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A heuristic for minimizing weighted carry-over effects in
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Abstract The carry-over effects value is one of the various measures one can consider

to assess the quality of a round robin tournament schedule. We introduce and discuss a

new, weighted variant of the minimum carry-over effects value problem. The problem is

formulated by integer programming and an algorithm based on the hybridization of the

Iterated Local Search metaheuristic with a multistart strategy is proposed. Numerical

results are presented.
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1 Motivation

Sports optimization has been attracting the attention of an increasing number of

researchers and practitioners in multidisciplinary areas such as operations research,

scheduling theory, constraint programming, graph theory, combinatorial optimization,

and applied mathematics. Kendall et al. [1] surveyed state-of-the-art applications and

methods for solving optimization problems in sports scheduling. Rasmussen and Trick [2]

reviewed scheduling problems in round robin tournaments, which are of special impor-

tance due to their practical relevance and interesting mathematical structure.

There are many relevant aspects to be considered in the determination of the best

fixture for a tournament. In some situations, one seeks for a schedule minimizing the

total traveled distance, as in the case of the traveling tournament problem [3] and

in that of its mirrored variant [4], which is common to many tournaments in South
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America. Other problems attempt to minimize the number of breaks, i.e., the number

of pairs of consecutive home games or consecutive away games. Ribeiro and Urrutia [5]

tackled the scheduling of the Brazilian national football tournament, in which the

objective function consists of maximizing the number of games that may be broadcast

by open TV channels, so as to increase the revenues from broadcast rights.

The minimization of the carry-over effects value [6] is a fairness criterion leading

to an even distribution of the sequence of games along the schedule.

A major issue in the strategy of a team (or an athlete), in particular in long

competitions, consists of balancing their efforts over the competition. If a team plays

against a weak opponent, it is likely to be in better shape to play in the next round

than if it had played against a hard opponent before. Teams that play against strong

opponents will very likely be more tired for their next game. Therefore, it is likely that

a team (or an athlete) makes much less effort playing against an opponent that played

before against a very strong contestant, than it would make against an opponent that

faced an easy contestant.

The above situation is particularly true in the case of sports which require a great

amount of physical effort (such as wrestling, rugby, and martial arts). In this sort

of sports, it is not uncommon that a team (or an athlete) plays several games in a

row, making a sequence of very tired (resp. well reposed) opponents very attractive

(resp. unattractive). Some fixtures may contain several of such sequences of easier or

harder games assigned to one or more teams. This situation does not characterize a fair

schedule and is highly undesirable in any tournament. To illustrate this effect, suppose

a Karate-Do or Judo competition. There is no weight division in open-weight categories

of such sports: a physically weak athlete may fight a strong one. A contestant that has

just fought a very strong opponent will possibly be very tired (and even wounded)

in his/her next fight. This would deteriorate his/her performance, giving to the next

opponent a strong advantage that otherwise he/she would not have.

Suppose that team A plays team C right after playing team B. If team B is much

stronger than the other competitors, then team C will possibly take some advantage

over team A in their game. This is due to the great effort team A has made in its

previous game. This type of situation in which one of the teams may be benefited

should be avoided or, at least, minimized.

We say that a team C receives a carry-over effect due to team B if there is a team A

that plays C just after its game against B. We consider a single round robin tournament

played by n (even) teams, in which every team plays each other exactly once. Figure 1

(a) displays a matrix describing a hypothetical tournament fixture, whose entry in row

i and column j informs the team playing against team j in round i. One may count the

number of carry-over effects each team gives to every other in the fixture of a round

robin tournament and then build the carry-over effects matrix. Each entry in row i

and column j of this matrix indicates the number of carry-over effects team i gives to

team j. Figure 1 (b) presents the underlying carry-over effects matrix associated with

the fixture represented in Figure 1 (a).

