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Abstract– Layered transmission of data is often recommended as a solution to the
problem of varying bandwidth constraints in multicast applications. In the case of
video multicast, this technique encodes multiple interdependent layers of video at ar-
bitrary target rates in order to address heterogeneous bandwidth constraints between
the source and multiple receivers. However, multi-layered encoding alone is not suffi-
cient to provide high video quality and high bandwidth utilization, because bandwidth
constraints change over time. Adaptive techniques capable of adjusting the rates of
video layers are required to maximize video quality and network utilization.

In this paper we define a class of algorithms known as Source-Adaptive Multi-
layered Multicast (SAMM) algorithms. In SAMM algorithms, the source uses con-
gestion feedback to adjust the number of generated layers and the bit rate of each
layer. Furthermore, we introduce an end-to-end SAMM algorithm, in which only end
systems monitor available bandwidth and report the amount of available bandwidth to
the source. Using simulations which incorporate actual multi-layered video codecs,
we demonstrate that the proposed SAMM algorithm exhibits better scalability and
responsiveness to congestion than algorithms which are not source-adaptive.

1 INTRODUCTION

The simultaneous multicast of video to many receivers is complicated by vari-
ation in the amount of bandwidth available throughout the network. The use
of layered video is commonly recommended to address this problem. A multi-
layered video encoder encodes raw video data into one or more streams, or
layers, of differing priority. The layer with the highest priority, called the
base layer, contains the most important portions of the video stream, while
additional layers, calledenhancement layers, are encoded with progressively
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lower priorities and contain data that further refines the quality of the base
layer stream. For each unique bandwidth constraint, the encoder generates an
enhancement layer of video, thereby ensuring that all receivers obtain a quality
of video commensurate with their available bandwidth.

However, multi-layered encoding of video is not sufficient to provide ideal
video quality and bandwidth utilization. Due to competing network traffic,
bandwidth constraints change continually and rapidly. To improve the band-
width utilization of the network and optimize the quality of video obtained by
each of the receivers, the sender must persistently respond to these changing
network conditions. It should dynamically adjust the number of video lay-
ers it generates as well as the rate at which each layer is transmitted. For the
sender to do this, it must have congestion feedback from the receivers and the
network.

We define a Source-Adaptive Multi-layered Multicast (SAMM) algorithm
as any multicast algorithm that uses congestion feedback to adapt the trans-
mission rates of multiple layers of data. Our previous work [30, 31, 1, 2, 3]
has focused on network-based SAMM algorithms, in which it was assumed
that network switches were capable of executing complex flow and congestion
control algorithms. However, in most existing networks and internetworks,
where datagram routing and forwarding are often the only universally shared
operations, the existence of such congestion control functions cannot be as-
sumed.

We focus on an end-to-end SAMM algorithm that can be implemented in
next generation internets. Prerequisites for its implementation include router-
based priority packet discarding and flow isolationvia either class-based queue-
ing or fair queueing. In the algorithm, video receivers generate congestion
feedback to the sender by monitoring the arrival rate of video traffic, and feed-
back packets are merged by an overlaid virtual network of feedback merging
servers. Network switches or routers are not required to implement flow or
congestion control algorithms.

The remainder of this work is organized as follows. Trade-offs between
sender-driven and receiver-driven approaches to layered multicast are consid-
ered in section 2. The details of the end-to-end SAMM algorithm are described
in section 3. An encoder rate control algorithm for adaptive, multi-layered
video encoding is presented in section 4. The performance of the algorithm
in terms of scalability, responsiveness, and fairness is compared with that of a
non-adaptive algorithm in section 5. And concluding remarks are provided in
section 6.



2 SENDER-DRIVEN VS. RECEIVER-DRIVEN ADAPTATION

Adaptation to network congestion may be sender-driven or receiver-driven. In
a sender-driven algorithm, the source adapts its transmission rate in response
to congestion feedback from the network or the receivers. In a receiver-driven
algorithm, the source transmits several sessions of data, and the receivers adapt
to congestion by changing the selection of sessions to which they listen.

2.1 Background

Sender-driven congestion control for adaptively encoded video was first exam-
ined in the context of point-to-point communications. A number of works in
this area have proposed algorithms in which information about the current con-
gestion state of the network is passed via network feedback packets to the video
source, and the source adjusts its encoding rate in response [17, 18, 23, 27, 19].
These works illustrate the effectiveness of transmitting video using sender-
driven adaptation to congestion but do so only for the unicast case.

