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Abstract The carry-over effects value is one of the various measures one can con-
sider to assess the quality of a round robin tournament schedule. We introduce
and discuss a new, weighted variant of the minimum carry-over effects value prob-
lem. The problem is formulated by integer programming and an algorithm based
on the hybridization of the Iterated Local Search metaheuristic with a multistart
strategy is proposed. Numerical results are presented.
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1 Motivation

Sports optimization has been attracting the attention of an increasing num-
ber of researchers and practitioners in multidisciplinary areas such as operations
research, scheduling theory, constraint programming, graph theory, combinatorial
optimization, and applied mathematics. Kendall et al. [1] surveyed state-of-the-art
applications and methods for solving optimization problems in sports scheduling.
Rasmussen and Trick [2] reviewed scheduling problems in round robin tourna-
ments, which are of special importance due to their practical relevance and inter-
esting mathematical structure.

There are many relevant aspects to be considered in the determination of the
best fixture for a tournament. In some situations, one seeks for a schedule min-
imizing the total traveled distance, as in the case of the traveling tournament
problem [3] and in that of its mirrored variant [4], which is common to many tour-
naments in South America [5]. Other problems attempt to minimize the number
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of breaks, i.e., the number of pairs of consecutive home games or consecutive away
games. Ribeiro and Urrutia [6, 7] tackled the scheduling of the Brazilian national
football tournament, a bi-criteria optimization problem in which one of the ob-
jectives consists in maximizing the number of games that may be broadcast by
open TV channels (to increase the revenues from broadcast rights) and the other
consists in finding a balanced schedule with a minimum number of home breaks
and away breaks (for sake of fairness).

The minimization of the carry-over effects value [8] is another fairness criterion
leading to an even distribution of the sequence of games along the schedule.

A major issue in the strategy of a team (or an athlete), in particular in long
competitions, consists of balancing their efforts over the competition. If a team
plays against a weak opponent, it is likely to be in better shape to play in the
next round than if it had played against a hard opponent before. Teams that
play against strong opponents will very likely be more tired for their next game.
Therefore, it is likely that a team (or an athlete) makes much less effort playing
against an opponent that played before against a very strong contestant, than it
would make against an opponent that faced an easy contestant.

The above situation is particularly true in the case of sports which require a
great amount of physical effort (such as wrestling, rugby, and martial arts). In
this sort of sports, it is not uncommon that a team (or an athlete) plays several
games in a row, making a sequence of very tired (resp. well reposed) opponents
very attractive (resp. unattractive). Some fixtures may contain several of such
sequences of easier or harder games assigned to one or more teams. This situation
does not characterize a fair schedule and is highly undesirable in any tournament.
To illustrate this effect, suppose a Karate-Do or Judo competition, for which there
is no weight division in open-weight categories: a physically weak athlete may
fight a strong one. A contestant that has just fought a very strong opponent
will possibly be very tired (and even wounded) in his/her next fight. This would
deteriorate his/her performance, giving to the next opponent a strong advantage
that otherwise he/she would not have.

Although some authors advocate that carry-over effects do not play a major
role in collective sports [9], Flatberg et al. [10] have recently shown a real-life
application to a football league in Norway in which carry-overs determined by
one specific team and player strongly affected the final results of the competition.
Furthermore, they have also shown that the minimization of such effects lead to a
more fair fixture and to a much better schedule of games. Another interesting real-
life application is illustrated by problems in US college football, whereby a team
(Alabama) was repeatedly scheduled against teams with byes the week before. The
sequence of games was very unattractive for Alabama, because it was supposed to
often meet a restful team that has not played in the previous round [11].

Suppose that team (or athlete) A plays team C (or athlete) right after playing
team (or athlete) B. If B is much stronger than the other competitors, then C will
possibly take some advantage over A in their game. This is due to the great effort
A has made in its previous game. This type of situation in which one of the teams
(or athletes) may be benefited should be avoided or, at least, minimized.

We say that C receives a carry-over effect due to B if there is a team (or an
athlete) A that plays C just after its game against B. We consider a single round
robin tournament played by n (even) teams, in which every team plays each other
exactly once. Figure 1 (a) displays a matrix describing a hypothetical tournament



fixture, whose entry in row 4 and column j informs the team playing against team
j in round i. One may count the number of carry-over effects each team gives to
every other in the fixture of a round robin tournament and then build the carry-
over effects matriz. Each entry in row ¢ and column j of this matrix indicates
the number of carry-over effects team ¢ gives to team j. Figure 1 (b) presents
the underlying carry-over effects matrix associated with the fixture represented in
Figure 1 (a).
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Fig. 1 (a) Fixture of a tournament with eight teams and (b) its carry-over effects matrix.

A fair tournament regarding carry-over effects is one in which the latter are
evenly distributed over the cells of the carry-over effects matrix and the total
carry-over effects value is minimized.

The problem of minimizing the carry-over effects value was originally proposed
by Russell [8]. In this work, we extend this problem and propose its variant consist-
ing in the minimization of the weighted carry-over effects value. This new, weighted
problem is introduced and formulated in the next section. Section 3 reviews pre-
vious solution approaches for the unweighted original problem and describes a
heuristic based on the hybridization of the Iterated Local Search metaheuristic
with a multistart strategy for approximately solving the weighted variant. Numer-
ical results are reported and discussed in Section 4. Concluding remarks are drawn
in the last section.

2 Weighted formulation

A single round robin tournament is one in which each team plays every other
exactly once. The games take place along a predefined period of time organized
into rounds or slots. A compact tournament has a minimum number of rounds. A
compact single round robin tournament with n (even) teams has n — 1 rounds.

