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Abstract—An emerging Internet application, IPTV, has the
potential to flood Internet access and backbone ISPs with massive
amounts of new traffic. Although many architectures are possible
for IPTV video distribution, several mesh-pull P2P architectures
have been successfully deployed on the Internet. In order to gain
insights into mesh-pull P2P IPTV systems and the traffic loads
they place on ISPs, we have undertaken an in-depth measurement
study of one of the most popular IPTV systems, namely, PPLive.
We have developed a dedicated PPLive crawler, which enables
us to study the global characteristics of the mesh-pull PPLive
system. We have also collected extensive packet traces for various
different measurement scenarios, including both campus access
networks and residential access networks. The measurement
results obtained through these platforms bring important insights
into P2P IPTV systems. Specifically, our results show the fol-
lowing. 1) P2P IPTV users have the similar viewing behaviors as
regular TV users. 2) During its session, a peer exchanges video
data dynamically with a large number of peers. 3) A small set
of super peers act as video proxy and contribute significantly to
video data uploading. 4) Users in the measured P2P IPTV system
still suffer from long start-up delays and playback lags, ranging
from several seconds to a couple of minutes. Insights obtained in
this study will be valuable for the development and deployment of
future P2P IPTV systems.

Index Terms—IPTV, measurement, peer-to-peer streaming.

I. INTRODUCTION

WITH the widespread adoption of broadband residential
access, IPTV may be the next disruptive IP communica-

tion technology. With potentially hundreds of millions of users
watching streams of 500 kbps or more, IPTV would not only
revolutionize the entertainment and media industries, but could
also overwhelm the Internet backbone and access networks with
traffic. Given this possible tidal wave of new Internet traffic,
it is important for the Internet research community to acquire
an in-depth understanding of the delivery of IPTV, particularly
for the delivery architectures that hold the greatest promise for
broad deployment in the near future.
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There are several classes of delivery architectures for IPTV,
including native IP multicast [2], application-level infrastruc-
ture overlays such as those provided by CDN companies [3],
peer-to-peer multicast trees such as in end-system multicast [4],
and mesh-pull P2P streaming such as CoolStreaming [5] and
PPLive [6]. Each of these architecture classes imposes different
traffic patterns and design challenges on Internet backbone and
access networks. Requiring minimal infrastructure, P2P archi-
tectures offer the possibility of rapid deployment at low cost.
An important characteristic of mesh-pull P2P systems is the
lack of an (application-level) multicast tree—a characteristic
particularly desirable for the highly dynamic, high-churn P2P
environment [5].

In terms of the number of simultaneous users, the most suc-
cessful IPTV deployments to date have employed mesh-pull
P2P streaming architectures. Bearing strong similarities to Bit-
Torrent [7], mesh-pull streaming deviates significantly from Bit-
Torrent in various aspects.

1) BitTorrent by itself is not a feasible video delivery archi-
tecture since it does not account for the real-time needs of
IPTV. In mesh-pull streaming, each video chunk has cor-
responding playback deadline. Hence, video chunk sched-
uling is an indispensable component for assisting a timely
video delivery.

2) Due to the stringent need of video chunk availability before
the deadline, fair resource sharing has not been carefully ad-
dressed in the current mesh-pull systems. There have been
no reciprocity mechanisms deployed in the current mesh-
pull systems to encourage resource sharing between peers.

3) BitTorrent is targeted at group communication with
medium size ; hence, peers retrieve peer neighbor
information directly from the tracker server. However,
a large-scale live streaming broadcast can easily attract
thousands of users. To support large-scale group commu-
nication, gossip peer search algorithms have been used in
various mesh-pull systems. Nevertheless, the deployment
of gossip algorithms incur various implications, i.e., delay
may occur in searching peers; tracker servers may only
handle part of the peers in the system and hence lose the
global view and the control of the network, and so on.s

Several mesh-pull P2P streaming systems have been success-
fully deployed to date, accommodating tens of thousands of
simultaneous users. Almost all of the these deployments have
originated from China (including Hong Kong). The pioneer in
the field, CoolStreaming, reported that more than 4000 simulta-
neous users in 2003. More recently, a number of second-genera-
tion mesh-pull P2P systems have reported phenomenal success
on their Web sites, advertising tens of thousands of simultaneous
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users who watch channels at rates between 300 kbps to 1 Mbps.
These systems include PPLive [6], PPStream [8], UUSee [9],
SopCast [10], TVAnts [11] and many more.

Given the success to date of many of these IPTV systems,
as well as their potential to swamp the Internet with massive
amounts of new traffic in the near future, we have been moti-
vated to carry out an extensive measurement study on one of the
mesh-pull P2P streaming systems, namely, PPLive. We chose
PPLive as it is currently one of the most popular—if not the
most popular—IPTV deployment to date. In particular, as part
of a preliminary study we performed on PPLive, we measured
the number of simultaneous users watching a PPLive broadcast
of the annual spring festival gala show on Chinese New Year Eve
on January 28, 2006. We observed that PPLive broadcasted this
event to over 200 000 users at the bit rate in the 400–800 kbps
range, corresponding to an aggregate bit rate in the vicinity of
100 gigabits/s.

In an earlier workshop paper, we reported preliminary
measurement results for PPLive [1]. The current paper goes
significantly further, providing a comprehensive study of
PPLive, including insights into the global properties of the
system. Achieving these deeper insights has been challenging
because the PPLive protocol is proprietary. In particular, in
order to build the measurement tools that were used to collect
much of the data in this paper, we had to analyze a large portion
of the PPLive protocol.

In this paper, we seek to answer the following questions about
a large-scale P2P IPTV deployment.

• What are the user characteristics? For both popular and
less-popular PPLive channels, how does the number of
users watching a channel vary with time? As with tradi-
tional television, are there diurnal variations in user de-
mand? What are the dynamics of user churn? What is the
geographic distribution of the users, and how does this dis-
tribution fluctuate over time.

• How much overhead and redundant traffic is there? What
fraction of bytes a peer sends (or receives) is control data
and what fraction is actual video data? What fraction of the
video traffic that a peer receives is redundant traffic?

• What are the characteristics of a peer’s partnerships with
other peers? How many partners does a peer have? What are
the durations of the partnerships? At what rates does a peer
download from and upload to its partners? How are the part-
nerships different for a campus peer and a residential peer?
How do the partnerships compare to those in BitTorrent?

• What are the fundamental requirements for a successful
mesh-pull P2P IPTV system? How does a P2P IPTV
system maintain high enough downloading rates on all
peers with heterogeneous uploading capacities? What is
the video buffering requirement for smooth playback on
individual peers in the face of rate fluctuations on peering
connections and peer churns?

