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ABSTRACT 
Wireless sensor network applications, similarly to other 
distributed systems, often require a scalable time synchronization 
service enabling data consistency and coordination. This paper 
describes the Flooding Time Synchronization Protocol (FTSP), 
especially tailored for applications requiring stringent precision 
on resource limited wireless platforms. The proposed time 
synchronization protocol uses low communication bandwidth and 
it is robust against node and link failures. The FTSP achieves its 
robustness by utilizing periodic flooding of synchronization 
messages, and implicit dynamic topology update. The unique high 
precision performance is reached by utilizing MAC-layer time-
stamping and comprehensive error compensation including clock 
skew estimation. The sources of delays and uncertainties in 
message transmission are analyzed in detail and techniques are 
presented to mitigate their effects. The FTSP was implemented on 
the Berkeley Mica2 platform and evaluated in a 60-node, multi-
hop setup. The average per-hop synchronization error was in the 
one microsecond range, which is markedly better than that of the 
existing RBS and TPSN algorithms. 

Categories and Subject Descriptors 
C.2 [COMPUTER-COMMUNICATION NETWORKS]: Network 
Architecture and Design, Network Protocols. 

General Terms 
Algorithms, Design, Performance, Reliability, Experimentation. 

Keywords 
Sensor Networks, Time Synchronization, Clock Synchronization, 
Clock Drift, Multi-hop. 

1. INTRODUCTION 
The advances in micro electro-mechanical systems (MEMS) 
technology, in digital circuits design, integration and packaging, 
and in wireless communication are leading to smaller, cheaper and 
low-power sensing and computing devices. Cell phones and 

handheld computers already enjoy the increased popularity of the 
public. These trends point towards radically new systems of 
thousands or even millions of tiny computing devices interacting 
with the environment and communicating with each other. 
Research teams are working on incorporating sensing, processing 
and communication in a volume of less than one cubic millimeter 
[6], while devices of the size of a coin built from off-the-shelf 
components are commercially available already. The UC Berkeley 
Mica2 and Mica2Dot motes are popular research platforms of this 
emerging technology [19]. 

Complex networks built from thousands of such devices are 
expected to affect many aspects of our lives. The potential 
applications of wireless sensor networks (WSN) include: 

• Monitoring applications: Non-intrusive and non-disruptive 
environmental monitoring helps biologists to study sensitive 
wildlife habitats and people with certain medical conditions 
can receive constant monitoring through sensors [12]. Sensor 
networks monitor the structural health of the Golden Gate 
Bridge in San Francisco and the microclimates on Great Duck 
Island, Maine [9]. 

• Mobile commerce, inventory management: by measuring 
continuously changing conditions, WSN will influence the 
movement of commodities to locations where the need exists.  

• Smart office, kindergarten: systems containing wireless sensors 
will be an integral part of our office space. They would 
improve the education process by tailoring it to the individual 
needs of a child [14], adapt to context, and coordinate 
activities of multiple children. 

• Military applications: potential applications include 
surveillance, target tracking [15], countersniper systems [10] or 
battlefield monitoring that propagates information to the 
soldiers and vehicles involved in combat.  

WSN are large-scale distributed systems, yet their unique 
characteristics, especially the severe resource constraints, require 
the reevaluation of traditional distributed algorithms for problems 
once considered to be solved. One of the basic middleware 
services of sensor networks is time synchronization. Time 
synchronization is required for consistent distributed sensing and 
control. Furthermore, common services in WSN, such as 
coordination, communication, security, power management or 
distributed logging also depend on the existence of global time. 

In this paper, we describe the Flooding Time Synchronization 
Protocol (FTSP) for WSN in detail. When designing the FTSP, 
our goals were to achieve network-wide time synchronization 
with error in the micro-second range and scalability up to 
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hundreds of nodes, while being robust to network topology 
changes and link and node failures. The proposed algorithm 
compensates for the relevant error sources by utilizing the 
concepts of MAC layer time-stamping [3], [7] and skew 
compensation with linear regression [2]. While these ideas have 
been utilized before, their unique combination and its effective 
implementation yield significantly better precision and somewhat 
lower communication overhead than existing approaches on the 
same platform. Finally, the implicit dynamic topology 
management of the FTSP provides rapid convergence and 
robustness.  

The algorithm was implemented on Mica/Mica2 platforms 
running the TinyOS operating system [4]. A short overview of the 
target platform is given in Section 2. We offer a survey of existing 
time synchronization algorithms, emphasizing the algorithms 
utilizing similar ideas as FTSP, in Section 3. The possible sources 
of errors of radio message based synchronization are described 
and analyzed in Section 4. We describe the proposed FTSP 
algorithm in details and evaluate it based on a large scale 
experiment in Section 5. In Section 6, we compare FTSP to 
existing algorithms. Finally, an application using FTSP is 
described in Section 7 and we offer our conclusions and plans for 
further improvements in Section 8. 

2. THE TARGET PLATFORM 
One of the most widely used WSN platforms is the Berkeley 
Mica2 mote [19], [4]. The Mica2 mote has a 7.37 MHz processor, 
4 kB of RAM, 128 kB of flash memory, 433 MHz wireless radio 
transceiver (38.4 kbps transfer rate, 500 feet maximum range), 
and is powered by two AA batteries. Pluggable sensor boards with 
temperature, light, magnetic and other sensors are available.  

The Berkeley motes run the TinyOS operating system [4], [17], an 
open source, event driven and modular OS designed to be used 
with networked sensors. TinyOS handles task scheduling, radio 
communication with error detection, clocks and timers, ADC, I/O 
and EEPROM abstractions, and power management. Application 
developers can select a subset of the modules implementing these 
functionalities, extend or override them if necessary, and statically 
compile them into the final executable. 

