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ABSTRACT
Live peer-to-peer (P2P) streaming has recently received much re-
search attention, with successful commercial systems showing its
viability in the Internet. Nevertheless, existing analytical studies
of P2P streaming systems have failed to mathematically investi-
gate and understand their critical properties, especially with alarge
scaleand underextremedynamics such as aflash crowdscenario.
Even more importantly, there exists no prior analytical work that
focuses on an entirely new way of designing streaming protocols,
with the help ofnetwork coding. In this paper, we seek to show
an in-depth analytical understanding of fundamental properties of
P2P streaming systems, with a particular spotlight on the benefits
of network coding. We show that, if network coding is used accord-
ing to certain design principles,provablygood performance can be
guaranteed, with respect to high playback qualities, short initial
buffering delays, resilience to peer dynamics, as well as minimal
bandwidth costs on dedicated streaming servers. Our results are
obtained with mathematical rigor, but without sacrificing realistic
assumptions of system scale, peer dynamics, and upload capaci-
ties. For further insights, streaming systems using network coding
are compared with traditional pull-based streaming in large-scale
simulations, with a focus on fundamentals, rather than protocol de-
tails. The scale of our simulations throughout this paper exceeds
200, 000 peers at times, which is in sharp contrast with existing
empirical studies, typically with a few hundred peers involved.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed Applications; C.4 [Performance of Systems]:
Design Studies

General Terms
Algorithm, Design, Performance

∗This work was supported in part by Bell Canada through its Bell
University Laboratories R&D program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’08, October 26–31, 2008, Vancouver, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-303-7/08/10 ...$5.00.

Keywords
Peer-to-Peer Streaming, Performance Analysis, Network Coding

1. INTRODUCTION
There is no need to convince any reader in multimedia network-

ing systems that live peer-to-peer (P2P) multimedia streaming sys-
tems over the Internet are widely deployed with commercial suc-
cess in real-world applications. The essential advantage of peer-
to-peer streaming is to dramatically increase the number of peers
a streaming channel may sustain with dedicated streaming servers.
Intuitively, as participating peers contribute their upload bandwidth
capacities to serve other peers in the same channel, the load on ded-
icated streaming servers is significantly mitigated.

Even with wide research attention, however, a number of funda-
mental performance metrics that characterize “good” P2P stream-
ing systems are not yet well understood.First, if media segments
do not arrive in a timely fashion, they have to be skipped at play-
back, which degrades theplayback quality. How do we maintain
a high playback quality at all participating peers?Second,an ini-
tial buffering delaymust be experienced by a peer when it first
joins or switches to a new channel. How do we improve user ex-
perience with the shortest initial buffering delay?Third, how do
we encourage maximum bandwidth contribution from participating
peers, which in turn minimizesserver bandwidth costs— a sizable
operational expense?Finally but not the least important, how do
we design a system thatscaleswell to accommodate a large flash
crowd and a high degree of peer dynamics?

At first glance, designing a new P2P streaming system that en-
joys good performance with respect to all of these performance
metrics may appear too good to be true. Our rescue comes from
the use ofnetwork coding. How would network coding be ap-
plied to P2P streaming?In traditional P2P streaming protocols,
the media stream to be served is divided intosegments, such that
they can be better exchanged among peers. In a new protocol that
uses network coding, each segment is further divided intom blocks
[b1, b2, . . . , bm]. Whenever a peer is to serve a segment to another
peer, it sends linear combinations of blocks within this segment
with random coefficients. Afterm linearly independent combina-
tions of blocks in a segment have been received, the original seg-
ment can be reconstructed using Gaussian elimination.

How would network coding be helpful in P2P streaming?In
traditional pull-based streaming protocols, a segment can only be
served by one upstream peer at a time. With the help of network
coding, however, a missing segment on a downstream peer can be
served bymultipleupstream peers simultaneously. This allows the
use of much larger segments, leading to smaller segment availabil-
ity bitmaps to be exchanged. More importantly, this also implies
that peers may be able to serve more, as a peer has an opportu-



nity to serve others as long as it possesses any segment that is not
completely received by its neighbors. With peers contributing more
upload bandwidth, less server bandwidth is consumed.

In this paper, we seek to mathematically analyze and under-
stand new streaming systems with network coding, with a focus on
playback quality, initial buffering delays, server bandwidth costs,
as well as extreme peer dynamics. Rather than protocol details,
we focus on the fundamental properties that network coding helps
achieve. Rather than static systems that previous papers attempted
to analyze, we focus on highly dynamic systems, including flash
crowds. Rather than typical simulations with hundreds of peers in-
volved, our simulations throughout the paper reach200, 000 peers
at times, and routinely exceed10, 000 peers.

We identify several simple design principles for streaming sys-
tems with network coding and show that any streaming protocol
following our design principles is sufficient to achieveprovably
good overall performance in realistic settings. In particular, we
have proved that our design principles naturally lead to a near-
optimal streaming rate and very short initial buffering delays during
flash crowds. We also show that a reasonable server bandwidth cost
is enough to handle even the most volatile peer dynamics with ease
when adopting our design principles. To our knowledge, there has
been no existing work in the literature that provides a thorough an-
alytical understanding of highly dynamic P2P streaming systems
with large scales, with or without network coding.

The remainder of the paper is structured as follows. In Sec. 2, we
highlight our original contributions in the context of related work.
Sec. 3 discusses our design principles for streaming systems with
network coding, and develops the theoretical framework in realis-
tic settings. Sec. 4 presents our main analytical results with a focus
on the provably good performance with network coding. Sec. 5
conducts a series of large-scale simulations to compare our proto-
cols with traditional pull-based streaming protocols. Finally, Sec. 6
concludes the paper.