We attempt to answer these questions by using a custom-de-
signed PPLive crawler and using packet sniffers deployed at
both high-speed campus access and broadband residential ac-
cess points. Quantitative results obtained in our study bring light
to important performance and design issues of live streaming
over the public Internet.

Using our previous work in [1] and [12] as a base, we present
a comprehensive active and passive measurement study of
PPLive. Our contributions are as follows.

• For active crawling, we refine our peer tracking method-
ology, originally proposed in [12], to accurately trace the
dynamics of peers behind NAT/firewalls.

• Our crawling results include both channel-level peer mea-
surement as well as all-channel peer statistics at different
time-scales, i.e., day-level and week-level.

• Our crawling apparatus also includes a buffer map crawling
component. Buffer maps reflect the video content cached
by peers and the playback process implicitly. These mea-
surement results are reported in this paper to demonstrate
the significant playback time lag between PPLive peers.
This finding brings forth the necessity to carefully design
video chunk scheduling schemes to minimize this playback
lag for live streaming.

• We present passive sniffing results with numerous im-
provements (i.e., refine the video traffic filtering rules so
that we are able to determine video traffic exchange more
accurately). Our measurement results show the traffic
pattern and peer dynamics of PPLive users. These findings
provide insights for ISPs to conduct appropriate traffic
engineering. For example, ISPs can track P2P streaming
traffic, design new streaming caching schemes, and so on.

This paper is organized as follows. In Section II, we provide
an overview of different aspects of mesh-pull streaming systems
including architecture, signal and management protocols based
on our measurement studies. Our measurement tools include
an active crawler and a passive sniffer. In Section III, using
our PPLive crawler, we present the global-scale measurement
results for the PPLive network, including number of users, ar-
rival and departure patterns, and peer geographic distributions.
We also provide a qualitative characterization of the delay
performance of the PPLive streaming service in Section IV. In
Section V , by sniffing monitored peers, we present the traffic
patterns and peering strategies as viewed by residential and
campus PPLive clients. We provide an overview of the related
P2P measurement work in Section VI. Finally, based on our
measurement results, we outline some design guidelines for the
successful deployment of IPTV application over the Internet in
Section VII.

II. OVERVIEW OF MESH-PULL P2P STREAMING SYSTEMS

Current mesh-pull streaming systems provide little informa-
tion about their proprietary technologies. Through our measure-
ment study and protocol analysis on two well-known mesh-pull
streaming systems, PPLive and PPStream, we have gained sig-
nificant insights into the protocols and streaming mechanisms
of mesh-pull streaming systems. In order to gain a better under-
standing of our measurement tools and results, in this section
we provide an overview of a generic mesh-pull system. Fig. 1
depicts a generic mesh-pull P2P live streaming architecture.
There are three major components in the mesh-pull streaming
architecture.

1) The streaming peer node includes a streaming engine and
the media player, co-located in the same machine. All the
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Fig. 1. Mesh-pull P2P live streaming architecture.

Fig. 2. Channel and peer discovery.

peers cooperatively deliver video chunks among them-
selves from the channel streaming server via the streaming
engine. The streaming engine downloads media chunks
from other peer nodes or the channel streaming server;
these chunks are reassembled into the original media
content and stream to the media player for playback.

2) The channel stream server converts the media content into
small video chunks for efficient distribution among peers.

3) The tracker server provides information of streaming chan-
nels, peers, and video chunks for each peer to join the
network and download video chunks from multiple peers
which are requesting the same media content in the system.

A mesh-pull P2P live streaming software, running in user
computers (peers), typically has two major communication
protocols: 1) a peer registration, channel and peer discovery
protocol and 2) a P2P media chunk distribution protocol. Fig. 2
depicts an overview of the peer registration, channel and peer
discovery protocol. When an end-user starts the mesh-pull
streaming software, it joins the network and becomes a
streaming node. The first action (step 1) is to download a list of
channels distributed by the streaming network from the tracker
server. Once the user selects a channel, this peer node registers
itself in the tracker server and requests an initial list of peers that
are currently watching the same channel. The peer node then
communicates with the peers in the list to obtain additional lists
(step 2), which it aggregates with its existing peer list. In this
manner, each peer maintains a list of other peers watching the
channel. A peer on a list is identified by its IP address and UDP

Fig. 3. Peer’s buffer map of video chunks.

and TCP signaling port numbers. The registration and peer
discovery protocol is commonly running over UDP; however,
if UDP fails (for example, because of a firewall), TCP may
also be used for registration and peer discovery. Utilizing this
distributed gossip-like peer discovery protocol, the signaling
overhead at the tracker server is considerately reduced; hence,
a small number of tracker servers are able to manage possibly
millions of streaming users.

We now describe the chunk distribution protocol. At any
given instant, a peer buffers up to a few minutes worth of
chunks within a sliding window. Some of these chunks may be
chunks that have been recently played; the remaining chunks
are chunks scheduled to be played in the next few minutes.
Peers upload chunks to each other. To this end, peers send
to each other “buffer map” messages; a buffer map message
indicates which chunks a peer currently has buffered and can
share. The buffer map message includes the offset (the ID of
the first chunk), the length of the buffer map, and a string of
zeroes and ones indicating which chunks are available (starting
with the chunk designated by the offset). If the offset field is
of 4 bytes, for one channel with the bit rate of 340 kbps and a
chunk size of 14 Kbytes, this chunk range of indicates the
time range of 2042 days without wrap-up. The BM width is the
difference between the newest and oldest chunk ID advertised
in a buffer map message. The BM playable video is the number
of contiguous chunks in the buffer map, beginning from the
offset. Fig. 3 illustrates a buffer map.

A peer can request, over a TCP connection, a buffer map
from any peer in its current peer list. After peer A receives a
buffer map from peer B, A can request one or more chunks that
peer B has advertised in the buffer map. A peer may download
chunks from tens of other peers simultaneously. The streaming
engine continually searches for new partners from which it can
download chunks. Different mesh-pull systems may differ sig-
nificantly with their peer selection and chunk scheduling algo-
rithms. Clearly, when a peer requests chunks, it should give
some priority to the missing chunks that are to be played out
first. Most likely, it also gives priority to rare chunks, that is,
chunks that do not appear in many of its partners’ buffer maps
(see [5], [12], [7]). Peers can also download chunks from the
original channel server. The chunks are usually sent over TCP
connections. In some mesh-pull systems, video chunks are also
transferred using UDP to achieve timely delivery.

Having addressed how chunks are distributed among peers,
we now briefly describe the video display mechanism. As men-
tioned above, the streaming engine works in conjunction with
a media player (i.e., Windows Media Player or RealPlayer).

Authorized licensed use limited to: UNIVERSIDADE FEDERAL FLUMINENSE. Downloaded on May 4, 2009 at 12:34 from IEEE Xplore.  Restrictions apply.



