
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008 497

XORs in the Air: Practical Wireless Network Coding
Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katabi, Muriel Médard, Senior Member, IEEE, and

Jon Crowcroft, Fellow, IEEE

Abstract—This paper proposes COPE, a new architecture for
wireless mesh networks. In addition to forwarding packets, routers
mix (i.e., code) packets from different sources to increase the in-
formation content of each transmission. We show that intelligently
mixing packets increases network throughput. Our design is rooted
in the theory of network coding. Prior work on network coding
is mainly theoretical and focuses on multicast traffic. This paper
aims to bridge theory with practice; it addresses the common case
of unicast traffic, dynamic and potentially bursty flows, and prac-
tical issues facing the integration of network coding in the current
network stack. We evaluate our design on a 20-node wireless net-
work, and discuss the results of the first testbed deployment of
wireless network coding. The results show that using COPE at the
forwarding layer, without modifying routing and higher layers, in-
creases network throughput. The gains vary from a few percent to
several folds depending on the traffic pattern, congestion level, and
transport protocol.

Index Terms—Algorithms, design, network coding, perfor-
mance, theory, wireless networks.

I. INTRODUCTION

WIRELESS networks suffer from low throughput and
do not scale to dense deployments [1]. To address this

problem, we present COPE, a new forwarding architecture that
substantially improves the throughput of stationary wireless
mesh networks. COPE inserts a coding shim between the IP and
MAC layers. It identifies coding opportunities and benefits from
them by forwarding multiple packets in a single transmission.

COPE’s design is inspired by the theory of network coding.
Consider the scenario in Fig. 1, where Alice and Bob want to
exchange a pair of packets via a router. In current approaches,
Alice sends her packet to the router, which forwards it to Bob,
and Bob sends his packet to the router, which forwards it to
Alice. This process requires 4 transmissions. Now consider a
network coding approach. Alice and Bob send their respective
packets to the router, which XORs the two packets and broad-
casts the XORed version. Alice and Bob can obtain each other’s
packet by XORing again with their own packet. This process
takes 3 transmissions instead of 4. Saved transmissions can be
used to send new data, increasing the wireless throughput.

The main challenge in designing COPE is to extend the idea
beyond duplex flows. Few applications send data in both direc-
tions, limiting the practical benefits of the scenario in Fig. 1.
To achieve large throughput gains, we need to generalize the

Manuscript received December 25, 2006; revised July 11, 2007, and De-
cember 1, 2007; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Ed-
itor R. Srikant.

S. Katti, H. Rahul, D. Katabi, and M. Médard are with the Department of
Electrical Engineering and Computer Science, MIT CSAIL, Cambridge MA
02139 USA (e-mail: skatti@mit.edu).

W. Hu is with the Department of Computer Science and Engineering, Uni-
versity of Washington, Seattle, WA 98195 USA.

J. Crowcroft is with the University of Cambridge, Cambridge CB3 0FD, U.K.
Digital Object Identifier 10.1109/TNET.2008.923722

Fig. 1. A simple example of how COPE increases the throughput. It allows
Alice and Bob to exchange a pair of packets using 3 transmissions instead of
4 (numbers on arrows show the order of transmission). (a) Current approach.
(b) COPE.

idea to any topology and traffic pattern. To do so, we exploit the
broadcast nature of the wireless medium. We make the nodes
snoop on all transmissions and store the overheard packets for
a short period. As a result, a router can XOR two packets and
deliver them to two different neighbors in a single transmission
whenever it knows that each of the two neighbors has overheard
the packet destined to the other. Snooping not only extends the
benefits of coding beyond duplex flows, but also enables us to
code more than pairs of packets, producing a larger throughput
increase than that in Fig. 1.

Our work advocates an alternative architecture for wireless
mesh networks that significantly improves their throughput. It
is based on the following two key principles.

• Employ network coding. Current routers forward packets
from one link to another. COPE, however, shows that there
are practical benefits for allowing the routers to intelli-
gently mix the content of the packets before forwarding
them.

• Embrace the broadcast nature of the wireless channel. Net-
work designers typically abstract the wireless channel as a
point-to-point link, then adapt forwarding and routing tech-
niques designed for wired networks for wireless. In con-
trast, COPE exploits the broadcast property of radios in-
stead of hiding it under an artificial abstraction.

We summarize the contributions of this work as follows.
1) COPE provides a general scheme for inter-session wire-

less network coding. It applies to any topology and an arbi-
trary number of bursty flows whose duration is not known
a priori, and that arrive and leave dynamically. In contrast,
prior work on inter-session network coding either focuses

1063-6692/$25.00 © 2008 IEEE

498 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

on duplex flows [2] or assumes known flow patterns with
steady rates and ideal scheduling [3].

2) COPE is the first integration of network coding into the
current network stack, presenting a system architecture that
works seemlessly with higher layer protocols and supports
both TCP and UDP flows. We also implement COPE in
the Linux kernel and evalute its performance in a wireless
testbed.

3) The paper presents the results of the first deployment of
network coding in a wireless network. It studies the per-
formance of COPE in a 20-node wireless testbed using
state-of-the-art routing protocols, and reveals its interac-
tions with the wireless channel and higher layer protocols.
Our findings can be summarized as follows:
• Network coding, used purely as an enhancement of

the forwarding layer, while keeping routing and other
higher layers unmodified, substantially improves wire-
less throughput.

• When the wireless medium is congested and the traffic
consists of many random UDP flows, COPE increases
the throughput of our testbed by .

• If the traffic does not exercise congestion control (e.g.,
UDP), COPE’s throughput improvement may sub-
stantially exceed the expected theoretical coding gain.
This additional gain occurs because coding makes a
router’s queue smaller, reducing the probability that
a congested downstream router will drop packets that
have consumed network resources.

• For a mesh network connected to the Internet via an ac-
cess point, the throughput improvement observed with
COPE varies depending on the ratio between total down-
load and upload traffic traversing the access point, and
ranges from 5% to 70%.

• Hidden terminals create a high collision rate that cannot
be masked even with the maximum number of 802.11
retransmissions. In these environments, TCP does not
send enough to utilize the medium, and thus does not
create coding opportunities. With no hidden terminals,
TCP’s throughput increases by an average of 38% in our
testbed.

II. BACKGROUND AND RELATED WORK

Research on network coding can be divided into two cat-
egories: intra-session, where coding is restricted to packets
belonging to the same session or flow, and inter-session, where
coding is allowed among packets belonging to possibly dif-
ferent sessions or flows. Intra-session network coding has been
extensively studied, beginning with the pioneering paper by
Ahlswede et al. [4], who show that having the routers mix
information in different messages allows the communication
to achieve multicast capacity. Li et al. show that for multicast
traffic linear codes are sufficient to achieve the maximum
capacity bounds [5]. Koetter and Médard [6] present polyno-
mial time algorithms for encoding and decoding, and Ho et
al. extend these results to random codes [7]. Further, some
work studies intra-session wireless network coding [8]–[16].
In particular, Lun et al. study intra-session network coding
and show that the problem of minimizing the communication

cost can be formulated as a linear program and solved in a
distributed manner [17].

The above work is either theoretical or simulation based and
assumes a combination of multicast traffic, optimal scheduling,
and known flow patterns with steady rates. In a recent paper, we
present a low-complexity algorithm for intra-session network
coding and demonstrate via implementation and testbed experi-
ment that intra-session network coding yields practical benefits
to both unicast and multicast flows [16].

Inter-session network coding, to which COPE belongs, is
known to be difficult. It is known that linear codes are in-
sufficient for optimal inter-session network coding [18], and
even if we limit ourselves to linear codes, determining how
to perform the coding is NP-hard [6]. Hence, recent work
has focused on developing heuristics that provide significant
throughput gains [2], [3], [19], [20]. Wu et al. [2] describe a
physical piggybacking scheme for inter-session network coding
in line networks i.e., duplex flows like those in Fig. 1. COPE
generalizes that scheme to arbitrary networks. Queue stability
and MAC issues for line networks have been explored in [21],
[22]. This paper focuses on inter-session network coding but
it develops a practical heuristic that bridges the gap between
the theory of network coding and practical network design and
provides an operational protocol for general unicast traffic.

Related work has also built on our conference publication of
COPE [23]. Wu et al. [24] have presented algorithms for mixing
packets optimally, Rayanchu et al. [25] have explored routing
and MAC algorithms for COPE, and Liu et al. [26] have ana-
lyzed the theoretical throughput benefits obtained with COPE
style of coding. The technique has also been recently extended
to the physical layer [27]–[30].