2. RELATED WORK
With a large number of P2P streaming protocols proposed, they

generally fall into two strategic categories.Tree-based pushstrate-
gies (e.g., [14]) organize participating peers into one or more mul-
ticast trees, and push streaming content along these trees.Mesh-
based pullstrategies (e.g., [18]), instead, organize peers into a di-
rected graph referred to as amesh,in which segment availability
bitmaps of streaming buffers are periodically exchanged among
neighboring peers. Compared to tree-based strategies, mesh-based
pull strategies are more resilient to peer dynamics and simpler to
implement. However, such resilience is achieved at the cost of in-
creased delay of distributing live content from servers to all partic-
ipating peers, due to delays caused by periodic exchanges of seg-
ment availability [17]. Nevertheless, all real-world systems (e.g.,
PPLive) are implemented using mesh-based pull strategies, mostly
due to its simplicity.

Unique in the literature, this paperanalyticallystudies a design
alternative to existing strategies:network coding. Rather than de-
signing a particular protocol using a network coding and trying to
evaluate the design with empirical studies involving hundreds of
peers (as we have performed in our previous work [15, 16], as well
as Annapureddyet al. [1] for Video-On-Demand systems), we fo-
cus on an analytical study to demonstrate provably good perfor-
mance when network coding is used. Rather than developing a
segment scheduling algorithm based on network coding to satisfy
strict playback deadline constraints (e.g.,[3] in the context of VoD
systems), we focus on fundamental design principles and asymp-
totic properties, and do not discuss protocol details on purpose.

Table 1: Theoretical Studies on P2P Streaming

Decen- Hetero-
tralized

Dynamics
geneity

Coding

This paper
√ √ √ √

Massoulieet al. [13]
√ × √ ×

Bonaldet al. [2]
√ × × ×

Zhouet al. [19]
√ × × ×

Kumaret al. [8] × √ √ ×
Y. Liu [12] × × √ ×
S. Liu et al. [11] × × √ ×

Beyond protocol design, there exist a small number of previous
papers that focused on analytical studies of P2P streaming proto-
cols, without using network coding. Massoulieet al. [13] proposed
a push-based streaming protocol and proved it is able to achieve
the optimal streaming rate for static streaming systems with known
edge or node capacities. It remains an open problem how this pro-
tocol performs in dynamic systems, which is precisely the focus of
our system model in this paper. Although Massoulieet al. gave a
rate optimality result, they did not provide any performance guar-
antees on the delay performance, which we believe are more im-
portant than the maximum sustainable streaming rate, as bit rates
of most multimedia streams are knowna priori. In fact, Bonald
et al. [2] (with Massoulie as a co-author) later pointed out that the
delay performance of the original Massoulie protocol is poor, and
proposed several new push-based protocols in order to improve the
delay performance. Bonaldet al. proved that some of these new
protocols can successfully achieve near-optimal rate and delay in
static streaming systems. However, their theoretical results rely
heavily on the assumption of homogeneous peer upload capacities,
which we do not make in our system model. In addition, they only
focused on the delay of distributing live content, whereas our work
explore initial buffering delays as well.

Instead of push-based protocols (which were not widely imple-
mented in real-world applications), Zhouet al. [19] studied pull-
based streaming protocols, with a focus on the impact of segment
selection strategies. They further proposed a mixed strategy in or-
der to achieve both good playback quality and good delay perfor-
mance for a given streaming rate. However, they again considered
staticstreaming systems withhomogeneouspeer upload capacities,
while we focus on highlydynamicsystems withheterogeneousup-
load capacities. In addition, they did not investigate the bandwidth
costs on dedicated streaming servers, whereas our work analyti-
cally quantifies such costs and further reveals several interesting
finds.

With respect to performance bounds in centralized P2P stream-
ing systems, Kumaret al. [8] studied the maximum sustainable
streaming rate in dynamic mesh-based systems. Liu [12] provided
the minimum delay for static mesh-based systems. Liuet al. [11]
derived the minimum server bandwidth costs and maximum stream-
ing rate for static tree-based systems. However, all of them criti-
cally depend oncentralizedscheduling algorithms to approach the
optimal values, whereas the streaming protocols that we analyze
in this paper is fullydecentralized, while still achieving provably
good performance. Intuitively, centralized protocols are impossible
to implement realistically, especially in large scale systems.

Different from previous analytical papers on P2P streaming sys-
tems, as outlined in Table 1, we provide a rigorous performance
analysis on new streaming systems that follow our design princi-
ples, simultaneously considering a number of performance met-
rics: playback quality, sustainable streaming rate, initial buffer-



ing delays, resilience to peer dynamics, as well as bandwidth costs
on dedicated streaming servers. In addition, the simplicity in our
design principles enables us to use a morerealistic system model
without restricting our analysis to centralized protocols. In partic-
ular, we consider highly dynamic systems with volatile peers and
heterogeneous peer upload capacities.

3. STREAMING WITH NETWORK CODING
Before we venture into theoretical analysis, we first present an

overview of our design principles for live P2P streaming systems
with network coding. In this paper, we focus on fundamental char-
acteristics of streaming systems using our design principles, and
do not discuss protocol design details on purpose. For brevity, a
streaming protocol that uses network coding following our design
principles in this section is referred to asCODING.

The first motivating factor of using network coding in a new
streaming system is to improve playback quality. Intuitively, as
coded blocks are received from multiple senders, it is helpful to re-
ceive a media segment in a timely manner. It turns out that network
coding can also help to simplify the protocol design, shorten initial
buffering delays, and minimize server bandwidth costs by allowing
more bandwidth contributions from peers. In this section, we are
able to intuitively explain these benefits of network coding.

3.1 Random Push on a Random Mesh Struc-
ture

In traditional mesh-based pull streaming strategies (henceforth
referred to asPULL for brevity), the live stream to be served is
divided intosegments, such that their availability can be better ex-
changed among peers (usually as a bitmap). InCODING, much
larger segments are used, and each segment is further divided into
m blocks, with a fixed number of bytes in each block. The coding
operation is only performed within each segment, but not across
different segments. This is primarily designed for the purpose of
reducing the number of blocks to code, leading to much reduced
encoding and decoding complexity.

current playback

point

playback buffer

size

segment s

b1 b2 b3  

c2

x

c1 c3

Figure 1: An example to illustrate the coding operation on peer
p, where peerp has received3 coded blocks within the segment
s, and each segment consists of6 blocks.