One of the first examinations of sender-driven congestion control for mul-
ticast video was performed by Bolot, Turletti and Wakeman [10]. In their al-
gorithm, the source adaptively modifies the video encoding rate in response to
feedback from the receivers. This is done to reduce network congestion when
necessary and increase video quality when possible. To prevent feedback im-
plosion, each receiver probabilistically responds with congestion feedback at a
frequency which is a function of the total number of receivers. While this algo-
rithm considers the problem of multicast, it uses only a single layer of video,
and thus a few severely bandwidth-constrained paths can negatively impact the
rate of video transmitted across paths that have more plentiful bandwidth.

The Destination Set Grouping (DSG) algorithm by Cheung, Ammar and
Li [11] was one of the first to deal with the problem of heterogeneous band-
width constraints in multicast video distribution, and it shares features of both
receiver-driven and sender-driven approaches. The algorithm attempts to sat-
isfy heterogenous bandwidth constraints by offering a small number of in-
dependently encoded video streams, each encoded from the same raw video
material but at different rates. The streams are targeted to different groups
of receivers, and their rates are adjusted according to probabilistic congestion
feedback from each group. However, one important drawback of this algo-
rithm is that the transmission of independently encoded video streams results
in an inefficient use of bandwidth.

McCanne, Jacobson and Vetterli proposed the first truly receiver-driven
adaptation algorithm for the multicast of layered video [21]. In the algorithm,



known as Receiver-driven Layered Multicast (RLM), the video source gen-
erates a fixed number of layers, each at a fixed rate, and the receivers “sub-
scribe” to as many layers as they have the bandwidth to receive. Congestion
is monitored at the receivers by observing packet losses. This approach has
the advantage that it uses video layering to address heterogeneous bandwidth
constraints. However, it limits the receivers to choosing among the layers the
source is willing to provide, and in many cases the provided selection may not
be adequate to optimize network utilization and video quality. Furthermore,
RLM is relatively slow to adapt to changes in the network’s available band-
width. If the background traffic is particularly bursty, the receivers may not be
able to adapt appropriately, resulting in degraded utilization and video qual-
ity. Extensions and variants of RLM (namely, Layered Video Multicast with
Retransmission (LVMR) [20], and TCP-like Congestion Control for Layered
Data [29]) have recently been proposed to ameliorate some of these weak-
nesses.

Another potential solution to the multicast of video to receivers with het-
erogeneous bandwidth constraints— although it is not sender-driven or receiver-
driven — is transcoding [5, 7, 6]. In this approach, a single layer of video is
encoded at a high rate by the source, and intermediate network nodes transcode
(i.e., decode and re-encode) the video down to a lower rate whenever their
links become bottlenecked. While this approach solves the available band-
width variation problem, it requires complex and computationally expensive
video transcoders to be present throughout the network.

2.2 Trade-offs

There are several trade-offs between receiver-driven and sender-driven ap-
proaches, particularly for the case of layered video multicast. The first trade-
off is the granularity of adaptation. In a receiver-driven algorithm, the source
typically generates a fixed number of layers at a coarse set of fixed rates.
Hence, if the path to one of the receivers has an amount of available band-
width that does not exactly match the transmission rate of a combined set of
offered video layers, the network will be underutilized and the quality of that
receiver’s video will be suboptimal. Sender-driven algorithms do not suffer
from this problem, because they are able to fine-tune layer transmission rates
in response to network bandwidth availability. They can therefore achieve bet-
ter network utilization and video quality.

Another trade-off arises in the ability of sender-driven and receiver-driven
algorithms to respond to rapidly fluctuating background traffic. Video sources
using sender-driven algorithms receive a continuousstream of congestion feed-



back from the network, and thus they may adapt to changing bandwidth con-
straints either by adding a new layer of video or by adjusting the rate of an
existing layer. Furthermore, this can be done rapidly, usually within a sin-
gle round-trip time. Most receiver-driven algorithms, on the other hand, adapt
to changing network congestion through a combination of “layer join experi-
ments” and branch pruning, both of which occur at time intervals greater than
the round-trip time.