3. APPROACHES TO TIME 
SYNCHRONIZATION 
Time synchronization algorithms providing a mechanism to 
synchronize the local clocks of the nodes in the network have 
been extensively studied in the past. The most widely adapted 
protocol used in the internet domain is the Network Time 
Protocol (NTP) devised by Mills [11]. The NTP clients 
synchronize their clocks to the NTP time servers with accuracy in 
the order of milliseconds by statistical analysis of the round-trip 
time. The time servers are synchronized by external time sources, 
typically using GPS. The NTP has been widely deployed and 
proved to be effective, secure and robust in the internet. In WSN, 
however, non-determinism in transmission time caused by the 
Media Access Channel (MAC) layer of the radio stack can 
introduce several hundreds of milliseconds delay at each hop. 
Therefore, without further adaptation, NTP is suitable only for 
WSN applications with low precision demands. 

Two of the most prominent examples of existing time 
synchronization protocols developed for the wireless sensor 

network domain are the Reference Broadcast Synchronization 
(RBS) algorithm [2] and the Timing-sync Protocol for Sensor 
Networks (TPSN) [3]. 

In the RBS, a reference message is broadcasted. The receivers 
record their local time when receiving the reference broadcast and 
exchange the recorded times with each other. The main advantage 
of RBS is that it eliminates transmitter-side non-determinism. The 
disadvantage of the approach is that additional message exchange 
is necessary to communicate the local time-stamps between the 
nodes. To our best knowledge the algorithm has not been 
extended to large multi-hop networks. 

The TPSN algorithm first creates a spanning tree of the network 
and then performs pairwise synchronization along the edges. Each 
node gets synchronized by exchanging two synchronization 
messages with its reference node one level higher in the hierarchy. 
The TPSN achieves two times better performance than RBS by 
time-stamping the radio messages in the Medium Access Control 
(MAC) layer of the radio stack [3] and by relying on a two-way 
message exchange. The shortcoming of TPSN is that it does not 
estimate the clock drift of nodes, which limits its accuracy, and 
does not handle dynamic topology changes. 

4. UNCERTAINTIES IN RADIO MESSAGE 
DELIVERY 
Non-deterministic delays in the radio message delivery in WSN 
can be magnitudes larger than the required precision of time-
synchronization. Therefore, these delays need to be carefully 
analyzed and compensated for. We shall use the following 
decomposition of the sources of the message delivery delays first 
introduced by Kopetz and Ochsenreiter [7], [8] and later extended 
in [3] and [5]. 

(1) Send Time—time used to assemble the message and issue the 
send request to the MAC layer on the transmitter side. 
Depending on the system call overhead of the operating 
system and on the current processor load, the send time is 
nondeterministic and can be as high as hundreds of 
milliseconds. 

(2) Access Time—delay incurred waiting for access to the 
transmit channel up to the point when transmission begins. 
The access time is the least deterministic part of the message 
delivery in WSN varying from milliseconds up to seconds 
depending on the current network traffic. 

(3) Transmission Time—the time it takes for the sender to 
transmit the message. This time is in the order of tens of 
milliseconds depending on the length of the message and the 
speed of the radio. 

(4) Propagation Time—the time it takes for the message to 
transmit from sender to receiver once it has left the sender. 
The propagation time is highly deterministic in WSN and it 
depends only on the distance between the two nodes. This 
time is less than one microsecond (for ranges under 300 
meters). 

(5) Reception Time—the time it takes for the receiver to receive 
the message. It is the same as the transmission time. The 
transmission and reception times overlap in WSN as pictured 
in Figure 1. 
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(6) Receive Time—time to process the incoming message and to 
notify the receiver application. Its characteristics are similar 
to that of send time. 

access transmission

reception

send
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Figure 1. Decomposition of the message delivery delay over a 
wireless link. 

The RBS approach completely eliminates the send and access 
times, and with minimal OS modifications it is also possible to 
remove the receive time uncertainty. This leaves the mostly 
deterministic propagation and reception time in wireless networks 
as the sole source of error. The main strength of RBS is its broad 
applicability to commodity hardware and existing software in 
sensor networks as it does not need access to the low levels of the 
operating system. 

As the authors of the TPSN protocol observed, on typical WSN 
platforms, such as the Mica2 mote, one has direct access to the 
MAC layer, and message time-stamping can be performed during 
message transmission and reception. This immediately eliminates 
the same three main sources of uncertainties as in RBS. With a 
two-way handshake of synchronization messages the TPSN 
protocol eliminates the unknown propagation time as well. 

Both the RBS and TPSN protocols suffer from the uncertainties of 
the overlapping transmission and reception times. To fully 
understand the constituents of this uncertainty we shall describe 
the message propagation in a typical wireless channel in more 
detail. We imagine an idealized point of the transmitted message, 
such as the end of a particular byte of the message. Then we 
follow the transmission of this idealized point through the 
software, hardware and physical levels of the wireless channel 
from the sender to the receiver. 

First, the message is transferred to the radio chip piece by piece, 
usually in a byte oriented fashion. The radio chip signals the 
microcontroller that it is ready to obtain the next piece. The radio 
chip then encodes the pieces and generates an electromagnetic 
wave through the antenna. This wave propagates through space 
and the receiver’s radio chip converts it back to binary 
representation. Then the radio chip on the receiver side signals the 
microcontroller that a new piece of data is ready and can be read 
through some protocol. Therefore, we have the following delivery 
delays of an idealized point of the message. 

(7) Interrupt Handling Time—the delay between the radio chip 
raising and the microcontroller responding to an interrupt. 
This time is mostly less than a few microsecond (waiting for 
the microcontroller to finish the currently executed 
instruction), however when interrupts are disabled this delay 
can grow large. 

(8) Encoding Time—the time it takes for the radio chip to 
encode and transform a part of the message to 
electromagnetic waves starting from the point when it raised 
an interrupt indicating the reception of the idealized point 

from the microcontroller. This time is deterministic and is in 
the order of a hundred microseconds. 