Finally, a rich body of systems research has tackled the
problem of improving the throughput of wireless networks.
The proposed solutions range from designing better routing
metrics [31]–[33] to tweaking the TCP protocol [34], and
include improved routing and MAC protocols [35], [36]. Our
work builds on these foundations but adopts a fundamentally
different approach; it explores the utility of network coding in
improving the throughput of wireless networks.

III. COPE OVERVIEW

We introduce COPE, a new forwarding architecture for wire-
less mesh networks. It inserts a coding layer between the IP
and MAC layers, which detects coding opportunities and ex-
ploits them to forward multiple packets in a single transmis-
sion. COPE assumes that there is an underlying routing protocol
which picks paths between nodes. Before delving into details,
we refer the reader to Table I, which defines the terms used in
the rest of the paper.

COPE incorporates three main techniques:
1) Opportunistic Listening: Wireless is a broadcast medium,

creating many opportunities for nodes to overhear packets when
they are equipped with omni-directional antennae. COPE sets
the nodes in promiscuous mode, makes them snoop on all com-
munications over the wireless medium and store the overheard
packets for a limited period (default).

In addition, each node broadcasts reception reports to tell its
neighbors which packets it has stored. Reception reports are sent
by annotating the data packets the node transmits. A node that

KATTI et al.: XORS IN THE AIR: PRACTICAL WIRELESS NETWORK CODING 499

TABLE I
DEFINITIONS OF TERMS USED IN THIS PAPER

has no data packets to transmit periodically sends the reception
reports in special control packets.

2) Opportunistic Coding: The key question is what packets
to code together to maximize throughput. A node may have mul-
tiple options, but it should aim to maximize the number of native
packets delivered in a single transmission, while ensuring that
each intended nexthop has enough information to decode its na-
tive packet.

The above is best illustrated with an example. In Fig. 2(a),
node has 4 packets in its output queue , , , and . Its
neighbors have overheard some of these packets. The table in
Fig. 2(b) shows the nexthop of each packet in ’s queue. When
the MAC permits to transmit, takes packet from the
head of the queue. Assuming that knows which packets each
neighbor has, it has a few coding options as shown in Fig. 2(c).
It could send . Since node has in store, it could
XOR with to obtain the native packet sent to it,
i.e., . However, node does not have , and so cannot de-
code the XORed packet. Thus, sending would be a bad
coding decision for , because only one neighbor can benefit
from this transmission. The second option in Fig. 2(c) shows a
better coding decision for . Sending would allow both
neighbors and to decode and obtain their intended packets
from a single transmission. Yet the best coding decision for
would be to send , which would allow all three
neighbors to receive their respective packets all at once.

The above example emphasizes an important coding issue.
Packets from multiple unicast flows may get encoded together
at some intermediate hop. But their paths may diverge at the
nexthop, at which point they need to be decoded. If not, un-
needed data will be forwarded to areas where there is no in-
terested receiver, wasting much capacity. The coding algorithm
should ensure that all nexthops of an encoded packet can decode
their corresponding native packets. This can be achieved using
the following simple rule:

Fig. 2. Example of opportunistic coding. Node B has four packets in its queue,
whose nexthops are listed in (b). Each neighbor of B has stored some packets
as depicted in (a). Node B can make a number of coding decisions (as shown in
(c)), but should select the last one because it maximizes the number of packets
delivered in a single transmission. (a) B can code packets it wants to send. (b)
Nexthops of packets in B’s queue. (c) Possible coding options.

To transmit packets, , to nexthops,
, a node can XOR the packets together only if

each next-hop has all packets for .

This rule ensures that each nexthop can decode the XORed
version to extract its native packet. Whenever a node has a
chance to transmit a packet, it chooses the largest that satisfies
the above rule to maximize the benefit of coding.

3) Learning Neighbor State: But how does a node know what
packets its neighbors have? As explained earlier, each node an-
nounces to its neighbors the packets it stores in reception re-
ports. However, at times of severe congestion, reception reports
may get lost in collisions, while at times of light traffic, they
may arrive too late, after the node has already made a subop-
timal coding decision. Therefore, a node cannot rely solely on
reception reports, and may need to guess whether a neighbor has
a particular packet.

To guess intelligently, we leverage the routing computation.
Wireless routing protocols compute the delivery probability be-
tween every pair of nodes and use it to identify good paths. For
e.g., the ETX metric [31] periodically computes the delivery
probabilities and assigns each link a weight equal to 1/(delivery
probability). These weights are broadcast to all nodes in the
network and used by a link-state routing protocol to compute
shortest paths. We leverage these probabilities for guessing. In
the absence of deterministic information, COPE estimates the
probability that a particular neighbor has a packet as the delivery
probability of the link between the packet’s previous hop and the
neighbor.

Occasionally, a node may make an incorrect guess, which
causes the coded packet to be undecodable at some nexthop. In
this case, the relevant native packet is retransmitted, potentially
encoded with a new set of native packets.

IV. UNDERSTANDING COPE’S GAINS

How beneficial is COPE? Its throughput improvement de-
pends on the existence of coding opportunities, which them-
selves depend on the traffic patterns. This section provides some
insight into the expected throughput increase and the factors af-
fecting it.

A. Coding Gain

We defined the coding gain as the ratio of the number of trans-
missions required by the current non-coding approach, to the
minimum number of transmissions used by COPE to deliver the

500 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

Fig. 3. Simple topologies to understand COPE’s Coding and��������	�
Gains. (a) Chain topology; two flows in reverse directions. (b) “X” topology.
(c) Cross topology. (d) Wheel topology; many flows intersecting at the center
node.

same set of packets. By definition, this number is greater than
or equal to 1.

In the Alice-and-Bob experiment, as described in Section I,
COPE reduces the number of transmissions from 4 to 3, thus
producing a coding gain of .

But what is the maximum achievable coding gain, i.e., what
is the theoretical capacity of a wireless network that employs
COPE? The capacity of general network coding for unicast
traffic is still an open question for arbitrary graphs [3], [37].
However, we analyze certain basic topologies that reveal some
of the factors affecting COPE’s coding gain. Our analysis as-
sumes identical nodes, omni-directional radios, perfect hearing
within some radius, and the signal is not heard at all outside this
radius, and if a pair of nodes can hear each other the routing
will pick the direct link. Additionally, we assume that the flows
are infinite and we only consider the steady state.

Lemma IV.1: In the absence of opportunistic listening,
COPE’s maximum coding gain is 2, and it is achievable.

We prove the lemma by showing that the coding gain of the
chain in Fig. 3(a) tends to 2 as the number of intermediate nodes
increases. The complete proof is in Appendix A.

While we do not know the maximum gain for COPE with
opportunistic listening, there do exist topologies where oppor-
tunistic listening adds to the power of COPE. For example,
consider the “X”-topology shown in Fig. 3(b). This is the
analogy of the Alice-and-Bob topology, but the two flows travel
along link-disjoint paths. COPE without opportunistic listening
cannot achieve any gains on this topology. But with oppor-
tunistic listening and guessing, the middle node can combine
packets traversing in opposite directions, for a coding gain of

. This result is important, because in a real wireless
network, there might be only a small number of flows traversing
the reverse path of each otherà la Alice-and-Bob, but one would
expect many flows to intersect at a relay, and thus can be coded
together using opportunistic listening and guessing.

The “X” and Alice-and-Bob examples can be combined to
further improve the benefits of coding, as in the cross topology
of Fig. 3(c). Without coding, 8 transmissions are necessary for
each flow to send one packet to its destination. However, as-
suming perfect overhearing (and can overhear and

, and vice versa), can XOR 4 packets in each transmis-
sion, thus reducing the number of transmissions from 8 to 5,
producing a coding gain of .

We observe that while this section has focused on theoret-
ical bounds, the gains in practice tend to be lower due to the
availability of coding opportunities, packet header overheads,
medium losses, etc. However, it is important to note that COPE
increases the actual information rate of the medium far above
the bit rate, and hence its benefits are sustained even when the
medium is fully utilized. This contrasts with other approaches
to improving wireless throughput, such as opportunistic routing
[35], which utilize the medium better when it is not fully con-
gested, but do not increase its capacity.

B. Gain

When we ran experiments with COPE, we were surprised
to see that the throughput improvement sometimes greatly ex-
ceeded the coding gain for the corresponding topology. It turns
out that the interaction between coding and the MAC produces
a beneficial side effect that we call the gain.

The Coding+MAC gain is best explained using the
Alice-and-Bob scenario. Because it tries to be fair, the MAC
divides the bandwidth equally between the 3 contending nodes:
Alice, Bob, and the router. Without coding, however, the router
needs to transmit twice as many packets as Alice or Bob.
The mismatch between the traffic the router receives from the
edge nodes and its MAC-allocated draining rate makes the
router a bottleneck; half the packets transmitted by the edge
nodes are dropped at the router’s queue. COPE allows the
bottleneck router to XOR pairs of packets and drain them twice
as fast, doubling the throughput of this network. Thus, the
Coding+MAC gain of the Alice-and-Bob topology is 2.

