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Abstract

An equitable k-coloring of a graph is defined by a partition of its vertices into k
disjoint stable subsets, such that the difference between the cardinalities of any two
subsets is at most one. The equitable coloring problem consists of finding the minimum
value of k such that a given graph can be equitably k-colored. We present two new
integer programming formulations based on representatives for the equitable coloring
problem. We propose a primal constructive heuristic, branching strategies, and the
first branch-and-cut algorithm in the literature of the equitable coloring problem. The
computational experiments were carried out on randomly generated graphs, DIMACS
graphs, and other graphs from the literature.

1 Introduction and motivation

Let G = (V,E) be an undirected graph, where V = {1, . . . , n} is the set of vertices and E
is the set of edges. An equitable k-coloring of G is a partition of V into k disjoint stable
subsets such that the difference on the cardinalities of any two subsets is at most one. Each
subset is associated with a color and called a color set. The Equitable Coloring Problem
(ECP) consists of finding the minimum value of k such that there is an equitable k-coloring
of G. This value is said to be the equitable chromatic number of G and is denoted by χ=(G).

We notice that a graph may admit an equitable m-coloring, but not an equitable (m+ 1)-
coloring. For example, the complete bipartite graph K3,3 has an equitable 2-coloring, but
it does not admit an equitable 3-coloring. This non-existence result can be extended to all
complete bipartite graphs of the form K2h+1,2h+1, for h ≥ 1 [17].

The equitable coloring problem was first introduced by Meyer [20], motivated by a practical
application to municipal garbage collection [24]. In this context, the vertices of the graph
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represent garbage collection routes. A pair of vertices share an edge if the corresponding
routes should not be run on the same day. It is desirable that the number of routes ran
on each day be approximately the same. Therefore, the problem of assigning one of the six
weekly working days to each route reduces to finding an equitable 6-coloring. Other applica-
tions arise from load balance in parallel memory systems [7], scheduling in communication
systems [14], and partitioning and load balancing [2].

ECP was proved to be NP-hard in [11, 18]. Polynomial-time algorithms are known for split
graphs [4] and trees [5]. Hajnal and Szemerédi [12] proved that every graph G = (V,E) has
an equitable (∆ + 1)-coloring, where ∆ = maxv∈V {d(v)} and d(v) denotes the degree of
vertex v ∈ V . Kierstead and Kostochka [16] presented a shorter proof for this result and an
approximation heuristic that attains this bound. In addition, they showed that every graph
satisfying d(u) + d(v) ≤ 2k+1, for every edge (u, v) ∈ E, has an equitable (k+1)-coloring.

A cut-and-branch algorithm was proposed in [1] for arbitrary graphs. It is based on the
results of Hajnal and Szemerédi [12] and makes use of XPRESS Gomory and lifted cover
cuts. The formulation used in this algorithm is the following:

min
∆+1
∑

c=1

w′
c (1)

∆+1
∑

c=1

x′vc = 1, ∀v ∈ V (2)

x′vc + x′uc ≤ w′
c, ∀(v, u) ∈ E, ∀c ∈ {1, . . . ,∆+ 1} (3)

y′c =
n
∑

v=1

x′vc, ∀c ∈ {1, . . . ,∆+ 1} (4)

y′c − y′ℓ ≤ 1 +M · (2− w′
c − w′

ℓ), ∀c, ℓ ∈ {1, . . . ,∆+ 1} (5)

y′c − y′ℓ ≥ −1−M · (2− w′
c − w′

ℓ), ∀c, ℓ ∈ {1, . . . ,∆+ 1} (6)

x′vc ∈ {0, 1}, ∀v ∈ V, ∀c ∈ {1, . . . ,∆+ 1} (7)

w′
c ∈ {0, 1}, ∀c ∈ {1, . . . ,∆+ 1} (8)

y′c integer, ∀c ∈ {1, . . . ,∆+ 1}, (9)

where x′vc = 1 if and only if color c is assigned to vertex v, x′vc = 0 otherwise; w′
c = 1 if

and only if x′vc = 1 for some vertex v, w′
c = 0 otherwise, and y′c are integer auxiliary vari-

ables. The objective function (1) counts the number of colors (or the number of color sets).
Constraints (2) assert that each vertex must be assigned to exactly one color. Inequalities
(3) enforce that adjacent vertices cannot share the same color. Equality (4) enforces that
variable y′c is equal to the number of vertices colored with color c. Inequalities (5) and (6)
guarantee that the difference between the cardinalities of any two color sets is at most one,
where M is a constant big enough to enforce |y′c − y′ℓ| ≤ 1 whenever both w′

c and w′
ℓ are

positive. Constraints (7), (8) and (9) define integrality requirements on the variables. This
model is weak, since the fractional solution where all x′ variables are set to 1/(∆ + 1), all
w′ variables are set to 2/(∆+ 1) and all y′ variables are set to n/(∆+ 1) is optimal for the
initial relaxation of the model, which leads to a dual bound of 2.

2



Two polynomial-time heuristics for ECP are presented in [11]. A polyhedral approach for
the equitable coloring problem was proposed in [19], but the largest instances exactly solved
by that approach had as few as 35 nodes.

Campêlo et al. [6] proposed a 0-1 integer formulation for the graph coloring problem based
on the idea of representative vertices. An asymmetric formulation and valid inequalities
for the same problem were proposed in [3]. The formulations in [3, 6] have been extended
by Frota et al. [10] to handle the partition coloring problem. In this paper, we explore the
idea of a formulation by representatives to derive a branch-and-cut algorithm for equitable
coloring. In the next section, we present combinatorial bounds to the cardinality of the
color sets in any equitable coloring. These results are used by the integer programming
formulations proposed in Section 3. Branch-and-cut algorithms for ECP are presented in
Section 4. Computational results are reported in Section 5. Concluding remarks are drawn
in the last section.

2 Bounds

We consider a graph G = (V,E), with |V | = n, |E| = m, and ∆ = maxv∈V {d(v)}, where
d(v) denotes the degree of node v ∈ V . The following result holds:

Theorem 1 (Hajnal and Szemerédi [12]). Every graph G has an equitable (∆+1)-coloring.

This theorem, together with the fact that χ=(G) ≥ 2 for E 6= ∅, yields the following result:

Corollary 1. If E 6= ∅, then 2 ≤ χ=(G) ≤ ∆+ 1.

Let sk and sk be, respectively, the minimum and maximum color set cardinalities in an
equitable k-coloring of G. Furthermore, let wk be the number of color sets with cardinality
sk in this equitable k-coloring. The following theorem holds:

Theorem 2. For any equitable k-coloring of G, sk = ⌊n
k
⌋ and sk = ⌈n

k
⌉.