(9) Decoding Time—the time it takes for the radio chip on the 
receiver side to transform and decode the message from 
electromagnetic waves to binary data. It ends when the radio 
chip raises an interrupt indicating the reception of the 
idealized point. This time is mostly deterministic and is in 
the order of hundred microseconds. However, signal strength 
fluctuations and bit synchronization errors can introduce 
jitter.  

Some radio chips cannot capture the byte alignment of the 
transmitted message stream on the receiver side and the radio 
stack has to determine the bit offset of the message from the 
alignment of a known synchronization byte and then shift the 
message accordingly. Since the transmission time of the byte is a 
few hundred microseconds at 38.4 kbps, the delay caused by the 
incorrect byte alignment must be compensated for. This 
compensation is performed by the implementation of TPSN on the 
Mica2 platform, but it is not reported in [3]. 

(10) Byte Alignment Time—the delay incurred because of the 
different byte alignment of the sender and receiver. This time 
is deterministic and can be computed on the receiver side 
from the bit offset and the speed of the radio. 
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Figure 2. The timing of the transmission of an idealized point 
in the software (cpu), hardware (radio chip) and physical 
(antenna) layers of the sender and the receiver. 

Figure 2 summarizes the decomposition of delivery delay of the 
idealized point of the message as it traverses over a wireless 
channel. Each line represents the time line of the layer as 
measured by an ideal clock. The dots represent the time instance 
when the idealized point of the message crosses the layers. The 
triangles on the first and last line represent the time when the cpu 
makes the time-stamps. Depending on the specific hardware the 
time stamp is usually recorded by the microcontroller when it 
handles the radio chip interrupts both on the sender and receiver 
sides. Alternatively, capture registers provided by some hardware 
can be employed to eliminate the interrupt handling time. We do 
not consider the effect of various coding techniques, such as 
Manchester or SECDEC coding or forward error-correction 
schemes, to the timing of message transmission. The codes used 
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in practice are block codes, and we can assume that the idealized 
point of the message is at a block boundary. 

On the Mica2 platform, the interrupt handling time is typically 
around 5µs depending on the length of the code path between the 
start of interrupt handler and the part that records the local time. 
However, we observed interrupt handling times as high as 30µs. 
The sum of encoding and decoding times is between 110µs and 
112µs. The byte alignment time is between 0µs (for bit offset 0) 
and 365µs (for bit offset 7). In contrast, the propagation time is 
under 1µs. Table 1 summarizes the magnitudes and distribution of 
the various delays in message transmissions. 

Table 1. The sources of delays in message transmissions 

Time Magnitude Distribution 

Send and 
Receive 

0 – 100 ms nondeterministic, 
depends on the 
processor load 

Access 10 – 500 ms nondeterministic, 
depends on the 
channel contention 

Transmission / 
Reception 

10 – 20 ms deterministic, 
depends on message 
length 

Propagation < 1µs for distances 
up to 300 meters 

deterministic, 
depends on the 
distance between 
sender and receiver 

Interrupt 
Handling 

< 5µs in most 
cases, but can be as 
high as 30µs 

nondeterministic, 
depends on interrupts 
being disabled 

Encoding plus 
Decoding 

100 – 200µs,  
< 2µs variance 

deterministic, 
depends on radio 
chipset and settings 

Byte 
Alignment 

0 – 400µs deterministic, can be 
calculated 

Using our definitions we can properly express the sources of time-
stamping errors of the RBS and TPSN algorithms. The RBS 
protocol is sensitive to the propagation, decoding and interrupt 
handling time differences between the two receivers. The main 
source of error here is the jitter in interrupt handling and 
decoding. The TPSN protocol is sensitive to the encoding, 
decoding and interrupt handling time differences between the 
sender and receiver. Note that although the propagation time has 
been eliminated, the encoding and decoding times are not because 
they might not be the same on the sender and receiver side. It is 
important to point out that both the RBS and TPSN protocols 
suffer from the two largest sources of uncertainty of MAC layer 
time-stamping: the jitter of interrupt handling and decoding time. 
On the other hand, as we will see in the next section, the FTSP 
time-stamping protocol effectively reduces all sources of time-
stamping errors except for the propagation time. 

5. FLOODING TIME SYNCHRONIZATION 
PROTOCOL 
The goal of the FTSP is to achieve a network wide 
synchronization of the local clocks of the participating nodes. We 

assume that each node has a local clock exhibiting the typical 
timing errors of crystals and can communicate over an unreliable 
but error corrected wireless link to its neighbors. 

The FTSP synchronizes the time of a sender to possibly multiple 
receivers utilizing a single radio message time-stamped at both the 
sender and the receiver sides. MAC layer time-stamping can 
eliminate many of the errors, as observed in [16] and [3]. 
However, accurate time-synchronization at discrete points in time 
is a partial solution only. Compensation for the clock drift of the 
nodes is inevitable to achieve high precision in-between 
synchronization points and to keep the communication overhead 
low. Linear regression is used in FTSP to compensate for clock 
drift as suggested in [2]. 

Typical WSN operate in areas larger than the broadcast range of a 
single node; therefore, the FTSP provides multi-hop 
synchronization. The root of the network—a single, dynamically 
(re)elected node—maintains the global time and all other nodes 
synchronize their clocks to that of the root. The nodes form an ad-
hoc structure to transfer the global time from the root to all the 
nodes, as opposed to a fixed spanning-tree based approach 
proposed in [3]. This saves the initial phase of establishing the 
tree and is more robust against node and link failures and dynamic 
topology changes. 