The gain assumes all nodes continuously
have some traffic to send (i.e., backlogged), but are limited by
their MAC-allocated bandwidth. It computes the throughput
gain with COPE under such conditions. For topologies with a
single bottleneck, like the Alice-and-Bob’s, the
gain is the ratio of the bottleneck’s draining rate with COPE to
its draining rate without COPE.

Similarly, for the “X” and cross topologies, the
gain is higher than the coding gain. For the “X”, the

gain is 2 since the bottleneck node is able to
drain twice as many packets, given its MAC allocated rate. For
the cross topology, the gain is even higher at
4. The bottleneck is able to send 4 packets out in each transmis-
sion, hence it is able to drain four times as many packets com-
pared to no coding. This begs the question: what is the maximum

gain? The maximum possible
gains with and without opportunistic listening are properties of

KATTI et al.: XORS IN THE AIR: PRACTICAL WIRELESS NETWORK CODING 501

TABLE II
THEORETICAL GAINS FOR A FEW BASIC TOPOLOGIES

the topology and the flows that exist in a network. Here we prove
some upper bounds on gains.

Lemma IV.2: In the absence of opportunistic listening,
COPE’s maximum gain is 2, and it is achiev-
able.

The proof is in Appendix B.
Lemma IV.3: In the presence of opportunistic listening,

COPE’s maximum gain is unbounded.
The proof, detailed in Appendix C, uses the wheel topology

in Fig. 3(d). Assuming edge nodes, with COPE the bottle-
neck node, in the center of the wheel, XORs packets to-
gether, and consequently drains its queue times faster than
without COPE. As the number of edge nodes increases, i.e.,

, the gain becomes infinite. While the previous example
is clearly artificial, it does illustrate the potential of COPE with
opportunistic listening to produce a several-fold improvement
in throughput, as in Section VII.

Table II lists the gains for a few basic topologies.

V. MAKING IT WORK

To integrate COPE effectively within the current network
stack, we need to address some important system issues.

A. Packet Coding Algorithm

To build the coding scheme, we have to make a few design de-
cisions. First, we design our coding scheme around the principle
of never delaying packets. When the wireless channel is avail-
able, the node takes the packet at the head of its output queue,
checks which other packets in the queue may be encoded with
this packet, XORs those packets together, and broadcasts the
XORed version. If there are no encoding opportunities, our node
does not wait for the arrival of a matching codable packet. COPE
therefore lets the node opportunistically overload each transmis-
sion with additional information when possible, but does not
wait for additional codable packets to arrive.

Second, COPE gives preference to XORing packets of similar
lengths, because XORing small packets with larger ones reduces
bandwidth savings. Empirical studies show that the packet-size
distribution in the Internet is bimodal with peaks at 40 and 1500
bytes [38]. We can therefore limit the overhead of searching for
packets with the right sizes by distinguishing between small and
large packets. We might still have to XOR packets of different
sizes. In this case, the shorter packets are padded with zeroes.
The receiving node can easily remove the padding by checking
the packet-size field in the IP header of each native packet.

Third, notice that COPE will never code together packets
headed to the same nexthop or packets generated by the
coding node, since the nexthop will not be able to decode
them. Hence,while coding, we only need to consider non-self

generated packets headed to different nexthops. COPE there-
fore maintains two virtual queues per neighbor; one for small
packets and another for large packets (The default setting uses
a threshold of 100 bytes). When a new packet is added to the
output queue, an entry is added to the appropriate virtual queue
based on the packet’s nexthop and size.

Searching for appropriate packets to code is efficient due to
the maintenance of virtual queues. When making coding deci-
sions, COPE first dequeues the packet at the head of the FIFO
output queue, and determines if it is a small or a large packet.
Depending on the size, it looks at the appropriate virtual queues.
For example, if the packet dequeued is a small packet, COPE
first looks at the virtual queues for small packets. COPE looks
only at the heads of the virtual queues to limit packet reordering.
After exhausting the virtual queues of a particular size, the algo-
rithm then looks at the heads of virtual queues for packets of the
other size. Thus for finding appropriate packets to code COPE
has to look at packets in the worst case, where is the
number of neighbors of a node.

Another concern is packet reordering. We would like to limit
reordering packets from the same flow because TCP mistakes
it as a congestion signal. Thus, we always consider packets
according to their order in the output queue. Still, reordering
may occur because we prefer to code packets of the same size.
In practice, this reordering is quite limited because most data
packets in a TCP flow are large enough to be queued in the
large-packet queue, and thus be considered in order. We will
see in Section V-D, however, that reordering might arise from
other reasons, particularly the need to retransmit a packet that
has been lost due to a mistake in guessing what a neighbor can
decode. Thus, we choose to deal with any reordering that might
happen inside the network at the receiver. COPE has a module
that puts TCP packets in order before delivering them to the
transport layer as explained in Section V-E.

Finally, we want to ensure that each neighbor to whom a
packet is headed has a high probability of decoding its native
packet. Thus, for each packet in its output queue, our relay node
estimates the probability that each of its neighbors has already
heard the packet. Sometimes the node can be certain about the
answer, for example, when the neighbor is the previous hop of
the packet, or when the reception reports from the neighbor state
so. When neither of the above is true, the node leverages the
delivery probabilities computed by the routing protocol; it es-
timates the probability the neighbor has the packet as the de-
livery probability between the packet’s previous hop and that
neighbor. The node then uses this estimate to ensure that en-
coded packets are decodable by all of their nexthops with high
probability.

In particular, suppose the node encodes packets together.
Let the probability that a nexthop has heard packet be . Then,
the probability, , that it can decode its native packet is equal
to the probability that it has heard all of the native packets
XORed with its own, i.e.,

Consider an intermediate step while searching for coding candi-
dates. We have already decided to XOR packets together,
and are considering XORing the th packet with them. The
coding algorithm now checks that, for each of the nexthops,

502 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

the decoding probability , after XORing the th packet with
the rest stays greater than a threshold (the default value

). If the above conditions are met, each nexthop can de-
code its packet with at least probability . Finally, we note that
for fairness we iterate over the set of neighbors according to a
random permutation.

Formally, each node maintains the following data structures.
• Each node has a FIFO queue of packets to be forwarded,

which we call the output queue.
• For each neighbor, the node maintains two per-neighbor

virtual queues, one for small packets (e.g., smaller than
100 bytes), and the other for large packets. The virtual
queues for a neighbor contain pointers to the packets in
the output queue whose nexthop is .

• Additionally, the node keeps a hash table, packet info, that
is keyed on packet-id. For each packet in the output queue,
the table indicates the probability of each neighbor having
that packet.

Whenever the MAC signals a sending opportunity, the node
executes the procedure illustrated in Algorithm 1. The greedy
strategy depicted in this algorithm has a computational com-
plexity that is linear in the number of active neighbors of a node.

B. Packet Decoding

Packet decoding is simple. Each node maintains a Packet
Pool, in which it keeps a copy of each native packet it has re-
ceived or sent out. The packets are stored in a hash table keyed
on packet id (see Table I), and the table is garbage collected
every few seconds. When a node receives an encoded packet
consisting of native packets, the node goes through the ids of
the native packets one by one, and retrieves the corresponding
packet from its packet pool if possible. Ultimately, it XORs the

packets with the received encoded packet to retrieve the
native packet meant for it.

C. Pseudo-Broadcast

The 802.11 MAC has two modes: unicast and broadcast.
Since COPE broadcasts encoded packets to their next hops, the
natural approach would be to use broadcast. Unfortunately, this
does not work because of two reasons: poor reliability and lack
of backoff.

Specifically, in the 802.11 unicast mode, packets are imme-
diately ACKed by their intended nexthops. The 802.11 protocol
ensures reliability by retransmitting the packet at the MAC layer
for a fixed number of times until a synchronous ack is received.
Lack of an ack is interpreted as a collision signal, to which
the sender reacts by backing off exponentially, thereby allowing
multiple nodes to share the medium.

In contrast, 802.11 broadcast lacks both reliability and
backoff. A broadcast packet has many intended receivers, and
it is unclear who should ack. In the absence of the acks, the
broadcast mode offers no retransmissions and consequently
very low reliability. Additionally, a broadcast source cannot
detect collisions, and thus does not back off. If multiple back-
logged nodes share the broadcast channel, and each of them
continues sending at the highest rate, the resulting throughput
is therefore very poor, due to high collision rates.