HEI et al.: MEASUREMENT STUDY OF A LARGE-SCALE P2P IPTV SYSTEM 1675

Fig. 4. Streaming process of mesh-pull systems.

Fig. 4 illustrates the interaction between the streaming engine
and the media player. The streaming engine, once having
buffered a certain amount of contiguous chunks, launches the
media player. The media player then makes an HTTP request
to the engine, and the engine responds by sending video to the
media player. The media player buffers the received video;
when it has buffered a sufficient amount of video content, it
begins to render the video.

If, during video playback, the streaming engine becomes in-
capable of supplying the video player with data at a sufficient
rate (because the client is in turn not getting chunks fast enough
from the rest of the network), then the media player will starve.
When this occurs, depending on the severity of the starvation,
the streaming engine may have the media player wait where it
left off (freezing) or it may have the media player skip frames.

PPLive is a typical mesh-pull P2P streaming system. We
now provides a brief introduction on PPLive. PPLive is a free
P2P IPTV application. Based on our measurement results
during Feb. 5–12, 2007, PPLive provides channels with

daily users on average. A popular channel may
attract users daily with the peak of concur-
rent users. The bit rates of video programs mainly range from
250 kbps to 400 kbps with a few channels as high as 800 kbps.
PPLive does not own video content; the video content is mostly
feeds from TV channels, TV series and movies in Mandarin.
The channels are encoded in two video formats: Window Media
Video (WMV) or Real Video (RMVB). The encoded video
content is divided into chunks and distributed to users through
the PPLive P2P network.

Our P2P network measurements on PPLive fall into two cate-
gories: active crawling and passive sniffing. The active crawling
is used to obtain user behaviors and the global view of the entire
PPLive network for any channel. The passive sniffing is used to
gain a deeper insight into PPLive from the perspective of resi-
dential users and campus users.

III. GLOBAL VIEW OF USER BEHAVIORS

We are interested in IPTV user behavior characteristics, such
as the evolution of the number of active users within a channel,
the evolution of the number of active users aggregated across
all channels, user arrival and departure patterns, the distribution
of channel popularity, and the geographic location of users. To
understand user behaviors across the entire PPLive network, we
developed a crawler which continuously tracks all participating
peers, where a peer is identified by a combination of IP address
and TCP/UDP service port numbers.

A. Peer Tracking Methodology

Peer tracking is a challenging problem since we do not have
direct access to the proprietary PPLive tracking servers. Our
methodology for peer tracking exploits PPLive’s distributed

gossiping algorithm. Recall that each individual peer maintains
a list of active peers that it knows about. Further, each peer can
update its list by retrieving lists from its neighboring peers. Our
methodology does the following for each channel.

• Time is divided in rounds of s. At the beginning of each
round, we request peer lists from multiple peer-list servers.
The retrieved lists are merged into an initial aggregate list.
Initially, all peers on the list are marked as “uninvesti-
gated.”

• For each uninvestigated peer on this aggregate list, we re-
quest its peer list and then mark the peer as “investigated.”
The retrieved lists are merged into an aggregate peer list.
We continue this crawling process, retrieving and merging
lists from uninvestigated peers. This crawling process con-
tinues for the first s (with ) of each round. At the
end of the s, we store the aggregate list, clear the aggre-
gate list, sleep for s, and then begin another round.

• We thus generate a sequence of aggregate lists, one for
each s crawling period. Denote the th aggregate list
as . For a given peer , we define its
“list-joining time” as time , where is the first
aggregate list on which the peer is recorded. Similarly, we
define its “list-leaving time” as time , where
is the first aggregate list after for which is no longer
present.

• We draw conclusions about user behaviors from the se-
quence of aggregate peer lists, as well as from the list-
joining and list-leaving times.

The methodology described above, although promising, has
a number of issues that need to be addressed. First, how do we
obtain a peer list from a peer or from a peer-list server? Second,
when a peer truly joins the channel, will it eventually appear on
an aggregate list? If so, how much of a lag is there from when it
joins the channel until the list-joining time? Third, when a peer
quits the channel, how much time elapses from when it quits
until the list-leaving time?

To generate the sequence of aggregate peer lists for a
channel, we developed a PPLive crawler. This task by itself was
challenging because we needed to implement portions of the
PPLive proprietary protocol. To this end, using packet traces
from passive sniffing and our knowledge about how mesh-pull
P2P streaming systems generally operate, we were able to un-
derstand critical portions of PPLive’s signaling protocols. With
this knowledge, we were then able to send PPLive peer-list
request messages to the PPLive peers. Specifically, as shown in
Fig. 5, the crawler operates as follows.

• Peer Registration: The crawler first registers itself with one
of the root servers by sending out a peer registration mes-
sage. The significant information in this message includes
a 128 bit channel identifier, its IP address, and its TCP and
UDP service ports. In contrast to many other popular P2P
applications, a PPLive peer does not maintain a fixed peer
ID, but instead creates a new, random value every time it
re-joins the channel.

• Bootstrap: After the registration, the crawler sends out one
bootstrap peer list query message to each peer-list root
server for retrieving an initial peer list for the crawled
channel. In response to a single query, the server returns
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Fig. 5. PPLive peer list crawling.

Fig. 6. Number of peers on the aggregate peer list collected by the crawler for
one channel.

a list of peers (normally 50 peers), including IP addresses
and service port numbers. The crawler aggregates all the
lists it has received from the server, thereby maintaining
an initial list of peers enrolled in the channel.

• Peer Query: The crawler then sends out queries to the peers
already on the list to ask for their peer lists. Peer lists re-
turned by those peers are merged into the crawler’s cur-
rent peer list. (Peers behind NATs often do not respond to
peer-list queries, as we will discuss below.)

The number of discovered peers by the crawler for one
channel over 25 s is plotted in Fig. 6. It shows that the crawler
can find 95% of peers for a channel within 5 s. Given this
observation, we set the round length to s and crawling
duration within a round to s.

We now investigate how accurately an aggregate list reflects
the actual peers participating in a channel. One possibly way to
verify whether a peer on the aggregate list is actually an active
peer is to probe the peer by querying it for its peer list. Unfor-
tunately, a large fraction of PPLive peers (more than 50%) are
behind NATs and do not respond to contact initiated from the
outside. Since probing is not viable, we instead performed the
following experiment to investigate the accuracy of the aggre-
gate peer list.

1) For a given channel, we start the crawler with rounds of
s.

2) We have a peer under our control join the channel. We
record the time when it connects to the channel.

3) We determine the time when this controlled peer first
appears on one of the aggregate lists . We define the
arrival lag as .

4) Subsequently, we remove the controlled peer from the
channel and record the time .