5.1 Time-stamping 
The FTSP utilizes a radio broadcast to synchronize the possibly 
multiple receivers to the time provided by the sender of the radio 
message. The broadcasted message contains the sender’s time 
stamp which is the estimated global time at the transmission of a 
given byte. The receivers obtain the corresponding local time 
from their respective local clocks at message reception. 
Consequently, one broadcast message provides a synchronization 
point (a global-local time pair) to each of the receivers. The 
difference between the global and local time of a synchronization 
point estimates the clock offset of the receiver. As opposed to the 
RBS protocol, the time stamp of the sender must be embedded in 
the currently transmitted message. Therefore, the time-stamping 
on the sender side must be performed before the bytes containing 
the time stamp are transmitted.  

 

sender:

receiver:

propagation delay

byte alignment

preamble sync crcdata

preamble sync crcdata

 
Figure 3. Data packets transmitted over the radio channel. 
Solid lines represent the bytes of the buffer and the dashed 
lines are the bytes of packets.  

Message broadcast starts with the transmission of preamble bytes, 
followed by SYNC bytes, then with a message descriptor followed 
by the actual message data, and ends with CRC bytes. During the 
transmission of the preamble bytes the receiver radio synchronizes 
itself to the carrier frequency of the incoming signal. From the 
SYNC bytes the receiver can calculate the bit offset it needs to 
reassemble the message with the correct byte alignment. The 
message descriptor contains the target, the length of the data and 
other fields, such as the identifier of the application layer that 
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needs to be notified on the receiver side. The CRC bytes are used 
to verify that the message was not corrupted. The message layout 
is summarized in Figure 3. 

The FTSP time-stamping effectively reduces the jitter of the 
interrupt handling and encoding/decoding times by recording 
multiple time stamps both on the sender and receiver sides. The 
time stamps are made at each byte boundary after the SYNC bytes 
as they are transmitted or received. First, these time stamps are 
normalized by subtracting an appropriate integer multiple of the 
nominal byte transmission time, the time it takes to transmit a 
byte. The jitter of interrupt handling time is mainly due to 
program sections disabling interrupts on the microcontroller for 
short amounts of time. This error is not Gaussian, but can be 
eliminated with high probability by taking the minimum of the 
normalized time stamps. The jitter of encoding and decoding time 
can be reduced by taking the average of these interrupt error 
corrected normalized time stamps. On the receiver side this final 
averaged time stamp must be further corrected by the byte 
alignment time that can be computed from the transmission speed 
and the bit offset. Note that, even though multiple time stamps are 
made, only the final error corrected time stamp is embedded into 
the message. The number of bytes put an upper limit on the 
achievable error correction using this technique. However, with 
only 6 time stamps, the time-stamping precision can be improved 
from tens of microseconds to 1.4µs on the Mica2 platform as 
measured by the following experiment. 

Four motes were sending time-stamped messages to each other for 
10 minutes, each with a 5-second sending period. The time-
stamps were recorded both on the sender and receiver sides, and 
the pairwise clock offset and skew values were determined off-
line with linear regression. The time-stamping error is the absolute 
value of the difference of the recorded receiver side time stamp 
and the linearly corrected sender side time-stamp. The average 
and maximum time-stamping errors were 1.4µs and 4.2µs, 
respectively. Since the FTSP time-stamping employs a single 
radio message, it does not and cannot compensate for the 
propagation delay. This is not a major limitation of the approach 
in typical WSN, however, as the propagation delay is less than 
1µs for up to 300 meters. 

5.2 Clock drift management 
If the local clocks had the exact same frequency and, hence, the 
offset of the local times were constant, a single synchronization 
point would be sufficient to synchronize two nodes. However, the 
frequency differences of the crystals used in Mica2 motes 
introduce drifts up to 40µs per second. This would mandate 
continuous re-synchronization with a period of less than one 
second to keep the error in the micro-second range, which is a 
significant overhead in terms of bandwidth and energy 
consumption. Therefore, we need to estimate the drift of the 
receiver clock with respect to the sender clock.  

The offset between the two clocks changes in a linear fashion 
provided the short term stability of the clocks is good. We verified 
the stability of the 7.37 MHz Mica2 clock by periodically sending 
a reference broadcast message that was received by two different 
motes. The two motes time-stamped the reference message using 
the FTSP time-stamping described in the previous section with 
their local time of arrival and reported the time-stamp. For each 
transmitted message the offset of the two reported time-stamps 

was calculated. The offsets were further examined: linear-
regression was used to find the line L best approximating the 
dataset and the errors were analyzed. For a data point (time,offset) 
and the regression line L, the error is offset-L(time). A one hour 
experiment produced the following results: the average value of 
the absolute errors was 0.95µs and the maximum absolute error 
was 4.32µs. The distribution of the errors, calculated off-line is 
shown in Figure 4. This off-line regression provides the best 
prediction that can possibly be achieved, provided the clocks can 
be considered stable during the experiment. Naturally this method 
cannot be used online; it is used here as a reference to evaluate 
online solutions. 
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Figure 4. The distribution of the errors of linear-regression 
(LR): off_line refers to off-line LR, 30sec refers to time sync 
interval P=30s, query interval 18s, and 300sec refers to time 
sync interval P=300s, query interval 93s. 

We need to identify the trend of the global time relative to the 
local time from the data points received in the past. Furthermore, 
only a limited number of data points can be stored due to the 
memory constraints of the platform. The following scenario was 
used to test our Mica2 implementation: mote A maintains the 
global time and sends synchronization messages to mote B with a 
period of T. Mote B estimates the skew and offset of its local 
clock from that of A using linear regression on the past 8 data 
points. A reference broadcaster sends a query message with period 
t and both A and B respond to this query by time-stamping its 
arrival with the global time and reporting it to the base station. 
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Figure 5. Time synchronization error between two motes. The 
time synchronization was stopped after 30 minutes. The initial 
small error of the skew estimate results in increasing 
synchronization error over time. 
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The linear regression prediction error is the difference between 
the global time given by A and the estimated global time given by 
B. Figure 4 shows the distribution of these prediction errors, for 
(a) T=30s, t=18s, and (b) T=300s, t=93s. The length of experiment 
(a) was 18 hours, the average absolute error was 1.48µs, and the 
maximum absolute error was 6.48µs. The length of experiment (b) 
was 8 hours, the average absolute error was 2.24µs and the 
maximum absolute error was 8.64µs. 