The layer subscription and unsubscription strategies of receiver-driven al-
gorithms also have negative consequences for overall video throughput and
loss – consequences that sender-driven algorithms do not share. In most receiver-
driven algorithms, receivers perform occasional join experiments, during which
they request a new layer of data. If the join experiment creates congestion,
packets may be lost and the experiment is considered by the receiver to be
a failure. Since receiver-driven algorithms like RLM do not rely on priority
discarding, packets from any video layer – even the base layer – may be lost
during failed join experiments, causing brief but severe degradation in video
quality for some receivers. Receiver-driven algorithms also rely on the re-
ceiver’s ability to prune itself from the distribution tree of a given layer should
there be insufficient bandwidth to support that layer. However, there is a signif-
icant “leave latency” associated with the pruning of a branch from a multicast
tree. During this time, traffic congestion on the branch may be exacerbated,
resulting in greater packet loss and delay for downstream receivers of other
flows. In a network environment where bandwidth availability is continually
and sometimes severely fluctuating, the effects of join experiments and long
leave latencies can result in periods of significant packet loss and, for the case
of video, significantly degraded video quality.

Receiver-driven algorithms have the advantage that they are naturally more
friendly to competing network traffic than are sender-driven algorithms. Sender-
driven algorithms typically send all video data on a single transport layer con-
nection and use priority indications to specify the drop precedence of each
layer. This inevitably results in some low priority traffic being sent needlessly
down some branches of the multicast tree, only to be discarded further down-
stream. If this extraneous traffic shares FIFO queues with competing traffic
that is adaptive (e.g., TCP flows), then the adaptive flows may experience an
unfair degree of discarding or delay within the network. Receiver-driven algo-
rithms do not share this deficiency with sender-driven algorithms, because they
send each layer of video in a different flow and allow for the pruning of flows
that have no downstream receivers. One way to correct this deficiency of the
sender-driven algorithms is to isolate video traffic from other traffic. This can
be done by implementing class-based queueing [16] or weighted fair queue-
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Figure 1:Network architecture for SAMM

ing [14, 25] within the routers or switches. There is, however, a non-negligible
degree of complexity involved in the implementation of class-based and fair
queueing at intermediate network nodes.

3 ARCHITECTURE AND ALGORITHM

In the SAMM paradigm, the sender adjusts its encoding parameters, including
the number of video layers it generates and the encoding rate of each layer, in
response to a continuous flow of congestion feedback from the network and/or
the receivers. In this section, we consider a network architecture capable of
supporting this paradigm and a SAMM algorithm in which congestion control
is performed on an end-to-end basis with minimal network participation.

3.1 The SAMM Architecture

The network architecture necessary to implement a SAMM algorithm for video
consists of four basic components: adaptive layered video sources, layered
video receivers, multicast-capable routers, and nodes with feedback merging
capability. A sample configuration of this architecture is shown in Figure 1.

3.1.1 Adaptive Layered Video Sources

In a SAMM algorithm, it is assumed that the video source is capable of gener-
ating layered video data. There are a number of ways for a source to generate
layered video data. For instance, it may simply mark a subset of the video
frames as base layer data and the remaining frames as enhancement layer data.
Or, the source may coarsely quantize the video stream’s frequency coefficients



to produce the base layer and add refinement coefficients to produce enhance-
ment layers. For the purposes of this paper, we will assume sources that adopt
the latter approach, since a finer granularity of layer transmission rates can be
achieved this way. However, it is important to note that the SAMM architec-
ture does not mandate that any one type of layering to be performed by the
video source.

The video source must also participate in the SAMM algorithm being used.
This means it must observe congestion feedback arriving from the network and
adaptively modify (1) the number of video layers being generated, and (2) the
encoding and transmission rates of each video layer.

3.1.2 Layered Video Receivers

Layered video receivers collect layered video data arriving from the source
and reconstruct a decoded video image. All video receivers must use a layered
video decoder that is compatible with the layered video encoder used by the
source. Video receivers also cooperate with the SAMM algorithm by returning
congestion feedback toward the source as specified by the algorithm.

3.1.3 Multicast-capable Routers

Routers or switches within the network must, at a minimum, be capable of
performing the following functions:

� Multicast forwarding and routing.Whenever a packet reaches a branch
point in its multicast distribution tree, the router produces one copy of
the packet for each branch. The router also builds its multicast routing
tables according to a multicast routing protocol such as DVMRP [32],
MOSPF [22], CBT [8], or PIM [13], although no specific multicast rout-
ing algorithm is mandated by SAMM algorithms.

� Priority drop preference. To support layered video transmission, the
router must be able to distinguish packets with different priorities. Dur-
ing periods of congestion, routers drop low priority packets in preference
over high priority packets.