5) We determine the time when the controlled peer no
longer appears in the aggregate lists. We define the depar-
ture lag as .

We repeated this experiment under a variety of conditions,
with the controlled peer behind a NAT in about half of the ex-
periments. In each experiment, the controlled peer was eventu-
ally observed on an aggregate list. Therefore, we can safely as-
sume that every peer that joins a channel eventually appears on
an aggregate list. In each experiment, once the controlled peer
was removed from the channel, it eventually disappeared from
the aggregate lists. Therefore, we can safely assume that after
a peer leaves a channel, it eventually departs from the aggre-
gate list. On average over 33 experiments, a peer’s arrival lag
was 31.6 s; a peer’s departure lag was 104.2 s. One explanation
for the faster detection of peer arrivals is that a peer leaves the
aggregate list only after it disappears from the peer lists of all
peers, whereas a peer arrival can be detected as long as it ap-
pears on a peer list returned by the peer-list root server or any
other peer. There are several implications of the results of this
experiment.

• The arrival and departure curves generated from the se-
quence of aggregate lists reflect the actual arrival and de-
parture rate curves, but include random lags. The lags are
small compared to the time-scale we are interested in.

• Due to the mismatch between the arrival and departure
lags, a peer’s sojourn time inferred from the aggregate lists
is, in average, around 70 s longer than its actual value.
This has two consequences. First, it skews the peer lifetime
distribution. However, since the measured average sojourn
times for different channels are in the range of 800–1600 s,
the skew is minor. Second, it overestimates the number of
active peers. Based on Little’s law, the overestimate ratio
can be calculated as , where is the real average
peer sojourn time measured in seconds. Consequently, the
active peer numbers we subsequently report overestimate
the real active peer numbers by 5–9%.

B. Evolution of Participating Users

We would like to understand how the number of P2P IPTV
users evolve over time. We explore the peer participation evo-
lution for all channels, for popular and unpopular TV channels,
and for a popular movie channel. The time in the figures are la-
beled in US Eastern Standard Time (GMT-5). Fig. 7 shows the
total peer participation evolution for one day and one week, ag-
gregated over all the PPLive channels. The diurnal trend
is clearly demonstrated in Fig. 7(a). The major peaks appear
during 8 AM to 12 PM EST, translating into 8 PM to 12 AM
China local time . As we shall see, those peaks
are mostly contributed by users from China. (We remind the
reader that our crawling methodology slightly overestimates the
number of participating peers.)
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Fig. 7. Evolution of total number of peers in the PPLive network. (a) One day
(Feb. 8, 2007) and (b) One Week (Feb. 5-12, 2007).

In Fig. 7(b), for the week of Feb. 5–12, 2007, the daily
PPLive users remain with a constant diurnal viewing pattern.
We also observed similar trends in other monitored weeks.
This might suggest that IPTV users have different profiles and
viewing habits than regular TV/movie audiences.

One important characteristic of IPTV is its ability to reach a
global audience. A traditional broadcast television channel typ-
ically offers its most popular content when its local audience is
most available (for example, in the evening). However, because
an IPTV service can reach a global audience in all time zones
(see Fig. 15 and Table V), there will be incentives to offer pop-
ular contents more evenly throughout the 24-h day. Thus, in the
future, we may see a flattening of the diurnal patterns.

We ranked each of the crawled channels according to their
peak number of participating peers. In Fig. 8 we plot the peak
number of participating peers versus channel rank in the log-log
scale. We observe a clear linear relationship (with a slope 0.52)
between peer population versus channels, especially for the top
100 channels.

Fig. 9 shows how the number of participating users evolves
for a popular and a less-popular TV channel. We first observe
that the numbers of participating peers are quite different for the
two programs. The maximum number of peers for the popular
program reaches nearly 2700; however, that of the unpopular
program is just around 65. The major peaks appear during 7 AM

Fig. 8. Distribution of peak number of peers among all channels at EST
07:42AM Feb. 8, 2007.

Fig. 9. Diurnal trend of number of participating users on Oct. 13, 2006. (a)
Popular TV channel and (b) Unpopular TV channel.

to 12 PM EST, translating into 7 PM to 12 AM China local
time. This suggests that people tend to use IPTV to watch TV
programs outside of office hours, consistent with the behavior
of regular TV users. In contrast, a recent measurement study
on Skype [13] suggests that people tend to use VoIP service at
work.

As with many other P2P applications, the number of IPTV
users is largely determined by the popularity of the program.
The annual Spring Festival Gala on Chinese New Year is one
of the most popular TV programs within Chinese communities
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TABLE I
PEER BREAK DOWN OF THE 14 CHANNELS FOR BROADCASTING

THE CHINESE SPRING FESTIVAL GALA SHOW

Fig. 10. Flash crowd of the Chinese spring festival gala show.

all over the world. Starting from 3 AM EST, January 28, 2006
(Chinese New Year Eve day), we ran the crawler to collect all
peer IP addresses and TCP/UDP ports from 14 PPLive chan-
nels which were broadcasting the event. The total number of the
unique peers harvested from these 14 channels is 3 657 914 with
the aggregate peak 216 868. We break up the peers among the 14
channels in Table I. Fig. 10 plots the number of peers watching
this live event through PPLive. There was a sharp jump from
50 000 peers to peers after the event started at 7 AM
EST. The number of users held at this high level for around 4 h.
The number of users went back to normal when the event fin-
ished at about 11 AM EST. The near constant user population
during the event suggests that mesh-pull P2P streaming systems
scale well, handling a flash crowd in a live broadcasting.

C. User Arrivals and Departures

In this section, we examine the peer arrival and departure
patterns for various PPLive channels. We plot the numbers of
peer arrivals and departures of a popular movie channel in every
minute of one day in Fig. 11. Comparing it with the evolution
of the number of participating peers, we find that peers join and
leave at a higher rate at peak times. We also see consecutive
spikes with a period of about 2 h in the departure rate curve in
Fig. 11(b). The spikes are due to many peers leaving immedi-
ately and simultaneously at the end of (roughly) 2-h programs.
This batch-departure pattern in P2P IPTV systems is different
from P2P file sharing systems, where peer departures are mostly
triggered by the asynchronous completions (or, the detections
of completions) of file downloads. This suggests that P2P IPTV

Fig. 11. Peer arrival and departure evolution of a popular movie channel. (a)
Peer arrival rate and (b) Peer departure rate.

systems expect lower peer churn rates in the middle of a pro-
gram. Consequently, peers can maintain more stable partnership
with each other. We will address this peer dynamics more in
Section V-D3.

We also plot the numbers of peer arrivals and departures of
the popular TV channel in every minute of one day in Fig. 12.
We observe that the arrival pattern of this TV channel is similar
to that of the movie channel. However, there is no periodic batch
departure pattern for this TV channel.