An important design parameter is the required resynchronization 
interval to reach the desired precision. As shown in Figure 4, the 
30s resynchronization interval gave slightly better results than 
300s. To further evaluate the behavior of the skew compensation, 
another experiment was carried out, the results shown in Figure 5. 
This result shows that the resynchronization period, depending on 
the accuracy requirements, can go up to several minutes. 

5.3 Multi-hop time synchronization  
In practical WSN applications, the network radius is greater than 
one hop. If network-wide synchronization is required, the multi-
hop FTSP protocol can be used, as described in this section. The 
only assumption the protocol makes is that every node in the 
network has a unique ID.  

Nodes in multi-hop FTSP utilize reference points to perform 
synchronization. A reference point contains a pair of global and 
local time stamps where both of them refer to the same time 
instant, as described in Section 5.1. Reference points are 
generated by sending and receiving periodic broadcast messages, 
which are either transmitted by the synchronization-root (root, for 
short), or any synchronized node in the network. The root is a 
special node, elected and dynamically reelected by the network, to 
which the whole network is being synchronized. A node that is in 
the broadcast radius of the root can collect reference points 
directly from it. Nodes outside the broadcast radius of the root can 
gather reference points indirectly through other synchronized 
nodes that are located closer to the root. When a node collects 
enough consistent reference points, it estimates the offset and 
skew of its own local clock, as described in Section 5.2, and 
becomes synchronized. The newly synchronized node can then 
broadcast synchronization messages to other nodes in the 
network. In the following subsections the most important aspects 
of the protocol will be presented. 

Synchronization Message Format: Each synchronization message 
contains three fields: the timeStamp, the rootID, and the seqNum. 
The timeStamp contains the global time estimate of the transmitter 
when the message was broadcasted. The rootID field contains the 
ID of the root, as known by the sender of the message. The 
seqNum is a sequence number set and incremented by the root 
when a new synchronization round is initiated. Other 
synchronized nodes insert the most recent (i.e. the largest) 
received seqNum into the synchronization messages they 
broadcast. This field is used to handle redundant synchronization 
messages. 

Managing Redundant Information: Since all synchronized nodes 
periodically transmit synchronization messages, in a dense 
network a receiver may receive several messages from different 
nodes in a short time interval. Due to limited resources, an 
appropriate subset of the messages must be selected to create 
reference points. In the Mica2 implementation an eight-element 

regression table stores the selected reference points used to 
calculate the regression line, and, thus, the drift of the local clock.  

To achieve more accurate offset and skew estimation using the 
limited amount of data that can be stored in the regression table, it 
is more beneficial to store reference points that are distributed 
over a longer period of time. To aid message filtering, each node 
maintains a highestSeqNum variable. Also each node has a 
myRootID variable, containing the root ID as known by the node. 
A received synchronization message is used to create a reference 
point only if the rootID field of the message is less than or equal 
to myRootID and the seqNum field is greater than highestSeqNum 
in the case when rootID = myRootID. The node’s variables are 
updated after storing a reference point, according to the respective 
fields in the message. This message filtering protocol guarantees 
that only the first message arrived will be used in the reference 
table for each rootID and seqNum pair (i.e. one per round), 
providing reference points distributed over a longer time period 
for more accurate skew and offset estimation. The pseudo-code 
describing this protocol is presented at lines 3–9 in Figure 6 and 
11–16 in Figure 7. 

The root election problem: To perform global synchronization, 
obviously one and only one root is needed in the network. Since 
nodes may fail or the network can get disconnected, no dedicated 
node can play the role of the root. Thus a robust election process 
is needed to provide a root after startup, and also in case of root 
failure. FTSP utilizes a simple election process based on unique 
node IDs, as follows: 

 
Figure 6. The handling of new synchronization messages. 

When a node does not receive new time synchronization messages 
for ROOT_TIMEOUT number of message broadcast periods, it 
declares itself to be the root (myRootID := myID). Thus after a 
ROOT_TIMEOUT period, there will be at least one, but possibly 
multiple roots in the network. Whenever a node receives a 
message with a rootID field smaller than its myRootID variable, it 
updates the variable according to the received rootID field. This 
mechanism ensures that roots with higher IDs give up their status 
and eventually there will be only one root—the node with the 
smallest ID—in the whole network. The pseudo-code describing 

 1 event Radio.receive(TimeSyncMsg *msg) 
 2 { 
 3   if( msg->rootID < myRootID ) 
 4     myRootID = msg->rootID; 
 5   else if( msg->rootID > myRootID 
 6         || msg->seqNum <= highestSeqNum ) 
 7     return; 
 8 
 9   highestSeqNum = msg->seqNum; 
10   if( myRootID < myID ) 
11     heartBeats = 0; 
12 
13   if( numEntries >= NUMENTRIES_LIMIT 
14      && getError(msg) > TIME_ERROR_LIMIT ) 
15     clearRegressionTable(); 
16   else 
17     addEntryAndEstimateDrift(msg); 
18 } 
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this root election protocol is given at lines 3–4, 10–11 in Figure 6 
and 3–7 in Figure 7. The heartBeats variable contains the number 
of message broadcast periods since the last synchronization point 
was inserted into the regression table. 

