
m

(%
)

Figure 4. The distribution of the errors of linear-regression
(LR): off_line refers to off-line LR, 30sec refers to time sync
interval P=30s, query interval 18s, and 300sec refers to time
sync interval P=300s, query interval 93s.

We need to identify the trend of the global time relative to the
local time from the data points received in the past. Furthermore,
only a limited number of data points can be stored due to the
memory constraints of the platform. The following scenario was
used to test our Mica2 implementation: mote A maintains the
global time and sends synchronization messages to mote B with a
period of T. Mote B estimates the skew and offset of its local
clock from that of A using linear regression on the past 8 data
points. A reference broadcaster sends a query message with period
t and both A and B respond to this query by time-stamping its
arrival with the global time and reporting it to the base station.

-10

0

10

20

30

40

50

60

70

0:00 0:10 0:20 0:30 0:40 0:50 1:00 1:10

time (hh:mm)

ab
s
er

ro
r (

u
s)

time sync
was stopped

ab
so

lu
te

 e
rr

o
r
(µ

s)

Figure 5. Time synchronization error between two motes. The
time synchronization was stopped after 30 minutes. The initial
small error of the skew estimate results in increasing
synchronization error over time.

43

The linear regression prediction error is the difference between
the global time given by A and the estimated global time given by
B. Figure 4 shows the distribution of these prediction errors, for
(a) T=30s, t=18s, and (b) T=300s, t=93s. The length of experiment
(a) was 18 hours, the average absolute error was 1.48µs, and the
maximum absolute error was 6.48µs. The length of experiment (b)
was 8 hours, the average absolute error was 2.24µs and the
maximum absolute error was 8.64µs.

An important design parameter is the required resynchronization
interval to reach the desired precision. As shown in Figure 4, the
30s resynchronization interval gave slightly better results than
300s. To further evaluate the behavior of the skew compensation,
another experiment was carried out, the results shown in Figure 5.
This result shows that the resynchronization period, depending on
the accuracy requirements, can go up to several minutes.

5.3 Multi-hop time synchronization
In practical WSN applications, the network radius is greater than
one hop. If network-wide synchronization is required, the multi-
hop FTSP protocol can be used, as described in this section. The
only assumption the protocol makes is that every node in the
network has a unique ID.

Nodes in multi-hop FTSP utilize reference points to perform
synchronization. A reference point contains a pair of global and
local time stamps where both of them refer to the same time
instant, as described in Section 5.1. Reference points are
generated by sending and receiving periodic broadcast messages,
which are either transmitted by the synchronization-root (root, for
short), or any synchronized node in the network. The root is a
special node, elected and dynamically reelected by the network, to
which the whole network is being synchronized. A node that is in
the broadcast radius of the root can collect reference points
directly from it. Nodes outside the broadcast radius of the root can
gather reference points indirectly through other synchronized
nodes that are located closer to the root. When a node collects
enough consistent reference points, it estimates the offset and
skew of its own local clock, as described in Section 5.2, and
becomes synchronized. The newly synchronized node can then
broadcast synchronization messages to other nodes in the
network. In the following subsections the most important aspects
of the protocol will be presented.

Synchronization Message Format: Each synchronization message
contains three fields: the timeStamp, the rootID, and the seqNum.
The timeStamp contains the global time estimate of the transmitter
when the message was broadcasted. The rootID field contains the
ID of the root, as known by the sender of the message. The
seqNum is a sequence number set and incremented by the root
when a new synchronization round is initiated. Other
synchronized nodes insert the most recent (i.e. the largest)
received seqNum into the synchronization messages they
broadcast. This field is used to handle redundant synchronization
messages.

Managing Redundant Information: Since all synchronized nodes
periodically transmit synchronization messages, in a dense
network a receiver may receive several messages from different
nodes in a short time interval. Due to limited resources, an
appropriate subset of the messages must be selected to create
reference points. In the Mica2 implementation an eight-element

regression table stores the selected reference points used to
calculate the regression line, and, thus, the drift of the local clock.