Proof. The cardinalities of any two color sets in an equitable k-coloring differ by at most one.
In consequence, n = wk · sk +(k−wk) · sk. If k divides n, then all color sets in an equitable
k-coloring have the same cardinality and sk = sk. Then, n = wk · sk + (k−wk) · sk = k · sk
holds only if sk = ⌈n

k
⌉ = ⌊n

k
⌋ = sk. Otherwise, if k does not divide n, we first prove that

sk = ⌈n
k
⌉, and next that sk = ⌊n

k
⌋. Since there is an equitable k-coloring and k does not

divide n, then sk−sk = 1 and ⌈n
k
⌉−⌊n

k
⌋ = 1. Assuming that sk 6= ⌈n

k
⌉, two cases have to be

considered: sk > ⌈n
k
⌉ and sk < ⌈n

k
⌉. In the first case, there are wk color sets of cardinality

sk > ⌈n
k
⌉ and k − wk color sets of cardinality sk = sk − 1 > ⌈n

k
⌉ − 1 ≥ ⌈n

k
⌉. This leads to a

contradiction, since in that case n = wk · sk + (k − wk) · sk > wk ·
⌈

n
k

⌉

+ (k − wk) ·
⌈

n
k

⌉

=
k ·

⌈

n
k

⌉

> n. Hence, sk cannot be greater than ⌈n
k
⌉. In the second case, we have wk color

sets with cardinality sk < ⌈n
k
⌉. Therefore, sk ≤ ⌈n

k
⌉ − 1 = ⌊n

k
⌋ and k − wk color sets with

cardinality sk = sk − 1 < ⌈n
k
⌉ − 1 = ⌊n

k
⌋ exist. Once again, a contradiction would follow:

n = wk ·sk+(k−wk)·sk < wk ·
⌊

n
k

⌋

+(k−wk)·
⌊

n
k

⌋

= k·
⌊

n
k

⌋

< n. In consequence, sk cannot be
smaller than ⌈n

k
⌉. Therefore, sk =

⌈

n
k

⌉

. Since sk−sk = 1, then sk = sk−1 =
⌈

n
k

⌉

−1 =
⌊

n
k

⌋

,
which completes the proof.
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Theorem 2 leads to the following bounds for the cardinality of the color sets in any equitable
coloring:

Lemma 1. Given an upper (resp. lower) bound U (resp. L) to χ=(G), then
⌈

n
U

⌉

(resp.
⌈

n
L

⌉

) is a lower (resp. upper) bound for sk in any equitable k-coloring of G.

Proof. From Theorem 2, sχ=(G) =
⌈

n
χ=(G)

⌉

. Since
⌈

n
U

⌉

≤
⌈

n
χ=(G)

⌉

≤
⌈

n
L

⌉

, then
⌈

n
U

⌉

≤

sχ=(G) ≤
⌈

n
L

⌉

.

Corollary 1 and Lemma 1 yield the following result:

Corollary 2. For any equitable χ=(G)-coloring of G,
⌈

n
∆+1

⌉

≤ sχ=(G) ≤
⌈

n
2

⌉

.

3 Integer programming formulations

The formulation of the equitable coloring problem proposed in this section is based on
choosing one vertex to be the representative of all vertices with the same color, instead of
directly coloring all vertices. Therefore, each vertex is in either one of the following two
states: (i) colored and representing all vertices colored with its color, or (ii) colored and
represented by another vertex colored with the same color. Formulations by representatives
have been successfully applied in the solution of other graph coloring problems, see [3, 6, 10].

3.1 Formulations

Let A(u) = {v ∈ V : (u, v) /∈ E, v 6= u} be the anti-neighborhood of a vertex u ∈ V (i.e.,
the subset of vertices that are not adjacent to u). We also define A′(u) = A(u) ∪ {u}, for
any u ∈ V . Given a subset of vertices V ′ ⊆ V , we denote by E[V ′] the subset of edges
induced in the graph G = (V,E) by V ′. A vertex v ∈ A(u) is said to be isolated in A(u) if
E[A(u)] = E[A(u) \ {v}] (i.e., vertex v has no adjacent vertex in A(u)).

We define the binary variables xuv for all u ∈ V and for all v ∈ A′(u), such that xuv = 1
if and only if vertex u represents the color of vertex v; otherwise xuv = 0. The equilibrium
variable w ∈ R, w ≥ 0, indicates the cardinality of the maximum stable set of the equitable
coloring (i.e., the cardinality of each stable set is either w or w − 1). We also define Lw
and Uw as integral lower and upper bounds for the value of w, respectively. The equitable
coloring problem can be formulated as the following integer programming problem, in which
the non-linear constraints (14) and (15) will be linearized later:

min
∑

u∈V

xuu (10)

subject to:
∑

v∈A′(u)

xvu = 1, ∀u ∈ V (11)
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xuv + xub ≤ xuu, ∀u ∈ V, ∀(v, b) ∈ E : v, b ∈ A(u) (12)

xuv ≤ xuu, ∀u ∈ V, ∀v ∈ A(u) : v is isolated in A(u) (13)

xuu +
∑

v∈A(u)

xuv ≤ w · xuu, ∀u ∈ V (14)

xuu +
∑

v∈A(u)

xuv ≥ (w − 1) · xuu, ∀u ∈ V (15)

xuv ∈ {0, 1}, ∀u ∈ V, ∀v ∈ A′(u) (16)

w ∈ R, w ≥ 0. (17)

The above model is said to be a formulation by representatives. The objective function (10)
counts the number of representative vertices, i.e., the number of colors (or the number of
color sets). Constraints (11) enforce that each vertex u ∈ V must be represented either by
itself or by another vertex v in its anti-neighborhood. Inequalities (12) enforce that adjacent
vertices have distinct representatives. Inequalities (12) together with constraints (13) ensure
that a vertex can only be represented by a representative vertex. Inequalities (14) and
(15) guarantee that the difference on the cardinalities of any two color sets is at most
one. Constraints (16) and (17) define integrality and non-negativity requirements on the
variables.

To break symmetries in the above formulation, we generalized the asymmetric formulation
by representatives in [3]. We establish that a vertex u ∈ V can only represent another vertex
v ∈ V if u < v. Therefore, the representative of a color set is the vertex with the smallest
index among all those colored with this color. We define A>(u) = {v ∈ A(u) : u < v} as
the out-anti-neighborhood of a vertex u ∈ V (i.e., the vertices that cannot represent vertex
u) and A<(u) = {v ∈ A(u) : v < u} as the in-anti-neighborhood of vertex u ∈ V (i.e., the
vertices that can represent vertex u, except himself). We also define A′

>(u) = A>(u) ∪ {u}
and A′

<(u) = A<(u) ∪ {u}, for any u ∈ V .