Our solution is pseudo-broadcast, which piggybacks on
802.11 unicast and benefits from its reliability and backoff
mechanism. Pseudo-broadcast unicasts packets that are meant
for broadcast. The link-layer destination field is set to the MAC
address of one of the intended recipients. An XOR-header is
added after the link-layer header, listing all nexthops of the
packet, Since all nodes are set in the promiscuous mode, they
can overhear packets not addressed to them. When a node
receives a packet with a MAC address different from its own,
it checks the XOR-header to see if it is a nexthop. If so, it
processes the packet further, else it stores the packet in a buffer
as an opportunistically received packet. As all packets are
sent using 802.11 unicast, the MAC can detect collisions and
backoff properly.

Pseudo-broadcast is also more reliable than simple broadcast.
The packet is retransmitted multiple times until its designated
MAC receiver receives the packet and acks it, or the number of
retries is exceeded. A desirable side effect of these retransmis-
sions is that nodes that are promiscuously listening to this packet
have more opportunities to hear it. Pseudobroadcast, however,
does not completely solve the reliability problem, which we ad-
dress in Section V-D.

D. Hop-By-Hop ACKs and Retransmissions

1) Why Hop-By-Hop ACKs?: Encoded packets require all
nexthops to acknowledge the receipt of the associated native
packet for two reasons. First, encoded packets are headed to
multiple nexthops, but the sender gets synchronous MAC-layer
ACKs only from the nexthop that is set as the link layer destina-
tion of the packet (as explained in the previous section). There
is still a probability of loss to the other nexthops from whom it
does not get synchronous ACKs. Second, COPE may optimisti-
cally guess that a nexthop has enough information to decode an
XORed packet, when it actually does not.

The standard solution to wireless losses is to mask error-in-
duced drops by recovering lost packets locally through AC-
Knowledgments and retransmissions [39], [40]. COPE too ad-

KATTI et al.: XORS IN THE AIR: PRACTICAL WIRELESS NETWORK CODING 503

dresses this problem using local retransmissions; the sender ex-
pects the nexthops of an XORed packet to decode the XORed
packet, obtain their native packet, and ACK it. If any of the na-
tive packets is not ACKed within a certain interval, the packet
is retransmitted, potentially encoded with another set of native
packets.

2) Asynchronous Acks and Retransmissions: How should we
implement these hop-by-hop ACKs? For non-coded packets, we
simply leverage the 802.11 synchronous ACKs. Unfortunately,
extending this synchronous ACK approach to coded packets is
highly inefficient, as the overhead incurred from sending each
ACK in its own packet with the necessary IP and WiFi headers
would be excessive. Thus, in COPE encoded packets are ACKed
asynchronously.

When a node sends an encoded packet, it schedules a re-
transmission event for each of the native packets in the encoded
packet. If any of these packets is not ACKed within seconds,
the packet is inserted at the head of the output queue and re-
transmitted. (is slightly larger than the round trip time of a
single link.) Retransmitted packets may get encoded with other
packets according to the scheme in Section V-A.

A nexthop that receives an encoded packet decodes it to ob-
tain its native packet, and immediately schedule an ACK event.
Before transmitting a packet, the node checks its pending ACK
events and incorporates the pending ACKs in the COPE header.
If the node has no data packets to transmit, it sends the ACKs
in periodic control packets—the same control packets used to
send reception reports.

E. Preventing TCP Packet Reordering

Asynchronous ACKs can cause packet reordering, which may
be confused by TCP as a sign of congestion. Thus, COPE has an
ordering agent, which ensures that TCP packets are delivered in
order. The agent ignores all packets whose final IP destinations
differ from the current node, as well as non-TCP packets. These
packets are immediately passed to the next processing stage.
For each TCP flow ending at the host, the agent maintains a
packet buffer and records the last TCP sequence number passed
on to the network stack. Incoming packets that do not produce a
hole in the TCP sequence stream are immediately dispatched to
the transport layer, after updating the sequence number state.
Otherwise, they are withheld in the buffer till the gap in the
sequence numbers is filled, or until a timer expires.

VI. IMPLEMENTATION DETAILS

COPE adds special packet headers and alters the control flow
of the router to code and decode packets. This section describes
both parts.

A. Packet Format

COPE inserts a variable-length coding header in each packet,
as shown in Fig. 4. If the routing protocol has its own header
(e.g., Srcr [32]), COPE’s header sits between the routing and
the MAC headers. Otherwise, it sits between the MAC and IP
headers. Only the shaded fields in Fig. 4 are required in every
COPE header. The COPE header adds less than 5% overhead
to each packet. The coding header contains the following three
blocks.

Fig. 4. COPE Header. The first block identifies the native packets XORed and
their nexthops. The second block contains reception reports. Each report iden-
tifies a source, the last IP sequence number received from that source, and a
bit-map of most recent packets seen from that source. The third block contains
asynchronous ACKs. Each entry identifies a neighbor, an end point for the ACK
map, and a bit-map of ACKed packets.

1) Ids of the Coded Native Packets: The first block
records meta-data to enable packet decoding. It starts with

, the number of native packets XORed together.
For each native packet, the header lists its ID, which is a 32-bit
hash of the packet’s source IP address and IP sequence number.
This is followed by the MAC address of the native packet’s

. When a node hears an XORed packet, it checks
the list of to determine whether it is an intended
recipient for any of the native packets XORed together, in
which case it decodes the packet, and processes it further.

2) Reception Reports: Reception reports constitute the
second block in the XOR header, as shown in Fig. 4. The
block starts with the number of the reports in the packet,

. Each report specifies the source of the reported
packets . This is followed by the IP sequence number
of the last packet heard from that source , and a
bit-map of recently heard packets. For example, a report of the
form means that the last packet
this node has heard from source is packet 50, and
it has also heard packets 42 and 49 from that source but none
in between. The above representation for reception reports has
two advantages: compactness and effectiveness. In particular,
the bit-map allows the nodes to report each packet multiple
times with minimal overhead. This guards against reception
reports being dropped at high congestion.

3) Expressing Asynchronous ACKs Compactly and Ro-
bustly: To ensure ACK delivery with minimum overhead,
we use cumulative ACKs. Since they implicitly repeat ACK
information, cumulative ACKs are robust against packet
drops. Each node maintains a per-neighbor 16-bit counter,
called . Whenever the node sends
a packet to that neighbor, the counter is incremented and its
value is assigned to the packet as a local sequence number,

. The two neighbors use this sequence
number to identify the packet. Now, a node can use cumulative
ACKs on a per-neighbor basis. Each coded packet contains
an ACK header as shown in Fig. 4. The ACK block starts
with the number of ACK entries, followed by the packet local
sequence number. Each ACK entry starts with a neighbor

504 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

Fig. 5. Flow chart for our COPE Implementation. (a) Sender side. (b) Receiver
side.

MAC address. This is followed by a pointer to tell the neighbor
where the cumulative ACKs stop, and a bit-map indicating
previously received and missing packets. For example, an entry
of ACKs packet 50, as well as the sequence
43-49, from neighbor . It also shows that packet 42 is still
missing. Note that though we use cumulative ACKs, we do not
guarantee reliability at the link layer. In particular, each node
retransmits a lost packet a few times (default is 2), and then
gives up.

B. Control Flow

Fig. 5 abstracts the architecture of COPE. On the sending
side, shown in Fig. 5(a), whenever the MAC signals an oppor-
tunity to send, the node takes the packet at the head of its output
queue and hands it to the coding module (Section V-A). If the
node can encode multiple native packets in a single XORed ver-
sion, it has to schedule asynchronous retransmissions. Either
way, before the packet can leave the node, pending reception
reports and ACKs are added.

On the receiving side, shown in Fig. 5(b), when a packet ar-
rives, the node extracts any ACKs sent by this neighbor to the
node. It also extracts all reception reports and updates its view
of what packets its neighbor stores. Further processing depends
on whether the packet is intended for the node. If the node is
not a nexthop for the packet, the packet is stored in the Packet
Pool. If the node is a nexthop, it then checks if the packet is en-
coded. If it is, the node tries to decode by XORing the encoded
packet with the native packets it stores in its Packet Pool. After
decoding it ACKs this reception to the previous hop and stores
the decoded packet in the Packet Pool. The node now checks if it
is the ultimate destination of the packet, if so it hands the packet
off to the higher layers of the network stack. If the node is an in-
termediate hop, it pushes the packet to the output queue. If the
received packet is not encoded, the packet is simply stored in
the Packet Pool and processed in the same fashion as a decoded
packet.

VII. EXPERIMENTAL RESULTS

This section uses measurements from a 20-node wireless
testbed to study both the performance of COPE and the in-
teraction of network coding with the wireless channel and
higher-layer protocols. Our experiments reveal the following:

• When the wireless medium is congested and the traffic con-
sists of many random UDP flows, COPE delivers a
increase in the throughput of our wireless testbed.