To achieve more accurate offset and skew estimation using the
limited amount of data that can be stored in the regression table, it
is more beneficial to store reference points that are distributed
over a longer period of time. To aid message filtering, each node
maintains a highestSeqNum variable. Also each node has a
myRootID variable, containing the root ID as known by the node.
A received synchronization message is used to create a reference
point only if the rootID field of the message is less than or equal
to myRootID and the seqNum field is greater than highestSeqNum
in the case when rootID = myRootID. The node’s variables are
updated after storing a reference point, according to the respective
fields in the message. This message filtering protocol guarantees
that only the first message arrived will be used in the reference
table for each rootID and seqNum pair (i.e. one per round),
providing reference points distributed over a longer time period
for more accurate skew and offset estimation. The pseudo-code
describing this protocol is presented at lines 3–9 in Figure 6 and
11–16 in Figure 7.

The root election problem: To perform global synchronization,
obviously one and only one root is needed in the network. Since
nodes may fail or the network can get disconnected, no dedicated
node can play the role of the root. Thus a robust election process
is needed to provide a root after startup, and also in case of root
failure. FTSP utilizes a simple election process based on unique
node IDs, as follows:

Figure 6. The handling of new synchronization messages.

When a node does not receive new time synchronization messages
for ROOT_TIMEOUT number of message broadcast periods, it
declares itself to be the root (myRootID := myID). Thus after a
ROOT_TIMEOUT period, there will be at least one, but possibly
multiple roots in the network. Whenever a node receives a
message with a rootID field smaller than its myRootID variable, it
updates the variable according to the received rootID field. This
mechanism ensures that roots with higher IDs give up their status
and eventually there will be only one root—the node with the
smallest ID—in the whole network. The pseudo-code describing

 1 event Radio.receive(TimeSyncMsg *msg)
 2 {
 3 if(msg->rootID < myRootID)
 4 myRootID = msg->rootID;
 5 else if(msg->rootID > myRootID
 6 || msg->seqNum <= highestSeqNum)
 7 return;
 8
 9 highestSeqNum = msg->seqNum;
10 if(myRootID < myID)
11 heartBeats = 0;
12
13 if(numEntries >= NUMENTRIES_LIMIT
14 && getError(msg) > TIME_ERROR_LIMIT)
15 clearRegressionTable();
16 else
17 addEntryAndEstimateDrift(msg);
18 }

44

this root election protocol is given at lines 3–4, 10–11 in Figure 6
and 3–7 in Figure 7. The heartBeats variable contains the number
of message broadcast periods since the last synchronization point
was inserted into the regression table.

During the election process special care is taken to avoid
inconsistencies and maintain the synchronized state of the
network as much as possible. Only the root and synchronized
nodes, those that have enough entries (at least
NUMENTRIES_LIMIT many) in their linear regression table,
transmit time synchronization messages (see lines 9–10 in
Figure 7). If a node receives a new reference point that is in
disagreement with previous estimates of the global time, then it
clears its regression table (see lines 13–15 in Figure 6). Finally, a
newly elected root preserves its estimated skew and offset
parameters (does not clear its regression table) and broadcasts the
global time accordingly. This way the network will not get out of
synchronization during the reelection phase.

Another root related problem may arise if a new node is
introduced to the network with a lower ID than the current root of
the network. In this case, the new root eventually declares itself
root, but again care is taken to provide a smooth transition. The
new root does not start transmitting its own synchronization
messages for the ROOT_TIMEOUT period, while it collects
reference points to estimate its own skew and offset values. Thus,
the global time broadcasted by the new root will be synchronized
to the previous global time.

Figure 7. Periodic sending of synchronization messages.

Convergence properties: The convergence of the network to a
globally synchronized state after a startup or failure depends on
the speed of information propagation in the network. Since
synchronization messages are broadcasted periodically, but the
individual nodes are transmitting asynchronously, the speed of
message propagation is limited.