A fair tournament regarding carry-over effects is one in which the latter are evenly

distributed over the cells of the carry-over effects matrix and the total carry-over effects

value is minimized. The problem of minimizing the carry-over effects value was origi-

nally proposed by Russell [6]. In this work, we extend the latter by the minimization

of the weighted carry-over effects value. This new, weighted problem is introduced and

formulated in the next section. Section 3 reviews previous solution approaches for the

unweighted original problem and describes a heuristic based on the hybridization of



A B C D E F G H
1 H C B E D G F A
2 C D A B G H E F
3 D E F A B C H G
4 E F H G A B D C
5 F G E H C A B D
6 G H D C F E A B
7 B A G F H D C E

A B C D E F G H
A 0 0 3 0 1 2 1 0
B 5 0 0 0 1 0 0 1
C 0 1 0 3 0 3 0 0
D 0 2 0 0 2 0 3 0
E 1 1 0 2 0 2 0 1
F 0 0 0 0 2 0 3 2
G 0 3 1 0 0 0 0 3
H 1 0 3 2 1 0 0 0

(a) (b)

Fig. 1 (a) Fixture of a tournament with eight teams and (b) its carry-over effects matrix.

the Iterated Local Search metaheuristic with a multistart strategy for approximately

solving the weighted variant. Numerical results are reported and discussed in Section 4.

Concluding remarks are drawn in the last section.

2 Weighted formulation

A single round robin tournament is one in which each team plays every other exactly

once. The games take place along a predefined period of time organized into rounds

or slots. A compact tournament has a minimum number of rounds. A compact single

round robin tournament with n (even) teams has n − 1 rounds.

For a given compact single round robin schedule with n teams, one says that team

i gives a carry-over effect to team j if some other team plays consecutively against

teams i and j, i.e., some team plays against team i in round t and against team j in

round t+1 for some t ∈ {1, . . . , n−1}, where the rounds are considered cyclically (i.e.,

round n − 1 is followed by the first round). If team i is a very strong or very weak

team and several teams play consecutively against teams i and j in this order, then

team j may be, respectively, handicapped or favored compared with other teams. In

an “ideal” schedule with respect to carry-over effects, no teams i, j, x, y should exist

such that teams x and y both play against team j immediately after playing against

team i.

The carry-over effects matrix C = (cij), with i, j = 1, . . . , n, has been introduced

to measure the balance of a tournament with respect to this criterion. Each entry cij

of this matrix counts the number of carry-over effects given by team i to team j. It

can be seen that cii = 0 and
Pn

j=1 cij =
Pn

i=1 cij = n − 1 for all rows and columns

i, j = 1, . . . , n. The quality of a schedule with respect to carry-over effects is measured

by the carry-over effects value
Pn

i=1

Pn
j=1 c2ij . An ideal or balanced schedule is one in

which the lower bound value n(n− 1) is achieved, i.e., all non-diagonal elements of the

corresponding matrix C are equal to one.

The original (unweighted) carry-over effects value minimization problem does not

consider any information with respect to the relative strengths of the teams: all carry-

over effects have the same unit weight. However, in real sports competitions it is very

likely that the organizers do have an initial estimate of how well a specific team should

perform in the competition, considering e.g. its ranking in last year’s competition, its

traditions, the quality of its players, and the support of its fans in its home games.

Noronha et al. [7] provide a concrete example of a competition (the Chilean football

tournament) in which the teams are classified a priori according to some of these criteria

in the effort to build a fair schedule.



Therefore, one may conclude that the minimization of the carry-over effects value

does not guarantee a fair schedule. In fact, a broader approach consists of assigning a

weight wij to every ordered pair (i, j) of teams, based on their relative strengths or

handicaps, and minimizing the total weighted carry-over effects value.