We also define V s = {u ∈ V : A<(u) = ∅} as the set of vertices whose in-anti-neighborhoods
in G are empty (i.e., the set of vertices that are always representatives). Since vertices in V s

are always representatives, then xvv = 1 in any feasible solution, for any v ∈ V s. Therefore,
these variables may be removed from the symmetric (SF) formulation (10) to (17), which
can then be rewritten as the asymmetric (AF) formulation (18) to (25) below:

min
∑

v∈V \V s

xvv+ | V s | (18)

subject to:
∑

v∈A′
<(u)

xvu = 1, ∀u ∈ V \V s (19)

xuv + xub ≤ βu, ∀u ∈ V, ∀(v, b) ∈ E : v, b ∈ A>(u) (20)

xuv ≤ xuu, ∀u ∈ V \V s, ∀v ∈ A>(u) : v is isolated in A>(u) (21)

βu +
∑

v∈A>(u)

xuv ≤ w · βu, ∀u ∈ V (22)
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βu +
∑

v∈A>(u)

xuv ≥ (w − 1) · βu, ∀u ∈ V (23)

xuv ∈ {0, 1} ∀u ∈ V, ∀v ∈ A′
>(u) (24)

w ∈ R, (25)

where βu = 1 if u ∈ V s; otherwise βu = xuu.

Constraints (22) and (23) in the above formulation can be linearized and replaced by con-
straints (26) and (27) below:

βu +
∑

v∈A>(u)

xuv ≤ w − Lw · (1− βu), ∀u ∈ V (26)

βu +
∑

v∈A>(u)

xuv ≥ (w − 1)− (Uw − 1) · (1− βu), ∀u ∈ V (27)

resulting in formulation LF1 defined by the objective function (18) and constraints (19) to
(21) and (24) to (27). The number of variables in this formulation is | V \V s | +m + 1,
where m = n · (n− 1)/2−m is the number of edges in the complementary graph G of G.

An alternative approach to linearize constraints (22) and (23) consists of introducing new
variables yi, for every integer i in the interval [Lw, Uw]: yi = 1 if the cardinality of the
maximum stable set in the partition defining an equitable coloring of G is i; yi = 0 otherwise.
Therefore, w can be replaced by

∑i=Uw

i=Lw
i · yi by adding constraint (28) to formulation AF:

Uw
∑

i=Lw

yi = 1. (28)

For every u ∈ V and every integer i ∈ [Lw, Uw], we also introduce new variables zui such that
zui = xuu ·yi for any integer solution of ECP, together with the following linear inequalities:

zui ≤ yi, zui ≤ xuu, zui ≥ yi + xuu − 1, ∀u ∈ V, ∀i ∈ [Lw, Uw]. (29)

By substitution, constraints (22) can be rewritten as

βu +
∑

v∈A>(u)

xuv ≤
Uw
∑

i=Lw

i · zui, ∀u ∈ V. (30)

Similarly, the same transformation can be applied to (23), resulting in

2 · βu +
∑

v∈A>(u)

xuv ≥
Uw
∑

i=Lw

i · zui, ∀u ∈ V. (31)
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Therefore, the equitable coloring problem can be alternatively handled by the resulting
formulation LF2 defined by the objective function (18) and constraints (19) to (21), (24),
and (28) to (31). The number of variables in this formulation is |V \V s|+m+ρ(1+|V |), where
ρ = Uw − Lw. However, as zui = yi for all u ∈ V s, zui can be replaced by yi for all u ∈ V s,
which reduces the number of variables in formulation to LF2 to |V \V s|+m+ρ(1+ |V \V s|).
Formulations LF1 and LF2 are evaluated and compared in Section 5.

3.2 Valid inequalities

To improve the linear relaxation bounds given by the previous formulations, we use the
two families of valid inequalities originally proposed in [3, 6] for the graph coloring problem
which remain valid for ECP. Internal cuts (32) give a bound to the minimum number of
colors that are necessary to color any odd hole or anti-hole H ⊆ V :

∑

v∈H\V s

xvv+ | H ∩ V s | +
∑

v∈H\V s,u∈A<(v)\H

xuv ≥ χ(H), (32)

where χ(H) is the chromatic number of the subgraph induced by H in G. Theorem 3 below
was proved in [3, 6]:

Theorem 3. If H ⊆ V induces an odd hole or an odd anti-hole in G, then (32) is a valid
inequality for formulations LF1 and LF2.

External cuts (33) are used to bound the maximum number of vertices in a subset K ⊆
A>(u) with a particular structure (such as cliques, odd holes, and odd anti-holes) that can
be represented by the same vertex u ∈ V . They are strengthened versions of inequalities
(20). For any vertex v ∈ K, we define αv as the maximum size of an independent set of the
graph G[K] induced in G by K that contains v, and αK = maxv∈K{αv} as the size of the
maximum independent set of G[K]. The external cut induced by vertex u and the subset
K of nodes is defined by the inequality

∑

v∈K

xuv
αv

≤ βu. (33)

Theorem 4 below was proved in [3, 6]:

Theorem 4. If K ⊆ A>(u) is a non-empty set and u ∈ V , then (33) is a valid inequality
for formulations LF1 and LF2.

The next corollary follows from Theorem 4 and the fact that αv = 1 for any v ∈ K, where
K is a clique of G:

Corollary 3. If K ⊆ A>(u) is a clique and u ∈ V , then

∑

v∈K

xuv ≤ βu (34)

is a valid inequality for formulations LF1 and LF2.
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Theorem 4 is valid for any non empty set. Therefore, it is valid, in particular, for odd holes
and odd anti-holes. In both cases, the value of αv, for any v ∈ H, is equal to the size αH
of the maximum stable set of G[H], where αH = ⌊|H|/2⌋ for odd holes and αH = 2 for odd
anti-holes. Thus, the left-hand side of (33) can be rewritten as

∑

v∈H

xuv
αv

=
∑

v∈H

xuv
αH

=

∑

v∈H xuv

αH
,

for any u ∈ V and for any H ⊆ A>(u). Consequently, the next corollary holds:

Corollary 4. If H ⊆ A>(u) is an odd hole (or an odd anti-hole) and u ∈ V , then

∑

v∈H

xuv ≤ αHβu (35)

is a valid inequality for formulations LF1 and LF2.

4 Branch-and-cut

In this section, we describe two branch-and-cut algorithms, each of them based on one
of the formulations LF1 and LF2 proposed in the previous section. Valid inequalities are
progressively added to each subproblem of the search tree, which in most cases improves the
linear relaxation bound. Tight lower and upper bounds to the number of color sets in the
optimal solution of ECP, as well as efficient branching strategies, are instrumental to reduce
the search effort. The main components of the two branch-and-cut algorithms are discussed
in this section. They differ from each other by the integer programming formulation and
the branching strategy.

4.1 Cut generation

The cutting plane procedure is based on the valid inequalities (32) to (35), whose separation
consists basically of finding cliques, odd holes, and odd anti-holes in the graph. It follows the
scheme suggested in the branch-and-cut algorithm proposed in [10] for solving the partition
coloring problem. We use a GRASP heuristic for finding clique cuts and a modification of
the Hoffman and Padberg heuristic [13] for finding odd holes and odd anti-holes cuts.