• When the traffic does not exercise congestion control (e.g.,
UDP), COPE’s throughput improvement substantially
exceeds the expected coding gain and agrees with the

gain.
• For a mesh network connected to the Internet via a gateway,

the throughput improvement observed with COPE varies
depending on the ratio of download traffic to upload traffic
at the gateway, and ranges from 5% to 70%.

• Hidden terminals create a high loss rate that cannot be
masked even with the maximum number of 802.11 re-
transmissions. In these environments, TCP does not send
enough to utilize the medium and does not create coding
opportunities. In environments with no hidden terminals,
TCP’s throughput improvement with COPE agrees with
the expected coding gain.

A. Testbed

1) Characteristics: We have a 20-node wireless testbed that
spans two floors in our building connected via an open lounge.
The nodes of the testbed are distributed in several offices, pas-
sages, and lounges. Paths between nodes are between 1 and 6
hops in length, and the loss rates of links on these paths range
between 0 and 30%. The experiments described in this paper run
on 802.11a a bit-rate of 6 Mb/s. Running the testbed on 802.11b
is impractical because of a high level of interference from the
local wireless networks.

2) Software: Nodes in the testbed run Linux. COPE is imple-
mented using the Click toolkit [41]. Our implementation runs as
a user space daemon, and sends and receives raw 802.11 frames
from the wireless device using a libpcap-like interface. The im-
plementation exports a network interface to the user that can be
treated like any other network device (e.g.,). The imple-
mentation is agnostic to upper and lower layer protocols, and
can be used by various protocols including UDP and TCP.

3) Routing: Our testbed nodes run the Srcr implementation
[32], a state-of-the-art routing protocol for wireless mesh net-
works. The protocol uses Djikstra’s shortest path algorithm on
a database of link weights based on the ETT metric [32]. The
router output queue is bounded at 100 packets.

4) Hardware: Each node in the testbed is a PC equipped with
an 802.11 wireless card attached to an omni-directional antenna.
The cards are based on the NETGEAR 2.4 & 5 GHz 802.11a/g
chipset. They transmit at a power level of 15 dBm, and operate
in the 802.11 ad hoc mode, with RTS/CTS disabled as in the
default MAC.

5) Traffic Model: We use a utility program called
[42] to generate UDP traffic, and [43] to generate TCP
traffic.We either use long-lived flows, or many shorter flows that
match empirical studies of Internet traffic [44], [45], i.e., they
have Poisson arrivals, and a Pareto file size with the shape pa-
rameter set to 1.17.

KATTI et al.: XORS IN THE AIR: PRACTICAL WIRELESS NETWORK CODING 505

Fig. 6. CDF of throughput gains obtained with COPE, for long-lived TCP flows. (a) TCP gain in the Alice-and-Bob topology. (b) TCP gain in the X-topology.
(c) TCP gain in the cross topology.

Fig. 7. CDF of throughput gains obtained with COPE, for UDP flows. (a) UDP gain in the Alice-and-Bob topology. (b) UDP gain in the X-topology. (c) UDP
gain in the cross topology.

B. Metrics

Our evaluation uses the following metrics.
• Network Throughput: the measured total end-to-end data

throughput, i.e., the sum of the data throughput of all flows
in the network as seen by their corresponding applications.
The overhead incurred by the extra coding headers/control
packets is therefore taken into account.

• Throughput Gain: the ratio of the measured network
throughputs with and without COPE. We compute the
throughput gain from two consecutive experiments, with
coding turned on, then off.

C. COPE in Gadget Topologies

We would like to compare COPE’s actual throughput gain
with the theoretical gains described in Section IV, and study
whether it is affected by higher layer protocols. We start by
looking at a few toy topologies with good link quality (medium
loss rate after MAC retries), and no hidden terminals.

1) Long-Lived TCP Flows: We run long-lived TCP flows
over 3 toy topologies: Alice-and-Bob, the “X”, and the cross
topologies depicted in Figs. 1 and 3. Fig. 6 plots the CDFs of
the TCP throughput gain measured over 40 different runs. For
the Alice-and-Bob topology the gain, shown in Fig. 6(a), the
median gain is close to the theoretical coding gain of 1.33. The
difference of 5-8% is due to the overhead of COPE’s headers,
as well as asymmetry in the throughput of the two flows, which
prevents the router from finding a codemate for every packet.
Similarly, for the “X”-topology, the gain in Fig. 6(b) is compa-
rable to the optimal coding gain of 1.33. Finally,Fig. 6(c) shows
the throughput gain for the cross topology with TCP. The gains
are slightly lower than the expected coding gain of 1.6 because
of header overhead, imperfect overhearing, and a slight asym-
metry in the throughputs of the four flows.

The above experimental results reveal that when the traffic
exercises congestion control, the throughput gain corresponds
to the coding gain, rather than the gain. The
congestion control protocol, built into TCP, naturally matches

the input rate at the bottleneck to its draining rate. When mul-
tiple long-lived TCP flows get bottlenecked at the same router,
the senders back off and prevent excessive drops, leaving only
pure coding gains.

2) UDP Flows: We repeat the above experiments with UDP
and evaluate the throughput gains. Fig. 7 plots a CDF of the UDP
gain with COPE for the Alice-and-Bob, the “X”, and the cross
topologies. The figure shows that the median UDP throughput
gains for the three topologies are 1.7, 1.65, and 3.5 respectively.

Interestingly, the UDP gains are much higher than the TCP
gains; they reflect the gains for these toy
topologies. Recall from Section IV that the coding gain arises
purely from the reduction in the number of transmissions
achieved with COPE. Additionally, coding compresses the
bottleneck queues, preventing downstream congested routers
from dropping packets that have already consumed bandwidth,
and producing a gain. In Section IV, we have
shown that the theoretical gains for the above
toy topologies are 2, 2, and 4 respectively. These numbers are
fairly close to the numbers we observe in actual measurements.

One may wonder why the measured throughput gains are
smaller than the theoretical gain bounds.
The XOR headers add a small overhead of 5-8%. However,
the difference is mainly due to imperfect overhearing and
flow asymmetry. Specifically, the nodes do not overhear all
transmitted packets. Further, some senders capture the wireless
channel sending more traffic in a particular direction, which
reduces coding opportunities and overall gain.

In practice, traffic is a combination of congestion-controlled
and uncontrolled flows. Further, most TCP flows are shortlived
and do not fully exercise congestion control during slowstart.
Thus, one would expect COPE’s gains to be higher than
those observed with long-lived TCP and lower than those
observed with UDP. Indeed, we have run experiments for
the Alice-and-Bob scenario with short-lived TCP flows with
Poisson arrivals and Pareto transfer size. Depending on the
flow inter-arrival times, the measured throughput gains vary
between the coding gain and the gain.

506 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

Fig. 8. End-to-end loss rate and average queue size at the bottlenecks for the TCP flows in the testbed. Loss rates are as high as 14% even after 15 MAC retries;
TCP therefore performs poorly. The queues at the bottlenecks almost never build up resulting in very few coding opportunities and virtually no gains.

D. COPE in an Ad Hoc Network

How does COPE perform in a wireless mesh network? We
have advocated a simple approach to wireless network coding
where each node relies on its local information to detect coding
opportunities, and when possible XORs the appropriate packets.
However, it is unclear how often such opportunities arise in
practice, and whether they can be detected using only local in-
formation. Thus, in this section, we run experiments on our
20-node testbed to gauge the throughput increase provided by
COPE in an ad hoc network.

1) TCP: We start with TCP flows that arrive according to a
Poisson process, pick sender and receiver randomly, and transfer
files whose sizes follow the distribution measured on the In-
ternet [45].

Surprisingly, in our testbed, TCP does not show any signifi-
cant improvement with coding (the average gain is 2-3%). The
culprit is TCP’s reaction to collision-related losses. There are a
number of nodes sending packets to the bottleneck nodes, but
they are not within carrier sense range of each other, resulting
in the classic hidden terminals problem. This creates many col-
lision-related losses that cannot be masked even with the max-
imum number of MAC retries. To demonstrate this point, we re-
peat the TCP experiments with varying number of MAC retrans-
missions with RTS/CTS enabled. Note that disabling RTS/CTS
exacerbates the problem further. Fig. 8 plots the endto-end loss
rates for TCP flows as a function of the number of MAC re-
transmissions. These experiments have COPE turned off. Even
after 15 MAC retries (the maximum possible) the TCP flows
experience 14% loss. As a result, the TCP flows suffer timeouts
and excessive back-off, and are unable to ramp up and utilize
the medium efficiently. Fig. 8 plots the average queue sizes at
the bottleneck nodes.1 The bottleneck nodes never see enough
traffic to make use of coding; most of their time is spent without
any packets in their queues or just a single packet. Few coding
opportunities arise, and hence the performance is the same with
and without coding.