Since node failures can be handled smoothly once the network is
synchronized, it is more important to analyze the behavior of the
system after startup. Denote the value of NUMENTRIES_LIMIT
by N, the value of ROOT_TIMEOUT by M, the message broadcast

period by P, and the radius of the network measured from the root
by R. We assume that all links are reliable and the regression table
is not cleared because of erroneous synchronization points (see
lines 13–14 in Figure 6). There is no elected root in the network
when the nodes are turned on. It takes P*M time for all nodes to
declare itself the root (as none of them received synchronization
messages), after which the election algorithm begins. To estimate
the skew and offset of a local clock and to transmit
synchronization messages, each node needs at least N entries in its
regression table. The minimum and maximum times for the
network to get synchronized to the node with the lowest node ID,
once it starts transmitting synchronization messages, are
P*(N-1)*R and P*N*R, respectively. Therefore, the total time to
get synchronized is between P*(M+(N-1)*R) and P*(M+N*R).

A synchronization period—the time when messages with the same
rootID and seqNum are propagating in the network—lasts for at
most P*R time, and often less because the nodes send
synchronization messages asynchronously and have more than
one neighbor. To analyze the convergence in the case when the
root fails, denote by R’ the radius of the network measured from
the new root (the node with the second smallest node ID). After
the old root fails, it takes at most P*R time for each node to
receive messages of the last synchronization period and then an
additional P*M waiting time to declare itself the root. At this
point multiple nodes became the root, and a new reelection
process begins. This lasts at most P*R’ time because all nodes
have full regression tables which do not get cleared when new
synchronization messages arrive (see lines 13–15 in Figure 6).
Thus, the total time of the reelection process is at most
P*(R+M+R’).

The choice of the period P is a tradeoff between power
consumption, accuracy, and speed of convergence: decreasing the
period increases the number of messages sent in a certain time
period but it also increases accuracy and allows faster
convergence. Figure 4 gives information about the achievable
accuracy per hop, using different P values.

5.4 Experimental data
The implementation of FTSP on the Mica and Mica2 platforms
that was used to carry out the experiments described in this
section is available on internet (see [18]). We tested the protocol
focusing on the most problematic scenarios, such as switching off
the root of the network, removing a substantial part of the nodes
from the network, so that the remaining nodes still formed a
connected network, and switching on a substantial number of the
new nodes in the network.

Figure 8. The layout and links of the experimental setup. Each
node can only communicate with its (at most 8) neighbors.

ID1 – first leader ID2 – second leader

 1 event Timer.fired()
 2 {
 3 ++heartBeats;
 4
 5 if(myRootID != myID
 6 && heartBeats >= ROOT_TIMEOUT)
 7 myRootID = myID;
 8
 9 if(numEntries >= NUMENTRIES_LIMIT
10 || myRootID == myID){
11 msg.rootID = myRootID;
12 msg.seqNum = highestSeqNum;
13 Radio.send(msg);
14
15 if(myRootID == myID)
16 ++highestSeqNum;
17 }
18 }

45

0

10

20

30

40

50

60

70

80

90

100

0:
00

0:
10

0:
20

0:
30

0:
40

0:
50

1:
00

1:
10

1:
20

1:
30

1:
40

1:
50

2:
00

2:
10

2:
20

2:
30

2:
40

2:
50

3:
00

3:
10

3:
20

3:
30

3:
40

3:
50

4:
00

time (hh:mm)

m
ic

ro
se

co
n

d
s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

p
er

ce
n

ta
g

e

average pairwise error (µs)
maximum pairwise error (µs)
synchronized motes (%)

`

A B D E F
C

Figure 9. A 5x12 grid experiment shows the percentage of synchronized nodes, the maximum and average error (the maximum and
average of the pairwise differences of the reported global times). The nodes were switched on at time A, the root ID1 was switched
off at B, randomly selected motes were reset during C, half of the motes were switched off at D, the same motes were switched back
on at E, and the experiment ended at F.