We define the peer lifetime as the time between the arrival
and the departure of the peer. Our analysis shows that peer life-
times vary from very small values up to 16 h. There are totally
34 021 recorded peer sessions for the popular channel and 2518
peer sessions for the unpopular channel. The peer lifetime dis-
tributions in Fig. 13 suggest that peers prefer to stay longer for
popular programs than for unpopular programs. However, 90%
of peers for both programs have lifetimes shorter than 1.5 h.

D. User Geographic Distribution

We classify PPLive users into three regions: users from Asia,
users from North America, and users from the rest of the world.
To accomplish this classification, we map a peer’s IP address to
a region by querying the free MaxMind GeoIP database [14].
Fig. 14 shows the evolution of the geographic distribution of
the popular channel during one full day. The figure is divided
into three regions by two curves. The bottom region is made up
of the peers from Asia, the middle region is for the peers from
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Fig. 12. Peer arrival and departure evolution of a popular TV channel. (a) Peer
arrival rate and (b) Peer departure rate.

Fig. 13. Peer lifetime distribution.

North America, and the top region is for peers from the rest
of the world. We observe that most of users come from Asia.
Again, the percentage of peers from Asia reaches the lowest
point around 7 PM to 8 PM EST.

Fig. 15 plots the evolution of peers’ geographic distribution
for the Chinese spring festival gala show. This figure has the
same format as Fig. 14, with three regions denoting three
different geographical regions. We observe that during this
show, many peers from outside of Asia watched this live broad-
cast—in fact, a significantly higher percentage of peers were

Fig. 14. Peers’ geographic distribution of a popular movie channel.

Fig. 15. Evolution of peers’ geographic distribution for the Chinese spring fes-
tival gala show.

from outside of Asia as compared with Fig. 14. The geographic
distribution evolution is consistent with the observations in
Section III-C: Peers from North America have the smallest
share at about 7 AM EST, and the largest share at about 8 PM
EST. Thus, the user behaviors in North America is quite similar
to the user behaviors in Asia.

One lesson learned from this crawling study is that, with P2P
IPTV systems, it is possible to track detailed user behaviors.
Unlike traditional broadcast television, the operators of a P2P
IPTV system can track the type of programs a user watches,
the region in which the user lives, the times at which the user
watches, and the users channel switching behavior. Such de-
tailed information will likely be used in the future for targeted,
user-specific advertising. This research also demonstrates that
an independent third-party can also track peer and user charac-
teristics for a P2P IPTV system. Similar to file-sharing moni-
toring companies (such as Big Champagne [15]), IPTV moni-
toring companies will likely emerge, and will provide content
creators, content distributors, and advertisers with information
about user interests.

IV. PLAYBACK DELAY AND PLAYBACK LAGS AMONG PEERS

As theoretically demonstrated in [16], appropriate buffering
can significantly improve video streaming quality. However, too
much buffering may make the delay performance unacceptable
for a streaming service. In this section, we report quantitative
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results on the buffering effect of PPLive peers on the delay per-
formance. In particular, we used our measurement platforms,
to obtain insights into start-up delay and playback lags among
peers.

A. Start-Up Delay

Start-up delay is the time interval from when one channel is
selected until actual playback starts on the screen. For streaming
applications on the best-effort Internet, start-up buffering has al-
ways been a useful mechanism to deal with the rate variations
of streaming sessions. P2P streaming applications additionally
have to deal with peer churn, increasing the need for startup
buffering and delay [16]. While short start-up delay is desir-
able, certain amount of start-up delay is necessary for contin-
uous playback. Using our monitored peers (see Section V), we
recorded two types of start-up delays in PPLive: the delay from
when one channel is selected until the streaming player pops
up; and the delay from when the player pops up until the play-
back actually starts. For a popular channel, the measured player
pop-up delay was from 5 to 10 s and the player buffering delay
was 5 to 10 s. Therefore, the total start-up delay was from 10 to
20 s; however, less popular channels had start-up delays of up
to 2 min. These delays are, of course, significantly longer than
what are provided by traditional television. Hence, the current
state-of-the-art of mesh-pull P2P streaming technology does not
provide users with the same channel-surfing experience as tra-
ditional television.

B. Video Buffering

As illustrated in Section II, in mesh-pull systems, peers
exchange video chunk information between themselves using
buffer maps. To monitor the buffer content of PPLive clients,
we augmented the crawler with a TCP component that retrieves
the buffer map from the peers during the peer list crawling
process, as shown in Section III-A. As we crawl each peer, the
crawler sends a PPLive request for the peer’s buffer map. We
then parse the buffer maps off-line, to glean information about
buffer resources and timing issues at remote peers throughout
the PPLive network.

In this subsection, we quantify buffer levels across peers ac-
tively watching a specific channel. As illustrated in Fig. 3, a
buffer map returned by a peer not only indicates how many video
chunks are buffered at that peer (the number of 1s in the buffer
map), but also indicates how many video chunks can be played
continuously on that peer when the buffer map was returned to
the crawler (the number of consecutive bit-1s at the left side
of the buffer map). We plot in Fig. 16 the CDF of the buffer
levels among peers over a 600-min crawling period for
a gaming channel with the playback bit rate is 300 kbps. Both
the total buffer levels and continuous playable buffer levels in
terms of time are plotted. In Fig. 16, we observe that peers seem
to strive for buffer levels of 200-s videos or higher. Only a small
percentage of peers cache less than 30-s videos.

C. Playback Lags Among Peers

One unfortunate characteristic of a mesh-pull P2P streaming
system is the possibility of playback lags among peers due to
the deployment of the buffering mechanisms. Specifically, some

Fig. 16. CDF of buffer level for a game channel among 200+ peers over a
600-min crawling period.

Fig. 17. Maximum playback time difference for the ATV channel over a
40-min period.

peers watch frames in a channel minutes behind other peers.
Thus, for example, in a soccer game some peers will see a goal
minutes after other peers. In addition, peers with large playback
lags won’t upload useful chunks to peers with smaller lags, de-
creasing the aggregate uploading capacity of the system.