For a given compact single round robin schedule with n teams, one says that
team ¢ gives a carry-over effect to team j if some other team plays consecutively
against teams i and j, i.e., some team plays against team ¢ in round ¢ and against
team j in round ¢+ 1 for some t € {1,...,n— 1}, where the rounds are considered
cyclically (i.e., round n — 1 is followed by the first round). If team ¢ is a very
strong or very weak team and several teams play consecutively against teams i
and j in this order, then team j may be, respectively, handicapped or favored
when compared with other teams. In an “ideal” schedule with respect to carry-



over effects, no teams 1, j, x,y should exist such that teams x and y both play
against team j immediately after playing against team 1.

The carry-over effects matrix C' = (¢;5), with 4,5 = 1,...,n, has been intro-
duced to measure the balance of a tournament with respect to this criterion. Each
entry c;; of this matrix counts the number of carry-over effects given by team 7 to
team j. It can be seen that ¢;; = 0 and Z?Zl cij = y i cij =n— 1 for all rows
and columns i, = 1,...,n. The quality of a schedule with respect to carry-over
effects is measured by the carry-over effects value 3" Z;‘Zl c?j. An ideal or bal-
anced schedule is one in which the lower bound value n(n — 1) is achieved, i.e., all
non-diagonal elements of the corresponding matrix C' are equal to one.

The original (unweighted) carry-over effects value minimization problem does
not consider any information with respect to the relative strengths of the teams: all
carry-over effects have the same unit weight. However, in real sports competitions
it is very likely that the organizers do have an initial estimate of how well a specific
team should perform in the competition, considering e.g. its ranking in last year’s
competition, its tradition, the quality of its players, and the support of its fans in
home games. Noronha et al. [5] provided a concrete example of a competition (the
Chilean national football tournament) in which the teams are classified a priori
according to some of these criteria in the effort to build a fair schedule.

Therefore, one may conclude that the minimization of the carry-over effects
value does not guarantee a fair schedule. In fact, a broader approach consists of
assigning a weight w;; to every ordered pair (7, j) of teams, based on their relative
strengths or handicaps, and minimizing the total weighted carry-over effects value.

For every pair of teams 4,57 = 1,...,n (with ¢ # j) and for every round k =
1,...,n (with rounds cyclically represented, such as that the round n—1 is followed
by the first round), we define the binary variable yx;; = 1 if and only if team ¢
plays against team j in round k, with yi;; = 0 otherwise. We also define the
number of carry-over effects given by team i to team j as

n n—1

Zij = 3D Ykei - Y(k41)0)> (1)

=1 k=1

for i # j; z;; = 0 if ¢ = j. An integer programming formulation of the weighted
carry-over effects value minimization problem is presented below:

min i i Wyj - z?j (2)

i=1j=1
Ykij = Ykji» g k=1,...,n (3)
n
Zymzl, Jk=1,....n (4)
=1
n—1
Sgi=1,  ij=1,...n:i#] (5)
k=1
Ykis = 0, L,k=1,...,n (6)
Ynij = Ylig, iwj=1,...,n (7)
yki; € {0,1}, i k=1,...,n (8)



The objective function (2) minimizes the weighted sum of carry-over effects.
Constraints (3) ensure that variables yy;; = yx;; are the same or, alternatively, that
the game between teams ¢ and j is the same as that between teams j and ¢ (there
is a unique game between teams ¢ and j in a single round robin tournament).
Constraints (4) enforce that every team plays exactly once in each round of a
compact schedule. Constraints (5) and (6) guarantee that each team plays exactly
once against every other team. Constraints (7) enforce that the n-th round is
equivalent to the first. Constraints (8) impose the binary requirements on the
variables.

This formulation has O(n®) variables and defines a quadratic minimization
problem. The linearization of the objective function (2) leads to a new formulation
with O(n*) variables. The commercial solver CPLEX 11.0 was applied to the
solution of unweighted (i.e., wi; = 1,Vi,j = 1,...,n : ¢ # j) instances of this
reformulation. Although the solver has been able to find the optimal solution for
n = 4 in a couple of seconds and for n = 6 in a few minutes, it took about three
days of computations time to come up with the optimal solution for n = 8. CPLEX
was not able to solve instances with ten or more teams in reasonable times, leading
to the need of heuristics for approximately solving larger problems.

3 Hybrid heuristic for weighted minimization

Russell [8] proposed a construction algorithm for the unweighted problem that
generates fixtures matching the lower bound to the carry-over effects value when n
is a power of two. The method proposed by Anderson [12] obtained solutions that
are still the best known to date for unweighted instances. It makes use of alge-
braic structures called starters [13] to generate schedules. However, the approach
presumes that a suitable starter is known beforehand, which may imply in huge
computation times.

Trick [14] developed a constraint programming method that made it possible
to prove the optimality of Russell’s method for n = 6. Henz, Miiller, and Thiel [15]
improved the solution obtained by the previous approach for n = 12, also using
constraint programming. Miyashiro and Matsui [16] developed a time-consuming
heuristic based on random permutations of the rounds of fixtures created by the
polygon method [17]. They reported more than two days of computation times for
n > 18. However, their heuristic does not explore different strategies to generate
the initial fixtures, which limits the quality of the solutions it can provide. Fur-
thermore some of the above algorithms are computationally expensive and are not
appropriate for the weighted variant of the carry-over effects value minimization
problem.

We propose a tailored heuristic for the minimization of weighted carry-over
effects. This heuristic is based on the hybridization of the Iterated Local Search
(ILS) metaheuristic [18,19] with a multistart strategy. It has two main steps:
a multistart phase and an ILS phase. A complete run comprises a number of
independent sequences of these two steps and returns the best solution found.
The multistart phase generates 100 initial solutions, each of them obtained by a
constructive method followed by a local search procedure. The best solution found
during the multistart phase is used as the starting point for the ILS phase. The



main steps of the pseudo-code of the hybrid heuristic corresponding to Algorithm 1
are described in detail in the next sections.