For every pair of teams i, j = 1, . . . , n (with i 6= j) and for every round k = 1, . . . , n

(with rounds cyclically represented, such as that the round n − 1 is followed by the

first round), we define the binary variable ykij = 1 if and only if team i plays against

team j in round k, with ykij = 0 otherwise. We also define the number of carry-over

effects given by team i to team j as

zij =
n

X

ℓ=1

n−1
X

k=1

ykℓi · y(k+1)ℓj , (1)

for i 6= j; zij = 0 if i = j. The integer programming formulation of the weighted

carry-over effects value minimization problem is presented below:

min
n

X

i=1

n
X

j=1

wij · z2
ij (2)

ykij = ykji, i, j, k = 1, . . . , n (3)

n
X

i=1

ykij = 1, j, k = 1, . . . , n (4)

n−1
X

k=1

ykij = 1, i, j = 1, . . . , n : i 6= j (5)

ykii = 0, i, k = 1, . . . , n (6)

ynij = y1ij , i, j = 1, . . . , n (7)

ykij ∈ {0, 1}, i, j, k = 1, . . . , n. (8)

The objective function (2) minimizes the weighted sum of carry-over effects. Con-

straints (3) ensure that variables ykij = ykji are the same or, alternatively, that the

game between teams i and j is the same as that between teams j and i (there is

a unique game between teams i and j in a single round robin tournament). Con-

straints (4) enforce that every team plays exactly once in each round of a compact

schedule. Constraints (5) and (6) guarantee that each team plays exactly once against

every other team. Constraints (7) enforce that the n-th round is equivalent to the first.

Constraints (8) impose the binary requirements on the variables.



3 Hybrid heuristic for weighted minimization

Russell [6] proposed a construction algorithm for the unweighted problem that

generates fixtures matching the lower bound to the carry-over effects value when n

is a power of two. The method proposed by Anderson [8] obtained solutions that

are still the best known to date for unweighted instances. It makes use of algebraic

structures called starters [9] to generate schedules. However, the approach presumes

that a suitable starter is known beforehand, which may imply in large computation

times.

Trick [10] developed a constraint programming method that made it possible to

prove the optimality of Russell’s method for n = 6. Henz, Müller, and Thiel [11] im-

proved the solution obtained by the previous approach for n = 12, also using constraint

programming. Miyashiro and Matsui [12] developed a time-consuming heuristic based

on random permutations of the rounds of fixtures created by the polygon method [13].

They reported more than two days of computation time for n ≥ 18.

The above algorithms do not explore different strategies to generate the initial

fixtures, which limits the quality of the solutions they find. Furthermore, some of them

are computationally expensive and not appropriate for the weighted variant.

We propose a tailored heuristic for the minimization of weighted carry-over effects.

This heuristic is based on the hybridization of the Iterated Local Search (ILS) meta-

heuristic [14, 15] with a multistart strategy. It has two main steps: a multistart phase

and an ILS phase. A complete run comprises a number of independent sequences of

these two steps and returns the best solution found. The multistart phase generates

100 initial solutions, each of them obtained by a constructive method followed by a

local search procedure. The best solution found during the multistart phase is used as

the starting point for the ILS phase. The main steps of the pseudo-code of the hybrid

heuristic corresponding to Algorithm 1 are described in detail in the next sections.

Algorithm 1 Hybrid heuristic

1: for iteration = 1 to 10 do

2: Build a starting fixture;
3: repeat

4: Generate a new initial solution by applying a constructive method;
5: Improve the initial solution by local search;
6: Update the best initial solution;
7: until 100 initial solutions are generated;
8: Set S as the best initial solution;
9: repeat

10: Obtain a new solution S′ by applying a perturbation to S;
11: Apply local search to solution S′;
12: Replace the current solution S by S′ using an acceptance criterion;
13: Update the best known solution S∗;
14: until a stopping criterion is reached
15: end for

16: return S*;



3.1 Construction method to build initial solutions

A factor of a graph G = (V, E) is a subgraph G′ = (V, E′) of G, with E′ ⊆ E. A

factor G′ is a 1-factor if all its nodes have their degrees equal to one. A factorization F

of G is a set of edge-disjoint factors of G, such that the union of their edge-sets is equal

to E. A factorization of G formed exclusively by 1-factors is said to be a 1-factorization.