� Flow isolation.To prevent low priority packets from negatively impact-
ing the performance of rate-adaptive flows that share the router’s output
links, the router isolates SAMM flows from other flows. Examples of
mechanisms capable of doing this include class-based queueing [16] and
weighted fair queueing [14, 25], although SAMM is not married to any
one particular flow isolation mechanism.



� Congestion control.For network-based SAMM algorithms, the router
must perform the congestioncontrol functions required by the algorithm.
Examples of congestion control algorithms that are network-based and
may potentially be used as part of a network-based SAMM algorithm
include Random Early Detection (RED) [15], the Explicit Proportional
Rate Control Algorithm (EPRCA) [4] and others.

3.1.4 Feedback Mergers

Feedback mergers should be deployed to prevent feedback implosion, an un-
desirable situation in which a large number of receivers consume significant
return-path bandwidth by sending feedback packets to a single source. In or-
der to alleviate this problem, feedback mergers consolidate information from
arriving feedback packets and route the resulting feedback packets upstream
towards the next feedback merger on the path to the source. The idea of des-
ignating nodes in the network to alleviate feedback implosion has appeared
in a number of other contexts, most notably in the context of reliable multi-
cast [26, 24, 28].

Feedback mergers ultimately form a virtual network overlaid on top of the
underlying datagram network as shown in Figure 1. The feedback merging
function may be implemented at the source, at routers which have been en-
hanced to perform the merging function, at dedicated nodes inside the network,
and/or at one or more participating receivers. Furthermore, feedback mergers
do not have to be present at every branch point in the multicast tree in order to
operate properly. Obviously, a larger number of feedback mergers in the net-
work guarantees a greater reduction in the amount of feedback returning from
receivers to video sources. However, in realistic scenarios, feedback mergers
are likely to be incrementally deployed as the load created by feedback packets
becomes a greater issue.

The primary task of the feedback mergers is to consolidate the feedback
packets returning from receivers. For each video multicast flow, feedback
mergers store the most recent feedback packet arriving from the nearest down-
stream feedback merger or receiver. A flow’s stored feedback packets are
merged and routed to the next upstream feedback merger whenever (1) a feed-
back packet from the downstream feedback merger or receiver that triggered
the last merge arrives, or (2) two feedback packets from the same downstream
merger or receiver arrive after the previous merge. To prevent the merging
of feedback from downstream receivers that have left the multicast distribu-
tion, stored feedback packets that have not been updated are removed from the
merger after a sufficient time-out interval.



In addition to its simplicity, this merging policy has several attractive prop-
erties. First, it does not require feedback mergers to know in advance how
many feedback packets are going to arrive from downstream. This is impor-
tant, because many multicast models (e.g., IP multicast) do not have built-in
provisions for determining the membership of a multicast group. Second, the
policy allows merged feedback packets to be returned at the arrival rate of the
fastest incoming stream of feedback packets. This is also important, since with
heterogeneous bandwidth constraints, some receivers may generate feedback
at faster rates than others. This is especially true for congestion control al-
gorithms (like the one presented in this paper) that return feedback at a rate
proportional to the data arrival rate.

Note that we have not explained how the content of feedback packets is
merged, since this is dependent on the congestion control algorithm being
used. We leave this discussion for section 3.2.

3.2 End-to-End SAMM Algorithm

In this section we introduce an end-to-end SAMM algorithm, where conges-
tion control functions are performed solely at the source, the receivers, and the
feedback mergers. Network routers and switches are not assumed to perform
any complex or novel congestion control functions apart from those necessi-
tated by the SAMM architecture. The video source simply adjusts the number
of video layers it generates and the encoding rate of each layer in response to
a continuous flow of congestion feedback from the receivers. The behavior of
the end-to-end SAMM algorithm’s receiver is enhanced to compensate for the
lack of congestion control functions within the network. The receiver estimates
the available bandwidth on the path from the source by monitoring its received
video rate and periodically returns feedback packets toward the source.

When a branch of the multicast tree experiences (or is relieved of) conges-
tion, available bandwidth decreases (or increases) on the branch, and the arrival
rate of video packets at downstream receivers changes accordingly. Due to this
fact, an estimate of the bandwidth available on the path from the source can be
obtained by monitoring the rate at which video packets arrive at the receiver.
In the end-to-end SAMM algorithm, each receiver monitors the arrival rate of
video packets by using Clark and Fang’s time sliding window (TSW) moving
average algorithm [12].

