

Wireless Sensor Networks Hierarchical X Flat

Hierarchical	Flat	
Reservation-based scheduling	Contention-based scheduling	
Collisions avoided	Collision overhead present	
Reduced duty cycle due to periodic sleeping	Variable duty cycle by controlling sleep time of nodes	
Data aggregation by cluster head	Node on multi-hop path aggregates incoming data from neighbors	
Simple but non-optimal routing	Routing is complex but optimal	
Requires global and local synchronization	Links formed in the fly, without synchronization	
Overhead of cluster formation throughout the network	Routes formed only in regions that have data for transmission	
Lower latency as multi-hop network formed by cluster-heads is always available	Latency in waking up intermediate nodes and setting up the multi-hop path	
Energy dissipation is uniform	Energy dissipation depends on traffic patterns	
Energy dissipation cannot be controlled	Energy dissipation adapts to traffic pattern	
Fair channel allocation	Fairness not guaranteed	

	C ati			DMC
Current Research Projects				
	Project Name	Research Area	HTTP Location	
	SensoNet	-Transport, network,	http://www.ece.gatech.edu/research/labs/bwn/	
	[3]	data link and physical layers.		
		-Power control, mobility and		
		task management planes.		4
	WINS	-Distributed network and Internet access	http://www.janet.ucla.edu/WINS/	
	[22, 69]	to sensors, controls, and processors.		
	SPIN [35]	-Data dissemination protocols.	http://nms.lcs.mit.edu/projects/leach	4
	SPINS [66]	-Security protocol.	http://paris.cs.berkeley.edu/~perrig/projects.html	
	SINA [75, 84]	 Information networking architecture. 	http://www.eecis.udel.edu/~cshen/	
	µAMPS [77]	-Framework for implementing adaptive	http://www-mtl.mit.edu/research/icsystems/uamps/	
		energy-aware distributed microsensors.		
	LEACH [34]	-Cluster formation protocol	http://nms.lcs.mit.edu/projects/leach	
	Smart Dust [42]	-Laser communication from	http://robotics.eecs.berkeley.edu/~pister/SmartDust/	
		a cubic millimeter		
		-Mote delivery		
		-Sub-microWatt electronics		
		-Power sources		
		-Macro Motes (COTS Dust)		
	SCADDS [22, 11, 33]	-Scalable coordination architectures for	http://www.isi.edu/scadds/	
	[8, 20, 96, 39, 23, 27]	deeply distributed and dynamic systems.		1
	PicoRadio [71, 70]	-Develop a "system-on-chip"	http://bwrc.eecs.berkeley.edu/Research/Pico_Radio/PicoNode.htm	
		implementation of a PicoNode.		
	PACMAN	-Mathematical framework that	http://pacman.usc.edu	
	[79]	incorporates key features of		
		computing nodes and networking elements.		
	Dynamic Sensor	-Rowing and power aware	http://www.east.isi.edu/DIV10/dsn/	
	Networks [19]	sensor management		
		-Network services API		
	Aware Home [36]	-Requisite technologies to	http://www.cc.gatech.edu/fce/ahri	
		create a home environment that can		
		both perceive and assist its occupants.		120
	COUGAR Device	-Distributed query processing.	http://www.cs.cornell.edu/database/cougar/index.htm	130
	Database Project [7]			4
	DataSpace [38]	-Distributed query processing.	http://www.cs.rutgers.edu/dataman/	