Suppose a peerp has receivedk (k ≤ m) coded blocks within
a segments so far, denoted as[b1, b2, . . . , bk]. When peerp is to
encode segments for its downstream peers, as shown in Fig. 1,
it independently and randomly chooses a set of coding coefficients
[c1, c2, . . . , ck] in a Galois field for each coded block, and then pro-
duces one coded blockx in the form ofx =

Pk

i=1 ci · bi. Results
from random network coding [7] ensure that with high probability,
the coded blockx is useful to such downstream peers that have not
completely received the segments (refer to Sec. 4.4 for a detailed
discussion).

By sending coded blocks instead of an entire segment, multi-
ple upstream peers may serve a missing segment on a common
downstream peer simultaneously without any explicit coordination.
This excellent property of cooperative transmission is illustrated in
Fig. 2. In this way, peers are able to performpushoperations on a

random mesh structure, without assuming the risk of sending dupli-
cate segments. Intuitively, such push operations not only eliminate
the need of request messages, but also lead to much shorter initial
buffering delays, as demonstrated by their counterpart—tree-based
push operations.

upstream peers of peer p

downstream peers served by peer p

on peer p

Figure 2: An illustration of random push on a random mesh
structure. With network coding, multiple upstream peers are
able to perform push operations on coded blocks within a seg-
ment without any explicit coordination.

From the viewpoint of a downstream peer, after it has completely
receivedm linearly independent coded blocks within a segment,
this downstream peer can successfully decode the original segment
with Gaussian or Gauss-Jordan elimination. Again, in this pa-
per, we are not concerned with the detailed design of a particular
streaming protocol using network coding.

3.2 Timely Feedback from Downstream Peers
Before sending coded blocks, an upstream peer should obtain

precise knowledge of the missing segments on its downstream peers
at any time. This requires any peer in the system to exchange its
segment availability bitmaps of streaming buffers, which are com-
monly referred to asbuffer maps. In PULL, to avoid excessive over-
head, these buffer maps are exchanged periodically; the more fre-
quent such exchanges are, the closerPULL is to a streaming proto-
col using the tree-based push strategy. It would be ideal to send a
new buffer map whenever the buffer status changes — when it has
played back a segment, or when it has completed the downloading
of a segment. Due to the size of such buffer maps inPULL and the
frequency of buffer status changes, such a “real-time” push strategy
of buffer maps leads to excessive overhead.

A typical playback buffer in PULL

A typical playback buffer in CODING

Figure 3: An illustrative comparison of playback buffers be-
tweenCODING and PULL .

With network coding, however, such a “real-time” buffer map
push is a feasible strategy. Since much larger segments are used,



not only the size of buffer maps is an order of magnitude smaller,
but there are much fewer segments in the buffer as well. This leads
to less frequent buffer status changes, as it takes much longer to
finish downloading or to playback a larger segment. Such a “real-
time” push of buffer maps makes it possible topushcoded blocks to
downstream peers without any explicit requests, until the segment
is fully received at downstream peers.

Why is CODING able to use much larger segments thanPULL?
We emphasize again that a missing segment on a downstream peer
in CODING can be served by multiple upstream peers, while a seg-
ment inPULL can only be served by one upstream peer. Thus, the
process of receiving a larger segment is not adversely affected by
the departure of a subset of upstream peers inCODING.

3.3 Synchronized Playback and Initial Buffer-
ing Delays

The use of much larger segments also makes it easier to synchro-
nize playback buffers on all participating peers, so that all peers
play the same segment at approximately the same time. One ad-
vantage of suchsynchronized playbackis that, peers can help each
other more effectively, as their playback buffers overlap as much
as possible. With network coding, as larger segments are used,
it is more important to feature synchronized playback. When a
peer joins a streaming session, it first retrieves buffer maps from its
neighboring peers, along with the information of the current seg-
ment being played back. The new peer then skips a few segments
and only retrieves segments that areD seconds after the current
point of playback. The peer starts playback after preciselyD sec-
onds elapsed in real time, regardless of the current status of the
playback buffer. As shown in Fig. 4, the duration ofD seconds
corresponds to theinitial buffering delay, which depends on the
number of segments to be skipped and the current point of play-
back.

We naturally wish to shorten such an initial buffering delay, as
it is one of the most important performance metrics that affect user
experience when switching to a new channel. We thus let every
peer skip onlytwosegments when it first joins or switches to a new
channel. In addition, we adopt a simple segment and peer selection
strategy with network coding: a peer selects the most urgent seg-
ment (closest to the playback deadline) and pushes coded blocks
in this particular segment to a limited number of its downstream
peers. These limited number of peers are chosen uniformly at ran-
dom from the downstream peers which have not fully received the
particular segment. Since all upstream peers use the same strategy,
a new peer who recently joined a streaming channel will naturally
receive coded blocks from a large number of existing peers, sat-
urating its downloading capacity, which leads to a shorter initial
buffering delay.

3.4 System Model and Notations
Finally, for the sake of mathematical tractability, we make a few

assumptions in our system model. The key notations introduced
in the system model is summarized in Table 2 for easy reference.
First, in accordance with measurement studies of existing P2P sys-
tems (e.g., [6]), we assume peer upload capacities are the only bot-
tlenecks in the streaming system.Second,to characterize the het-
erogeneity in terms of peer upload capacities, we adopt the two-
class model in [8], in which peers in the system are broadly clas-
sified into two classes, with each class having approximately the
same upload capacity. This assumption is reasonable as there are
roughly two classes of peers in P2P streaming systems: high band-
width Ethernet peers and low bandwidth DSL peers.

Although we assume only two classes in this paper, our analysis

current playback

point

segment 2segment 1 segment 3 segment 4

2 segments to be skipped

 D seconds
start playback

here

A typical playback buffer on existing peers

A typical playback buffer on newly joined peers

segment 3 segment 4

Figure 4: An illustration of initial buffering delays in CODING ,
which shows that the initial buffering delay on a newly joined
peer is determined by the number of segments to be skipped
and the current point of playback.

can easily be extended along the same lines to accommodate more
classes of peer upload capacities. The upload capacity of a class-i
peer is denoted asUi (i ∈ {1, 2}). Without loss of generality, we
assume the block size is1 andU1 > U2. We useUp to represent the
averageupload capacity of participating peers andup to represent
the ratio of the average upload capacityUp to the streaming rate
R. Similarly, we denote byUs the upload capacity of dedicated
streaming servers and denote byus the ratio of the server capacity
Us to the streaming rateR.