Algorithm 1 Hybrid heuristic

1: for iteration = 1 to 10 do

2 Build a starting fixture;

3 repeat

4 Generate a new initial solution by applying a constructive method;
5: Improve the initial solution by local search;

6: Update the best initial solution;
7.

8

9

until 100 initial solutions are generated;
Set S as the best initial solution;

: repeat
10: Obtain a new solution S’ by applying a perturbation to S;
11: Apply local search to solution S’;
12: Replace the current solution S by S’ using an acceptance criterion;
13: Update the best known solution S*;
14: until a stopping criterion is reached
15: end for

16: return S*;

3.1 Construction method to build initial solutions

A factor of a graph G = (V, E) is a subgraph G’ = (V, E’) of G, with E' C E. A
factor G’ is a 1-factor if all its nodes have their degrees equal to one. A factorization
F of G is a set of edge-disjoint factors of GG, such that the union of their edge-sets
is equal to E. A factorization of G formed exclusively by 1-factors is said to be
a I-factorization. In an ordered 1-factorization of G, its 1-factors are taken in a
fixed order.

There is a one-to-one correspondence between 1-factorizations and round robin
schedules. If each team is assigned to a vertex of GG, then each edge of the latter cor-
responds to a game. The games in each round correspond to the edges of a 1-factor,
making the entire ordered 1-factorization equivalent to the complete tournament
fixture.

The rounds of a tournament schedule can be freely permuted without violating
any of its properties. Therefore, new schedules can be generated by picking the
rounds of a given schedule in any possible order.

The construction method first generates one starting fixture in line 2 of Algo-
rithm 1, using any of the two approaches described below. The first approach
is the well known polygon method [17], which gives the so-called canonical 1-
factorization [20]. It can be used for any value of n. Assuming the teams are
numbered from 1 to n, the edge-set of the 1-factor corresponding to round k is
given by {(k,n)}U{(a(k,£),b(k,£)) : ¢=1,...,n/2—1},fork=1,...,n—1, with

B k+¢, if (k+10) <n,

and
kE—¢, if (k—1¢)>0,

b(k»g):{k—f—i-n—l, if (k—1¢) <0. (1)



The second approach [20,21] can be applied whenever n is a multiple of four. It
first separates the teams in two sets Vi = {1,...,n/2} and Vo = {n/2+1,...,n}.
The first n/2 rounds are made up only by games with one team in Vi and the
other in V2. The games scheduled for round £ correspond to the edges of the factor
whose edge-set is defined as {(¢,c(k,?)): £=1,...,n/2}, for k=1,...,n/2, with

c(k, ) =(k+¢—2)mod (n/2) +n/2+ 1. (11)

Each of the last n/2 — 1 remaining rounds is formed by picking and putting
together one 1-factor from a 1-factorization of the complete graph associated with
V1 and one 1-factor from a 1-factorization of the complete graph associated with
Va.

The loop in lines 3 to 7 builds each of the 100 initial solutions in line 4 as
follows. First, two rounds of the starting fixture are randomly selected and used as
the two first rounds of the new solution. In each subsequent step, one still unused
round of the starting fixture is selected to be used in the current, incomplete
fixture. This process continues, until a complete solution is obtained. The rules
used for selecting and placing rounds of the starting fixture in the incomplete
solution under construction mimic those in the well known nearest neighbor and
arbitrary insertion heuristics for the traveling salesman problem [22,23]:

— nearest neighbor heuristic: select an unused round which causes the minimum
increment in the weighted carry-over effects value and place it as the last in
the solution under construction.

— arbitrary insertion heuristic: randomly select any unused round and insert it
between the two rounds which minimize the increase in the weighted carry-over
effects value.

One of these strategies is randomly chosen with equal probability to generate
a new initial solution at each iteration of the multistart phase.

3.2 Local search

The initial solutions built by the construction method described in the previous
section are tentatively improved by local search in line 5 of Algorithm 1. We use a
local search procedure following the Variable Neighborhood Descent (VND) [24,25]
strategy. The best improving move in each neighborhood is applied to the current
solution. The following neighborhood structures described by Costa et al. [26] (see
also [4]) are used in this order:

— Team swap (TS): a move in this neighborhood corresponds to swapping all
opponents of a given pair of teams over all rounds, which is the same as swap-
ping two columns of the matrix representing the fixture. Figure 2 presents an
example of a move using the TS neighborhood.

— Round swap (RS): a move in this neighborhood consists of swapping all games
of a given pair of rounds, which is the same as swapping two rows of the matrix
representing the fixture. Figure 3 presents an example of a move using the RS
neighborhood.



— Partial team swap (PTS): for any round r and for any two teams t1 and to,
let S be a minimum cardinality subset of rounds including round 7 in which
the opponents of teams ¢t1 and t2 are the same. A move in this neighborhood
corresponds to swapping the opponents of teams ¢; and ¢2 over all rounds in
S. Figure 4 presents an example of a move using the PTS neighborhood.

— Partial round swap (PRS): for any team ¢ and for any two rounds 71 and 72,
let U be a minimum cardinality subset of teams including team ¢ in which the
opponents of the teams in U in rounds r; and re are the same. A move in this
neighborhood consists of swapping the opponents of all teams in U in rounds 71
and ro. Figure 5 presents an example of a move using the PRS neighborhood.

If the locally optimal solution (with respect to neighborhoods TS, RS, PTS,
and PRS) obtained by the VND local search strategy improves the best initial
solution, then the latter is updated in line 6.
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Fig. 2 Example of a move using the Team Swap neighborhood: (a) original fixture and (b)
fixture with the games of teams C and G swapped.
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Fig. 3 Example of a move using the Round Swap neighborhood: (a) original fixture and (b)
fixture with rounds 2 and 5 swapped.