Typically, the receiver assumes the available bandwidth is equal to the re-
ceived video rate. However, the actual available bandwidth may be higher than
the video arrival rate when the network is under-utilized. In order to exploit the
available bandwidth, the receiver may occasionally report a rate that is higher,



Table 1: Contents of feedback packets used by the end-to-end SAMM algo-
rithm.

Used in Used in
forward backward
feedback feedback

Field Description packets packets

L Maximum number of video layers allowed � �

Nl Current number of video layers �

ri A vector (i = 1; : : : ; Nl) listing �

the cumulative rates of each video layer
ci A vector (i = 1; : : : ; Nl) listing

the number of receivers requesting each �

layer in the rate vectorri

by an increment, than the observed arrival rate of video packets. The receiver
reports a higher rate whenever there is a change in the observed arrival rate and
no packet losses have been recorded in a given interval of time. This allows the
source to capture newly available bandwidth in an incremental, and therefore,
stable manner.

Table 1 lists the fields contained within each of the feedback packets.
When a forward feedback packet is generated, the source stores the maximum
number of video layers it can support (L). The value ofL depends on the the
number of layers the video encoder is able to generate. For example, if the
source uses a scalable encoder that can only generate four layers of video (one
base layer plus three enhancement layers), then it setsL to 4. The value ofL
must also be less than or equal to the maximum number of priority levels the
network can support.

After receiving a number of video packets, the receiver returns a feed-
back packet toward the source. The receiver generates a “backward feedback
packet” and sets its contents to indicate the desired video rate. It does this
by filling the first slot of the backward feedback packet’s rate vector (r1) with
its estimated available bandwidth. It also sets the corresponding slot of the
counter vector (c1) to one in order to indicate that only one receiver has re-
quested rater1 so far. The backward feedback packet is returned to the nearest
upstream feedback merger. Feedback packets are collected and merged by
feedback mergers or by the source.

When a feedback merger joins two or more backward feedback packets,
it collects the components of the rate (ri) and counter (ci) vectors from each



incoming feedback packet and stores them into a local array, sorted by rate.
Each entry in the local rate array corresponds to a video rate requested by one
or more downstream receivers, while the entries in the counter array indicate
how many downstream receivers have requested each rate. Ultimately, the rate
values will be used by the source to determine the rates at which to transmit
each video layer. After filling the local rate array, the number of entries in
the array is compared to the maximum number of video layers allowed for
the connection (L). If the number of entries in the local rate array does not
exceedL, then the merging is considered complete. However, if the number
of entries exceedsL, then one (or more) of the rate entries must be discarded
and its counter value added to the next lower entry. To determine which entry
(or entries) to discard, the feedback merger attempts to estimate the impact of
dropping each listed rate on the overall video quality. This is done through the
use of a simple estimated video quality metric.

The estimated video quality metric attempts to measure the combined “good-
put” of video traffic that will be received by all downstream receivers. The
goodput for a single receiver is defined as the total throughput of all video lay-
ers receivedwithout loss. For instance, suppose a sender is transmitting three
layers of video at 1 Mbps each. If a receiver entirely receives the most impor-
tant first two layers but only receives half of the third layer due to congestion,
then its total received throughput is 2.5 Mbps, but itsgoodputis equal to the
combined rate of the first two layers, namely 2 Mbps. The goodput is a useful
estimate of video quality because it measures the total combined rate of traffic
from uncorrupted video layers arriving at a receiver.

As the feedback merger aggregates feedback packets, it attempts to de-
termine the goodput that downstream receivers will observe. The combined
goodputG is estimated from the values listed in the rate array and calculated
as follows:

G =

NX
i=1

ri � ci;

whereN is the number of entries in the local rate array, andri andci are the
rate and counter values for entryi. To determine which entry to remove from
the local rate array, the feedback merger calculates the combined goodput that
will result from each potential entry removal. The entry removal that results
in the highest combined goodput is then removed from the rate array. This
process is repeated until the number of entries in the local rate array is equal to
the maximum number of layers allowed. The rate and counter array entries are
copied into the slots of the merged packet’s rate and counter vectors, and the
merged packet is transmitted to the next upstream feedback merger. This pro-
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cess is repeated at each upstream feedback merger until the final consolidated
feedback packet arrives at the source. The feedback packet that arrives at the
source will contain the number of video layers to generate as well as a list of
cumulative rates at which to generate each layer.

The simplicity of the end-to-end SAMM algorithm is its most important
feature. By transfering the congestion control functions to the end systems,
the end-to-end SAMM algorithm becomes an attractive approach to support
video multicast in Internet environments.