Table 2: Key Notations in the System Model

Ui Upload capacity of a class-i peer (in blocks per second).
Up Average upload capacity of participating peers.
Us Server upload capacity (in blocks per second).
R Streaming rate (in blocks per second).
D Initial buffering delay (in seconds).
N Scale of a flash crowd.
α Fraction of redundant blocks induced by network coding.
m Number of coded blocks in a segment.
up Relative average peer capacity(= Up/R).
us Relative server capacity(= Us/R).
δ Server strength(= Us

NUp
).

With respect to peer dynamics, we focus on two typical scenar-
ios: theflash crowdscenario andhighly dynamicscenario. During
a flash crowd, most of the peers join the system in a short time
period, just after a new live event has been released. In a highly dy-
namic scenario, peers join and leave the system in a highly volatile
fashion, also referred to aspeer churn. For a better flow of pre-
sentation, we defer detailed characterizations of peer dynamics in
Sec. 4.

4. PERFORMANCE ANALYSIS OF CODING
Under our system model, we seek to investigate the overall per-

formance ofCODING. In particular, we provide quantitative an-
swers to the following two questions:

⊲ What are the sufficient conditions forCODING to achieve
good overall performance?

⊲ How far from optimality is the performance ofCODING?

We believe such performance analysis is crucial to understand
the fundamental properties and limitations ofCODING, as well as
to explore whether the performance gap betweenCODING and opti-
mal streaming scheme is large enough to motivate more elaborated
designs.



4.1 Flash Crowd Scenarios
In a flash crowd scenario, most of the peers join the system at

approximately the same time. For presentation clarity, we assume
time isslottedin the sense that it takes one time slot to playback a
segment. We further assume that most peers join the system within
one time slot. We emphasize here these assumptions are not neces-
sary, and can easily be relaxed in our analysis. We now introduce
the following definitions.

DEFINITION 1. The scale of a flash crowd, denoted byN , is
defined as the maximum number of peers in the system during the
flash crowd.

DEFINITION 2. The server strength, denoted byδ, is defined as
follows:

δ =
Us

NUp

,

whereUp is the average upload capacity of participating peers,
andUs is the server upload capacity.

The following theorem establishes the sufficient conditions on
smooth playback at a streaming rateR during any flash crowd with
scaleN , for given server capacityUs and average peer capacity
Up.

THEOREM 1. Assume that the following conditions hold:

Us + NUp = (1 + ε)NR, (1)

ε = α +
ln(1 + δ) − ln δ

m
, (2)

wherem is the number of coded blocks in each segment, andα
denotes the fraction of linearly dependent coded blocks induced by
network coding (refer to Sec. 4.4 for details). ThenCODING is able
to achieve perfect playback quality at a streaming rateR for any
flash crowd with scaleN .

Theorem 1 implies that heterogeneity in peer upload capacities
is not an issue inCODING. Intuitively, this is a consequence of
the random push operations, which naturally empower high band-
width peers to contribute more bandwidth resources. For a better
flow of presentation, we defer the formal proof of Theorem 1. We
now apply Theorem 1 to understand the performance gap between
CODING and optimal streaming scheme in terms of the sustainable
streaming rate and initial buffering delay, which leads to the fol-
lowing two interesting theorems.

THEOREM 2. In terms of the sustainable streaming rate,COD-
ING is within a factor of1 + ε of the optimal streaming scheme,
whereε is given by

ε = α +
ln(1 + δ) − ln δ

m
,

andα is typically in the order of0.1% (refer to Sec. 4.4 for details).

Proof: Note that the maximum bandwidth supply during a flash
crowd with scaleN is given byUs + NUp. This maximum band-
width supply, if could be achieved, needs to be distributed to all
participating peers in the system. Thus the maximum sustainable
streaming rateRmax is bounded by(Us + NUp)/N , which serves
as an upper bound foranystreaming scheme.

Theorem 1 shows thatCODING is able to support a streaming
rate given by

R =
Us + NUp

(1 + ε)N
.

We conclude thatR ≥ Rmax

1+ε
, that is,CODING is within a factor

of 1 + ε of the optimal scheme in terms of sustainable streaming
rate.

Theorem 2 demonstrates thatCODING is near-optimal in terms
of sustainable streaming rate during a flash crowd. We provide a
simple numerical example here. Let us set the server strengthδ to
0.001, and the number of coded blocks in each segmentm to 100,
then we can easily calculate the sustainable streaming rate inCOD-
ING, which satisfiesR ≥ Rmax

1.07
. This is due to the near-optimal

bandwidth utilization enjoyed byCODING. During a flash crowd,
a newly joined peer is able to effectively utilize its upload capac-
ity immediately after receiving one or more coded blocks. How-
ever, in traditional pull-based protocols, such bandwidth utilization
is impaired by the need of exchanging buffer maps and waiting for
explicit requests.

THEOREM 3. In terms of the initial buffering delay,CODING is
within a factor of2(1 + ε) of the optimal streaming scheme, where
ε is given by

ε = α +
ln(1 + δ) − ln δ

m
.

Proof: Note that inCODING, each peer buffers at least one segment
(m blocks) in order to maintain smooth playback during the flash
crowd. This process takes at leastNm

Us+NUp
seconds, since the max-

imum bandwidth supply isUs + NUp. Thus the minimum initial
buffering delay satisfies

Dmin ≥ Nm

Us + NUp

,

which holds forany streaming scheme trying to buffer at leastm
blocks on each peer.

Now recall that inCODING, every new peer skips only two seg-
ments before the actual playback, thus the initial buffering delay
satisfies

D ≤ 2
m

R
.