In an ordered 1-factorization of G, its 1-factors are taken in a fixed order.

There is a one-to-one correspondence between 1-factorizations and round robin

schedules. If each team is assigned to a vertex of G, each edge of the latter corresponds

to a game. The games in each round correspond to the edges of a 1-factor, making the

entire ordered 1-factorization equivalent to the complete tournament fixture.

The rounds of a tournament schedule can be freely permuted without violating any

of its properties. Therefore, new schedules can be generated by picking the rounds of

a given schedule in any possible order.

The construction method first generates one starting fixture in line 2 of Algorithm 1,

using any of the two approaches described below. The first approach is the well known

polygon method [13], which gives the so-called canonical 1-factorization [16]. It can be

used for any value of n. Assuming the teams are numbered as 1, . . . , n, the edge-set

of the 1-factor corresponding to round k is given by {(k, n)} ∪ {(a(k, ℓ), b(k, ℓ)) : ℓ =

1, . . . , n/2 − 1}, for k = 1, . . . , n − 1, with

a(k, ℓ) =



k + ℓ, if (k + ℓ) < n,

k + ℓ − n + 1, if (k + ℓ) ≥ n,
(9)

and

b(k, ℓ) =



k − ℓ, if (k − ℓ) > 0,

k − ℓ + n − 1, if (k − ℓ) ≤ 0.
(10)

The second approach [16, 17] can be applied whenever n is a multiple of four. It

first separates the teams in two sets V1 = {1, . . . , n/2} and V2 = {n/2+1, . . . , n}. The

first n/2 rounds are made up only by games with one team in V1 and the other in V2.

The games scheduled for round k correspond to the edges of the factor whose edge-set

is defined as {(ℓ, c(k, ℓ)) : ℓ = 1, . . . , n/2}, for k = 1, . . . , n/2, with

c(k, ℓ) = (k + ℓ − 2) mod (n/2) + n/2 + 1. (11)

Each of the last n/2−1 remaining rounds is formed by picking and putting together

one 1-factor from a 1-factorization of the complete graph associated with V1 and one

1-factor from a 1-factorization of the complete graph associated with V2.

The loop in lines 3 to 7 builds each of the 100 initial solutions in line 4 as follows.

First, two rounds of the starting fixture are randomly selected and used as the two

first rounds of the new solution. In each subsequent step, one still unused round of the

starting fixture is selected to be used in the current, incomplete fixture. This process

continues, until a complete solution is obtained. The rules used for selecting and placing

rounds of the starting fixture in the incomplete solution under construction mimic those

in the well known nearest neighbor and arbitrary insertion heuristics for the traveling

salesman problem [18,19]:

– nearest neighbor heuristic: select the unused round which causes the minimum

increment in the weighted carry-over effects value and place it as the last in the

solution under construction.



– arbitrary insertion heuristic: randomly select any unused round and insert it be-

tween the two rounds which minimize the increase in the weighted carry-over effects

value.

One of these strategies is randomly chosen with equal probability to generate a

new initial solution at each iteration of the multistart phase.

3.2 Local search

The initial solutions built by the construction method described in the previous

section are tentatively improved by local search in line 5 of Algorithm 1. We use a

local search procedure following the Variable Neighborhood Descent (VND) [20, 21]

strategy. The best improving move in each neighborhood is applied to the current

solution. The following neighborhood structures described by Costa et al. [22] (see

also [4]) are used in this order:

– Team swap (TS): a move in this neighborhood corresponds to swapping all oppo-

nents of a given pair of teams over all rounds, which is the same as swapping two

columns of the matrix representing the fixture.

– Round swap (RS): a move in this neighborhood consists of swapping all games

of a given pair of rounds, which is the same as swapping two rows of the matrix

representing the fixture.