4 VIDEO ENCODER RATE CONTROL

Encoder rate control is necessary to ensure that SAMM algorithms can dynam-
ically adjust the encoding rates of several video layers. One possible encoder
and rate control architecture is illustrated in Figure 2. The “encoder” block
shown in the figure may be any type of layered video encoder (e.g., embedded
zero-tree wavelet, MPEG-2, etc.), which accepts uncompressed video infor-
mation. Uncompressed raw video naturally consists of a sequence of video
frames, and we assume the encoder processes frames one block at a time (as
in MPEG), where a block is defined as a rectangular component of the frame.
The encoder receives a list of target bit rates for each video layer and attempts
to produce layered video streams at rates that closely follow the target bit rates.
However, since the compression ratio is dependent on video content, it is virtu-
ally impossible to produce compressed video at rates that precisely match the
target bit rates. Therefore, the encoder returns a list of the rates that it actually
generated for each layer of video. This data can then be used to calculate an
error term for use in the compression of the next block of video.



The rate control functionF in Figure 2 determines the encoder’s target bit
rates for each layer. It has two purposes: first, to help the encoder produce
several layers of video at rates requested by the network, and secondly, to
prevent the video buffer from overflowing and underflowing. To achieve these
goals, the rate controller determines the target bit ratesFi for layeri as follows:

Fi(ri; bi; ei) = ri �

�
�ei + �

�
bi � Tdri

�

��

whereri is the rate requested for layeri in the most recently received feedback
packet,ei is layeri’s encoder rate error from the previously encoded block,
andbi is the number of bits from layeri currently stored in the buffer.Td is
the target buffer delay, which determines the target buffer occupancy at the
source. � is the length of the video block interval. For example, if the raw
video is captured at a rate of 10 frames per second and each frame is divided
into 10 blocks, then� is 0.01 seconds. The constants� and� are weighting
coefficients. This rate control function adjusts the target bit rates according
to the encoding error of the previous block and the current occupancy of the
transmission buffer.

After being generated by the encoder, the layered bit streams are packe-
tized and placed into the source buffer in Figure 2 for transmission into the net-
work. Using a simple weighted round robin, the packetizer interleaves packets
from each layer according to the layer’s target bit rate in order to keep packets
from clumping into layers. The packets are then fed into the network at the
combined transmission rate of all the layers.

5 PERFORMANCE

This section presents the results of several simulations designed to evaluate
the performance of the end-to-end SAMM algorithm under various configura-
tions. These configurations are designed to test the responsiveness, scalability
with respect to delay, scalability with respect to the number of receivers, and
fairness of the algorithm.

Unless otherwise specified, all simulationsassume link capacities of 10 Mbps,
propagation delays between end systems and routers of 5�s, and propagation
delays between routers of 100�s. All packets are the size of ATM cells (53
bytes), and two class-based queues are used at each router hop to isolate back-
ground traffic from video traffic. To keep queueing delays minimal, only the
amount of buffers necessary to tolerate 10 ms of feedback delay on a series of
10 Mbps links are used. For most simulation models, this works out to approx-
imately 200 packets per router hop for each video flow. A receiver monitoring



interval of 10 ms is assumed, and feedback packets are generated by receivers
once for every 32 video packets received. Every router is assumed to be con-
nected to a feedback merging server.

5.1 Responsiveness

One of the most important requirements of a source rate adaptation algorithm
is that it be able to respond rapidly to changes in network congestion. This
simulation experiment illustrates the trade-offs between source-adaptive and
non-source-adaptive algorithms. It also shows the impact of network propaga-
tion delay on the responsiveness of the end-to-end SAMM algorithm.

S

R1

R2

L1

L2

Figure 3:Simulation model for evaluating responsiveness

The model shown in Figure 3 is used to evaluate the responsiveness of
the algorithm. It consists of one video sender and two receivers. Background
traffic is applied on linksL1 andL2, and two responsiveness experiments are
conducted. The first experiment is designed to explore the transient response
of the sender to changes in available bandwidth on one of the links. The sec-
ond experiment explores the impact of the network propagation delay on the
effectiveness of the algorithm.