Collision-related losses are common in wireless networks and
recent work has studied their debilitating effect on TCP [46],
[47]. Making TCP work in such a setting would imply solving
the collision problem; such a solution is beyond the scope of this
paper.

Would TCP be able to do better with COPE if we eliminated
collision-related losses? We test the above hypothesis by per-
forming the following experiment. We compress the topology
of the testbed by bringing the nodes closer together, so that

1The few nodes connecting the two floors are where the flows intersect; they
are main bottlenecks in our testbed.

Fig. 9. COPE provides 38% increase in TCP goodput when the testbed
topology does not contain hidden terminals.

they are within carrier sense range. We artificially impose the
routing graph and inter-node loss rates of the original testbed.
The intuition is that the nodes are now within carrier sense range
and hence can avoid collisions. This will reduce the loss rates
and enable TCP to make better use of the medium. We repeat
the above experiment with increasing levels of congestion ob-
tained by decreasing the inter-arrival times of the TCP flows.
Fig. 9 plots the network TCP goodput with and without COPE
as a function of the demand. For small demands, COPE offers
a slight improvement since coding opportunities are scarce. As
the demands increase, network congestion and coding opportu-
nities increase, leading to higher goodput gains. As congestion
increases beyond a certain level, the throughput levels off, re-
flecting the fact that the network has reached its capacity and
cannot sustain additional load. At its peak, COPE provides 38%
improvement over no coding. The medium loss rates after re-
transmissions are negligible. The TCP flows are therefore able
to use the medium efficiently, providing coding opportunities
and throughput gains.

2) UDP: We repeat the large scale testbed experiments with
UDP. The flows again arrive according to a Poisson process,
pick sender and receiver randomly, and transfer files whose sizes
follow the distribution measured on the Internet [45].We vary
the arrival rates of the Poisson process to control the offered
load. For each arrival rate, we run 10 trials, with coding on and
then off (for a total of 500 experiments), and compute the net-
work throughput in each case.

Fig. 10 shows that COPE greatly improves the throughput of
these wireless networks, by a factor of on average. The
figure plots the aggregate end-to-end throughput as a function
of the demands, both with COPE and without. At low demands

KATTI et al.: XORS IN THE AIR: PRACTICAL WIRELESS NETWORK CODING 507

Fig. 10. COPE can provide a several-fold (3-4x) increase in the throughput
of wireless ad hoc networks. Results are for UDP flows with randomly picked
source-destination pairs, Poisson arrivals, and heavy-tail size distribution.

Fig. 11. Percentage of packets coded in the testbed due to guessing, as a func-
tion of offered load, for the set of experiments in Fig. 10.

(below 2 Mb/s), coding opportunities are scarce, and COPE per-
forms similarly to no coding. As demands increase, both net-
work congestion and the number of coding opportunities in-
crease. In such dense networks, the performance without coding
deteriorates because of the high level of contention and conse-
quent packet loss due to collisions. In contrast, coding reduces
the number of transmissions, alleviates congestion, and conse-
quently yields higher throughput.

It is interesting to examine how much of the coding is due to
guessing, as opposed to reception reports. Fig. 11 plots the per-
centage of packets that have been coded because of guessing
for the experiments in Fig. 10. It is calculated as follows: If

packets are coded together, and at most packets could be
coded using reception reports alone, then packets are con-
sidered to be coded due to guessing. The figure shows that the
benefit of guessing varies with demands. At low demands, the
bottleneck nodes have small queues, leading to a short packet
wait time. This increases dependence on guessing because re-
ception reports could arrive too late, after the packets have been
forwarded. As demands increase, the queues at the bottlenecks
increase, resulting in longer wait times, and consequently al-
lowing more time for reception reports to arrive. Hence, the im-
portance of guessing decreases. As demands surge even higher,
the network becomes significantly congested, leading to high
loss rates for reception reports. Hence, a higher percentage of
the coding decisions is again made based on guessing.

Let us now examine in greater detail the peak point in Fig. 10,
which occurs when demands reach 5.6 Mb/s. Fig. 12 shows the
PDF of the number of native packets XORed at the bottleneck
nodes (i.e., the nodes that drop packets). The figure shows that,
on average, nearly 3 packets are getting coded together. Due
to the high coding gain, packets are drained much faster from

Fig. 12. Distribution of number of packets coded together in the test bed at the
peak point of Fig. 10.

Fig. 13. COPE’s throughput gain as a function of the ratio of uplink to down-
link traffic at in a congested mesh access network.

the queues of the bottleneck nodes. The result is an average
throughput gain of .

E. COPE in a Mesh Access Network

There is growing interest in providing cheap Internet access
using multi-hop wireless networks that connect to the rest of the
Internet via one or more gateways/access points [1], [48], [49].
We evaluate COPE in such a setting, where traffic is flowing
to and from the closest gateway. We divide the nodes in the
testbed into four sets. Each set communicates with the Internet
via a specific node that plays the role of a gateway. We use UDP
flows,2 and control the experiments by changing the ratio of
upload traffic to download traffic. Fig. 13 plots the throughput
gains as a function of this ratio.

The throughput gain increases as the fraction of uplink traffic
increases. When the amount of uplink traffic is small, gains are
correspondingly modest; around 5%–15%. As uplink traffic in-
creases, gains increase to 70%. COPE’s throughput gain relies
on coding opportunities, which depend on the diversity of the
packets in the queue of the bottleneck node. For example, in the
Alice-and-Bob topology, if only 10% of the packets in the bot-
tleneck queue are from Alice and 90% from Bob, then coding
can at best sneak Alice’s packets out on Bob’s packets. Hence,
as the ratio of uplink traffic increases, the diversity of the queues
at bottlenecks increases, more coding opportunities arise, and
consequently higher throughput gains are obtained.

F. Fairness

The access network experiment above illuminates the effect
fairness has on coding opportunities. An important source of un-
fairness in wireless networks is the comparative quality of the
channels from the sources to the bottleneck, usually referred to
as the capture effect. For example, in the Alice and Bob experi-
ment, if the channel between Alice and the router is worse than
that between Bob and the router, Alice might be unable to push

2As mentioned earlier, in the uncompressed testbed, TCP backs off exces-
sively because of collision-based losses from hidden terminals, and does not
send enough to fully utilize the medium.

508 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

Fig. 14. Effect of unequal channel qualities on coding opportunities and throughput gain in the Alice-and-Bob topology. COPE aligns the fairness and efficiency
objectives. Increased fairness increases coding opportunities and hence improves the aggregate throughput.

the same amount of traffic as Bob. Although the 802.11 MAC
should give a fair allocation to all contenders, the sender with
the better channel (here Bob) usually captures the medium for
long intervals. The routing protocol tries to discount the capture
effect by always selecting the stronger links; but in practice, cap-
ture always happens to some degree.

We study the effect of capture on COPE by intentionally
stressing the links in the Alice and Bob topology. We set it up
such that both Alice and Bob are equidistant from the router, and
compute the total network throughput. We then gradually move
Alice’s node away from the router, and repeat the experiment
and the measurements.

Fig. 14 shows the network throughput as a function of the
ratio of Alice’s and Bob’s distance to the router. It also shows
the percentage of coded packets and the fairness index, com-
puted as the ratio of Alice’s throughput to Bob’s. As Alice
moves further away, Bob increasingly captures the channel, re-
ducing fairness, coding opportunities, and the aggregate net-
work throughput. Interestingly, without coding, fairness and ef-
ficiency are conflicting goals; throughput increases if the node
with the better channel captures the medium and sends at full
blast. Coding, however, aligns these two objectives; increasing
fairness increases the overall throughput of the network.

VIII. DISCUSSION AND CONCLUSION

Finally, we would like to comment on the scope of COPE.
The present design targets stationary wireless mesh networks,
where the nodes are not resource-constrained. More generally,
COPE can be used in multi-hop wireless networks that satisfy
the following:

• Memory: COPE’s nodes need to store recently heard
packets for future decoding. Only packets in flight are
used in coding; there is no need to store packets that
have already reached their destination. Consequently,
the storage requirement should be slightly higher than a
delay-bandwidth product. (For e.g., an 11 Mb/s network
with a 50 ms RTT has a delay-bandwidth product of 70
KB.)

• Omni-directional antenna: Opportunistic listening re-
quires omni-directional antennas to exploit the broadcast
property.

• Power requirements: Our current design of COPE does not
optimize power usage and assumes the nodes are not en-
ergy limited.

The ideas in COPE may be applicable beyond WiFi mesh net-
works. Note that COPE can conceptually work with a variety of
MAC protocols including WiMax and TDMA. One may envi-
sion modifying COPE to address the needs of sensor networks.