During the election process special care is taken to avoid 
inconsistencies and maintain the synchronized state of the 
network as much as possible. Only the root and synchronized 
nodes, those that have enough entries (at least 
NUMENTRIES_LIMIT many) in their linear regression table, 
transmit time synchronization messages (see lines 9–10 in 
Figure 7). If a node receives a new reference point that is in 
disagreement with previous estimates of the global time, then it 
clears its regression table (see lines 13–15 in Figure 6). Finally, a 
newly elected root preserves its estimated skew and offset 
parameters (does not clear its regression table) and broadcasts the 
global time accordingly. This way the network will not get out of 
synchronization during the reelection phase. 

Another root related problem may arise if a new node is 
introduced to the network with a lower ID than the current root of 
the network. In this case, the new root eventually declares itself 
root, but again care is taken to provide a smooth transition. The 
new root does not start transmitting its own synchronization 
messages for the ROOT_TIMEOUT period, while it collects 
reference points to estimate its own skew and offset values. Thus, 
the global time broadcasted by the new root will be synchronized 
to the previous global time. 

 
Figure 7. Periodic sending of synchronization messages. 

Convergence properties: The convergence of the network to a 
globally synchronized state after a startup or failure depends on 
the speed of information propagation in the network. Since 
synchronization messages are broadcasted periodically, but the 
individual nodes are transmitting asynchronously, the speed of 
message propagation is limited. 

Since node failures can be handled smoothly once the network is 
synchronized, it is more important to analyze the behavior of the 
system after startup. Denote the value of NUMENTRIES_LIMIT 
by N, the value of ROOT_TIMEOUT by M, the message broadcast 

period by P, and the radius of the network measured from the root 
by R. We assume that all links are reliable and the regression table 
is not cleared because of erroneous synchronization points (see 
lines 13–14 in Figure 6). There is no elected root in the network 
when the nodes are turned on. It takes P*M time for all nodes to 
declare itself the root (as none of them received synchronization 
messages), after which the election algorithm begins. To estimate 
the skew and offset of a local clock and to transmit 
synchronization messages, each node needs at least N entries in its 
regression table. The minimum and maximum times for the 
network to get synchronized to the node with the lowest node ID, 
once it starts transmitting synchronization messages, are  
P*(N-1)*R and P*N*R, respectively. Therefore, the total time to 
get synchronized is between P*(M+(N-1)*R) and P*(M+N*R). 

A synchronization period—the time when messages with the same 
rootID and seqNum are propagating in the network—lasts for at 
most P*R time, and often less because the nodes send 
synchronization messages asynchronously and have more than 
one neighbor. To analyze the convergence in the case when the 
root fails, denote by R’ the radius of the network measured from 
the new root (the node with the second smallest node ID). After 
the old root fails, it takes at most P*R time for each node to 
receive messages of the last synchronization period and then an 
additional P*M waiting time to declare itself the root. At this 
point multiple nodes became the root, and a new reelection 
process begins. This lasts at most P*R’ time because all nodes 
have full regression tables which do not get cleared when new 
synchronization messages arrive (see lines 13–15 in Figure 6). 
Thus, the total time of the reelection process is at most 
P*(R+M+R’). 

The choice of the period P is a tradeoff between power 
consumption, accuracy, and speed of convergence: decreasing the 
period increases the number of messages sent in a certain time 
period but it also increases accuracy and allows faster 
convergence. Figure 4 gives information about the achievable 
accuracy per hop, using different P values. 

5.4 Experimental data 
The implementation of FTSP on the Mica and Mica2 platforms 
that was used to carry out the experiments described in this 
section is available on internet (see [18]). We tested the protocol 
focusing on the most problematic scenarios, such as switching off 
the root of the network, removing a substantial part of the nodes 
from the network, so that the remaining nodes still formed a 
connected network, and switching on a substantial number of the 
new nodes in the network. 

  
Figure 8. The layout and links of the experimental setup. Each 
node can only communicate with its (at most 8) neighbors. 

ID1 – first leader ID2 – second leader 

 1 event Timer.fired() 
 2 { 
 3   ++heartBeats; 
 4 
 5   if( myRootID != myID 
 6       && heartBeats >= ROOT_TIMEOUT ) 
 7     myRootID = myID; 
 8 
 9   if( numEntries >= NUMENTRIES_LIMIT  
10       || myRootID == myID ){ 
11     msg.rootID = myRootID; 
12     msg.seqNum = highestSeqNum; 
13     Radio.send(msg); 
14 
15     if( myRootID == myID ) 
16       ++highestSeqNum; 
17   } 
18 } 
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Figure 9. A 5x12 grid experiment shows the percentage of synchronized nodes, the maximum and average error (the maximum and 
average of the pairwise differences of the reported global times). The nodes were switched on at time A, the root ID1 was switched 
off at B, randomly selected motes were reset during C, half of the motes were switched off at D, the same motes were switched back 
on at E, and the experiment ended at F. 

The experiment scenario involves 60 Mica2 motes deployed in a 
5x12 grid in such way that each mote can communicate with its 
neighbors only. Furthermore, the node with the smallest id (ID1) 
is located in the middle of the network and the node with the 
second smallest id (ID2) is at the edge of the network as shown in 
Figure 8. This means that ID1 will become the first root of the 
network and ID2 will replace ID1 if and when it fails. The 
maximum hop distance between ID1 and ID2 represents the worst 
case scenario in the case the root ID1 dies. The chosen topology 
also ensures that there exist enough motes at the distant levels (i.e. 
for the ID2 root, there are at least 5 motes at each hop distance 
level, except for the hop distance 1). 

Two other motes were used in the experiment, the reference 
broadcaster, and the base station. Their function was described in 
Section 5.2: the reference broadcaster queried the global time 
from all nodes in the network once per 30 seconds and the base 
station collected the responses to the query from all the nodes. 