The experiment scenario involves 60 Mica2 motes deployed in a
5x12 grid in such way that each mote can communicate with its
neighbors only. Furthermore, the node with the smallest id (ID1)
is located in the middle of the network and the node with the
second smallest id (ID2) is at the edge of the network as shown in
Figure 8. This means that ID1 will become the first root of the
network and ID2 will replace ID1 if and when it fails. The
maximum hop distance between ID1 and ID2 represents the worst
case scenario in the case the root ID1 dies. The chosen topology
also ensures that there exist enough motes at the distant levels (i.e.
for the ID2 root, there are at least 5 motes at each hop distance
level, except for the hop distance 1).

Two other motes were used in the experiment, the reference
broadcaster, and the base station. Their function was described in
Section 5.2: the reference broadcaster queried the global time
from all nodes in the network once per 30 seconds and the base
station collected the responses to the query from all the nodes.

The topology of the 60 nodes network was enforced in software
and, therefore, all the nodes could be placed within the radio
range from the reference broadcaster and the base station. This
way the base station and the broadcaster could talk directly to all
60 nodes and no multi-hop routing was necessary. The period of
time re-synchronization was 30 seconds for all 60 nodes. The
value of NUMENTRIES_LIMIT was 3, and ROOT_TIMEOUT
was 6, that is, it took a node 6 times 30 seconds, i.e., 3 minutes to
declare itself the root if it did not receive new synchronization
messages. The experiment took about four hours with following
scenario:

A: at 0:04 all motes were turned on;

B: at 1:00 the root with ID1 was switched off, ID2 becomes the
new root, eventually;

C: between 2:00 and 2:15 randomly selected nodes were reset
one by one with 30 second period;

D: at 2:30 the motes with odd node IDs were switched off (half
of the nodes are removed);

E: at 3:01 the motes with odd node IDs were switched back on
(100% new nodes were introduced);

F: at 4:02 the experiment was ended.

There were 60 nodes in the network, and typically less than 5% of
them did not succeed to reply to the reference broadcaster due to
radio collisions. The nodes reported back to the base station
whether they were synchronized (i.e. had enough values in their
regression table) and what the global time was at the arrival of the
reference broadcast message.

For each reference broadcast round, we calculated the percentage
of the motes that were synchronized out of those that replied, and
we analyzed the time synchronization error by calculating the
average of the pairwise differences of the reported global times,
and the maximum difference of any two reported global times. We
call these values the average and maximum time synchronization
error, respectively. The resulting graph is shown in Figure 9.

An alternative definition of the accuracy of the FTPS could be the
average difference between the estimated global time of each node
and the real global time, i.e. the local time of the root. However,

46

when the root fails, this measure becomes undefined.
Furthermore, typical WSN applications do not care about the
absolute time as such. What is important is how well the nodes are
synchronized to each other. Our definition of average error tries to
capture this quality.

The nodes were switched on approximately at the same time
(0:04), but during the next 3 minutes (till 0:07) no node was
synchronized because none of them declared itself to be the root.
Then many nodes timed out and became the roots of the network,
which was the reason why the average and maximum
synchronization errors soared for 10 minutes untill the election
process has completed (0:17) and only a single root remained
(ID1). The number of synchronized nodes grew steadily during
this period and the average and maximum errors became
approximately 2µs and 10µs, respectively. Complete
synchronization has been achieved in 14 minutes (at 0:18) as
indicated by the percentage of synchronized motes reaching
100%. According to Section 5.3, in an idealized network the
predicted minimum and maximum convergence times would be 9
and 12 minutes, respectively. In reality this took longer because
there were radio collisions and some clock skew and offset
estimates were erroneous.

When the root ID1 was switched off, no impact on the network
was immediately observable. What happened is that the global
time had not been updated for a certain period of time until each
node timed out and declared itself to be the root.

