Distributing streaming media content using cooperative networking

Venkata N. Padmanabhan, Helen J. Wang, Philip A. Chou Microsoft Research

Kunwadee Sripanidkulchaip Carnegie Mellon University

NOSSDAV'02, May 12-14, 2002, Miami, Florida, USA. Cited by 230

Content distributions of today

(a) infrastructure-based content distribution

Akamai

(b)peer-to-peer content distribution

BitTorrent

Paper Focus - Coop-Net

- Cooperative Networking
 - combines aspects of infrastructure-based and peer-to-peer content distribution
- Distributing streaming media content
 - live and on-demand
- Evolution, not revolution
 - complement rather than replace the traditional client-server framework.

Key Concept of CoopNet

 Addresses overload problem by having clients cooperate with each other to distribute content, thereby alleviating the load on the server

Why not pure p2p model

 Access of resourceful servers that hosts content and (directly) serves clients.

• presence of a central server simplifies a lot

 CoopNet is only invoked when the server is unable to handle the load imposed by clients

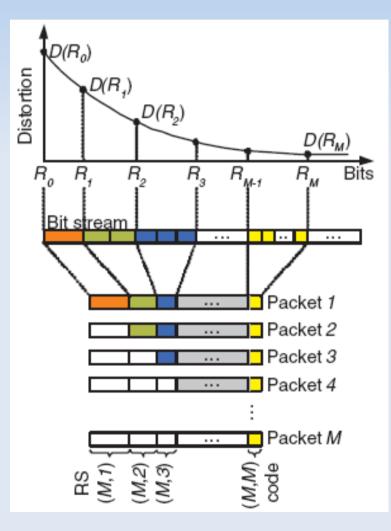
Must have

 Mechanism that is robust against interruptions caused by the frequent joining and leaving of individual peers.

> Paper focus on the distruption and packet loss caused by node arrivals and departures

Main weapon

- CoopNet employs multiple description coding (MDC)
 - The streaming media content, whether live or on-demand, is divided into multiple substreams

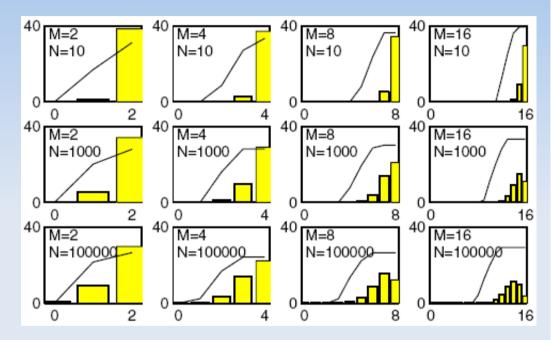

Multiple Description Coding (MDC)

- M > 1 separate streams
- every subset of descriptions must be decodable

Multiple Description Coding (MDC)

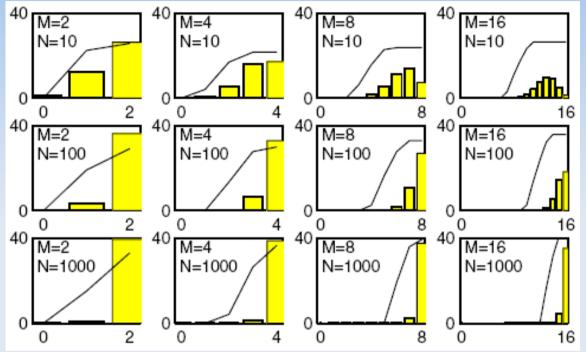
- GoF(Group of Frames) 1 sec- Bit Streams
- Rm m Received bits
- D(Rm) Distortion

• M packets are equally important; only the number of re-eived packets determines the reconstruction quality of the GOF.



CoopNet Analysis: Quality During Multiple Failures

- AV signal into M descriptions(GoF)
 - M different distribution trees
 - each rooted at the server(central point)
- N destination hosts
 - N destination hosts receive all M descriptions
 - a host n will receive the mth description if none of its ancestors in the mth tree fail.
 - → Deeper trees means problem


CoopNet Analysis: Quality During Multiple Failures

- Function of the number of description received
 - Line (Quality)
 - Box (prob. distribution)
- N hosts
- M segments per GoF

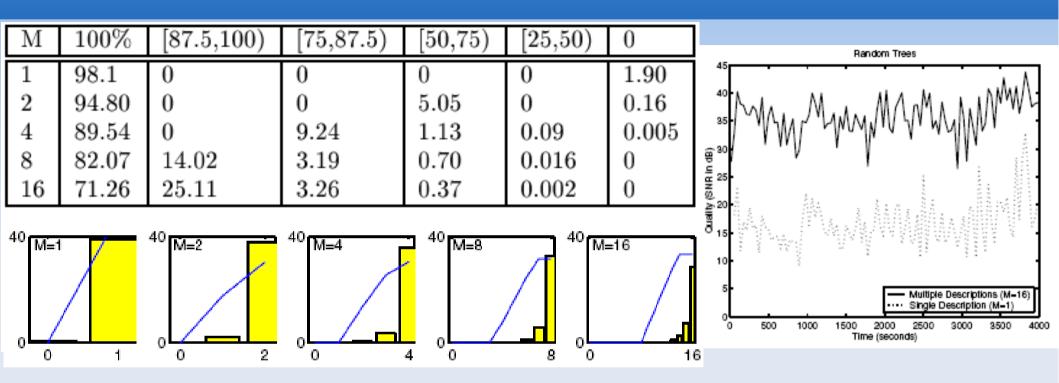
CoopNet Analysis: Quality During Multiple Failures

- as M increases, for fixed N, the distribution again becomes Gaussian
- hosts that receive 100% decreases. However of hosts receive fewer than 50% decreases
 - resulting in an increase in quality on average.