The topology of the 60 nodes network was enforced in software 
and, therefore, all the nodes could be placed within the radio 
range from the reference broadcaster and the base station. This 
way the base station and the broadcaster could talk directly to all 
60 nodes and no multi-hop routing was necessary. The period of 
time re-synchronization was 30 seconds for all 60 nodes. The 
value of NUMENTRIES_LIMIT was 3, and ROOT_TIMEOUT 
was 6, that is, it took a node 6 times 30 seconds, i.e., 3 minutes to 
declare itself the root if it did not receive new synchronization 
messages. The experiment took about four hours with following 
scenario: 

 

A: at 0:04 all motes were turned on; 

B: at 1:00 the root with ID1 was switched off, ID2 becomes the 
new root, eventually; 

C: between 2:00 and 2:15 randomly selected nodes were reset 
one by one with 30 second period; 

D: at 2:30 the motes with odd node IDs were switched off (half 
of the nodes are removed); 

E: at 3:01 the motes with odd node IDs were switched back on 
(100% new nodes were introduced); 

F: at 4:02 the experiment was ended. 

There were 60 nodes in the network, and typically less than 5% of 
them did not succeed to reply to the reference broadcaster due to 
radio collisions. The nodes reported back to the base station 
whether they were synchronized (i.e. had enough values in their 
regression table) and what the global time was at the arrival of the 
reference broadcast message. 

For each reference broadcast round, we calculated the percentage 
of the motes that were synchronized out of those that replied, and 
we analyzed the time synchronization error by calculating the 
average of the pairwise differences of the reported global times, 
and the maximum difference of any two reported global times. We 
call these values the average and maximum time synchronization 
error, respectively. The resulting graph is shown in Figure 9. 

An alternative definition of the accuracy of the FTPS could be the 
average difference between the estimated global time of each node 
and the real global time, i.e. the local time of the root. However, 
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when the root fails, this measure becomes undefined. 
Furthermore, typical WSN applications do not care about the 
absolute time as such. What is important is how well the nodes are 
synchronized to each other. Our definition of average error tries to 
capture this quality. 

The nodes were switched on approximately at the same time 
(0:04), but during the next 3 minutes (till 0:07) no node was 
synchronized because none of them declared itself to be the root. 
Then many nodes timed out and became the roots of the network, 
which was the reason why the average and maximum 
synchronization errors soared for 10 minutes untill the election 
process has completed (0:17) and only a single root remained 
(ID1). The number of synchronized nodes grew steadily during 
this period and the average and maximum errors became 
approximately 2µs and 10µs, respectively. Complete 
synchronization has been achieved in 14 minutes (at 0:18) as 
indicated by the percentage of synchronized motes reaching 
100%. According to Section 5.3, in an idealized network the 
predicted minimum and maximum convergence times would be 9 
and 12 minutes, respectively. In reality this took longer because 
there were radio collisions and some clock skew and offset 
estimates were erroneous. 

When the root ID1 was switched off, no impact on the network 
was immediately observable. What happened is that the global 
time had not been updated for a certain period of time until each 
node timed out and declared itself to be the root. 

The election process again resulted in a single root (ID2) 
eventually. However, the error stayed low during this time 
because nodes did not discard their old offset and skew estimates 
and the new root was broadcasting its estimation of the old global 
time. This caused deterioration of the maximum and average 
errors until all nodes calculated more accurate drift estimates 
based on the messages broadcasted by the new root. From 
Figure 9 one cannot determine when the network got 
synchronized to the second root, but from logged synchronization 
messages we determined that the election process finished at 1:06 
(in 6 minutes). According to the formulas in Section 5.3 the 
election process lasts at most 11 minutes and 30 seconds in an 
ideal network. 

In the last two parts of the experiment some of the nodes were 
removed and new ones were introduced (or reset). The impact of 
these operations on the average and maximum errors was 
minimal. We can observe that the number of synchronized nodes 
decreased whenever a new node was switched on because it takes 
some time for the new node to obtain enough data to get 
synchronized. 

Before we switched off the first root, we had a 60-mote 6-hop 
network, that is, the maximal minimum distance from the root 
was 6, for approximately 50 minutes. The maximum average error 
was 3µs translating to a 0.5µs error per hop. The maximum error 
was less than 14µs overall or 2.3µs per hop. 

After the simulated root failure at time B, we had a 59-mote 11-
hop network. The average time synchronization error stayed 
below 17.2µs for the remainder of the experiment, despite the 
significant changes in the topology. If we divide the error by 
number of hops, we get the average error of 1.6µs per hop. The 
maximum time synchronization error was below 67µs which was 
observed only when the root was switched off. Switching off and 

introducing the new nodes did not introduce a significant time 
synchronization error. 

6. COMPARISON TO PREVIOUS 
APPROACHES 
In this section the pros and cons of the proposed FTSP are 
compared to those of previously known protocols. As reference, 
the RBS and TPSN algorithms were chosen, because (1) these 
time synchronization protocols were also developed with the 
special requirements of sensor networks in mind as opposed to 
other, more general algorithms, (2) actual experimental results are 
available for the same platforms (Mica/Mica2), and (3) ideas from 
these protocols were used and enhanced in FTSP. 

The RBS approach time-stamps messages only on the receiver 
side; therefore, it eliminates the access and the send times. The 
published method in [2] does not compensate for byte alignment, 
but that could be easily incorporated. The main achievement of 
the RBS time-stamping of a reference broadcast is that it 
eliminates random delays on the sender side. However, time-
stamping the radio messages in the low layers of the radio stack 
used in our method has practically the same effect and eliminates 
the jitter of interrupt handling and decoding times, as well. 

The TPSN approach [3] eliminates the access time, byte 
alignment time and propagation time by making use of the 
implicit acknowledgments to transmit information back to the 
sender. This protocol gains an additional accuracy over RBS due 
to time-stamping the radio message multiple times and averaging 
these time-stamps. TPSN was implemented on the Mica platform 
and it would face certain implementation problems on later 
platforms. Unfortunately in the Mica2 platform implicit 
acknowledgments can not be effectively implemented because of 
long settling time of the radio chip when switching from the 
receiving mode to transmission mode. Another disadvantage of 
the TPSN protocol is that the two-way communication prohibits 
the use of message broadcasting, which results in higher 
communication load. 