Such a modification would take into account that only a subset
of the sensor nodes is awake at any point of time and can partici-
pate in opportunistic listening. Sensor nodes may also trade-off
saved transmissions for reduced battery usage, rather than in-
creased throughput. Additionally, COPE may be useful for cel-
lular relays. Deploying cellular base stations is usually expen-
sive. A cheap way to increase coverage is to deploy relay nodes
that intervene between the mobile device and the base station
[50], creating a multi-hop cellular backbone. COPE would allow
cellular relays to use the bandwidth more efficiently. Indeed,
after the publication of COPE, we have learned that Ericsson
has independently proposed a design for cellular relays with a
subset of COPE’s functionality, where the cellular relay XORs
only duplex flows, as in the Alice-and-Bob scenario [50]. This
scheme can be extended to make full use of the ideas embedded
in COPE.

Our community knows a few fundamental approaches that
can improve wireless throughput, including more accurate
congestion control, better routing, and efficient MAC protocols.
We believe that COPE is an important step forward in our
understanding of the potential of wireless networks because
it presents a new orthogonal axis that can be manipulated to
extract more throughput; i.e., how to maximize the amount of
data delivered in a single transmission. This is coding, which is
an old theme, traditionally used at the physical and application
layers. But COPE and a few other recent projects [16], [51]
introduce coding to the networking community as a practical
tool that can be integrated with forwarding, routing, and reliable
delivery.

APPENDIX

Proof of Lemma 4.1:
Proof: We first prove the upper bound of 2. Note that if

the intermediate node codes native packets together, these
packets have to be to different next-hops, by the coding rule
of Section III(b). In the absence of opportunistic listening, the
only routing neighbor that has a packet is the previous hop of
that packet. Suppose the intermediate hop codes packets
from the same neighbor. All other neighbors must have
packets in the encoded packet, which violates the coding rule.
As a result, the intermediate hop can code at most one packet
from a neighbor. Without opportunistic listening, this is the only
native packet in the encoded packet that this neighbor has. In-
voking the coding rule, this implies that the intermediate hop
can code at most 2 packets together. This implies that the total
number of transmissions in the network can at most be halved
with coding, for a coding gain of 2.

KATTI et al.: XORS IN THE AIR: PRACTICAL WIRELESS NETWORK CODING 509

Indeed, this gain is achievable in the chain of links in
Fig. 3(a). This topology is an extension of the Alice-and-Bob
example where . The no-coding case requires a total of

transmissions to deliver a packet from Alice to Bob, and
vice-versa. On the other hand, in the presence of coding, each
of the intermediate nodes on the path can transmit in-
formation simultaneously to neighbors on either side by coding
the two packets traversing in opposite directions, for a total of

transmissions. The coding gain in this case is , which
tends to 2 as the chain length grows.

Proof of Lemma 4.2:
Proof: We assume that the network uses the 802.11 MAC,

which allocates a fair share to all active nodes. As proved above,
in the absence of opportunistic listening, a node can code at
most 2 packets together. Hence, a bottleneck node can drain its
packets atmost twice as fast, bounding the gain
at 2. This gain is achieved even in the simple Alice-and-Bob
experiment as explained above (longer chains result in the same

gain).
Proof of Lemma 4.3:
Proof: Consider the wheel topology with radius in

Fig. 3(d) with nodes uniformly placed on the circumference,
and one node at the center of the circle. We assume that the
nodes use the 802.11 MAC, which allocates a fair share of the
medium to all nodes. Assume that when a node transmits, all
other nodes in the circle overhear this transmission, except for
the diametrically opposed node (i.e., the radio range is ,
where). Suppose now that there are flows between
every pair of diametrically opposed nodes. Note that nodes on
either end of a diameter cannot communicate directly, but can
communicate using a two-hop route through the middle node.
In fact, this route is the geographically shortest route between
these nodes. In the absence of coding, a single flow requires
1 transmission from an edge node, and 1 transmission from
the middle node. This adds to a total of 1 transmission per
edge node, and transmissions for the middle node, across all
packets. Since the MAC gives each node only a share of
the medium, the middle node is the bottleneck in the absence of
coding. However, COPE with opportunistic listening allows the
middle node to code all the incoming packets and fulfill the
needs of all flows with just one transmission, thereby matching
its input and output rates. Hence, the gain is

, which grows without bound with the number of nodes.

REFERENCES

[1] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-level
measurements from an 802.11b mesh network,” in Proc. ACM SIG-
COMM, Portland, OR, Aug. 2004, pp. 121–132.

[2] Y. Wu, P. A. Chou, and S. Y. Kung, “Information exchange in wire-
less networks with network coding and physical-layer broadcast,” Mi-
crosoft Corp., Redmond, WA, Tech. Rep. MSR-TR-2004-78.

[3] T. Ho and R. Koetter, “Online incremental network coding for mul-
tiple unicasts,” in DIMACS Working Group on Network Coding, Rut-
gers Univ., Piscataway, NJ, Jan. 2005.

[4] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

[5] S. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[6] R. Koetter and M. Médard, “An algebraic approach to network
coding,” IEEE/ACM Trans. Networking, vol. 11, no. 5, pp. 782–795,
Oct. 2003.

[7] T. Ho, M. Médard, J. Shi, M. Effros, and D. Karger, “On randomized
network coding,” presented at the 41st Annu. Allerton Conf. Commu-
nication, Control, and Computing, Monicello, IL, Oct. 2003.

[8] S. Deb, M. Effros, T. Ho, D. R. Karger, R. Koetter, D. S. Lun, M. Mé-
dard, and N. Ratnakar, “Network coding for wireless applications: A
brief tutorial,” presented at the 2005 Int. Workshop on Wireless Ad-hoc
Networks (IWWAN), London, U.K., May 2005.

[9] Y. Wu, P. Chou, Q. Zhang, K. Jain, W. Zhu, and S. Kung, “Network
planning in wireless ad hoc networks: a cross-layer approach,” IEEE J.
Sel. Areas Commun., vol. 23, no. 1, pp. 136–150, Jan. 2005.

[10] Y. Wu, P. A. Chou, and S.-Y. Kung, “Minimum-energy multicast in
mobile ad hoc networks using network coding,” IEEE Trans. Commun.,
vol. 53, no. 11, pp. 1906–1918, Nov. 2005.

[11] J. Widmer, C. Fragouli, and J. LeBoudec, “Energy-efficient broad-
casting in wireless ad-hoc networks,” presented at the NetCod 2005,
Riva del Garda, Italy, Apr. 2005.

[12] Y. Sagduyu and A. Ephremides, “Joint scheduling and wireless net-
work coding,” presented at the NetCod 2005, Riva del Garda, Italy,
Apr. 2005.

[13] Y. Chen, S. Kishore, and J. Li, “Wireless diversity through network
coding,” in Proc. WCNC, 2006, vol. 3, pp. 1681–1686.

[14] X. Bao and J. Li, “On the outage properties of adaptive network coded
cooperation (ANCC) in large wireless networks,” presented at the
ICASSP, Toulouse, France, May 2006.

[15] A. A. Hamra, C. Barakat, and T. Turletti, “Network coding for wire-
less mesh networks: A case study,” presented at the WoWMoM Conf.,
Buffalo, NY, Jun. 2006, 9 pp.

[16] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” in Proc. ACM SIG-
COMM, Kyoto, Japan, Aug. 2007, pp. 169–180.

[17] D. S. Lun, N. Ratnakar, R. Koetter, M. Médard, E. Ahmed, and H.
Lee, “Achieving minimum cost multicast: A decentralized approach
based on network coding,” in Proc. IEEE INFOCOM, Miami, FL,
Mar. 2005, pp. 1607–1617.

[18] R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency of linear coding
in network information flow,” IEEE Trans. Inf. Theory, vol. 51, no. 8,
pp. 2745–2759, Aug. 2005.

[19] Z. Li and B. Li, “Network coding: The case for multiple unicast ses-
sions,” presented at the 42nd Annu. Allerton Conf. Communication,
Control, and Computing, Monticello, IL, 2004.

[20] X. Bao and J. Li, “Matching code-on-graph with network-on-graph:
Adaptive network coding for wireless relay networks,” presented at the
43rd Annu. Allerton Conf. Communication, Control, and Computing,
Monticello, IL, 2005.

[21] Y. Sagduyu and A. Ephremides, “Network coding in wireless
queueing networks: Tandem network case,” in Proc. ISIT, Jul. 2006,
pp. 192–196.

[22] Y. Sagduyu and A. Ephremides, “Crosslayer design for distributed mac
and network coding in wireless ad hoc networks,” in Proc. ISIT, Sep.
2005, pp. 1863–1867.