3.3 Iterated local search

The best initial solution obtained at the end of the multistart phase is copied
in line 8 of Algorithm 1 to be used as the starting solution S by the ILS phase in
lines 9-14, until some stopping criterion is met.

Each ILS iteration starts in line 10 by a perturbation of the current solution
S. The perturbation consists of a sequence of random moves within the game
rotation (GR) neighborhood introduced by Ribeiro and Urrutia [4]. For each move,
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a randomly generated game is enforced to be changed from the round where it
is currently played to a different, randomly selected round. This first change is
followed by a sequence of modifications recovering a feasible solution S’, according
to the ejection chain mechanism proposed by Glover [27].

A bias is introduced in the perturbation procedure, to drive the move away from
pure randomness. Although one cannot know beforehand the effect of a complete
ejection chain move on the weighted carry-over effects value of a solution, the
increment (or decrement) implied by the first step of the chain can be easily
evaluated. The bias consists simply of enforcing the game with the smallest first
increment.

The same local search procedure described in Section 3.2 is applied to the
perturbed solution S’ in line 11. The current solution S is replaced by S’ in line
12 if the carry-over effects value of the latter is less than or equal to (1 + b) times
the carry-over effects value of the former. The value of parameter b doubles after
every 2n iterations without the modification of the current solution. It is reset
to its initial value whenever the current solution is updated, following the same
strategy already used in [4]. Finally, the best known solution S™ is updated in line
13. The ILS phase stops if line 14 detects that a maximum number of deteriorating
moves have been accepted since the last time the best solution was updated.

3.4 Iterated local search with destructive perturbations

Another perturbation strategy is based on the use of destructive neighbor-
hoods [28,29] to generate new solutions. Given the current solution, the main un-
derlying idea consists in destroying randomly selected parts of the fixture, while
keeping all the rest untouched. The partial solution made up of the untouched
parts is given as input to an integer programming solver in order to obtain a new
solution as the outcome of the perturbation, different from the current one. The
subproblem solved consists simply in filling up the fixture to obtain a different
feasible solution satisfying constraints (3)-(8) subject to the variable fixations.

Two rules for selecting the parts to be destroyed were devised and considered in
the experiments, leading to two different types of neighborhoods that are described
in the following sections.

3.4.1 Rows destruction

Considering the matricial representation of a round-robin tournament as illus-
trated in Figure 1 (a), each of its rows corresponds to a tournament slot. The
games occurring in a given slot are indicated in the corresponding row. A destruc-
tive perturbation move in this neighboorhood is obtained by erasing a number
of rows and replacing them by different ones. Given the current fixture, we en-
force that some selected slots (rows) of the current solution will not occur in the
new solution. Figure 6 illustrates a perturbation move in this neighboorhood. The
shaded rows correspond to the slots selected to be destroyed and modified. While
all other slots remain unchanged, the set of games of any destroyed slot cannot
appear together in any of the slots of the new solution.

Let 3 be the current solution. We recall that gx;; = 1 if and only if team 4
plays against team j in round k of the current fixture, yx;; = 0 otherwise, for
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every pair of teams 4,5 = 1,...,n (with ¢ # j) and for every round k = 1,...,n.
Furthermore, let D C {1,...,n} be the set of rows to be destroyed in the current
solution. Constraints (12) are added to the model to fix all rows not in D, while
constraints (13) enforce the destruction of all rows in D and avoid their repetition
in any other slot of the new solution:

Ykij = Ukij,  kE€{l,...,n}\D, i,j=1,....,n:i#j (12)

n
Z Yeij < n— 2, k.l e D. (13)
A different solution cannot be generated if one single row is destroyed. If two
rows are destroyed, then only one different feasible fixture could be generated, cor-
responding to swapping these two rows. Experimental results showed that destroy-
ing three rows often makes it impossible to rebuild a feasible fixture. Therefore,
we considered in the computational experiments only rows destruction pertur-
bation moves involving exactly four rows, since the computation times increase
enormously if more broader moves are permitted.

A B C D E F G H I J
1({B A I H G J E D C F
2|G F E J C B A 1 H D
3 I #H G F J D C B A E
4/J C¢C B G I H D F E A
5| D I Jo|A R g | B |G| 8| C
6/ E D H B A 1 J C F G
7/|H G F E D C B A J I
8| F E D C B A 1 J G H
9|C J A I H G F E D B

(a) Current solution

A B C D E F G H I J
1({J C B H I G F D E A
2| G F E J C B A I H D
3 I # G F J D C B A E
41/B A I G H J D E C F
H||C 1 J | A ESRENNHNSGRRDENE
6| E D H B A 1 J C F G
7/H G F E D C B A J I
8| F E D C B A 1 J G H
9| D I J A G H E F B C

(b) Perturbed solution

Fig. 6 Perturbation move using the rows destruction neighborhood applied to slots 1, 4, 5,
and 9.

3.4.2 Columns destruction

Considering the matricial representation of a round-robin tournament as illus-
trated in Figure 1 (a), each of its columns corresponds to the sequence of games

11



played by a team. A destructive perturbation move in this neighboorhood is ob-
tained by erasing a number of columns and replacing them by different ones. Given
the current fixture, we enforce that some selected teams (columns) of the current
solution will not have the same sequence of opponents in the new solution. Fig-
ure 7 illustrates a perturbation move in this neighboorhood. The dark shaded
columns correspond to the teams selected to have their game sequences destroyed
and modified. All other columns remains unchanged, except the light shaded cells
corresponding to games involving the teams associated with the columns selected
for destruction.