Combining these two results with Theorem 1, we conclude that
D ≤ 2(1 + ε)Dmin.

Theorem 3 shows thatCODING manages to guarantee very short
initial buffering delays during a flash crowd. This is in sharp con-
trast toPULL, which suffers from long initial buffering delays due
to inherent design limitations [17]. Theorem 2 and Theorem 3,
when taken together, suggest that the performance gap between
CODING and optimal streaming scheme is surprisingly small with
regard to user experience.

In addition to user experience, the server bandwidth cost is also
an important metric, as it directly determines most of the ongo-
ing operational expense for streaming companies. However, it is
an open problem to determine the minimum server bandwidth cost
during a flash crowd for mesh-based streaming systems, with or
without network coding. We therefore only characterize the re-
quired server capacity inCODING without a comparison to the op-
timal scheme. For convenience, we use the relative upload capacity
(the ratio of upload capacity to the streaming rate) in the remaining
part of this section.

THEOREM 4. Letus denote the required relative server capac-
ity that supports perfect playback quality at a streaming rateR
during a flash crowd with scaleN , thenus = Nupδ∗, whereδ∗ is
the minimumδ such that

`

(1 + δ)up − 1 − α
´

m ≥ ln(1 + δ) − ln δ,

andup is the relative average peer capacity.
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Figure 5: Validation of the required relative server capacity in
several different flash crowd scenarios (theoretical results use
dashed lines; simulation results use solid points). In (a), we set
the number of coded blocks in a segmentm to 100 and vary
the relative average peer capacityup from 1.05 to 1.09; while
in (b), we setup to 1.05 and vary m from 100 to 200. We can
see that analytical results match simulation results quite well,
especially when the system scale is larger than100, 000.

This theorem is a simple corollary of Theorem 1. We omit the
proof here due to space constraints.

Fig. 5 compares the required relative server capacity obtained
by Theorem 4 and by running large-scale simulations, in a number
of different flash crowd scenarios. We observe that our analytical
results correctly predict the required server capacity, both qualita-
tively and quantitatively, especially when the scale of a flash crowd
is larger than100, 000. This is because the proof of Theorem 4
requires the scale of a flash crowdN to be sufficiently large, which
indicates the larger the scale, the better the prediction.

As seen from Fig. 5, the required server capacity is only about
10 times the streaming rate, in order to support a flash crowd with
scale200, 000 in the scenario of{up = 1.09, m = 100} or {up =
1.05, m = 200}. We also observe that the required server capacity
is sensitive to the system parametersup andm. This is again due
to the near-optimal bandwidth utilization property.

So far, we have used a complete graph to represent the mesh
structure in our analysis and simulations. However, a complete
graph is hard to implement in practice because of overhead issues.
In practical streaming systems, each peer maintains a limited num-
ber of neighbors in order to reduce the overhead of exchanging
buffer maps. It is thus of great interest to investigate the impact of
restricted neighborhoods.

Instead of a complete graph, we now use a random graph to
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Figure 6: Impact of restricted neighborhoods on the playback
quality, with 95% confidence intervals. In (a), we set the rela-
tive average peer capacityup to 1.05 and the number of coded
blocks in a segmentm to 100; while in (b), we setup to 1.07
and m to 100. The required relative server capacities in these
two cases are49 and 98, respectively, under the assumption of
complete graphs. By restricting the size of neighborhood, we
observe that the playback quality is still close to1, as long as
the average size of neighborhood is larger than50.

model the mesh structure in our simulations. More specifically,
when joining the system, each peer chooses a limited number of
neighbors uniformly at random among all existing peers in the sys-
tem. We let the average size of neighborhood vary from20 to 100.
We usecontinuity[19] as the metric of playback quality, which is
defined as the number of peers that have successfully played the
segment in each time slot divided by the total number of participat-
ing peers. Due to space limitations, we only present our simulation
results of two scenarios in Fig. 6 , although we have repeated our
experiments in many other scenarios and have obtained similar re-
sults. The required relative server capacities in these two scenarios,
predicted by Theorem 4, are49 and98, respectively.

Fig. 6 suggests that the playback quality is close to0.98, as long
as each peer maintains around50 neighboring peers, which is a
substantially small number compared to the total number of partic-
ipating peers. In addition, the playback quality is close to1 (the
case of complete graphs), if the size of neighborhood is increased
to 100. Moreover, we observe that such a trend is insensitive to
the scale of flash crowds. All of these imply thatCODING only
requires a small size of neighborhood in order to achieve good per-
formance even in large scale systems. This is not a coincidence, for
our proofs of Theorem 1 and Theorem 4 do not depend heavily on
the complete graph assumption, as shown in Sec. 4.3.



4.2 Highly Dynamic Scenarios
Let us turn to the highly dynamic scenario, in which peers join

and leave the system in a highly volatile fashion. Without loss of
generality, we only focus on the system performance in current
time slot. We first introduce some notations here. We denote by
Ni the number of class-i peers in the system at the beginning of
current time slot. To characterize peer dynamics in current time
slot, we denote byAi andWi the number of arrivals and depar-
tures of class-i peers in current time slot. These peer dynamics
would clearly degrade user experience to a certain degree. How-
ever, this effect is not a major focus in this section, as most com-
mercial streaming systems have resorted to the over-provisioning
server upload capacity to handle peer dynamics. A more interest-
ing problem is therefore to quantify such over-provisioning server
upload capacity.

Denote the most urgent segment (i.e., the segment to be played
in the next time slot) as segments. First, we observe that the ar-
rivals ofAi new peers in current time slot do not affect the playback
quality of segments, as these new peers simply skip segments af-
ter they join the system. In contrast, the departures ofWi existing
peers play a central role in the playback quality, which will be in-
vestigated in the sequel.

Recall that a class-1 peer is a high bandwidth peer, which pro-
duces more bandwidth supply than its bandwidth consumption. As
a result, the earlier it leaves the system, the worse the playback
quality may be. Similarly, the later a low bandwidth peer leaves the
system, the worse the playback quality becomes. To summarize,
the worst case in current time slot is as follows: allW1 departures
of high bandwidth peers happen at the beginning of current time
slot, while allW2 departures of low bandwidth peers occur at the
end of current time slot. This observation leads to the following
theorem.