The election process again resulted in a single root (ID2)
eventually. However, the error stayed low during this time
because nodes did not discard their old offset and skew estimates
and the new root was broadcasting its estimation of the old global
time. This caused deterioration of the maximum and average
errors until all nodes calculated more accurate drift estimates
based on the messages broadcasted by the new root. From
Figure 9 one cannot determine when the network got
synchronized to the second root, but from logged synchronization
messages we determined that the election process finished at 1:06
(in 6 minutes). According to the formulas in Section 5.3 the
election process lasts at most 11 minutes and 30 seconds in an
ideal network.

In the last two parts of the experiment some of the nodes were
removed and new ones were introduced (or reset). The impact of
these operations on the average and maximum errors was
minimal. We can observe that the number of synchronized nodes
decreased whenever a new node was switched on because it takes
some time for the new node to obtain enough data to get
synchronized.

Before we switched off the first root, we had a 60-mote 6-hop
network, that is, the maximal minimum distance from the root
was 6, for approximately 50 minutes. The maximum average error
was 3µs translating to a 0.5µs error per hop. The maximum error
was less than 14µs overall or 2.3µs per hop.

After the simulated root failure at time B, we had a 59-mote 11-
hop network. The average time synchronization error stayed
below 17.2µs for the remainder of the experiment, despite the
significant changes in the topology. If we divide the error by
number of hops, we get the average error of 1.6µs per hop. The
maximum time synchronization error was below 67µs which was
observed only when the root was switched off. Switching off and

introducing the new nodes did not introduce a significant time
synchronization error.

6. COMPARISON TO PREVIOUS
APPROACHES
In this section the pros and cons of the proposed FTSP are
compared to those of previously known protocols. As reference,
the RBS and TPSN algorithms were chosen, because (1) these
time synchronization protocols were also developed with the
special requirements of sensor networks in mind as opposed to
other, more general algorithms, (2) actual experimental results are
available for the same platforms (Mica/Mica2), and (3) ideas from
these protocols were used and enhanced in FTSP.

The RBS approach time-stamps messages only on the receiver
side; therefore, it eliminates the access and the send times. The
published method in [2] does not compensate for byte alignment,
but that could be easily incorporated. The main achievement of
the RBS time-stamping of a reference broadcast is that it
eliminates random delays on the sender side. However, time-
stamping the radio messages in the low layers of the radio stack
used in our method has practically the same effect and eliminates
the jitter of interrupt handling and decoding times, as well.

The TPSN approach [3] eliminates the access time, byte
alignment time and propagation time by making use of the
implicit acknowledgments to transmit information back to the
sender. This protocol gains an additional accuracy over RBS due
to time-stamping the radio message multiple times and averaging
these time-stamps. TPSN was implemented on the Mica platform
and it would face certain implementation problems on later
platforms. Unfortunately in the Mica2 platform implicit
acknowledgments can not be effectively implemented because of
long settling time of the radio chip when switching from the
receiving mode to transmission mode. Another disadvantage of
the TPSN protocol is that the two-way communication prohibits
the use of message broadcasting, which results in higher
communication load.

The accuracy of the RBS time-stamping reported by the authors is
~11µs on the Mica platform. Least square linear regression is used
to account for the clock drifts which results in 7.4µs average error
between two motes after a 60 second interval. The multi-hop
scenario involves the local time transferring through the
intermediary nodes. However, the function of the Berkeley motes
was limited to providing wireless communication to PDAs (iPAQ)
that were carrying out the time synchronization. Through private
communication the authors of RBS indicated improved 5µs time-
stamping precision on the Mica2 platform, mainly due to the
higher bit-rate of the radio. The authors of TPSN algorithm
implemented both TPSN and RBS on the Mica platform using a
4 MHz clock for time-stamping, and compared the precision of
the two algorithms. The resulting average errors for a single hop
case for two nodes are 16.9µs and 29.1µs for the TPSN and RBS
algorithms, respectively [3].

The proposed FTSP algorithm uses a fine-grained clock, MAC-
layer time-stamping with several jitter reducing techniques to
achieve high precision. This approach eliminates the send, access,
interrupt handling, encoding, decoding and receive time errors,
but does not compensate for the propagation time. Multiple time-
stamps with linear regression are used to estimate clock skew and
offset. The average error of the algorithm for a single hop case

47

using two nodes was 1.48µs, according to measurements
described in Section 5.2. In the multi-hop case, the average error
was 3µs in a 6-hop network, resulting in a 0.5µs per hop accuracy.