Let again § be the current solution, with gr;; = 1 if and only if team ¢ plays
against team j in round k of the current fixture, ¥x;; = 0 otherwise, for every pair
of teams ¢,j = 1,...,n (with ¢ # j) and for every round k = 1, ..., n. Furthermore,
let D C {1,...,n} be the set of columns to be destroyed in the current solution.
Constraints (14) are added to the model to fix all the games of the columns not
in D and whose associated opponent is also not in D, while constraints (15) are
added to the model to enforce the destruction of all columns in D:

Ykij = Ykijs E=1,...,n, 4,j€{l,...;,n}\D:j#i (14)
Yki; < 1 — Yhijs k=1,...,n, 1€D, j=1,....n:75#1. (15)

As for the previous case, the computational experiments addressed columns de-
struction perturbation moves involving the destruction of exclusively four columns.

A B C D E F G [H I J
1 F E D C B A J I H |G
2| B A I H G J E D C 'F
3 I D J B F E H G A C
4 E J H [G A 1 D (€] F B
5/ G F E I C B A J D H
6 J H G F I D C B E A
7| C 1 A J H G F E B D
8 D C B A J H I F G E
9 H G F E D (@} B A J 1

(a)

A B C D E F G H 1 J
1 J E H 1 B G F C D A
2 B A 1 F G D E J C H
3 I F D C H B J E A G
4 E D F B A C H |G J I
5/ G H E J C I A B F D
6 F J G H I A C D E B
7 C 1 A G J H D F B E
8 H C B E D J I A G F
9 D G J A F E B I H C

(b)

Fig. 7 Perturbation move using the columns destruction neighborhood applied to columns D,
F, H, and J.
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4 Computational results

FEach instance is defined by the number of teams and by a weighted matrix of
carry-over effects. Four classes of weighted instances have been generated for the
computational experiments:

— random instances: weights are randomly generated in the interval [1, 2n]. Three
matrices identified by letters A, B and C have been generated for each value
of n.

— linear instances: a strength in the interval [1,n] is assigned to each team. For
simplicity, the strength of team ¢ is made equal to i. Each weight w;; is defined
as the absolute value of the difference between the strengths of teams ¢ and j.

— perturbed linear instances: each weight of a linear instance is increased by an
individual perturbation, randomly generated in the interval [—n/2,n/2]. Three
different instances identified by letters A, B and C are generated for each value
of n. Absolute values are taken whenever the perturbation leads to a negative
weight.

— real-life inspired instances: these six instances are derived from the last six
issues of the Brazilian football championship. The strength of each team is
given by the number of points it obtained in the previous year. As for the linear
instances, each weight w;; is defined as the absolute value of the difference
between the strengths of teams 7 and j.

Data of the weighted instances is available from the authors for benchmarking
at http://www.ic.uff.br/"celso/grupo/Weighted_carry-over_instances.zip.
We also considered instances made up only of unit costs, which are equivalent to
those of the original, unweighted problem.

The computational experiments were performed on an AMD Athlon 64 X2
machine with 2.3 GHz and one GB of RAM memory. The code was implemented
in C++ and compiled with the GNU C/C++ compiler (GCC) version 4.2.4 under
Ubuntu Linux 8.04.

4.1 Tuning

The strategy used to generate the starting fixtures sensibly changes the quality
of the solutions found. We tested two different alternatives to obtain the starting
fixture whenever n is a multiple of four. In the first, only the polygon method is
used and canonical factorizations are produced. In the second, the two methods
described in Section 3.1 are indistinctly employed to obtain 1-factorizations.

We observed from preliminary results that the main parameters influencing
the behavior of the ILS phase are the maximum number of deteriorating moves
accepted before termination of this phase, the number of ejection chain (game
rotation) moves applied in each perturbation, and the initial value for b. We also
observed that reasonable values for these parameters are:

maximum number of deteriorating moves: {10, 100, 200}
number of ejection chain moves in a perturbation: {1,5,10} (16)
initial value for b: {0.01,0.05,0.10}

To assess the behavior of the algorithm with respect to parameter values and
implementation strategies, we ran the algorithm on three unweighted instances for
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which n is a multiple of four — namely, for n = 12,16, and 20. For each of these
instances, we tested every possible combination of the above parameter values with
the two alternatives for generating the initial fixture. For each configuration, we
took average results over three independent runs. Only game rotation perturbation
moves were used for tuning.

We first discuss the best strategy to generate the initial fixture. Table 1 displays
the results obtained by each of the two alternatives for each problem size: average
solution value, best solution value, average computation time (in seconds), and
longest computation time (in seconds) over the three runs for each combination
of the parameter values. The upper part of this table gives the results for the first
alternative, based exclusively on canonical factorizations. The lower part reports
results for the second alternative, which makes use of both approaches. Although
the first alternative (upper part) is less time consuming than the second, the latter
(lower part) seems to find better (or comparable) solutions. In consequence, we
selected the second alternative to generate the initial fixture.

Strategy n  COEV (avg.) COEV (best) Time (avg.) Time (max.)
Canonical 12 192.000 192.000 3.519 4.000
factorizations | 16 306.914 304.444 178.765 183.296

20 489.852 488.444 20.790 21.296
Both 12 167.630 164.370 64.790 69.111
factorizations | 16 267.630 258.519 244.827 263.926

20 492.000 490.370 54.481 62.481

Table 1 COEV values and computation times in seconds for two different strategies for the
generation of initial fixtures.

To choose the most appropriate configuration of parameter values, we ran the
hybrid heuristic (using the second alternative to generate the initial fixture) with
all of the 27 possible combinations of parameter values. We collected minimum and
maximum results obtained over three runs of each instance tested with n = 12, 16,
and 20. For each of them, the results found with each combination were normalized
to the interval [0, 1]. Finally, we computed average normalized results over all in-
stances considered. The plot in Figure 8 presents the average normalized carry-over
effects value and the average normalized running time for each combination. Sim-
ilarly, the plot in Figure 9 displays the average normalized best carry-over effects
value and the average normalized longest computation time for each combination.