THEOREM 5. The additional server capacity, which is required
to handle peer dynamics in current time slot, is strictly less than
W1U1 − (1 + ε)W1R.

Proof: On the one hand, suppose there is no peer dynamics in cur-
rent time slot, then the required server capacityUs, according to
Theorem 1, is given as follows:

Us + N1U1 + N2U2 = (1 + ε)(N1 + N2)R. (3)

On the other hand, to handle the worst case peer dynamics, the
required server capacityU ′

s should satisfy

U ′
s + (N1 − W1)U1 + N2U2 = (1 + ε′)(N1 + N2)R. (4)

Notice thatε > ε′. Combining this with (3) and (4), we obtain

U ′
s − Us < W1U1 − (1 + ε)W1R.

That is, the additional server capacity is strictly less thanW1U1 −
(1 + ε)W1R.

Theorem 5 gives an upper bound for the additional server capac-
ity to handle peer dynamics. For convenience, we restate Theo-
rem 5 in terms of relative capacity. That is, the relative additional
server capacity is strictly less thanW1u1 − (1 + ε)W1, where
u1 is the ratio of U1 to the streaming rateR. Simulation results
are shown in Table 3. We use a relative average peer capacity of
1.08 to represent the case where bandwidth supply outstrips de-
mand, and a relative average peer capacity of1.02 to represent
an approximate match between the supply and demand. We ob-
serve our theoretical bound matches simulation results well when
bandwidth supply barely exceeds bandwidth demand (up = 1.02),
while the bound turns out to be loose when supply outstrips the
demand (up = 1.08).

Table 3: Theoretical and simulation results for relative addi-
tional server capacity to handle peer dynamics in the worst
case. We can see that the theoretical bound is tight when
bandwidth supply barely exceeds bandwidth demand, while the
bound is loose when supply outstrips demand. In our simula-
tions, we set the system scaleN to 10, 000, the ratio u1 to 2, and
the ratio u2 to 0.5.

up = 1.02 up = 1.08W1

N1 Bound Simulation Bound Simulation
0.01 33 22 35 2
0.02 67 46 71 4
0.03 100 69 106 7
0.04 133 94 142 11
0.05 166 119 177 16

After performing the worst case analysis as above, we now turn
to a study of the average case, where peer departures may occur at
any time in current time slot, rather than only at the beginning or at
the end. We run a set of simulation-based experiments by varying
the total number of peer departures in current time slot. We use
the termchurn rate to represent the ratio of the number of peer
departures to the total number of participating peers (set to10, 000
in our simulation). The effect of churn rate is shown in Table 4. We
observe that as churn rate increases, the additional required server
capacity also increases. Moreover,CODING can survive a churn
rate of50% using an additional capacity of less than10, which is
in sharp contrast with the situation in the worse case analysis. The
intuition is that, the high bandwidth peers, if not leaving the system
at the very beginning of current time slot, are still able to contribute
more bandwidth resources than what they have consumed, thereby
mitigating the load on streaming servers.

Table 4: Simulation results for relative additional server capac-
ity to handle peer dynamics in the average case. We can see that
only a small amount of additional server capacity is required,
even when50% peers leave the system. We set the system scale
N to 10, 000 in our simulations.

churn rate 10% 20% 30% 40% 50%
additional capacity 1 2 4 6 8

4.3 Formal Proof of Sufficient Conditions
We now proceed to present a formal proof of Theorem 1, which

is instrumental to establish an in-depth understanding ofCODING.
Let ui be theratio of the upload capacity of a class-i peerUi to the
streaming rateR. Let Ni be the number of class-i peers during a
flash crowd. Clearly, we have

P

i Ni = N and the relative average
peer capacityup = (N1u1 + N2u2)/N , whereN is the scale of
the flash crowd.

Recall that the most urgent segment is denoted as segments. We
define a peer as a “working” peer if it has received one or more
coded blocks within segments and as an “idle” peer otherwise. We
denoteXi as the number of class-i peers in the “idle” state. We
further denote byW the number of peers that have completely re-
ceived segments. Recall that each working peer, when sending a
coded block, selects a downstream peer uniformly at random from
those that have not completely received segments. Thus, the prob-
ability that an idle peer of class-i has been chosen by any working
peer is given byXi/(N − W ). This defines a continuous-time
random process{Xi}i∈{1,2} with transition rates:

Xi : k → k − 1 at rate
Xi

N − W

`

us +
X

j

uj(Nj − Xj)
´

.



Here we need to make a technical assumption in order to ap-
ply this random process. That is, the transfer time of a block be-
tween two peers or a server and a peer is exponentially distributed,
with the mean corresponding to the upload capacity of the sender.
However, this random process is hard to deal with due to the com-
plicate interaction betweenW and{Xi}. We instead construct a
new continuous-time Markov process{Zi(t)}i∈{1,2} with differ-
ent transition rates:

Zi : k → k − 1 at rate
Zi

N

`

us +
X

j

uj(Nj − Zj)
´

,

which is used to “bound” the original process{Xi(t)}i∈{1,2}. Stan-
dard coupling arguments [10] yieldXi(t) ≤st Zi(t) for all t ≥ 0,
when starting from the same initial conditions; here,Xi(t) ≤st

Zi(t) denotes thatZi(t) stochastically dominatesXi(t). This im-
plies that

E[Xi(t)] ≤ E[Zi(t)], for all t ≥ 0,

and

Pr{Xi(t) > k} ≤ Pr{Zi(t) > k}, for all t ≥ 0.

We analyze{Zi(t)}i∈{1,2} under alarge populationasymptotic
regime. Note that this is adensity dependent jump Markov pro-
cess[9]. Under technical assumptions that are trivially verified, we
know that the rescaled processN−1Zi(t) converges almost surely
to the solutions of the following system of differential equations
[5]:

dzi(t)

dt
= −us

N
zi(t) − zi(t)

X

j

uj

`

nj − zj(t)
´

, (5)

with initial conditionzi(0) = ni, whereni = Ni

N
.