[23] S. Katti, H. S. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft,
“XORs in the air: Practical wireless network coding,” in Proc. ACM
SIGCOMM, Pisa, Italy, Aug. 2006, pp. 243–254.

[24] Y. Wu, J. Padhye, R. Chandra, V. Padmanabhan, and P. A. Chou, “The
local mixing problem,” presented at the Information Theory and Ap-
plications Workshop, San Diego, CA, Feb. 2006.

[25] S. Sengupta, S. Rayanchu, and S. Banerjee, “An analysis of wireless
network coding for unicast sessions: The case for coding-aware
routing,” in Proc. IEEE INFOCOM, May 2007, pp. 1028–1036.

[26] J. Liu, D. Goeckel, and D. Towsley, “Bounds on the gain of network
coding and broadcasting in wireless networks,” in Proc. IEEE IN-
FOCOM, May 2007, pp. 724–732.

[27] P. Popovski and H. Yomo, “Bi-directional amplification of throughput
in a wireless multi-hop network,” in Proc. IEEE 63rd Vehicular Tech-
nology Conf. (VTC 2006-Spring), 2006, pp. 588–593.

[28] T. Aulin and M. Xiao, “A physical layer aspect of network coding
with statistically independent noisy channels,” in Proc. IEEE Int. Conf.
Communications (ICC), Jun. 2006, vol. 9, pp. 3996–4001.

[29] S. Zhang, S. C. Liew, and P. P. Lam, “Physical-layer network coding,”
presented at the ACM MobiCom, Los Angeles, CA, Sep. 2006.

[30] S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interfer-
ence: Analog network coding,” in Proc. ACM SIGCOMM, Kyoto,
Japan, Aug. 2007, pp. 397–408.

[31] D. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput
path metric for multi-hop wireless routing,” presented at the ACM Mo-
biCom, San Diego, CA, Sep. 2003.

510 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 3, JUNE 2008

[32] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and eval-
uation of an unplanned 802.11b mesh network,” presented at the ACM
MobiCom, Cologne, Germany, Aug. 2005.

[33] R. Draves, J. Padhye, and B. Zill, “Comparison of routing metrics for
multi-hop wireless networks,” in Proc. ACM SIGCOMM, Portland, OR,
Aug. 2004, pp. 133–144.

[34] P. Sinha, T. Nandagopal, N. Venkitaraman, R. Sivakumar, and V.
Bharghavan, “WTCP: A reliable transport protocol for wireless
wide-area networks,” Wireless Networks, vol. 8, no. 2-3, pp. 301–316,
2002.

[35] S. Biswas and R. Morris, “Opportunistic routing in multi-hop wireless
networks,” in Proc. ACM SIGCOMM, Philadelphia, PA, Aug. 2005, pp.
133–144.

[36] M. Heusse, F. Rousseau, R. Guillier, and A. Duda, “Idle sense: An op-
timal access method for high throughput and fairness in rate diverse
wireless LANs,” in Proc. ACM SIGCOMM, Philadelphia, PA, Aug.
2005, pp. 121–132.

[37] Z. Li and B. Li, “Network coding in undirected networks,” presented at
the 38th Annu. Conf. Information Sciences and Systems (CISS 2004),
Princeton, NJ, Mar. 2004.

[38] R. Sinha, C. Papadopoulos, and J. Heidemann, “Internet packet size
distributions: some observations,” USC/Information Sciences Inst.
[Online]. Available: http://netweb.usc.edu/~rsinha/pkt-sizes/

[39] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A
comparison of mechanisms for improving TCP performance over wire-
less links,” IEEE/ACM Trans. Networking, vol. 5, no. 6, pp. 756–769,
Dec. 1997.

[40] Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. Standard Specification, IEEE p. a. IEEE 802.11
WG, 1999.

[41] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, Aug.
2000.

[42] Udpgen. MIT. [Online]. Available: http://pdos.csail.mit.edu/click/ex/
udpgen.html

[43] TTCP. Army Research Lab. [Online]. Available: http://ftp.arl.mil/ftp/
pub/ttcp/

[44] V. Paxson and S. Floyd, “Wide-area traffic: The failure of Poisson mod-
eling,” IEEE/ACM Trans. Networking, vol. 3, no. 3, pp. 226–244, Jun.
1995.

[45] M. E. Crovella, M. S. Taqqu, and A. Bestavros, “Heavy-tailed prob-
ability distributions in the world wide web,” in A Practical Guide To
Heavy Tails, R. J. Adler, R. E. Feldman, and M. S. Taqqu, Eds. New
York: Chapman and Hall, 1998, ch. 1, pp. 3–26.

[46] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, “The impact
of multihop wireless channel on TCP throughput and loss,” in Proc.
IEEE INFOCOM, 2003, vol. 3, pp. 1744–1753.

[47] C. C. cheng, E. Seo, H. Kim, and H. Luo, “Self-learning collision avoid-
ance for wireless networks,” in Proc. IEEE INFOCOM, 2006, pp. 1–12.

[48] P. Bhagwat, B. Raman, and D. Sanghi, “Turning 802.11 inside-out,”
presented at the HotNets-II, Cambridge, MA, 2003.

[49] Nokia Rooftop Wireless Routing. Nokia, White Paper.
[50] A. Adinoyi et al., “Definition and assessment of relay based cel-

lular deployment concepts for future radio scenarios considering 1st
protocol characteristics,” chapter 5. IST-2003-507581 WINNER.
[Online]. Available: https://www.ist-winner.org/DeliverableDocu-
ments/D3.4.pdf

[51] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, “Growth codes:
Maximizing sensor network data persistence,” in Proc. ACM SIG-
COMM, Pisa, Italy, Aug. 2006, pp. 255–266.

Sachin Katti received the B.Tech. degree in elec-
trical engineering from the Indian Institute of
Technology, Mumbai, in 2003, and the M.S. degree
in computer science from the Massachusetts Institute
of Technology (MIT), Cambridge, MA, in 2005. He
is currently pursuing the Ph.D. degree in computer
science at MIT. His research interests include
wireless networks, coding theory, and distributed
systems.

Hariharan Rahul received the B.Tech. degree from
the Indian Institute of Technology (IIT), Madras, in
1997 and the M.S. degree from the Massachusetts
Institute of Technology (MIT), Cambridge, MA, in
1999, both in computer science. He has worked at
Akamai Technologies, and is currently pursuing the
Ph.D. degree in computer science from MIT. His re-
search interests are in Internet performance measure-
ment, wireless networks, and distributed systems.

Mr. Rahul has won the President of India Gold
Medal at IIT, and the Professional Services Excel-

lence Award at Akamai.

Wenjun Hu received the B.A. and Ph.D. degrees in
computer science from the University of Cambridge,
Cambridge, U.K., in 2003 and 2008, respectively.

Currently, she is a postdoctoral research associate
at the University of Washington, Seattle, WA. Her
research interests are in wireless and mobile net-
working, and her thesis work focused on applying
networking coding to improve the performance of
wireless mesh networks.

Dina Katabi received the M.S. and Ph.D. degrees
from the Massachusetts Institute of Technology
(MIT), Cambridge, MA, in 1998 and 2003, respec-
tively

She is a Sloan Associate Professor in the Electrical
Engineering and Computer Science Department at
MIT. Her work focuses on wireless networks,
network security, routing, and distributed resource
management.

Dr. Katabi received an NSF CAREER Award in
2005, a Sloan Fellowship Award in 2006, and the

NBX Career Development Chair in 2006. Her doctoral dissertation won an
ACM Honorable Mention Award.

Muriel Médard (M’95–SM’00) received B.S. de-
grees in electrical engineering and computer science
and in mathematics in 1989, the B.S. degree in
humanities in 1990, the M.S. degree in electrical en-
gineering in 1991, and the Sc.D. degree in electrical
engineering in 1995, all from the Massachusetts
Institute of Technology (MIT), Cambridge, MA.

She is the Edgerton Associate Professor in the
Electrical Engineering and Computer Science De-
partment at MIT and the Associate Director of LIDS.
Her research interests are in the areas of network

coding and reliable communications.
Prof. Medard received an NSF Career Award in 2001, the IEEE Leon K.

Kirchmayer Prize Paper Award in 2002, and the Edgerton Faculty Achievement
Award in 2004.

Jon Crowcroft (SM’95–F’04) is the Marconi
Professor of Networked Systems in the Computer
Laboratory of the University of Cambridge, Cam-
bridge, U.K. Prior to that, he was Professor of
networked systems at University College London
(UCL) in the Computer Science Department. He
is a Fellow of the ACM, a Fellow of the British
Computer Society, a Fellow of the IEE, and a Fellow
of the Royal Academy of Engineering, as well as a
Fellow of the IEEE.