4.1.1 Separation of external clique cuts

Let Gu = (V u, Eu) be the subgraph induced in G by the out-anti-neighborhood V u = A>(u)
of a vertex u ∈ V . Furthermore, let x̄uv be the optimal value of variable xuv in the linear
relaxation of formulation LF1 or LF2, for any u ∈ V and any v ∈ A′(u). For any u ∈ V
such that x̄uu > 0, the separation of an external clique cut consists of finding a subset of
nodes K ⊆ V u such that

∑

v∈K x̄uv > βu.

We developed a GRASP [8, 9, 21, 22] heuristic for finding cuts. The heuristic is an iterative
procedure composed of two phases: a construction phase and a local search phase. The
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construction phase finds an initial solution that may be later improved by the local search
phase.

This heuristic attempts to find a clique C with maximum weight
∑

v∈K x̄uv for each vertex
u ∈ V such that x̄uu > 0. Its construction phase begins with an empty set and builds
clique C, one vertex at a time. Let C ⊆ V u be a clique of G and δ(C) = {r ∈ V u\C :
C ∪ {r} is a clique of G}. At each iteration of the construction phase, one vertex r ∈ δ(C)
is inserted into C with probability x̄ur/(

∑

r′∈δ(C) x̄ur′) and the set δ(C) is updated. The
procedure is repeated until δ(C) = ∅.

There is no guarantee that the construction phase returns a locally optimal solution with
respect to some neighborhood. Therefore, clique C may be improved by a local search
procedure. The neighborhood γ(C) is defined as the set of all cliques obtained by exchanging
a vertex v ∈ C with another vertex u ∈ δ(C\{v}). The method starts with the solution
provided by the construction phase. It iteratively replaces the current solution by that with
maximum weight within its neighborhood. The local search halts when no better solution
is found in the neighborhood of the current solution.

The heuristic stops after 10 · |V u| iterations have been performed since the last time the
best solution was updated. The |V u| heaviest cliques are selected and a cut is generated for
each clique C such that

∑

v∈C x̄uv > βu.

4.1.2 Separation of external odd hole cuts and external odd anti-hole cuts

For any u ∈ V such that x̄uu > 0, the separation of external odd hole cuts consists of finding
an odd hole or an odd anti-hole H ∈ V u such that

∑

v∈H x̄uv > αHβu.

We developed a generalization of the Hoffman and Padberg [13] algorithm for finding vi-
olated odd hole inequalities in Gu = (V u, Eu). The same algorithm is applied to the
complementary graph to find violated odd anti-hole inequalities.

First, the method performs a breadth-first search labeling of the vertices of graph Gu =
(V u, Eu), starting from any root vertex r randomly chosen. A label hv is assigned to each
vertex v ∈ V u. Figure 1 (a) illustrates a layered graph with its vertex labels. For any two
adjacent vertices v1 and v2 with labels hv1 = hv2 ≥ 2, if there exist two vertex-disjoint
shortest paths pv1 (from v1 to r) and pv2 (from v2 to r), then there exists an odd cycle that
contains vertices v1, v2, and r, as illustrated by Figure 1 (b).

Next, the algorithm assigns weights tv1v2 = 2 − x̄uv1 − x̄uv2 to every edge (v1, v2) ∈ Eu.
Then, for every edge (v1, v2) ∈ Eu with hv1 = hv2 ≥ 2, the algorithm computes two vertex-
disjoint shortest paths, one from v1 to r and the other from v2 to r. If both paths exist,
an odd hole that can be used to generate a violated external cut is found. Otherwise, the
algorithm continues from the next edge. This algorithm is applied 0.4 · |V u| times, starting
from different root vertices.

9
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Figure 1: Layered graph with labels.

4.1.3 Separation of internal odd hole and internal odd anti-hole cuts

The separation of internal odd hole or odd anti-hole cuts consists of finding an odd hole or
an odd anti-hole H ∈ V such that

∑

v∈H\V s

x̄vv + |H ∩ V s|+
∑

v∈H\V s,u∈A<(v)\H

x̄uv < χ(G[H]).

The algorithm is similar to that developed for finding external odd hole cuts. There are two
main differences with respect to the algorithm in Section 4.1.2. First, the weights applied to
the edges of the layered graph are different. Second, the algorithm is applied to all vertices
in G to find violated odd hole cuts. The same algorithm is applied to the complementary
graph of G to find violated odd anti-hole inequalities. It starts by building a layered graph
rooted at a randomly chosen vertex r ∈ V . Next, the algorithm assigns weights

tv1v2 =
∑

u∈A′
<(v1)\H

x̄uv1 +
∑

u∈A′
<(v2)\H

x̄uv2

to every edge (v1, v2) ∈ E. Then, for any edge (v1, v2) ∈ E with hv1 = hv2 ≥ 2, the
algorithm calculates two vertex-disjoint shortest paths, one from v1 to r and the other from
v2 to r. If both paths exist, an odd hole that can be used to generate a violated internal
cut is found. Otherwise, the algorithm continues from the next edge. This algorithm is
repeated 0.4 · |V | times, starting from different root vertices.

4.2 Branching strategy

The branching strategy plays a major role in the success of a branch-and-cut algorithm.
Branching on the xuv variables, with u ∈ V and v ∈ A′(u), is not efficient because most
of them are null in integral solutions. Therefore, our branching strategy is based on the
cardinality variables w in formulation LF1 and on the yi variables in formulation LF2.
Branching on the xuv variables starts only after all the w or yi variables are integral.

Let w̄ be the optimal value of variable w in the linear relaxation of LF1. Two branches
are generated if w̄ is fractional: constraint w ≤ ⌊w̄⌋ is added in the first branch, while
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constraint w ≥ ⌈w̄⌉ is added in the second. If any of the y variables is fractional in the
linear relaxation of LF2, we branch on the variable yi whose value in the linear relaxation
is closest to 0.5 and two branches are generated: constraint

∑j=i−1
j=Lw

yj = 0 is added in the

first branch, while constraint
∑j=Uw

j=i yj = 0 is added in the second.

If none of the cardinality variables is fractional, then we branch on the variable xuu whose
value in the corresponding linear relaxation is closest to 0.5, with u ∈ V . If none of the
latter is fractional, then we branch on the variable xuv whose value in the corresponding
linear relaxation is closest to 0.5, with u ∈ V and v ∈ A(u).

4.3 Upper bounds

We propose a tabu search heuristic to compute upper bounds for each subproblem of the
branch-and-cut algorithms. The algorithm is based on the heuristic for the frequency as-
signment problem proposed in [23].

The initial solution sets the representative of each vertex v ∈ V to be argmaxu∈A′
<(v)x

∗
uv,

where x∗uv is the value of variable xuv in the optimal solution of the linear relaxation of LF1

or LF2. This initial solution may violate constraints (20), as well as the equitable coloring
constraints (22) and (23).