Observe that the solutions of differential equations (5) are given
as follows:

zi(t) =
ni

1
1+δ

+ δ
1+δ

e(1+δ)upt
,

whereup = n1u1 + n2u2 = N1u1+N2u2

N
is the relative average

peer capacity, andδ = us

Nup
is the server strength. From this, we

can establish the following result:

Xi(t) ≤
Ni

1
1+δ

+ δ
1+δ

e(1+δ)upt
,

which holds with high probability for a sufficiently largeN .
Now we are ready to verify the sufficient conditions for smooth

playback during a flash crowd. Without loss of generality, we only
need to make sure that the most urgent segments has been success-
fully received at all participating peers by the end of current time
slot. To this end, we count the number of coded blocks to ensure
smooth playback of segments with the maximum supply of coded
blocks within segments in current time slot. On the one hand, as
we will see in Sec. 4.4, the expected number of coded blocks to
achieve smooth playback is given byN(1 + α)m. On the other
hand, the maximum supply of coded blocks within segments in
current time slot is given as follows:

usm +
X

i

Z m

0

ui(Ni − Xi(t))dt

= usm + Nupm −
X

i

Z m

0

uiXi(t)dt,

which can be achieved when all the working peers and the stream-
ing servers are serving segments in current time slot. Notice that

X

i

Z m

0

uiXi(t)dt

≤
X

i

Z m

0

uiNi

1
1+δ

+ δ
1+δ

e(1+δ)upt

= up

Z m

0

N
1

1+δ
+ δ

1+δ
e(1+δ)upt

= N(1 + δ)upm

−N ln
“ 1

1 + δ
+

δ

1 + δ
e(1+δ)upm

”

≤ N(1 + δ)upm − N ln
“ δ

1 + δ

”

−N ln
“

e(1+δ)upm
”

= N ln(1 + δ) − N ln δ.

It follows that the maximum supply of coded blocks within segment
s is no less thanN(1 + δ)upm + N ln δ − N ln(1 + δ).

The sufficient conditions in Theorem 1 can be rewritten as

N(1 + δ)upm + N ln δ − N ln(1 + δ) = N(1 + α)m,

which guarantees the maximum supply of coded blocks within seg-
ments is no less than the total demand of coded blocks to support
smooth playback. This completes the proof of Theorem 1.

4.4 On the Fraction of Redundant Blocks
When network coding is employed, a peer may receive redun-

dant (linearly dependent) coded blocks from its upstream peers,
leading to a waste of bandwidth resources. We denote byα the
fraction of linearly dependent coded blocks inCODING. We are in-
terested in an estimation ofα, which is critical as we evaluate the
bandwidth utilization ofCODING.

Without loss of generality, we consider a downstream peerd to
which multiple upstream peers are serving the same segment simul-
taneously. The following lemma states that with high probability,
any coded block from an upstream peer is useful to peerd, as long
as the space spanned by the coded blocks on the upstream peer is
not a subspace of the space spanned on peerd.

LEMMA 1. (Lemma 2.1, [4]) LetSd denote the space spanned
by the coded blocks on peerd andSv denote the space spanned on
one of peerd’s upstream peer, namely peerv. Consider a coded
blockx sent from peerv to peerd. Then,

Pr(coded block x is useful|Sv ( Sd) ≥ 1 − 1

q
,

whereq is the size of the Galois field.

Assume that the probability of the event{Sv ⊆ Sd}, denoted as
p, is the same for all upstream peers of peerd. We shall approx-
imate the block accumulating process on peerd as follows. With
probability 1 − p, an upstream peerv is helpful to peerd (i.e.,
Sv ( Sd). With probability1− 1

q
, a helpful upstream peer sends a

useful coded block to peerd.

PROPOSITION 1. In the simple model, the expected fractionα
of redundant coded blocks is given as follows:

α =
1

(1 − p)(1 − 1
q
)
− 1.



Proof: Let Yi be the indicator function of the event that theith
coded block is useful to peerd. Clearly, Yi is a binary random
variable withPr(Yi = 1) = (1 − p)(1 − 1

q
). Let M denote the

number of coded blocks needed for peerd to successfully decode
the original segment. We can then write

Y1 + Y2 + · · · + YM = m.

Note that the random variableM is astopping rulefor {Yn : n ≥
1}. Using Wald’s equality, we have

E[M ] =
m

E[Yi]
=

m

(1 − p)(1 − 1
q
)
.

The expected fractionα of redundant coded blocks is then given by

α =
E[M ] − m

m
=

1

(1 − p)(1 − 1
q
)
− 1.

Proposition 1 states that there are two reasons why peers might
send redundant coded blocks. First, the randomized encoding al-
gorithm on an upstream peer does not take into account the coded
blocks accumulated on its downstream peers, and thus inevitably
produces some redundant coded blocks due to this blind operation.
Such redundancy is closely related to the size of the Galois fieldq.
The larger the size, the less the redundancy. The second cause is the
rare event that an upstream peer has no innovative coded blocks for
its downstream peers. The probability of such event is substantially
small, as the random push operations naturally create sufficient di-
versity.

If we choose the probabilityp of such event to be0.1% and the
sizeq to be256, then the fractionα is less than0.5% according to
Proposition 1. To validate our estimation ofα, we take advantage of
Galois field computation functions in MATLAB for encoding and
decoding implementation. We only present simulation results for
the flash crowd scenario here, as similar results have been obtained
for the highly dynamic scenario. We let the sizeq vary from32 to
512. The results are shown in Table 5. As expected, the fraction of
redundant coded blocksα decreases with the sizeq. Moreover,α
is less than0.3% in all cases, which agrees with our analysis well.

Table 5: Simulation results for fraction α of redundant coded
blocks. We can see that the fraction of redundancy induced by
network coding is in the order of 0.001, even when the field size
q is as small as64.

sizeq 32 64 128 256 512
redundancyα 0.0024 0.0016 0.0014 0.0013 0.0012

We have also investigated the impact of the scale of a flash crowd.
We have observed that the fractionα of redundant coded blocks de-
creases as the scale increases, which suggests large-scale systems
often create greater diversity, which in turn further reduces the re-
dundancy.