Tree Management

Short and wide tree:

- short to minimize the latency
- wide as much as its bandwidth will allow

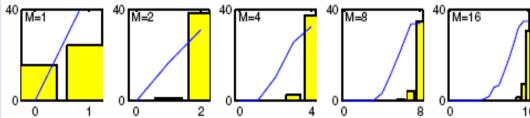

• Eficiency versus tree diversity(conflict):

- Eficiency by reflect the underlying network topology
- Diversity, generated by random, makes more hobust
- Quick join and leave
- Scalability

Recap

- server is not overloaded since the burden of distributing content is shared by all peers
- Centralization makes things simpler and faster
 - server has full knowledge of the topology
- Most departures are graceful

Effectiveness of MDC



- 2 descriptions -> 94.80% of clients receive 100% of the descriptions
- 8 -> 96% (82.07% + 14.02%) of clients receive more than 87.5% of the descriptions

Impact of Repair Time: Rebuild tree after departure

М	100%	[87.5, 100)	[75, 87.5)	[50,75)	[25, 50)	0
1	98.34	0	0	0	0	1.66
2	96.5	0	0	3.42	0	0.08
4	93.3	0	6.31	0.36	0.03	0
8	87.14	11.34	1.29	0.20	0.02	0
16	77.26	21.62	0.99	0.11	0.01	0

Table 2: Evolving Tree Experiment: probability distribution of descriptions received vs. number of distribution trees

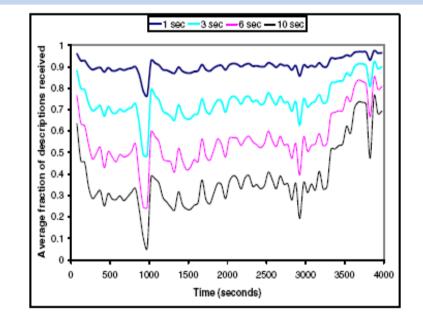
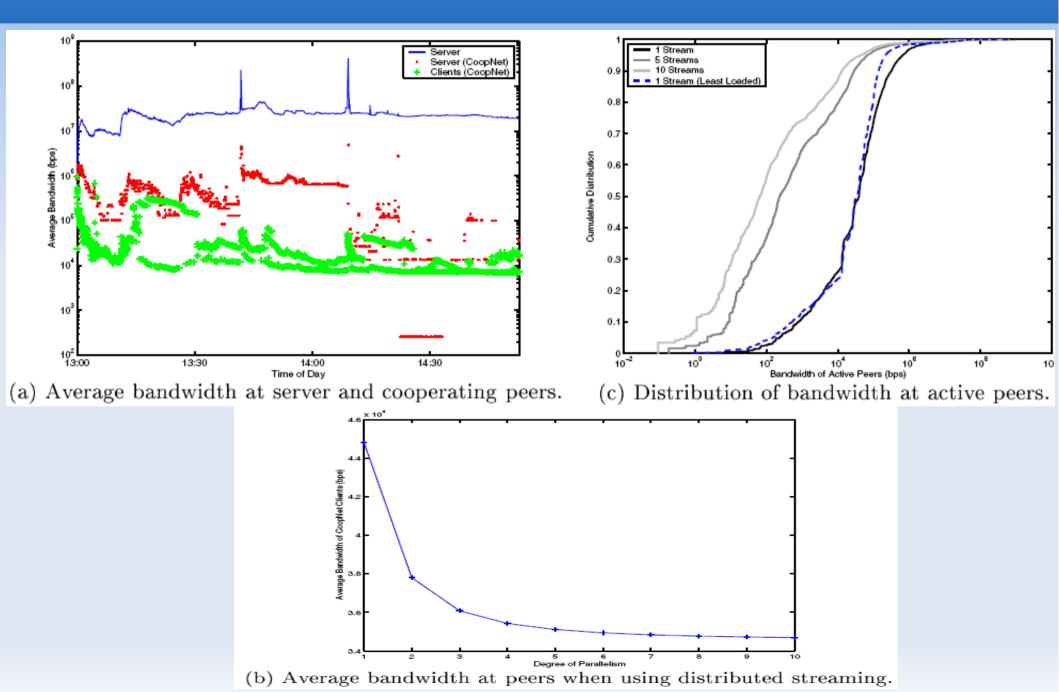



Figure 8: The average fraction of descriptions re-¹⁶ ceived for various repair times.

On-Demand Streaming

Conclusão

- Solução tão boa quanto a qualidade da arvore e seu gerenciamento.
- Poderia aumentar muito a capacidade se utilizasse serviços tipo akamai em conjunto com o servidor central.
- Uso de PDN poderia facilitar a implementação.
 - No cliente por separar o código de dar suporte a CoopNet por uso de um protocolo de uso comum e geral, socks.
 - No servidor por facilitar o uso de redes como Akamai.