The objective function of the tabu search heuristic consists of minimizing the sum of four
component costs c1, c2, c3, and c4. For every u ∈ V and for every v ∈ A′

>(u), let x̄uv = 1
if and only if vertex u represents the color of vertex v in the current solution of the tabu
search; x̄uv = 0 otherwise. Furthermore, let w̄ = ⌈ |V |

K
⌉ be the cardinality of a maximum

stable set in a feasible solution with K colors (recall that the cardinality of each stable set
is either w or w − 1). The cost components c1, c2, c3, and c4 of the objective function can
be calculated as:

c1 =
∑

v∈V \V s

x̄vv+ | V s |;

c2 =
∑

u∈V

∑

(v,b)∈E

v,b∈A>(u)

max{x̄uv + x̄ub − 1, 0};

c3 =
∑

u∈V

max{w̄ − 1− βu −
∑

v∈A>(u)

x̄uv, 0}; and

c4 =
∑

u∈V

max{−w̄ + βu +
∑

v∈A>(u)

x̄uv, 0}.

The cost component c1 counts the number of representative vertices (i.e., colors) in the
solution defined by x̄ and w̄, while the other three components of the objective function
measure the degree of infeasibility of this solution. Cost component c2 measures the degree
of infeasibility regarding constraint (20). It counts the number of adjacent vertices with the
same representative, while components c3 and c4 measure the degree of infeasibility of the
equitable coloring constraints (22) and (23), respectively. We notice that c2 = c3 = c4 = 0
in any feasible solution.
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The neighborhood N of any given solution consists of all solutions that can be obtained by
replacing the representative u ∈ A′

<(v) of a given vertex v ∈ V by another vertex b ∈ A′
<(v).

For the sake of efficiency, we do not evaluate all O(n2) solutions in the neighborhood. In-
stead, we investigate a restricted neighborhood N ′ defined as follows. Given two parameters
p ∈ [0, 1] and q ∈ [0, 1], we select at random a set B ⊆ V with exactly q · |V | vertices. For
each vertex v ∈ B, we evaluate the change in the cost function derived by replacing vertex
v by each of those in a set D ⊆ A′

<(v) with exactly p · |A′
<(v)| vertices, also selected at

random. The values of p and q have been set, respectively, to 0.5 and 0.7 as in [23].

The tabu search procedure is implemented using a best-improvement local search strategy.
At each iteration, the current solution is replaced by the best one in the restricted neighbor-
hood N ′. Therefore, the representative u ∈ A′

<(v) of vertex v ∈ V is replaced by another
vertex b ∈ A′

<(v). All solutions where u is the representative of vertex v are made tabu for

t · ψ(u,v)
σ(v) iterations, where ψ(u, v) is the total number of tabu search iterations where u was

the representative of vertex v in the current solution, and σ(v) is the number of iterations
performed since the last time the representative of v has changed to u. The value of t was
set to 100 as in [23].

A local search procedure based on the complete neighborhood N of the best known feasible
solution is performed whenever the latter is updated. The tabu search resumes from the
locally optimal solution obtained by this local search.

5 Computational experiments

Two branch-and-cut algorithms have been implemented and tested in the computational
experiments. The first (B&C-LF1) is based on formulation LF1 (objective function (18)
with constraints (19) to (21) and (24) to (27)), while the second (B&C-LF2) is based on
formulation LF2 (objective function (18) with constraints (19) to (21), (24), and (28) to
(31). The results obtained by these two new algorithms are compared directly with those
provided by the branch-and-cut in [1], that was implemented using Gomory cuts and lifted
cover cuts provided by the XPRESS solver.

We developed our own branch-and-cut framework and implemented it in C++. The search
strategy implements a best first search criterion, based on the linear relaxation of formula-
tions LF1 and LF2 with the external and internal cuts. The tailing off strategy adds the best
cuts violated by at least 2%, with a maximum of n2 external clique cuts, n external odd hole
cuts and n internal odd hole cuts per iteration. The algorithm in [1] was also implemented
in C++. Both algorithms have been compiled with version v3.41 of the Linux/GNU com-
piler. XPRESS version 2005-a was used exclusively as the linear programming solver. All
experiments were performed on an 1.8 GHz AMD-Atlon machine with one Gbyte of RAM
memory. The numerical experiments were carried out on 75 random instances generated in
the same way as in [19], 20 graph coloring instances from the DIMACS challenge [15], and
four Kneser graphs used in the computational experiments reported in [1].

We first investigate the effectiveness of the external and internal cuts. Table 1 displays
the contribution of external and internal cuts to the linear relaxation of formulations LF1

and LF2 for the 20 graph coloring instances from the DIMACS challenge [15] and the four
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Kneser graphs. The first column gives the name of each test instance, while the second
gives its optimal value. The next five columns give the main statistics for the solution of
the linear relaxation of formulation LF1: the optimal value of the linear relaxation found
by algorithm B&C-LF1 without cuts, the computation time in seconds needed to compute
the previous value, the optimal value of the linear relaxation found by algorithm B&C-LF c1
with cuts, the total number of external and internal cuts added in the root node, and the
computation time in seconds needed to compute this relaxation value. The last five columns
give the same information for formulation LF2 and algorithms B&C-LF2 and B&C-LF c2 .

We first observe that both formulations equally benefit from the external and internal cuts
in terms of the optimal values of their linear relaxations: for all instances in this table, both
formulations obtained the same lower bounds without the cuts and have been improved by
the same amount with the cuts. The external and internal cuts improved the optimal values
of the linear relaxations of LF1 and LF2 by approximately 12.45% on average, considering
all 16 instances for which the lower bounds have been smaller than the optimal integral
value. The cuts made it possible to find optimal integral lower bounds for three instances:
queen.6 6, david, and K9,4. Although both formulations lead to the same solution values,
their running times and the number of cuts they add are different.

Instance Optimal B&C-LF1 time B&C-LF c
1 cuts time B&C-LF2 time B&C-LF c

2 cuts time
value (s) (s) (s) (s)