Each point in these plots represents a unique combination of parameter values.
The five winning combinations closest to the ideal point (0, 0) are the same for both
plots. They are identified and labeled with the corresponding maximum accepted
number of deteriorating moves, number of ejection chain moves in a perturbation,
and initial value of parameter b (in this order).

Since four out of the five best combinations accept a maximum of 200 deteri-
orating moves before termination of the ILS phase, this value was selected for the
first parameter. The number of ejection chain moves in a perturbation is set to
one, since three out of the five best points plotted correspond to this value. The
best choice for the initial value of parameter b is less evident from these results.
For sake of robustness, we selected b = 0.01.
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Fig. 8 Average normalized results obtained with different combinations of parameters.
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Fig. 9 Extremal normalized results obtained with different combinations of parameters.
4.2 Weighted instances

The hybrid heuristic was run five times for each instance, with the param-
eter values and implementation strategies as selected above. Average and best
carry-over effects values and average and worst computation times in seconds over
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five runs are reported for each class of weighted test instances, together with the
average deviation from the best solution found.

Results for the random instances are shown in the upper part of Table 2. These
instances present the smallest computation times over all classes. The ILS phase
was always able to improve the solutions found in the multistart phase, except for
the three smallest instances.

Avg. Dev. Best Avg. Worst
Instance COEV (%) COEV time (s) time (s)
instdrandomA 63.0 0.0 63 0.2 1.0
inst4drandomB 53.0 0.0 53 0.2 1.0
inst4drandomC 45.0 0.0 45 0.0 0.0
inst6randomA 233.0 0.0 233 0.8 1.0
inst6randomB 274.0 0.0 274 0.8 1.0
inst6randomC 235.0 0.0 235 1.2 2.0
inst8randomA 505.0 0.0 505 7.2 8.0
inst8&randomB 495.0 0.0 495 18.6 20.0
inst8randomC 470.0 0.0 470 13.8 14.0
inst10randomA 912.6 2.0 895 139.4 150.0
inst10randomB 793.0 1.5 781 151.0 173.0
inst10randomC 744.6 1.0 737 149.0 172.0
inst12randomA 1549.2 1.9 1521 453.2 560.0
inst12randomB 1520.2 2.1 1489 402.4 451.0
inst12randomC 1594.4 1.4 1572 455.8 546.0
instl4randomA | 2620.0 0.5 2608 39.8 44.0
inst14randomB 2903.8 1.2 2870 38.0 45.0
instl4randomC 2777.6 0.6 2760 36.8 42.0

inst16randomA 3812.2 1.5 3756 2605.8 2878.0
inst16randomB 3846.6 1.3 3797 2848.2 3294.0
inst16randomC 3773.6 0.5 3755 3138.0 3483.0
inst18randomA 5574.4 1.1 5515 1381.2 2442.0

inst18randomB 5816.2 1.2 5745 792.4 1271.0
inst18randomC 5598.0 0.9 5548 1547.2 3157.0
inst20randomA 7764.4 0.1 7760 136.8 145.0
inst20randomB 7928.0 0.5 7888 147.8 174.0
inst20randomC 7700.2 0.8 7636 136.8 144.0
Average 0.7

inst4linear 20.0 0.0 20 0.2 1.0
inst6linear 114.0 0.0 114 0.6 1.0
inst8linear 168.0 0.0 168 8.4 9.0
inst10linear 318.0 0.0 318 64.6 70.0
inst12linear 504.0 1.6 496 271.4 309.0
inst14linear 960.0 0.2 958 18.6 20.0
inst16linear 1088.0 1.1 1076 2007.2 2313.0
inst18linear 1698.0 2.3 1660 4102.0 4729.0
inst20linear 2257.6 2.1 2212 5213.0 5624.0
Average 0.8

Table 2 Results for random (upper part) and linear (lower part) instances.

We consider next the results for linear instances, reported in the lower part
of Table 2. The ILS phase improved the solutions found in the multistart phase
for all instances with n > 8. The computation times are much greater than those
observed for the previous class of instances. This seems to be particularly true for
the instance with 20 teams.
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Results for perturbed linear instances are shown in the upper part of Table 3.
As for the two previous classes, the ILS phase always improved the best solution
found in the multistart phase, except for the three smallest instances. The compu-
tational times are greater than those observed for the random and linear classes.
For both classes of random and linear instances, the heuristic was able to find very
good solutions that are off the best values obtained by less than 1% on average,
illustrating its robustness.

Avg.  Dev. Best Avg. Worst
Instance COEV (%) COEV time (s) time (s)
instdperturbedlinearA 16.0 0.0 16 0.2 1.0
instdperturbedlinearB 17.0 0.0 17 0.2 1.0
inst4dperturbedlinearC 22.0 0.0 22 0.0 0.0
inst6perturbedlinear A 68.0 0.0 68 1.4 2.0
inst6perturbedlinearB 73.0 0.0 73 0.6 1.0
inst6perturbedlinearC 60.0 0.0 60 0.8 1.0
inst8perturbedlinear A 137.0 0.0 137 31.0 32.0
inst8perturbedlinearB 141.0 0.0 141 22.4 23.0
inst8perturbedlinearC 162.0 0.0 162 26.8 28.0
inst10perturbedlinearA 329.0 0.9 326 136.0 162.0
inst10perturbedlinearB 277.0 1.1 274 134.0 163.0
inst10perturbedlinearC 291.8 2.7 284 128.6 152.0
inst12perturbedlinearA 601.2 2.4 587 484.2 638.0
inst12perturbedlinearB 528.6 0.7 525 494.6 580.0
inst12perturbedlinearC 486.6 1.8 478 546.6 648.0
inst14perturbedlinear A 940.0 2.2 920 42.8 45.0
inst14perturbedlinearB 947.4 1.7 932 39.8 43.0
inst14perturbedlinearC 993.2 0.3 990 36.2 40.0