To analyze this lagging effect, we again use the buffer maps
harvested from our crawler. Recall that each buffer map in-
cludes an offset, which provides the earliest chunk buffered in
the PPLive engine. This offset increases along with the play-
back. We use the buffer map offset as a reference point of the
actual playback. Therefore, the lags of buffer map offsets among
peers watching the same channel reflect the lags of the actual
playbacks among them. We intensively probed peers partici-
pating in a specific TV channel, ATV, to retrieve their buffer
maps for 40 min. We clustered the harvested buffer maps ac-
cording to the time when they are received by the crawler. Re-
ceived buffer maps are clustered into time bins of 5 s. For buffer
maps within each bin, we calculated the difference between
the maximum and minimum offset. Fig. 17 plots the maximum
playback time differences over all bins. We observe that the lag
among peers can be huge— with around 35 probed peers within
one bin, the maximum playback time difference of these peers
is as high as 140 s.
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TABLE II
DATA SETS

TABLE III
PPLIVE TRAFFIC OVERHEAD

V. CONNECTION AND TRAFFIC CHARACTERISTICS

In this section, we explore connection and traffic characteris-
tics of mesh-pull P2P streaming systems. We explore packet re-
dundancy ratios, download and upload traffic levels, properties
of TCP connections, and whether the underlying traffic flows
are similar to those of BitTorrent or tree-push P2P streaming
systems.

To this end, we sniffed and collected multiple PPLive packet
traces from four PCs: two PCs connected to Polytechnic Univer-
sity campus network with 100 Mbps Ethernet access; and two
PCs connected to residential networks through cable modem.
Most of the PPLive users today have either one of these two
types of network connections. The PCs with residential access
were located at Manhattan and Brooklyn. Each PC ran Ethereal
[17] to capture all inbound and outbound PPLive traffic. We built
our own customized PPLive packet analyzer to analyze the var-
ious fields in the various PPLive signaling and content packets.

As summarized in Table II, we collected traces from four
peers, each of which was watching one of two channels (ei-
ther the popular CCTV3 or the less popular CCTV10) from ei-
ther a campus network or residential networks. Data were ob-
tained at different granularities, including byte-level, packet-
level and session-level, to help us understand PPLive’s signaling
and streaming protocols and its impact on the Internet.

A. Methodology for Isolating Video Traffic

A PPLive peer generates and receives both video and sig-
naling traffic. In this paper, we are mainly concerned with the
video traffic, since it is responsible for the majority of the traffic
in most P2P streaming systems. In order to present a clear pic-
ture of the nature of the PPLive video traffic, we use a simple
heuristic to filter out the signaling traffic from our traces. The
ideas behind this heuristic can likely be employed for the anal-
ysis of many P2P streaming systems, including PPLive.

In a mesh-pull P2P video streaming system, a peer nor-
mally has a large number of ongoing TCP connections with
other peers. Some of these connections contain only signaling
traffic; other connections contain video chunks and possibly

some signaling traffic. The chunk size is typically much larger
than the maximum payload size of a TCP segment (typically
1460 bytes). For example, one measured PPLive channel has
the chunk size of 14 Kbytes (the exact chunk size varies from
one channel to another). Thus, if a TCP connection carries
video, it should have a large number (say, at least 10) of large
size TCP segments (say, bytes) during its lifetime.
These observations lead to the following heuristic.

1) For a given TCP connection, we count the cumulative
number of large packets ( bytes) during the con-
nection’s lifetime. If the cumulative number of large
packets is larger than 10, this connection is labeled as
a “video TCP connection”; otherwise, the connection is
labeled as a “signaling TCP connection.” We filter out all
signaling TCP connections from the traces.

2) A video TCP connection may include some signaling
traffic as well. For each video TCP connection, we further
filter out all packets smaller than 1200 bytes.

We first use this heuristic to estimate the fraction of upstream
and downstream signaling overhead for each of the four traced
peers. The signaling overhead consists of the payloads of all
UDP packets, plus the payloads of all the TCP packets in the sig-
naling connections, plus the payloads of all the TCP packets less
than 1200 bytes in all of the video connections. From Table III
we see that the signaling overhead is generally in the 5% to 8%
range except for the upload traffic in trace CCTV10-Residence.
The reason is that the uploading video traffic in that trace is ex-
tremely low, as shown in Table III

B. Video Traffic Redundancy

Due to the distributed nature of mesh-pull P2P streaming, it is
possible that a peer downloads duplicate chunks from multiple
partners. The transmission of redundant chunks wastes network
and access bandwidth; hence, we are interested in measuring
the traffic redundancy after the streaming player begins to play-
back steadily. To this end, to minimize the impact of transient
behavior, the first 10 min of the traces are not used for this redun-
dancy analysis. Excluding TCP/IP headers, we determine the
total streaming payload for the download traffic. Utilizing the
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TABLE IV
VIDEO TRAFFIC REDUNDANCY

Fig. 18. Upload and download video bit rates for the four traces. (a) CCTV3-
Campus, (b) CCTV3-Residence, (c) CCTV10-Campus, and (d) CCTV10-Res-
idence.

video traffic filtering heuristic rule, presented in Section V-A, we
are able to extract the video traffic. Given the playback interval
and the media playback speed, we obtain a rough estimate of
the media segment size for the playback interval. We compute
the redundant traffic as the difference between the total received
video traffic and the estimated media segment size. We define the
redundancy ratioas the ratiobetween the redundant traffic and the
estimatedmediasegmentsize.FromTable IV,weobserve that the
traffic redundancy is small. This is partially due to the long buffer
time period so that PPLive peers have enough time to locate peers
in the same streaming channel and exchange content availability
information between themselves. The negative redundancy ratio

% for CCTV3-Campus indicates that the video download
chunks are not sufficient for smooth video playback. As shown
in Fig. 18(a), at time min and min
for CCTV3-Campus, the download rate decreases significantly
and the PPLive playback may suffer seriously lacking of video
chunks. Given the good connectivity of campus network, this
abnormal case requires further investigation.

C. Download and Upload Video Traffic

Having isolated the video traffic, we examine the aggregate
amount of upload and download video traffic leaving and en-
tering the four peers. Fig. 18 plots the upload and download rates
of the video traffic for the four traces beginning from startup.
Each data point is the average bit rate over a 30-s interval. We
make the following observations.

1) The aggregate download rates closely hug the video play-
back rates, even for campus peers where the available

bandwidth greatly exceeds the playback rate. This is very
different from BitTorrent, which tries to use as much of its
downstream bandwidth as possible.

2) A P2P streaming peer’s aggregate upload rate can greatly
exceed the aggregate download rate. For example, we see
that for two campus peers, the upload rate exceeds the
download rate by (approximately) a factor of 10. This
is also very different from BitTorrent, whose tit-for-tat
mechanism encourages peers of roughly equal capacity to
partner with each other.

3) In a P2P streaming system, not all peers have an aggregate
upload rate exceeding the download rate. For example, we
see that one of the residential peers uploads at an average
rate approximately equal to the average download rate, and
the other residential peer does almost no uploading. Thus,
some peers act as amplifiers, pumping out bytes at rates
higher than the receive rate; some peers act as forwarders,
pumping out bytes at roughly the same average rate as the
receive rate; and some peers act as sinks, forwarding very
little traffic over their lifetimes.