5. COMPARISON WITH PULL
To further evaluate the performance of streaming protocols with

network coding (CODING) in a comparison study with traditional
mesh-based pull protocols (PULL), we have implemented an event-
driven simulation tool in C to conduct a series of large-scale sim-
ulations. The simulation tool models many important peer charac-
teristics and strategies, such as peer joining and leaving, segment
selection, peer selection, and buffer map exchanging. For the sake
of scalability to a large scale, we intentionally choose not to model
P2P streaming systems in the finest details. Instead, our simulation
tool captures a carefully selected set of important properties and

strategies that we focus on in this paper, such as peer arrivals and
departures, heterogeneous peer upload capacities, and buffer map
exchanges . Its internal data structures are specifically tailored to
scale well to a large number of peers within a reasonable simula-
tion time, and it is used throughout this paper for the purpose of
simulations.

We use a random graph to represent the mesh structure formed
by participating peers, and the average size of neighborhood is set
to 50. The duration of each segment inCODING is set to5 seconds,
which is further divided into100 blocks, while the duration of each
segment inPULL is set to1 second. To simulate the heterogene-
ity of peer upload capacities, we use three types of peers, whose
capacities are3 Mbps,384 Kbps and128 Kbps, respectively. The
streaming rate is set to300 Kbps. By adjusting the fractions of dif-
ferent types of the peers, we obtain several different average upload
capacities. For instance, a combination of10% 3 Mbps peers,38%
384 Kbps peers, and52% 128 Kbps peers leads to an relative aver-
age peer capacity of1.05. Unless otherwise specified, the number
of participating peers is set to10, 000. We also scale to100, 000 in
some simulation scenarios.
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Figure 7: A comparison of playback quality betweenCODING

and PULL under different peer dynamic scenarios. In (a), we
set the relative server capacityus to 50 and the relative average
peer capacityup to 1.08; In (b), we setus to 60 and up to 1.05.

We compare the performance ofCODING andPULL in terms of
playback quality and initial buffering delays, under several differ-
ent scenarios of peer dynamics. We first consider the flash crowd
scenario. As shown in Fig. 7(a), the playback quality inCODING

degrades very slowly with the scale of a flash crowd. Moreover,
perfect playback quality is achieved if the scale of a flash crowd is
less than70, 000. In contrast, the playback quality inPULL is much
lower than that inCODING. Further, it deteriorates significantly as
the scale of a flash crowd increases. This is because newly joined
peers inPULL are not able to utilize their upload capacities very
effectively. Before a newly joined peer serves a segment, it has to
inform its neighboring peers by exchanging buffer maps and to wait
for the explicit requests. Moreover, a certain amount of segments
may arrive after their playback deadlines due to these interactions,
resulting in degraded playback quality.

We now turn to the highly dynamic scenario. To decouple the ef-
fect of system scale, we let the arrivals of new peers approximately
match the departures of existing peers in each time slot. Fig. 7(b)
shows the playback quality of bothCODING andPULL under dif-
ferent peer churn rates (i.e., the ratio of the number of departures
in each time slot to the system scale, as defined in Sec. 4.2). As
expected, peer churn has little impact on the playback quality in
CODING, since the average peer capacity is not significantly af-
fected. However,PULL suffers from such peer churn due to the
difficulty of finding appropriate upstream peers.

As to the initial buffering delays, we present the simulation re-
sults of PULL in Table 6, which use the same configuration as in



Table 6: Initial buffering delay (in seconds) in PULL using the
same configuration as in Fig. 7(a) (denoted asflash) and in
Fig. 7(b) (denoted aschurn). In CODING , the initial buffering
delay strictly ranges from 5 to 10 seconds regardless of peer
dynamics.

flash 43 44 45 45 45 46 46 46 46 46
churn 19 22 23 26 27 27 29 32 33 35

Fig. 7. Specifically, we vary the scale of a flash crowd from10, 000
to 100, 000 in the flash crowd scenario and the churn rate from
0.01 to 0.10 in the highly dynamic scenario. Recall that the initial
buffering delay inCODING is strictly ranging from5 to 10 seconds,
regardless of peer dynamics. In Table 6, we observe that the initial
buffering delay increases slowly inPULL with the scale of a flash
crowd, and is substantially larger than that inCODING. In addition,
peer churn affects the initial buffering delay significantly inPULL,
as it usually takes much more effort for a newly joined peer to find
appropriate upstream peers under a higher churn rate.

We also investigate the change of playback quality over time in
bothCODING andPULL. In Fig. 8, we see that the playback quality
in CODING remains perfectly above0.97 all the time and nearly1
at most times, whilePULL maintains a much lower and varied play-
back quality. These results show thatCODING also enjoy excellent
stability under peer dynamics.
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Figure 8: The change of playback quality over time inCODING

and PULL under a typical flash crowd scenario and a highly
dynamic scenario. We set the relative server capacityus to 60
and relative average peer capacityup to 1.05 in both scenarios.
The comparison shows thatCODING has much better stability
under peer dynamics thanPULL .

6. CONCLUSION
In this paper, we have analytically investigated the performance

of streaming systems with network coding that follow our design
principles. The use of network coding not only eliminates some
mathematical difficulties associated with previous theoretical mod-
els, but also leads to simple and effective streaming protocols. In
particular, we have demonstrated that any streaming protocol using
our design principles is sufficient to achieve provably good perfor-
mance with respect to many important metrics, such as playback
quality, initial buffering delay, resilience to peer dynamics, as well
as bandwidth costs on dedicated streaming servers. The simplicity
in the core functionalities of our design principles further allows
us to use a more realistic system model, taking into account many
of the essential features of P2P streaming, such as peer dynamics
(peer joining and leaving) and heterogeneous peer upload capaci-
ties. With extensive large-scale simulations, we validate our ana-
lytical results and demonstrate clear advantages of network coding
based protocols over traditional pull-based streaming protocols.
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