The applied flood-based communication protocol in FTSP
provides a very robust network, and still induces only small
network traffic. The network hierarchy is maintained using the
time synchronization messages, without additional message
passing, as opposed to the solution in TPSN. FTSP also utilizes
less network resources than either RBS or TPSN. If the
resynchronization period is T seconds, then each node sends
1 message per T seconds in FTSP, 2 messages per T seconds in
TPSN (1 message to parent and 1 response) and 1.5 message per
T seconds in RBS (0.5 for a reference broadcast and 1 for a time
stamp exchange message). Since FTSP does not rely on a fixed
network hierarchy but updates it continuously, it supports network
topology changes including mobile nodes. The robustness of the
protocol was demonstrated by the harsh experiment described in
Section 5.4. Unfortunately, no similar data is readily available for
TPSN or RBS for comparison.

7. APPLICATIONS
The FTSP algorithm was excessively tested as a component of a
countersniper application [10], [13]. The system utilized a
network of Mica2 motes each of which was attached to a custom
acoustic sensor board. The sensors measured both the muzzle
blast and shock wave to accurately determine both the location of
the shooter and the trajectory of the bullet. The basic idea is
simple: using the arrival times of the acoustic events at different
sensor positions, the shooter position can be accurately calculated
using the speed of sound and the location of the sensors provided
the clocks of the sensor nodes are precisely synchronized. Thus,
the time synchronization protocol was a key element of the
system.

The application, in addition to the FTSP, contained several
services, such as message routing, data aggregation, remote
configuration and debugging services, along with application-
specific software components. A typical test scenario involved 50
to 60 motes distributed in an urban environment. The network
was approximately 8 hops wide. The system was tested repeatedly
for 4 to 8 hours of continuous operation. During testing some of
the motes were switched off and on, the temperature and humidity
of the environment changed drastically influencing the stability of
the crystals. All nodes remained synchronized during these tests,
but no other explicit time synchronization data was obtained.
However, the overall performance of the countersniper system
(~1 meter localization accuracy in 3D in an urban environment)
and the fact that there was no performance degradation over time,
clearly verified that the FTSP performed well.

8. CONCLUSION AND FURTHER
IMPROVEMENTS
We have described the Flooding Time Synchronization Protocol
for WSN. The protocol was implemented on the UCB Mica and
Mica2 platforms running TinyOS. The precision of 1.5µs in the
single hop scenario and the average precision of 0.5µs per hop in
the multi-hop case were shown by providing experimental results.
This performance is markedly better than those of other existing
time synchronization approaches on the same platform.

The presented FTSP time-stamping protocol could be applied to
existing multi-hop time synchronization protocols making those
more precise. It differs from previous time-stamping algorithms in
that it utilizes a single broadcasted message to establish
synchronization points between the sender and receivers of the
message, while eliminating most sources of synchronization
errors, except for the propagation time. Because of its
performance, minimal overhead and simplicity, it can serve as the
most basic time synchronization primitive in other, not necessarily
time synchronization protocols. The presented multi-hop FTSP
achieves its performance and robustness by exploiting these good
properties of the FTSP time-stamping protocol in the context of a
dynamic leader-election algorithm, and combining it with clock
drift compensation algorithms.

The FTSP was tested and its performance was verified in a real-
world application. This is significant because the service had to
operate not in isolation, but as part of a complex application
where resource constraints as well as intended and unintended
interactions between components can and usually do cause
undesirable effects. Moreover, the system operated in the field for
extended periods and not under laboratory conditions. This is a
testimony to the robustness of the protocol and its
implementation.