– Partial team swap (PTS): for any round r and for any two teams t1 and t2, let S be

a minimum cardinality subset of rounds including round r in which the opponents

of teams t1 and t2 are the same. A move in this neighborhood corresponds to

swapping the opponents of teams t1 and t2 over all rounds in S.

– Partial round swap (PRS): for any team t and for any two rounds r1 and r2, let U

be a minimum cardinality subset of teams including team t in which the opponents

of the teams in U in rounds r1 and r2 are the same. A move in this neighborhood

consists of swapping the opponents of all teams in U in rounds r1 and r2.

If the locally optimal solution (with respect to neighborhoods TS, RS, PTS, and

PRS) obtained by the VND local search strategy improves the best initial solution,

then the latter is updated in line 6.

3.3 Iterated local search

The best initial solution obtained at the end of the multistart phase is copied in

line 8 of Algorithm 1 to be used as the starting solution S by the ILS phase in lines

9-14, until some stopping criterion is met.

Each ILS iteration starts in line 10 by a perturbation of the current solution S. The

perturbation consists of a sequence of random moves within the game rotation (GR)

neighborhood introduced by Ribeiro and Urrutia [4]. For each move, a randomly gen-

erated game is enforced to be changed from the round where it is currently played to a

different, randomly selected round. This first change is followed by a sequence of mod-

ifications leading to a feasible solution S′, according to the ejection chain mechanism

proposed by Glover [23].



A bias is introduced in the perturbation procedure, to drive the move away from

pure randomness. Although one cannot know beforehand the effect of a complete ejec-

tion chain move on the weighted carry-over effects value of a solution, the increment

(or decrement) implied by the first step of the chain can be easily evaluated. The bias

consists simply of enforcing the game with the smallest first increment.

The same local search procedure described in Section 3.2 is applied to the perturbed

solution S′ in line 11. The current solution S is replaced by S′ in line 12 if the carry-

over effects value of the latter is less than or equal to (1+b) times the carry-over effects

value of the former. The value of parameter b doubles after every 2n iterations without

the modification of the current solution. It is reset to its initial value whenever the

current solution is updated, following the same strategy already used in [4]. Finally,

the best known solution S∗ is updated in line 13. The ILS phase stops if line 14 detects

that a maximum number of deteriorating moves have been accepted since the last time

the best solution was updated.

4 Computational results

Each instance is defined by the number of teams and by a weighted matrix of

carry-over effects. Four classes of weighted instances have been generated for the com-

putational experiments:

– random instances: weights are randomly generated in the interval [1, 2n]. Three

matrices identified by letters A, B and C have been generated for each value of n.

– linear instances: a strength in the interval [1, n] is assigned to each team. For

simplicity, the strength of team i is made equal to i. Each weight wij is defined as

the absolute value of the difference between the strengths of teams i and j.

– perturbed linear instances: each weight of a linear instance is increased by an in-

dividual perturbation, randomly generated in the interval [−n/2, n/2]. Three dif-

ferent instances identified by letters A, B and C are generated for each value of n.

Absolute values are taken whenever the perturbation leads to a negative weight.

– real-life inspired instances: these six instances are derived from the last six issues

of the Brazilian football championship. The strength of each team is given by the

number of points it obtained in the previous year. As for the linear instances, each

weight wij is defined as the absolute value of the difference between the strengths

of teams i and j.

Data of the weighted instances is available from the authors for benchmarking pur-

poses at http://www.ic.uff.br/~celso/grupo/Weighted_carry-over_instances.zip.

We also considered instances made up only of unit costs, which are equivalent to those

of the original, unweighted problem.

The computational experiments were performed on an AMD Athlon 64 X2 machine

with 2.3 GHz and one GB of RAM memory. The code was implemented in C++ and

compiled with the GNU C/C++ compiler (GCC) version 4.2.4 under Ubuntu Linux

8.04.