inst16perturbedlinear A 1403.0 2.0 1376 3432.8 3905.0
inst16perturbedlinearB 1360.2 0.9 1348 3343.8 3668.0
inst16perturbedlinearC 1118.0 1.8 1098 3961.0 4683.0
inst18perturbedlinear A 2063.4 2.9 2005 5162.4 6983.0
inst18perturbedlinearB 1965.4 2.3 1921 4038.0 5343.0
inst18perturbedlinearC 1712.0 8.0 1585 4833.2 5805.0
inst20perturbedlinearA | 3092.2 0.9 3065 482.0 1304.0
inst20perturbedlinearB 2866.8 2.4 2800 2923.4 4719.0
inst20perturbedlinearC 2837.2 1.7 2791 1479.6 3509.0

Averages 1.4

inst24brasileirao2003 7730.4 2.5 7542 13897.8 15755.0
inst24brasileirao2004 7179.6 1.3 7088 12992.8 13468.0
inst22brasileirao2005 5228.8 1.4 5158 10599.0 13959.0
inst20brasileirao2006 5310.0 1.4 5236 5705.4 6358.0
inst20brasileirao2007 4876.0 0.9 4834 2715.8 3655.0
inst20brasileirao2008 4045.6 2.6 3944 6805.6 8308.0
Averages 1.7

Table 3 Results for perturbed linear (upper part) and real-life inspired (lower part) instances.

Finally, the results obtained for the set of real-life inspired instances are shown
in the lower part of Table 3. This class presents the largest computation times for
the instances with n = 20. This seems to be due to the fact that the weights in this
class are more diverse than in any other. As for the previous classes of instances,
for both the perturbed linear and real-life-inspired instances, the heuristic was
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able to find very good solutions that are off the best values obtained by less than
2% on average.

All instances with n < 8 teams have been exactly solved with CPLEX 11.0.
For all these solved instances, the proposed heuristic always found an optimal
solution in all runs, further illustrating its robustness. No larger instances, with
n > 10 teams, could be solved within three entire days of computations. The lower
bounds provided by the LP relaxation are very weak and do not help the solver.

4.3 Validation: unweighted instances

To validate the proposed hybrid heuristic, we also applied it to instances of the
original unweighted problem. These instances are equivalent to weighted instances
with unit weights.

Table 4 displays the best known solution values known to date and that ob-
tained by the hybrid ILS heuristic for n = 4,...,16. The heuristic matched the
best known results to date for n = 4,6,8,10, and 16. Although it was not able
to match the best known solution for n = 14, we observe that it improved the
best known upper bound to date for n = 12 by almost 10%, producing a new,
previously unknown solution whose carry-over effects value is only 160.

n Best to date  Hybrid
4 12 12
6 60 60
8 56 56
10 108 108
12 176 160  (new best)
14 234 254
16 240 240

Table 4 Results for the unweighted instances.

The ILS phase of the heuristic terminates once 200 deteriorating moves have
been accepted without improvement in the best solution found. For all classes
of weighted instances, we observed that this counter very rarely reached val-
ues greater than 50. However, a very different behavior was noticed for the un-
weighted instances, for which many improvements obtained during the ILS phase
were achieved after more than 50 deteriorating moves.

4.4 Destructive neighboorhoods

In this section, we report on the computational results obtained with the use of
destructive perturbations and compare them with those presented in the previous
section.

Table 5 displays the results obtained with the three types of perturbations for
the unweighted instances. It also displays the results obtained when one of the
three neighborhoods is randomly selected with uniform probability to be used at
each iteration. For each value of n = 10,12, 14, and 16 we report the average and
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best carry-over effects values, as well as the average and worst computation times
(in seconds) over five runs of the heuristic.

Perturbation n Avg. COEV  Best COEV ~ Avg. time Longest time
10 109.2 108.0 7.2 8.0

Game 12 164.4 160.0 15.2 19.0
rotation 14 254.0 254.0 5.6 6.0
16 244.8 240.0 71.2 83.0

Averages 193.1 190.5 24.8 29.0

10 108.0 108.0 311.8 330.0

Rows 12 160.0 160.0 894.6 1068.0
destruction 14 246.0 244.0 1093.2 1220.0
16 240.0 240.0 1700.2 1913.0

Averages 188.5 188.0 1000.0 1132.8

10 108.0 108.0 60.6 68.0

Columns 12 161.6 160.0 144.2 158.0
destruction 14 248.0 246.0 269.0 298.0
16 240.0 240.0 566.6 785.0

Averages 189.4 188.5 260.1 327.3

10 108.0 108.0 31.8 35.0

Random 12 162.4 160.0 72.8 78.0
selection 14 248.8 246.0 96.6 113.0
16 243.2 240.0 309.6 386.0

Averages 190.6 188.5 127.7 153.0

Table 5 Results for game rotation, rows destruction, columns destruction, and random neigh-
borhood selection.

Game rotation perturbations provided the fastest (by far) algorithm. However,
the use of destructive perturbations improved the carry-over effects value for the
instance with n = 14 and matched the values obtained for the other instances.
The algorithm using rows destruction perturbations always found all the best
values over all variants, although at the cost of a big computational effort. The
use of columns destruction perturbations, on the other hand, demanded much
less computational effort, while still providing better results than game rotation
perturbations. Randomly selecting the neighborhood to be used at each iteration
appears to be a good compromise.

We observe that the use of columns destruction neighborhoods is much less
time consuming than employing rows destructions, because the first fixes fewer
elements of the fixture than the second, making it easier for the solver to find a
feasible solution to replace the current.