miles750 31 31.00 0 31.00 225 48 31.00 0 31.00 226 69
miles1000 42 42.00 0 42.00 223 52 42.00 0 42.00 292 42
miles1500 73 73.00 0 73.00 0 0 73.00 0 73.00 0 0
zeroin.i.1 49 49.00 1 49.00 0 15 49.00 1 49.00 0 13
zeroin.i.2 36 30.69 8 32.70 435 41 30.69 9 32.70 477 33
zeroin.i.3 36 31.43 7 33.32 327 35 31.43 5 33.32 345 39
queen.6 6 7 6.00 0 6.20 176 0 6.00 0 6.20 177 1
queen.7 7 7 7.00 0 7.00 232 1 7.00 0 7.00 148 1
queen.8 8 9 8.00 0 8.00 381 3 8.00 0 8.00 393 3
myciel3 4 2.67 0 3.00 4 0 2.67 0 3.00 5 0
myciel4 5 2.70 0 3.83 141 0 2.70 0 3.83 144 0
jean 10 10.00 0 10.00 0 0 10.00 0 10.00 0 0
anna 11 11.00 0 11.00 9 4 11.00 4 11.00 9 8
david 30 29.33 0 29.33 0 1 29.33 0 29.33 0 2
games120 9 9.00 1 9.00 115 29 9.00 0 9.00 132 23
K5,2 3 2.50 0 2.50 2 0 2.50 0 2.50 2 0
K7,2 6 3.50 0 3.50 18 0 3.50 0 3.50 19 0
K7,3 3 2.24 0 2.92 249 1 2.24 1 2.92 276 1
K9,4 3 2.00 1 3.00 5869 163 2.00 17 3.00 3572 120
1-FullIns-3 4 3.33 0 3.75 68 0 3.33 0 3.75 44 0
2-FullIns-3 5 4.25 0 4.73 269 1 4.25 0 4.73 311 2
3-FullIns-3 6 5.20 1 5.71 735 9 5.20 4 5.71 439 4
4-FullIns-3 7 6.17 0 6.71 1459 34 6.17 2 6.71 1855 31
5-FullIns-3 8 7.14 3 7.70 3921 121 7.14 1 7.70 3095 81

Table 1: Effectiveness of the internal and external cuts.

In the next experiment, we investigate the behavior of the tabu search heuristic. For each of
the 20 graph coloring instances from the DIMACS challenge [15] and the four Kneser graphs,
we provide information about the cost and computation time of the solutions obtained by
tabu search starting from: (1) a solution with no vertices colored (i.e., from scratch); (2) a
solution obtained by rounding the fractional variables in the optimal solution of the relax-
ation of formulation LF1; and (3) a solution obtained by rounding the fractional variables
in the optimal solution of the relaxation of formulation LF2. In each case, we report on
Table 2, the upper bound (UB) provided by the tabu search heuristic and the computation
time (in seconds) needed to compute it. We observe that tabu search obtains better upper
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bounds and smaller computation times when starting from the linear relaxations of our
formulations than when it starts from scratch.

Detailed comparative computational results are reported in Tables 3 to 6. The first three
columns in each table display the name, the number of vertices, and the number of edges of
each instance. The next four columns give lower (LB) and upper (UB) bounds for χ=(G),
the number of evaluated nodes in the branch-and-cut tree, and the CPU time (in seconds)
taken by the algorithm in [1] to find the optimal. The two last groups of four columns give
the same information for algorithms B&C-LF1 and B&C-LF2. A missing entry in any of
the columns displaying CPU time indicates that the problem could not be solved within
two hours of processing time by the corresponding algorithm. In this case, we give the
lower and upper bounds, and the number of evaluated nodes at the time the algorithm was
stopped.

Table 3 refers to benchmark DIMACS instances for graph coloring and four Kneser graph
instances used in [1]. The lower bounds provided by the branch-and-cut algorithms based
on formulations LF1 and LF2 are very close and always better than or equal to those
provided by the branch-and-cut algorithm in [1]. Algorithm B&C-LF1 solved 22 out of
the 24 instances within two hours of processing time, while algorithm B&C-LF2 solved all
instances in Table 3. The branch-and-cut in [1] solved only 14 out of the 24 instances. The
average relative gap (UB − LB)/LB for the branch-and-cut algorithm in [1] is 1,662.1%,
while the same gap for B&C-LF1 and B&C-LF2 is equal to 6.2% and 0.0%, respectively.
The largest absolute gap (UB − LB) for B&C-LF1 and B&C-LF2 over all 24 instances in
Table 3 is equal to 26 and 0 colors, respectively, while the same value for the branch-and-cut
algorithm in [1] corresponds to 204 colors (instance zeroin.i.3).

Table 4 shows the results obtained on 25 random instances with 50 nodes, generated in the
same way as in [19]. An instance named rand n p s has n vertices and a probability p for the
existence of an edge between any two vertices. The last digit s is used to distinguish between
instances with the same values of n and p. Once again, the lower bounds provided by the
branch-and-cut algorithms based on formulations LF1 and LF2 are very close and always
better than or equal to those provided by the branch-and-cut algorithm in [1]. Algorithms
B&C-LF1 and B&C-LF2 solved, respectively, 21 and 24 out of the 25 instances within
two hours of processing time, while the branch-and-cut in [1] managed to solve only seven
instances. The average relative gap (UB−LB)/LB for the branch-and-cut algorithm in [1]
over the 25 instances is 17.4%, while the same value for B&C-LF1 and B&C-LF2 is much
smaller and equal to 5.0% and 0.7%, respectively.

Tables 5 and 6 show the results for random instances with 60 and 70 nodes, respectively,
once again generated in the same way as in [19]. As before, the lower bounds provided
by the branch-and-cut algorithms based on formulations LF1 and LF2 are very close and
always better than or equal to those provided by the branch-and-cut algorithm in [1]. The
latter solved no instance with 60 and 70 nodes and edge density larger than 10% within two
hours of processing time. Its average gap (UB−LB)/LB over the instances with 60 and 70
nodes is 38.9% and 110.7%, respectively. The average gap of B&C-LF1 is 6.1% and 7.7%
over the instances with 60 and 70 nodes, respectively. Algorithm B&C-LF2 performed even
better: its average gap is equal to 2.6% and 6.7% over the instances with 60 and 70 nodes,
respectively.
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Scratch B&C-LF1 B&C-LF2

Instance Optimal ub time ub time ub time
value (s) (s) (s)

miles750 31 35 13 35 3 35 3
miles1000 42 49 13 49 3 48 3
miles1500 73 77 13 73 4 73 3
zeroin.i.1 49 74 22 49 4 49 4
zeroin.i.2 36 95 22 81 5 84 5
zeroin.i.3 36 97 21 90 5 81 5
queen6 6 7 8 1 7 0 7 0
queen7 7 7 8 3 8 0 8 0
queen8 8 9 10 7 10 2 10 2
myciel3 4 4 0 4 0 4 0
myciel4 5 5 1 5 0 5 0
jean 10 10 3 10 0 10 0
anna 11 13 14 13 3 12 1
david 30 30 9 30 2 30 2
games120 9 11 6 11 1 9 0
K5,2 3 4 0 4 0 3 0
K7,2 6 6 0 6 0 6 0
K7,3 3 5 0 5 0 5 1
K9,4 3 6 2 3 0 3 0
1-FullIns-3 4 6 0 6 0 6 0
2-FullIns-3 5 8 1 8 0 8 0
3-FullIns-3 6 9 2 9 0 9 1
4-FullIns-3 7 11 5 11 1 11 0
5-FullIns-3 8 13 8 13 1 13 2

Table 2: Tabu search upper bounds for DIMACS and Kneser graphs.