4.1 Tuning

The strategy used to generate the starting fixtures sensibly changes the quality of

the solutions found. We tested two different alternatives to obtain the starting fixture



whenever n is a multiple of four. In the first, only the polygon method is used and

canonical factorizations are produced. In the second, the two methods described in

Section 3.1 are indistinctly employed to obtain 1-factorizations.

We observed from preliminary results that the main parameters influencing the

behavior of the ILS phase are the maximum number of deteriorating moves accepted

before termination of this phase, the number of ejection chain (game rotation) moves

applied in each perturbation, and the initial value for b. We also observed that reason-

able values for these parameters are:

maximum number of deteriorating moves: {10, 100, 200}

number of ejection chain moves in a perturbation: {1, 5, 10}

initial value for b: {0.01, 0.05, 0.10}

(12)

To assess the behavior of the algorithm with respect to parameter values and im-

plementation strategies, we ran the algorithm on three unweighted instances for which

n is a multiple of four – namely, for n = 12, 16, and 20. For each of these instances, we

tested every possible combination of the above parameter values with the two alterna-

tives for generating the initial fixture. For each configuration, we took average results

over three independent runs.

We first discuss the best strategy to generate the initial fixture. Table 1 displays the

results obtained by each of the two alternatives for each problem size: average solution

value, best solution value, average computation time (in seconds), and longest com-

putation time (in seconds) over the three runs for each combination of the parameter

values. The upper part of this table gives the results for the first alternative, based

exclusively on canonical factorizations. The lower part reports results for the second

alternative, which makes use of both approaches. Although the first alternative (upper

part) is less time consuming than the second, the latter (lower part) seems to find

better (or comparable) solutions. In consequence, we selected the second alternative to

generate the initial fixture.

Strategy n COEV (avg.) COEV (best) Time (avg.) Time (max.)
Canonical 12 192.000 192.000 3.519 4.000
factorizations 16 306.914 304.444 178.765 183.296

20 489.852 488.444 20.790 21.296
Both 12 167.630 164.370 64.790 69.111
factorizations 16 267.630 258.519 244.827 263.926

20 492.000 490.370 54.481 62.481

Table 1 COEV values and computation times in seconds for two different strategies for the
generation of initial fixtures.

To choose the most appropriate configuration of parameter values, we ran the

hybrid heuristic (using the second alternative to generate the initial fixture) with all of

the 27 possible combinations of parameter values. We collected minimum and maximum

results obtained over three runs of each instance tested with n = 12, 16, and 20. For each

of them, the results found with each combination were normalized to the interval [0, 1].

Finally, we computed average normalized results over all instances considered. The plot

in Figure 2 presents the average normalized carry-over effects value and the average

normalized running time for each combination. Similarly, the plot in Figure 3 displays
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Fig. 2 Average normalized results obtained with different combinations of parameters.

the average normalized best carry-over effects value and the average normalized longest

computation time for each combination.

Each point in these plots represents a unique combination of parameter values. The

five winning combinations closest to the ideal point (0, 0) are the same for both plots.

They are identified and labeled with the corresponding maximum accepted number

of deteriorating moves, number of ejection chain moves in a perturbation, and initial

value of parameter b (in this order).

Since four out of the five best combinations accept a maximum of 200 deteriorating

moves before termination of the ILS phase, this value was selected for the first param-

eter. The number of ejection chain moves in a perturbation is set to one, since three

out of the five best points plotted correspond to this value. The best choice for the

initial value of parameter b is less evident from these results. For sake of robustness,

we selected b = 0.01.

4.2 Weighted instances

The hybrid heuristic was run five times for each instance, with the parameter values

and implementation strategies as selected above. Average and best carry-over effects

values and average and worst computation times in seconds over five runs are reported

for each class of weighted test instances.

Results for the random instances are shown in the upper part of Table 2. These

instances present the smallest computation times over all classes. The ILS phase was

always able to improve the solutions found in the multistart phase, except for the three

smallest instances.