One important lesson learned is that even though an access
link may have asymmetric downstream and upstream band-
widths (such as ADSL), with the downstream bandwidth being
higher than the upstream bandwidth, the actual bit rates can
have opposite behavior, with uploading rates being higher
than the downloading rates. Thus, P2P video streaming can
potentially severely stress the upstream capacity of access ISPs.

Note that in trace CCTV10-Residence, the download rate
falls significantly below the playback rate for about 4 min
at about time min. After this decrease, the peer ag-
gressively downloads from the network, downloading at a
rate higher than the playback rate for about 3 min. Then the
download rate becomes steady again. Despite the PPLive and
media player buffering, this download rate deficit may have
impacted the quality of the video playback.

Although not as high as the two campus peers, the residen-
tial peer watching CCTV3 contributed traffic volume compa-
rable to its download traffic volume. However, the other residual
peer (watching CCTV10) only uploaded 4.6 Mbytes of video to
other peers. Since the two residential peers have similar access
bandwidth, we seek an explanation for why this one peer hardly
uploaded any video. One possibility is that the other peers con-
tribute sufficient upload bandwidth, so that this residential peer
simply doesn’t need to contribute. Another possibility is that
the buffering and rendering for this residential peer lags behind
most of the other peers; thus, relatively few other peers can use
the residential peer’s chunks (as discussed in Section IV-C).
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Fig. 19. CCDF of duration of video TCP connection for CCTV3-Campus.

D. Properties of Video TCP Connections

In this section we examine the basic properties of video TCP
connections in PPLive, including connection duration, number
of partners, partner churn, and upload/download traffic to/from
partners.

1) Duration of Video TCP Connections: A video TCP con-
nection begins with the TCP SYN packet; we say that the con-
nection ends when we see a TCP FIN packet or when we see a
packet that is not followed by any other packet in the connec-
tion for 2 min. Fig. 19 provides a typical Complementary Cumu-
lative Distribution Function (CCDF) of video TCP connection
durations. Note that the durations spread over a wide range and
have a skewed distribution. The median duration is 22.5 s and
the mean is 381.1 s. Only about 10% of the connections last for
over 15 min and the longest session lasts for more than 2 h. Be-
cause many connections are short, a peer may only exchange a
few video chunks with its partner before the connection ends.

2) Number of Partners: For each of the four peers, Fig. 20
plots the number of partners (that is, its number of video TCP
connections) the peer has as a function of time. Note that
campus peers have many more partners than residential peers.
A campus peer utilizes its high-bandwidth access, maintaining
a steady number of partners for video traffic exchange. Content
popularity also has a significant impact on the number of
partners for residential peers. In particular, the residential peer
with the less-popular CCTV10 channel seems to have difficulty
in finding enough partners for streaming the media. At time

min, the number of partners drops to 1. This reduction
in partners significantly impacts the download rate of this
residential peer, as shown in Fig. 18(d). In this experiment, the
peer detected this rate reduction quickly and started to search
for new partners. New partners were quickly found and fresh
streaming flows were established; hence, the video download
rate recovered quickly as a result.

3) Dynamics of Partners: During its lifetime, a peer contin-
ually changes its partners. This is illustrated in Fig. 21, in which
the number of partners (video chunk exchange sessions) is sam-
pled every 30 s. A changed partner refers to either a new partner
or a partner that stops to exchange video chunks. For both types
of access networks, over a 30 s period, typically several partners
leave and several new partners arrive. Nevertheless, compared
with the total number of partners, the average number of the

Fig. 20. Evolution of numbers of partners for each of four peers. (a) CCTV3
and (b) CCTV10.

changed peers in 30 s is less than 10% of the total video peers for
campus peers. However, the changed partners make up a larger
percentage of the total number of partners for residential peers.
One consequence is that the download video rates of residential
peers are likely to fluctuate more significantly.

4) Locality of Partners: It would be a waste of network re-
sources to download from another continent if a channel could
be downloaded from a source in the same continent. We inves-
tigated whether a PPLive peer takes locality into account when
it determines which peer to download from. We employed the
same technique as that of Section III-D to determine the geo-
graphic location of a peer.

For the three traced peers (all located in New York) with
substantial upload traffic, Table V shows the geographic distri-
bution of the peer’s partners. We observe that a large fraction
of partners are located in Asia, and these Asian partners con-
tribute the majority of the download traffic. On the other hand,
the majority of the traffic uploaded by each of our traced peers
is to partners in North America. For example, in Table V(b),
the CCTV3-residential peer downloads 81.0% video traffic from
partners in Asia and 18.3% video traffic from partners in North
America; however, it uploads only 6.4% video traffic to Asia
and 64.1% to North America. We can see that there is still space
of improvement for PPLive to take advantage of peer locality.
It is more beneficial for the CCTV3-residential peer to down-
load more video traffic from peers in North America instead of
downloading too much video across inter-continental links.
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Fig. 21. Partner departures and arrivals. (a) CCTV3-Campus and (b) CCTV3-
Residence.

TABLE V
GEOGRAPHIC DISTRIBUTION OF PARTNERS (A) CCTV3-CAMPUS,

(B) CCTV3-RESIDENCE, AND (C) CCTV10-CAMPUS

5) Traffic Volume Breakdowns Across Video TCP Connec-
tions: Although PPLive uses a mesh-pull architecture, it is pos-
sible that the underlying traffic patterns follow those of a tree,
where each peer is primarily fed by one peer over times of min-
utes. We now disprove this conjecture.

We now examine how the download rates differ among
partners and how the upload rates differ among partners.

Fig. 22. Peer download and upload video traffic breakdown for CCTV3-
Campus. (a) Download and (b) Upload.

For a campus peer, Fig. 22(a) compares the peer’s aggregate
download video rate with the download rate from the greatest
contributing peer. This top peer contributes on average about
50% of the total video download traffic. However, the download
rate from this top peer is highly dynamic, most likely due to
the content availability from the top peer and congestion in the
network between the two peers. One important consequence is
that a peer typically receives video from more than one peer at
any given time. We also plot analogous curves, in the log scale,
for video upload in Fig. 22(b). Since the campus node uploads
to many peers, the top peer video upload session only accounts
for about 5% of the total video upload traffic.

6) Uni-Directional or Bi-Directional Traffic?: Having now
shown that a peer can be concurrently fed by multiple parents,
one may conjecture that the traffic flows are nevertheless uni-
directional, that is, between each pair of partners, traffic flows
primarily in one direction over all short time scales. We now
show by example that this conjecture does not generally hold.
In trace CCTV3-Campus, the campus peer under our control
has two neighbors A and B. As shown in Fig. 23, we plot the
video traffic download and upload bit rate between this sniffed
peer and its peer neighbors, A and B. The average time interval
is 15 s. We can clearly observe that there exists bi-directional
video traffic exchange between a pair of peers even in a small
time scale ( min).