B&C [1] B&C-LF1 B&C-LF2

Graph | V | | E | lb ub nodes time lb ub nodes time lb ub nodes time
miles750 128 2113 3 58 1 - 31 31 5 124 31 31 6 171
miles1000 128 3216 3 67 130 - 42 42 10 214 42 42 13 267
miles1500 128 5198 2 86 1 - 73 73 1 13 73 73 1 13
zeroin.i.1 211 4100 2 211 1 - 49 49 3 79 49 49 1 50
zeroin.i.2 211 3541 2 211 1 - 35 61 97 - 36 36 23 510
zeroin.i.3 206 3540 2 206 2 - 35 61 101 - 36 36 28 491
queen.6 6 36 290 7 7 39447 941 7 7 1 2 7 7 1 1
queen.7 7 49 476 7 7 778 149 7 7 1 3 7 7 1 0
queen.8 8 64 728 8 10 4424 - 9 9 525 572 9 9 297 441
myciel3 11 20 4 4 19 0 4 4 5 0 4 4 7 0
myciel4 23 71 5 5 8867 12 5 5 255 4 5 5 237 5
jean 80 254 4 10 3453 - 10 10 1 3 10 10 1 4
anna 138 493 5 11 5913 - 11 11 1 18 11 11 2 26
david 87 406 7 30 8546 - 30 30 1 11 30 30 1 13
games120 120 638 9 9 11 39 9 9 1 35 9 9 1 30
K5,2 10 15 3 3 1 0 3 3 1 0 3 3 1 0
K7,2 21 105 6 6 40435 87 6 6 407 4 6 6 357 6
K7,3 35 70 3 3 1 0 3 3 4 1 3 3 4 2
K9,4 126 315 3 3 183 22 3 3 7 461 3 3 4 809
1-FullIns-3 30 100 4 4 73 3 4 4 10 2 4 4 34 2
2-FullIns-3 52 201 5 5 79 20 5 5 5 4 5 5 84 25
3-FullIns-3 80 346 6 6 21011 243 6 6 121 146 6 6 38 85
4-FullIns-3 114 541 7 7 5085 720 7 7 8 98 7 7 3 72
5-FullIns-3 154 792 8 8 24033 3088 8 8 77 1649 8 8 5 268

Table 3: Computational results for DIMACS and Kneser graphs.
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The branch-and-cut algorithm in [1] performed better than the others only on the random
instances with smaller edge densities (10%). This is due to the fact that the separation
problem can be solved faster by the algorithm in [1], with the cuts generated being strong
enough to prove optimality. Algorithms B&C-LF1 and B&C-LF2 performed best on in-
stances with edge densities larger than 50%, because the larger is the graph density, the
larger is the size of the cliques, odd holes, and odd anti-holes used to generate the inter-
nal and external cuts. The hardest instances for B&C-LF1 and B&C-LF2 were those with
edge densities in the interval [30%, 50%], because the cliques, odd holes, and odd anti-holes
found for these instances were not large enough to generate effective internal and external
cuts. Finally, it is important to emphasize that random instances with up to 70 nodes and
edge densities ranging from 10% to 90% have been solved to optimality by the two new
algorithms, while the largest solved to date by the algorithm in [19] had only 35 nodes.

The plot in Figure 2 displays in logarithmic scale the average relative gap (UB − LB)/LB
observed for B&C-LF1, B&C-LF2, and the branch-and-cut in [1] over all instances in each
of the Tables 3 to 6. Algorithm B&C-LF2 proposed in this work clearly outperformed the
others.

Figure 2: Average relative gaps observed for the branch-and-cut algorithm in [1], B&C-LF1,
and B&C-LF2 over all instances in Tables 3 to 6.

The comparison with the cut-and-branch algorithm proposed in [19] is straightforward. The
randomly generated instances solved by the latter had only 15 to 35 nodes, while algorithms
B&C-LF1 and B&C-LF2 solved much larger instances with up to 70 nodes.

6 Concluding remarks

We proposed two branch-and-cut algorithms for the equitable graph coloring problem, based
on two new integer programming formulations by representatives. Computational experi-
ments have been carried out on 99 problem instances.
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B&C [1] B&C-LF1 B&C-LF2

Graph | V | | E | lb ub nodes time lb ub nodes time lb ub nodes time
rand 50 10 1 50 121 4 4 53 3 4 4 63 19 4 4 15 9
rand 50 10 2 50 103 3 3 17 3 3 3 12 4 3 3 8 8
rand 50 10 3 50 119 4 4 1 3 4 7 251945 - 4 4 2 1
rand 50 10 4 50 117 4 4 27 6 4 4 26 10 4 4 5 6
rand 50 10 5 50 100 3 3 16 1 3 3 5 3 3 3 5 4
rand 50 30 1 50 367 6 6 2831 235 6 6 200 61 6 6 1362 412
rand 50 30 2 50 359 6 6 2541 291 6 6 1451 441 6 6 112 53
rand 50 30 3 50 372 6 7 403054 - 6 7 84859 - 7 7 503 155
rand 50 30 4 50 357 6 6 6397 826 6 6 1248 339 6 6 744 231
rand 50 30 5 50 381 6 7 432545 - 6 7 62308 - 6 7 110739 -
rand 50 50 1 50 583 7 9 13720 - 9 9 25 15 9 9 25 17
rand 50 50 2 50 608 8 9 53726 - 9 9 81 44 9 9 1 9
rand 50 50 3 50 602 8 10 29278 - 9 10 36451 - 10 10 1035 273
rand 50 50 4 50 616 8 11 73951 - 10 10 151 45 10 10 187 56
rand 50 50 5 50 606 8 10 36049 - 9 9 1 8 9 9 1 7
rand 50 70 1 50 831 11 15 65046 - 13 13 161 42 13 13 161 42
rand 50 70 2 50 843 11 14 16119 - 14 14 29 12 14 14 29 12
rand 50 70 3 50 859 11 14 11825 - 14 14 31 14 14 14 1 7
rand 50 70 4 50 852 11 15 10142 - 14 14 11 11 14 14 11 11
rand 50 70 5 50 863 11 15 11307 - 14 14 1 8 14 14 1 8
rand 50 90 1 50 1105 21 26 7204 - 26 26 1 8 26 26 1 8
rand 50 90 2 50 1072 19 21 13177 - 21 21 1 8 21 21 1 8
rand 50 90 3 50 1075 20 26 8632 - 26 26 1 8 26 26 1 8
rand 50 90 4 50 1095 21 26 15903 - 26 26 1 8 26 26 1 8
rand 50 90 5 50 1101 20 21 16721 - 21 21 3 8 21 21 4 8

Table 4: Computational results for random graphs with 50 nodes.