We consider next the results for linear instances, reported in the lower part of

Table 2. The ILS phase improved the solutions found in the multistart phase for all
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Fig. 3 Extremal normalized results obtained with different combinations of parameters.

instances with n ≥ 8. The computation times are much greater than those observed

for the previous class of instances. This seems to be particularly true for the instance

with 20 teams.

Results for perturbed linear instances are shown in the upper part of Table 3. As

for the two previous classes, the ILS phase always improved the best solution found in

the multistart phase, except for the three smallest instances. The computational times

are greater than those observed for the random and linear classes.

Finally, the results obtained for the set of real-life inspired instances are shown in

the lower part of Table 3. This class presents the largest computation times for the

instances with n = 20. This seems to be due to the fact that the weights in this class

are more diverse than in any other.

4.3 Validation: unweighted instances

To validate the proposed hybrid heuristic, we also applied it to instances of the

original unweighted problem. These instances are equivalent to weighted instances with

unit weights. Figure 4 displays the best known solution values known to date and that

obtained by the hybrid ILS heuristic for n = 4, . . . , 16. The heuristic matched the

best known results to date for n = 4, 6, 8, 10, and 16. Although it was not able to

match the best known solution for n = 14, we observe that it improved the best known

upper bound to date for n = 12 by almost 10%, producing a new, previously unknown

solution whose carry-over effects value is 160.

The ILS phase of the heuristic terminates once 200 deteriorating moves have been

accepted without improvement in the best solution found. For all classes of weighted

instances, we observed that this counter very rarely reached values greater than 50.

However, a very different behavior was noticed for the original, unweighted instances.



Instance Avg. COEV Best COEV Avg. time Worst time
inst4randomA 63.0 63.0 0.2 1.0
inst4randomB 53.0 53.0 0.2 1.0
inst4randomC 45.0 45.0 0.0 0.0
inst6randomA 233.0 233.0 0.8 1.0
inst6randomB 274.0 274.0 0.8 1.0
inst6randomC 235.0 235.0 1.2 2.0
inst8randomA 505.0 505.0 7.2 8.0
inst8randomB 495.0 495.0 18.6 20.0
inst8randomC 470.0 470.0 13.8 14.0
inst10randomA 912.6 895.0 139.4 150.0
inst10randomB 793.0 781.0 151.0 173.0
inst10randomC 744.6 737.0 149.0 172.0
inst12randomA 1549.2 1521.0 453.2 560.0
inst12randomB 1520.2 1489.0 402.4 451.0
inst12randomC 1594.4 1572.0 455.8 546.0
inst14randomA 2620.0 2608.0 39.8 44.0
inst14randomB 2903.8 2870.0 38.0 45.0
inst14randomC 2777.6 2760.0 36.8 42.0
inst16randomA 3812.2 3756.0 2605.8 2878.0
inst16randomB 3846.6 3797.0 2848.2 3294.0
inst16randomC 3773.6 3755.0 3138.0 3483.0
inst18randomA 5574.4 5515.0 1381.2 2442.0
inst18randomB 5816.2 5745.0 792.4 1271.0
inst18randomC 5598.0 5548.0 1547.2 3157.0
inst20randomA 7764.4 7760.0 136.8 145.0
inst20randomB 7928.0 7888.0 147.8 174.0
inst20randomC 7700.2 7636.0 136.8 144.0
Averages 2577.8 2555.8 542.3 711.8

inst4linear 20.0 20.0 0.2 1.0
inst6linear 114.0 114.0 0.6 1.0
inst8linear 168.0 168.0 8.4 9.0
inst10linear 318.0 318.0 64.6 70.0
inst12linear 504.0 496.0 271.4 309.0
inst14linear 960.0 958.0 18.6 20.0
inst16linear 1088.0 1076.0 2007.2 2313.0
inst18linear 1698.0 1660.0 4102.0 4729.0
inst20linear 2257.6 2212.0 5213.0 5624.0
Averages 792.0 780.2 1298.4 1452.9

Table 2 Results for random (upper part) and linear (lower part) instances.