Thus, traffic flows are neither tree-like nor unidirectional, that
is, PPLive has a true mesh overlay, without parent/child rela-
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Fig. 23. Video traffic exchange between two selected peer neighbors with the
sniffed campus peer for CCTV3-Campus. (a) Peer A and (b) Peer B.

tionships. These traffic flows are very different from those in a
P2P tree-push architecture, but are similar in spirit to those of
BitTorrent. One important lesson learned from this study is that
mesh-pull architectures are more correctly viewed as variations
on BitTorrent rather than variations on tree-push architectures
such as End-System Multicast (ESM) [4].

VI. RELATED WORK

CoolStreaming [5], the first large-scale mesh-pull live
streaming system, demonstrated the feasibility to support a
scalable video delivery service with reasonably good viewing
quality over the best-effort Internet. Performance evaluation
over the Internet and the PlanetLab showed that mesh-pull live
streaming systems achieve significant more continuous media
playback than tree based systems [18]. Research efforts and
prototyping initiatives have continued along this direction from
both the academic community and industry [19]. This new para-
digm brings opportunities as well as challenges in broadcasting
video over the Internet. Researchers have proposed a number
of mesh-pull P2P streaming systems [20], [5], [21]–[26]. These
research systems are usually evaluated via simulation or a
small-scale testbed in constrained environments. Recently,
there has been a number of theoretical studies of mesh-pull
streaming systems [16], [27].

Recently, a number of startup companies have been to pro-
vide IPTV services using mesh-pull streaming architectures

[6], [8]–[10]. The scale of these streaming networks have
exceeded that of CoolStreaming significantly. Little is known,
however, about these proprietary systems. Researchers have
begun to study various performance metrics of these systems,
including user behaviors and traffic patterns. The measurement
techniques fall into two categories: passive sniffing and active
crawling.

For passive sniffing, our previous work in [1] was the first
measurement study of a large-scale P2P streaming system to
study the traffic pattern and peer dynamics of the PPLive net-
work, which is one of the most popular IPTV systems. Our
work was followed by two other passive measurement studies
[28] and [29]. Ali et al. [28] focus on the traffic characteris-
tics of controlled PPLive peers on PPLive and SopCast. Passive
sniffing was also utilized to study the traffic pattern of PPLive,
PPStream, TVAnts, and SopCast in [29].

Passive sniffing techniques are often constrained to measure a
small set of controlled peers. We also developed active crawling
apparatus to measure the global view of the PPLive network in
[12]. After our work in [12], another crawler-based measure-
ment study was conducted in [30]. Vu et al. [30] only focused
on the measurement of peer dynamics for a small number of
PPLive channels.

There are a number of measurement studies of other types
of P2P systems, including file sharing, content-distribution,
and VoIP. For file sharing, Saroiu et al. measured the Napster
and Gnutella [31] and provided a detailed characterization
of end-user hosts in these two systems. Their measurement
results showed significant heterogeneity and lack of cooper-
ation across peers participating in P2P systems. Gummadi et
al. monitored KaZaa traffic [32] for characterizing KaZaa’s
multimedia workload and they showed locality-aware P2P
file-sharing architectures can achieve significant bandwidth
savings. Ripeanu et al. crawled the one-tier Gnutella network
to extract its overlay topology. For the latest two-tier Gnutella
network, Stutzbach et al. provided a detailed characterization
of P2P overlay topologies and their dynamics in [33]. Liang
et al.. deployed active crawling in [34] to reveal in-depth
understanding of the KaZaa overlay structure and dynamics. In
[35], Liang et al. further demonstrated the existence of content
pollution and poisoning in KaZaa using an active crawler.

A measurement study was carried out for the live streaming
workload from a large content delivery network in [36]. For con-
tent distribution, Izal et al. and Pouwelse et al. reported mea-
surement results for BitTorrent [37] and [38]. For VoIP, two
measurement studies of Skype are available [13] and [39]. A
detailed protocol analysis of Skype was presented in [39] and
Skype traffic pattern reported in [13] differs fundamentally from
previous file-sharing P2P systems.

VII. CONCLUSION

IPTV is an emerging Internet application which may dramat-
ically reshape the traffic profile in both access and backbone
networks. We conducted a measurement study on a popular P2P
IPTV application, PPLive. Our study demonstrates that the cur-
rent Internet infrastructure is capable of providing the perfor-
mance requirements of IPTV at low cost and with minimal ded-
icated infrastructure. Through passive and active measurements,
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we characterized P2P IPTV user behaviors and traffic profiles at
packet, connection and application levels. More importantly, the
measurement results provide an understanding of how to archi-
tect a successful large scale P2P IPTV system. Insights obtained
in this study should be valuable for the development and deploy-
ment of future P2P IPTV systems.

Although large-scale P2P IPTV systems are feasible in
today’s Internet, this class of applications is in its infancy, and
performance remains to be improved in several directions.

• Shorter Start-Up Delay. We showed that at start-up,
PPLive buffers tens of seconds of video before playback to
compensate for peer churn and rate fluctuations of video
connections. However, many users of ordinary television
enjoy rapidly switching among channels. Thus, if P2P
IPTV is truly going to enhance ordinary television, the
start-up delay needs to be reduced to from tens of seconds
to a few seconds. Possible directions to be investigated
include redundant downloading and/or network coding of
video chunks. This would come at the price of increased
video traffic redundancy.

• Higher Rate Streaming. Unlike the BitTorrent file distribu-
tion system, it is difficult to enforce the tit-for-tat policy
in a P2P streaming system, since many peers have upload
capacity less than the compressed playback rate of video.
To compensate, peers with higher uploading capacity up-
load much more than what they download to sustain steady
playback at all peers. To support higher bit rates, the work-
load on those “amplifier” nodes will be further increased.
It becomes questionable whether an ordinary peer, and the
access ISP to which it is connected, will have the capa-
bility and incentive to continue to provide the additional
upload traffic. Thus, in the future, some level of dedicated
infrastructure (such as dedicated proxy nodes), may have
to be combined with the P2P distribution to deliver videos
at higher rates.

• Smaller Peer Lags. In our measurement study we observed
large playback lags, that is, some peers watch frames
in a channel minutes behind other peers. To reduce the
lags, better peering strategies and video chuck scheduling
schemes are needed.

• Better NAT Traversal. We observed lots of private IP ad-
dresses in collected peer lists. The peers behind NATs are
often not fully reachable. To utilize the uploading capaci-
ties from peers behind NATs, better NAT traversal schemes
need to be employed.
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