We plan to perform further experiments in networks with a
magnitude larger number of nodes (thousands). An active research
area is to improve the convergence of the multi-hop case by using
two different broadcast periods in the protocol: a small period for
an initial synchronization period (until all the nodes get
synchronized) and a long period for the normal operation of the
time synchronization protocol.

9. ACKNOWLEDGMENTS
The DARPA/IXO NEST program (F33615-01-C-1903) has
supported the research described in this paper.

10. REFERENCES
[1] Elson, J. E. Time Synchronization in Wireless Sensor

Networks. Ph.D. Thesis, University of California, Los
Angeles 2003.

[2] Elson, J. E., Girod, L., and Estrin, D. Fine-Grained Network
Time Synchronization using Reference Broadcasts. The Fifth
Symposium on Operating Systems Design and
Implementation (OSDI), p. 147–163, December 2002.

[3] Ganeriwal, S., Kumar, R., and Srivastava, M. B. Timing-Sync
Protocol for Sensor Networks. The First ACM Conference
on Embedded Networked Sensor System (SenSys), p. 138–
149, November 2003.

[4] Hill, J., and Culler, D. Mica: A Wireless Platform for Deeply
Embedded Networks. IEEE Micro archive, Volume 22,
Issue 6, p. 12–24, November 2002.

[5] Horauer, M. et. al. PSynUTC – Evaluation of a High
Precision Time Synchronization Prototype System for
Ethernet LANs. 34th Annual Precise Time and Time Interval
Meeting (PTTI), December 2002.

[6] Kahn, J. M., Katz, R. H., and Pister, K. S. J. Mobile
Networking for Smart Dust. In Proceedings of the 5th annual

48

ACM/IEEE international conference on Mobile computing
and networking, p. 271–278, August 1999.

[7] Kopetz, H., and Ochsenreiter, W. Clock Synchronization in
Distributed Real-Time Systems. IEEE Transactions on
Computers, C-36(8), p. 933–939, August 1987.

[8] Kopetz, H., and Schwabl, W. Global time in distributed real-
time systems. Technical Report 15/89, Technische
Universitat Wien, 1989.

[9] Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., and
Anderson, J. Wireless Sensor Networks for Habitat
Monitoring. ACM International Workshop on Wireless
Sensor Networks and Applications, p. 88–97,
September 2002.

[10] Maróti, M., Simon, Gy., Lédeczi, Á., Sztipanovits, J. Shooter
Localization in Urban Terrain. IEEE Computer 37, no. 8,
(2004) August, p. 60–61.

[11] Mills, D. L. Internet Time Synchronization: The Network
Time Protocol. IEEE Transactions on Communications
COM 39 no. 10, p. 1482–1493, October 1991.

[12] Schwiebert, L., Gupta, S., and Weinmann, J. Research
Challenges in Wireless Networks of Biomedical Sensors.
SIGMOBILE 2001, p. 151–165, July 2001.

[13] Simon, G. et al. Sensor Network-Based Countersniper
System. The Second ACM Conference on Embedded
Networked Sensor Systems (SenSys), November 2004.

[14] Srivastava, M., Muntz, R., and Potkonjak, M. Smart
Kindergarten: Sensor-based Wireless Networks for Smart
Developmental Problem-solving Environments. Proceedings
of the ACM SIGMOBILE 7th Annual International
Conference on Mobile Computing and Networking, p. 132–
138, July 2001.

[15] Yang, H., and Sikdar, B. A Protocol for Tracking Mobile
Targets using Sensor Networks. IEEE Workshop on Sensor
Network Protocols and Applications, May 2003.

[16] Woo, A., and Culler, D. A Transmission Control Scheme for
Media Access in Sensor Networks. International Conference
on Mobile Computing and Networking, (Mobicom), p. 221–
235, July 2001.

[17] TinyOS, http://webs.cs.berkeley.edu/tos/

[18] http://cvs.sourceforge.net/viewcvs.py/tinyos/minitasks/02/vu/
tos/lib/TimeSync/

[19] Mica2 and Mica2Dot: http://www.xbow.com/Products/
Wireless_Sensor_Networks.htm

49