In this case, many improvements obtained during the ILS phase were achieved after

more than 50 deteriorating moves.

5 Concluding remarks

We discussed possible applications of the minimum carry-over effects value mini-

mization problem as a fairness criterion to build good fixtures for round robin tour-

naments. A new, weighted version of the problem was introduced and formulated by

integer programming, in which a weight is assigned to each pair of teams.

A hybrid heuristic based on the combination of the Iterated Local Search meta-

heuristic with a multistart strategy was proposed and applied to four classes of weighted

problem instances with up to 20 teams. The weighted test instances are available from

the authors for benchmarking purposes. Numerical results obtained for the original,



Instance Avg. COEV Best COEV Avg. time Longest time
inst4perturbedlinearA 16.0 16.0 0.2 1.0
inst4perturbedlinearB 17.0 17.0 0.2 1.0
inst4perturbedlinearC 22.0 22.0 0.0 0.0
inst6perturbedlinearA 68.0 68.0 1.4 2.0
inst6perturbedlinearB 73.0 73.0 0.6 1.0
inst6perturbedlinearC 60.0 60.0 0.8 1.0
inst8perturbedlinearA 137.0 137.0 31.0 32.0
inst8perturbedlinearB 141.0 141.0 22.4 23.0
inst8perturbedlinearC 162.0 162.0 26.8 28.0
inst10perturbedlinearA 329.0 326.0 136.0 162.0
inst10perturbedlinearB 277.0 274.0 134.0 163.0
inst10perturbedlinearC 291.8 284.0 128.6 152.0
inst12perturbedlinearA 601.2 587.0 484.2 638.0
inst12perturbedlinearB 528.6 525.0 494.6 580.0
inst12perturbedlinearC 486.6 478.0 546.6 648.0
inst14perturbedlinearA 940.0 920.0 42.8 45.0
inst14perturbedlinearB 947.4 932.0 39.8 43.0
inst14perturbedlinearC 993.2 990.0 36.2 40.0
inst16perturbedlinearA 1403.0 1376.0 3432.8 3905.0
inst16perturbedlinearB 1360.2 1348.0 3343.8 3668.0
inst16perturbedlinearC 1118.0 1098.0 3961.0 4683.0
inst18perturbedlinearA 2063.4 2005.0 5162.4 6983.0
inst18perturbedlinearB 1965.4 1921.0 4038.0 5343.0
inst18perturbedlinearC 1712.0 1585.0 4833.2 5805.0
inst20perturbedlinearA 3092.2 3065.0 482.0 1304.0
inst20perturbedlinearB 2866.8 2800.0 2923.4 4719.0
inst20perturbedlinearC 2837.2 2791.0 1479.6 3509.0
Averages 907.74 888.9 1177.1 1573.3

inst24brasileirao2003 7730.4 7542.0 13897.8 15755.0
inst24brasileirao2004 7179.6 7088.0 12992.8 13468.0
inst22brasileirao2005 5228.8 5158.0 10599.0 13959.0
inst20brasileirao2006 5310.0 5236.0 5705.4 6358.0
inst20brasileirao2007 4876.0 4834.0 2715.8 3655.0
inst20brasileirao2008 4045.6 3944.0 6805.6 8308.0
Averages 5728.4 5633.7 8786.1 10250.5

Table 3 Results for perturbed linear (upper part) and real-life inspired (lower part) instances.

n Best to date Hybrid
4 12 12
6 60 60
8 56 56
10 108 108
12 176 160 (new best)
14 234 254
16 240 240

Table 4 Results for the unweighted instances.

unweighted instances contributed to validate the effectiveness of the hybrid heuristic,

which was even able to improve the best known solution to date for n = 12.

These results confirm previous successful cases of the hybridization of the Iterated

Local Search metaheuristic with multistart strategies (e.g., as reported in [4, 24, 25]),

in particular in the context of scheduling problems in sports.
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