The accuracy of the RBS time-stamping reported by the authors is 
~11µs on the Mica platform. Least square linear regression is used 
to account for the clock drifts which results in 7.4µs average error 
between two motes after a 60 second interval. The multi-hop 
scenario involves the local time transferring through the 
intermediary nodes. However, the function of the Berkeley motes 
was limited to providing wireless communication to PDAs (iPAQ) 
that were carrying out the time synchronization. Through private 
communication the authors of RBS indicated improved 5µs time-
stamping precision on the Mica2 platform, mainly due to the 
higher bit-rate of the radio. The authors of TPSN algorithm 
implemented both TPSN and RBS on the Mica platform using a 
4 MHz clock for time-stamping, and compared the precision of 
the two algorithms. The resulting average errors for a single hop 
case for two nodes are 16.9µs and 29.1µs for the TPSN and RBS 
algorithms, respectively [3]. 

The proposed FTSP algorithm uses a fine-grained clock, MAC-
layer time-stamping with several jitter reducing techniques to 
achieve high precision. This approach eliminates the send, access, 
interrupt handling, encoding, decoding and receive time errors, 
but does not compensate for the propagation time. Multiple time-
stamps with linear regression are used to estimate clock skew and 
offset. The average error of the algorithm for a single hop case 
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using two nodes was 1.48µs, according to measurements 
described in Section 5.2. In the multi-hop case, the average error 
was 3µs in a 6-hop network, resulting in a 0.5µs per hop accuracy. 

The applied flood-based communication protocol in FTSP 
provides a very robust network, and still induces only small 
network traffic. The network hierarchy is maintained using the 
time synchronization messages, without additional message 
passing, as opposed to the solution in TPSN. FTSP also utilizes 
less network resources than either RBS or TPSN. If the 
resynchronization period is T seconds, then each node sends 
1 message per T seconds in FTSP, 2 messages per T seconds in 
TPSN (1 message to parent and 1 response) and 1.5 message per 
T seconds in RBS (0.5 for a reference broadcast and 1 for a time 
stamp exchange message). Since FTSP does not rely on a fixed 
network hierarchy but updates it continuously, it supports network 
topology changes including mobile nodes. The robustness of the 
protocol was demonstrated by the harsh experiment described in 
Section 5.4. Unfortunately, no similar data is readily available for 
TPSN or RBS for comparison. 

7. APPLICATIONS 
The FTSP algorithm was excessively tested as a component of a 
countersniper application [10], [13]. The system utilized a 
network of Mica2 motes each of which was attached to a custom 
acoustic sensor board. The sensors measured both the muzzle 
blast and shock wave to accurately determine both the location of 
the shooter and the trajectory of the bullet. The basic idea is 
simple: using the arrival times of the acoustic events at different 
sensor positions, the shooter position can be accurately calculated 
using the speed of sound and the location of the sensors provided 
the clocks of the sensor nodes are precisely synchronized. Thus, 
the time synchronization protocol was a key element of the 
system. 

The application, in addition to the FTSP, contained several 
services, such as message routing, data aggregation, remote 
configuration and debugging services, along with application-
specific software components. A typical test scenario involved 50 
to 60 motes distributed in an urban environment. The network 
was approximately 8 hops wide. The system was tested repeatedly 
for 4 to 8 hours of continuous operation. During testing some of 
the motes were switched off and on, the temperature and humidity 
of the environment changed drastically influencing the stability of 
the crystals. All nodes remained synchronized during these tests, 
but no other explicit time synchronization data was obtained. 
However, the overall performance of the countersniper system 
(~1 meter localization accuracy in 3D in an urban environment) 
and the fact that there was no performance degradation over time, 
clearly verified that the FTSP performed well. 

8. CONCLUSION AND FURTHER 
IMPROVEMENTS 
We have described the Flooding Time Synchronization Protocol 
for WSN. The protocol was implemented on the UCB Mica and 
Mica2 platforms running TinyOS. The precision of 1.5µs in the 
single hop scenario and the average precision of 0.5µs per hop in 
the multi-hop case were shown by providing experimental results. 
This performance is markedly better than those of other existing 
time synchronization approaches on the same platform. 

The presented FTSP time-stamping protocol could be applied to 
existing multi-hop time synchronization protocols making those 
more precise. It differs from previous time-stamping algorithms in 
that it utilizes a single broadcasted message to establish 
synchronization points between the sender and receivers of the 
message, while eliminating most sources of synchronization 
errors, except for the propagation time. Because of its 
performance, minimal overhead and simplicity, it can serve as the 
most basic time synchronization primitive in other, not necessarily 
time synchronization protocols. The presented multi-hop FTSP 
achieves its performance and robustness by exploiting these good 
properties of the FTSP time-stamping protocol in the context of a 
dynamic leader-election algorithm, and combining it with clock 
drift compensation algorithms. 

The FTSP was tested and its performance was verified in a real-
world application. This is significant because the service had to 
operate not in isolation, but as part of a complex application 
where resource constraints as well as intended and unintended 
interactions between components can and usually do cause 
undesirable effects. Moreover, the system operated in the field for 
extended periods and not under laboratory conditions. This is a 
testimony to the robustness of the protocol and its 
implementation. 

We plan to perform further experiments in networks with a 
magnitude larger number of nodes (thousands). An active research 
area is to improve the convergence of the multi-hop case by using 
two different broadcast periods in the protocol: a small period for 
an initial synchronization period (until all the nodes get 
synchronized) and a long period for the normal operation of the 
time synchronization protocol. 
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