In the first experiment, we apply CBR background traffic at a rate of 3
Mbps to linkL1 and sharply oscillating square-wave background traffic to link
L2. The square-wave traffic oscillates between constant rates of 4 and 7 Mbps
over a period of 500 ms and is used to test the responsiveness of the sender to
sudden and substantial changes in available bandwidth. As a basis for compar-
ison, we also examine the performance of an algorithm in which the sender is
non-adaptive and transmits three layers of video at cumulative rates of 1, 4.5
and 8 Mbps. This set of rates is admittedly arbitrary, but so is any choice of
rates for a non-adaptive layered transmission mechanism.
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Figure 4 shows the results of the simulation. As expected, the sender adapts
the rate of one of its layers in response to the oscillatingavailable bandwidth on
link L2. The remaining two layers are transmitted at cumulative rates of 1 and
7 Mbps, which correspond to the minimum transmission rate and the available
bandwidth on linkL1, respectively. Note that the sender responds quickly to
the square-wave traffic oscillations, usually within 10 milliseconds (the length
of the receiver monitoring interval). The small spikes in the transmission rates
are observed due to occasional overestimations of the available bandwidth by
receiverR2. For the purpose of comparison, Figure 4(b) plots the cumulative
transmission rates of each layer for the non-adaptive case.

The receiver goodputs for the adaptive and non-adaptive mechanisms are
shown in Figs. 4(c) and 4(d). Recall that video goodput is defined as the
total throughput of all video layers receivedwithout lossduring a block trans-
mission interval. Clearly the SAMM algorithm produces better goodput than
the non-adaptive scheme due to its ability to adjust encoding behavior based
on network congestion feedback. Although receiverR2 experiences degrada-
tions of goodput during downward transitions due to buffer overflow, they are
brief and the overall goodput levels are desirable. In contrast, the goodput of
the non-adaptive mechanism suffers significantly from its inability to take the
current state of the network into account.
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Figure 5:Responsiveness scalability with delay

In the second experiment, we explore the impact of propagation delay on
the goodput. We apply CBR background traffic on linkL1 and square-wave
background traffic with a period of 200 ms on linkL2. The background traffic
transmission rates are the same as for the first experiment. Propagation delays
between routers are varied from 0.1 to 50 msec, and each simulation is run for



60 simulation seconds.
The average goodput delivered to each receiver is plotted in Figure 5. As

propagation delay increases to the order of magnitude of the network transi-
tion interval, the average goodput delivered to receiver 2 by the SAMM al-
gorithm drops almost linearly. This is due to the fact that as the propagation
delay increases, the sender uses increasingly stale congestion feedback to ad-
just its layer transmission rates. Despite this drawback, the SAMM algorithm
generally produces better goodput than the non-adaptive mechanism for both
receivers and nearly all delays. The only exception is the goodput at receiver 2
for very high propagation delay (>20 ms).

5.2 Scalability

Scalability is perhaps the most important performance measure of any multi-
cast mechanism. Multicast datagrams can reach dozens or even hundreds of
receivers, each with varying bandwidth constraints. It is therefore important
to understand how a multicast mechanism performs as the number of receivers
grows.
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Figure 6:Simulation model for evaluating scalability

The network model shown in Figure 6 consists of one video sender, four
groups of receivers, and seven routers. Within each receiver group, the number
of receivers can be varied between 2 and 32. Independent background traffic
streams are applied to each leaf link, and the traffic loads are divided into four
heterogeneous groups (�1 = 2 Mbps,�2 = 4 Mbps,�3 = 6 Mbps,�4 =

8 Mbps). Background traffic is generated by a 10-state Markov-Modulated
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Poisson Process with state transition rates of 100 sec�1. This traffic model
captures the superposition of 10 on-off, interrupted Poisson processes and is
generally much burstier than a simple Poisson process.

We first examine the performance of the SAMM algorithm as the number
of receivers increases in Figure 7. The maximum number of video layers is
varied from 2 to 8 in this figure. The goodput ratio is defined as the fraction of
the available bandwidth used to transport uncorrupted video layers. To calcu-
late the goodput ratio, the combined rate of video layers fully received by all
receivers is divided by the total amount of bandwidth available to all receivers.
These results reveal that the SAMM algorithm scales well with the number
of receivers. They alsoillustrate the expected result that video goodput (and
thereby video quality) can be improved by increasing the maximum number of
layers generated by the sender.

In the second scalability experiment we encode and decode actual video
sequences and transmit them through the simulated network shown in Fig-
ure 6. For this experiment we use an embedded zero-tree wavelet encoder to
generate multiple layers of video from a raw video sequence. The raw video
sequence we use is the Academy Award winning short animationWallace &
Grommit. The number of multicast receivers is varied between 8 and 128, up to
4 video layers are used, and the background traffic used in the first scalability
experiment is reapplied to the leaf links.