B&C [1] B&C-LF1 B&C-LF2

Graph | V | | E | lb ub nodes time lb ub nodes time lb ub nodes time
rand 60 10 1 60 166 4 4 35 6 4 4 16 22 4 4 20 38
rand 60 10 2 60 148 4 4 29 6 4 4 5 7 4 4 11 15
rand 60 10 3 60 150 4 4 13 5 4 4 7 14 4 4 8 16
rand 60 10 4 60 173 4 4 25 8 4 4 17 18 4 4 15 23
rand 60 10 5 60 152 4 4 57 9 4 4 6 8 4 4 9 14
rand 60 30 1 60 529 6 7 82426 - 7 8 25516 - 7 8 4368 -
rand 60 30 2 60 519 6 7 76495 - 6 8 23159 - 7 8 3945 -
rand 60 30 3 60 535 6 7 152382 - 7 8 25155 - 7 7 41 61
rand 60 30 4 60 509 6 7 206105 - 7 8 27251 - 7 7 137 111
rand 60 30 5 60 506 6 7 223443 - 6 8 26962 - 7 8 3873 -
rand 60 50 1 60 880 8 12 8112 - 11 11 337 187 11 11 351 214
rand 60 50 2 60 853 8 11 5178 - 10 10 1194 750 10 11 13501 -
rand 60 50 3 60 858 8 13 38413 - 10 10 21 40 10 10 5 15
rand 60 50 4 60 849 9 13 14105 - 10 11 19511 - 10 11 36708 -
rand 60 50 5 60 903 8 13 5941 - 10 12 18145 - 11 11 657 388
rand 60 70 1 60 1239 12 25 4826 - 16 16 25 15 16 16 33 19
rand 60 70 2 60 1240 12 18 3401 - 16 16 41 22 16 16 61 28
rand 60 70 3 60 1240 13 20 5966 - 16 17 18257 - 16 16 771 252
rand 60 70 4 60 1209 12 17 6153 - 16 16 75 27 16 16 63 28
rand 60 70 5 60 1261 12 22 2320 - 16 16 169 55 16 16 71 28
rand 60 90 1 60 1559 22 25 3823 - 24 24 26 13 24 24 1 9
rand 60 90 2 60 1561 18 31 456 - 31 31 1 9 31 31 1 9
rand 60 90 3 60 1571 19 26 858 - 25 25 1 9 25 25 1 9
rand 60 90 4 60 1583 22 37 4081 - 25 25 1 9 25 25 2 9
rand 60 90 5 60 1606 23 38 1699 - 26 26 1 9 26 26 1 9

Table 5: Computational results for random graphs with 60 nodes.
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Random instances with up to 70 nodes have been solved to optimality by the new algorithms,
while the largest instances solved to date by the cut-and-branch algorithm in [19] had only
35 nodes.

The results obtained by the new branch-and-cut algorithms were far superior to those
given by the previously existing branch-and-cut approach. The average relative gap (UB−
LB)/LB observed for the branch-and-cut algorithm in [1] over all test instances was equal to
443.4%, while for B&C-LF1 and B&C-LF2 it was equal to only 7.4% and 2.4%, respectively.
The largest absolute gap (UB − LB) for algorithms B&C-LF1 and B&C-LF2 over the 75
random instances corresponded to five and two colors, respectively, while the same gap
for the branch-and-cut algorithm in [1] was of 52 colors for instance rand 70 90 4. The
numerical results have shown that algorithm B&C-LF2 clearly outperformed B&C-LF1 and
previously existing approaches.
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[6] R.C. Corrêa, M. Campêlo, and Y.A.M. Frota. Cliques, holes and the vertex coloring
polytope. Information Processing Letters, 89:159–164, 2004.

[7] S. K. Das, I. Finocchi, and R. Petreschi. Conflict-free star-access in parallel memory
systems. Journal of Parallel and Distributed Computing, 66:1431–1441, 2006.

[8] P. Festa and M.G.C. Resende. An annotated bibliography of GRASP - Part I: Algo-
rithms. International Transactions in Operational Research, 16:1–14, 2009.

[9] P. Festa and M.G.C. Resende. An annotated bibliography of GRASP - Part II: Appli-
cations. International Transactions in Operational Research, 16:131–172, 2009.

[10] Y. Frota, N. Maculan, T.F. Noronha, and C.C. Ribeiro. A branch-and-cut algorithm
for partition coloring. Networks, 55:194–204, 2010.

[11] H. Furmanczyk and M. Kubale. The complexity of equitable vertex coloring of graphs.
Journal of Applied Computer Science, 13:95–107, 2005.

18



[12] A. Hajnal and E. Szemerdi. Proof of a conjecture of P. Erdös. In P. Erdös, A. Rényi, and
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B&C [1] B&C-LF1 B&C-LF2

Graph | V | | E | lb ub nodes time lb ub nodes time lb ub nodes time
rand 70 10 1 70 209 4 4 37 11 4 9 35436 - 4 4 100 184
rand 70 10 2 70 205 4 4 42 11 4 4 24 23 4 4 22 31
rand 70 10 3 70 223 4 4 45 12 4 4 63 145 4 4 64 156
rand 70 10 4 70 224 4 4 22 18 4 4 18 21 4 4 10 26
rand 70 10 5 70 223 4 4 65 16 4 4 138 127 4 4 89 149
rand 70 30 1 70 688 6 8 19423 - 7 9 16648 - 7 9 4355 -
rand 70 30 2 70 717 6 8 13526 - 7 9 11435 - 7 8 4436 -
rand 70 30 3 70 686 6 8 39821 - 7 8 9983 - 7 8 4066 -
rand 70 30 4 70 695 6 8 26613 - 7 9 11563 - 7 9 3948 -
rand 70 30 5 70 719 6 8 62214 - 7 9 12261 - 7 9 600 -
rand 70 50 1 70 1189 8 15 2369 - 11 12 10923 - 11 12 8665 -
rand 70 50 2 70 1176 8 15 5549 - 10 11 3344 - 11 12 7563 -
rand 70 50 3 70 1210 8 14 1794 - 11 12 12197 - 11 12 6443 -
rand 70 50 4 70 1136 7 37 5263 - 10 12 6861 - 10 11 5371 -
rand 70 50 5 70 1202 9 14 3629 - 11 12 2800 - 11 12 1203 -
rand 70 70 1 70 1675 9 20 1 - 17 17 161 94 17 17 301 166
rand 70 70 2 70 1710 11 22 381 - 17 17 322 140 17 17 749 332
rand 70 70 3 70 1698 13 29 1169 - 18 18 869 458 18 18 52 38
rand 70 70 4 70 1677 14 26 1540 - 17 17 328 143 17 17 163 79
rand 70 70 5 70 1629 13 37 1889 - 17 17 2039 826 17 17 2127 749
rand 70 90 1 70 2154 11 32 1 - 29 29 101 30 29 29 1 10
rand 70 90 2 70 2153 21 38 30 - 28 28 1 10 28 28 1 8
rand 70 90 3 70 2168 16 33 1 - 29 29 14 12 29 29 28 14
rand 70 90 4 70 2160 12 64 1 - 29 29 26 14 29 29 16 12
rand 70 90 5 70 2159 7 30 1 - 27 27 1 10 27 27 1 8

Table 6: Computational results for random graphs with 70 nodes.
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