Figure 8 plots the average peak signal-to-noise ratio of the decoded video
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sequence for a sampled receiver from each receiver group. (The peak signal-
to-noise ratio is a measure of the video quality. The larger the value, the lesser
the distortion. It is calculated by comparing the original and the received video
image.) The video quality ateach receiver remains relatively flat as the num-
ber of receivers increases, confirming that the SAMM algorithm is scalable.
Furthermore, the quality of video obtained by a receiver is determined by the
amount of bandwidth available to it, just as expected.

5.3 Fairness

An important factor in the evaluation of any traffic control mechanism is its
fairness. If the mechanism fails to divide bandwidth equally between com-
peting connections, then some connections may unfairly receive better service
than others. We use the simple “parking lot” model depicted in Figure 9 to
examine the fairness of the SAMM algorithm. Propagation delays on links
L1; : : : ; L4 are 10 msec, representing distances of 2000 km, and each of these
links is loaded with 6 Mbps of background traffic generated by four indepen-
dentN -state MMPP processes. To adjust the burstiness of the background
traffic, three values for the number of MMPP states are used:N = 10 (heavily
bursty),N = 50 (moderately bursty) andN = 2000 (lightly bursty). Sample
traces for each degree of burstiness are shown in Figure 10.
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Figure 10:Sample traces of MMPP background traffic

The allocation of bandwidth to competing video traffic streams is said to
be optimal if it ismax-min fair. A max-min fair allocation of bandwidth occurs
when all active connections not bottlenecked at an upstream node are allocated
an equal share of the available bandwidth at every downstream node [9]. In the
model shown in Figure 9, a max-min fair allocation of bandwidth occurs if
all three sources transmit at the same rate. To measure fairness, we calcu-
late the standard deviation� of the rates that each source transmits across the
bottleneck linksL3 andL4. An optimally fair allocation results in a standard
deviation of zero.

Results for this set of simulations are shown in Table 2. There is a consis-
tent degradation of fairness as the burstiness of the interfering traffic increases.
This result was expected, since it is difficult for senders more distant from
the shared bottleneck links (L3 andL4) to adapt their rates in response to
rapid changes in the available bandwidth. Senders close to the shared bottle-
neck links unfairly grab a larger portion of the available bandwidth, especially
when the background traffic is bursty. This kind of unfairness can be elimi-



Table 2: Video transmission rates and fairness with FIFO queues and fair
queueing

Lightly Bursty Background
Rate (Mbps) Fairness

Scheduling S1 S2 S3 �

FIFO 1.318 1.332 1.350 0.025
Fair queuing 1.331 1.331 1.331 0.000

Moderately Bursty Background
Rate (Mbps) Fairness

S1 S2 S3 �

FIFO 1.312 1.316 1.349 0.035
Fair queuing 1.333 1.333 1.333 0.000

Heavily Bursty Background
Rate (Mbps) Fairness

S1 S2 S3 �

FIFO 1.299 1.312 1.400 0.094
Fair queuing 1.333 1.333 1.333 0.000

nated by using fair queueing within each of the router output ports. If traffic
flows from sendersS1, S2 andS3 are buffered in isolated queues and served
on a round-robin basis, then their allocations of bottleneck link bandwidth be-
come virtually identical as shown in the table.

6 CONCLUSION

We have introduced the class of algorithms known as source adaptive multi-
layered multicast (SAMM) algorithms and have studied their use for the mul-
ticast distribution of video. We have also proposed and investigated a simple
end-to-end SAMM algorithm for possible use in the Internet. In SAMM algo-
rithms, the source transmits several layers of video and adjusts their rates in
response to congestion feedback from the receivers and/or the network.

We have also introduced a network architecture defining the source, re-
ceiver and network functions necessary to support SAMM algorithms. The
architecture mandates that routers implement some form of priority packet dis-
carding in order to support layered transmissions, as well as a class-based flow
isolation mechanism at routers to prevent SAMM flows from negatively im-
pacting the performance of other flows in the network. The architecture also



includes feedback mergers, which prevent feedback implosion by consolidat-
ing the contents of feedback packets returning to the source.

Simulation results indicate that the proposed SAMM algorithm is capa-
ble of producing better video quality and network utilization than algorithms
which transmit video layers at fixed rates. Furthermore, the proposed end-to-
end SAMM algorithm exhibits good performance in terms of goodput, video
quality and scalability.
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