5 Concluding remarks

We discussed possible applications of the minimum carry-over effects value
minimization problem as a fairness criterion to build good fixtures for round robin
tournaments. A new, weighted version of the problem was introduced and for-
mulated by integer programming, in which a weight is assigned to each pair of
teams.

A hybrid heuristic based on the combination of the Iterated Local Search meta-
heuristic with a multistart strategy was proposed and applied to four classes of
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weighted problem instances with up to 20 teams. The weighted test instances
are available from the authors for benchmarking purposes. Three perturbation
strategies were proposed and compared. Numerical results obtained for the orig-
inal, unweighted instances contributed to validate the effectiveness of the hybrid
heuristic, which has improved the best known solution to date for n = 12.

These results confirm previous successful cases of the hybridization of the It-

erated Local Search metaheuristic with multistart strategies (see e.g. [4, 30, 31]),
in particular in the context of scheduling problems in sports.

References

10.

11.

12.

13.

14.

15.

16.

17.

Kendall, G., Knust, S., Ribeiro, C.C., Urrutia, S.: Scheduling in sports: An annotated
bibliography. Computers and Operations Research 37, 1-19 (2010)

. Rasmussen, R.V., Trick, M.A.: Round robin scheduling — A survey. European Journal of

Operational Research 188, 617-636 (2008)

. Easton, K., Nemhauser, G., Trick, M.A.: The travelling tournament problem: Description

and benchmarks. In: T. Walsh (ed.) Principles and Practice of Constraint Programming,
Lecture Notes in Computer Science, vol. 2239, pp. 580-585. Springer (2001)

Ribeiro, C.C., Urrutia, S.: Heuristics for the mirrored traveling tournament problem. Eu-
ropean Journal of Operational Research 179, 775-787 (2007)

Noronha, T.F., Ribeiro, C.C., Duran, G., Souyris, S., Weintraub, A.: A branch-and-cut
algorithm for scheduling the highly-constrained Chilean soccer tournament. In: Practice
and Theory of Automated Timetabling VI, Lecture Notes in Computer Science, vol. 3867,
pp. 174-186. Springer (2007)

Ribeiro, C.C., Urrutia, S.: Scheduling the Brazilian soccer tournament with fairness and
broadcast objectives. In: Practice and Theory of Automated Timetabling VI, Lecture
Notes in Computer Science, vol. 3867, pp. 147-157. Springer, Berlin (2007)

Ribeiro, C., Urrutia, S.: Bicriteria integer programming approach for scheduling the Brazil-
ian national soccer tournament. In: Proceedings of the Third International Conference on
Management Science and Engineering Management, pp. 46-49. Bangkok (2009)

Russell, K.G.: Balancing carry-over effects in round robin tournaments. Biometrika 67,
127-131 (1980)

Goossens, D., Spieksma, F.: Does the carry-over effect exist? In: Book of Abstracts of the
23rd European Conference on Operational Research, p. 288. Bonn (2009)

Flatberg, T., Nilssen, E., Stlevik, M.: Scheduling the topmost fotball leagues of Norway.
In: Book of Abstracts of the 23rd European Conference on Operational Research, p. 240.
Bonn (2009)

Goodbread, C.: SEC aims to fix schedule problem by month’s end (2010). Online refer-
ence at http://www.tidesports.com/article/20100409/NEWS/100409591, last visited on
August 14, 2010

Anderson, I.: Balancing carry-over effects in tournaments. In: F. Holroyd, K. Quinn,
C. Rowley, B. Webb (eds.) Combinatorial Designs and Their Applications, CRC Research
Notes in Mathematics, pp. 1-16. Chapman & Hall (1999)

Dinitz, J.H.: Starters. In: C.J. Colbourn, J.H. Dinitz (eds.) The CRC Handbook of Com-
binatorial Designs, The CRC Press Series on Discrete Mathematics and its applications,
pp. 467-473. CRC Press, Boca Raton (1996)

Trick, M.A.: A schedule-then-break approach to sports timetabling. In: E. Burke, W. Erben
(eds.) Selected papers from the Third International Conference on Practice and Theory of
Automated Timetabling III, Lecture Notes in Computer Sciences, vol. 2079, pp. 242-253.
Springer-Verlag (2000)

Henz, M., Miiller, T., Thiel, S.: Global constraints for round robin tournament scheduling.
European Journal of Operational Research 153, 92-101 (2004)

Miyashiro, R., Matsui, T.: Minimizing the carry-over effects value in a round robin tour-
nament. In: Proceedings of the 6th International Conference on the Practice and Theory
of Automated Timetabling, pp. 460-463. Brno (2006)

Kirkman, T.: On a problem in combinations. Cambridge Dublin Math Journal 2, 191-204
(1847)

20



18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

Martin, O.C., Otto, S.W., Felten, E.W.: Large-step markov chains for the traveling sales-
man problem. Complex Systems 5, 299-326 (1991)

Lourengo, H.R., Martin, O.C., Stutzle, T.: Iterated local search. In: F. Glover, G.A.
Kochenberger (eds.) Handbook of Metaheuristics, pp. 321-353. Kluwer (2003)

de Werra, D.: Scheduling in sports. In: P. Hansen (ed.) Studies on Graphs and Discrete
Programming, Annals of Discrete Mathematics, vol. 11, pp. 381-395. North Holland (1981)
de Werra, D.: Geography, games and graphs. Discrete Applied Mathematics 2, 327-337
(1980)

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.): The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley (1985)

Gutin, G., Punnen, P. (eds.): The Traveling Salesman Problem and Its Variations. Kluwer
(2002)

Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers and Operations
Research 34, 1097-1100 (1997)

Hansen, P., Mladenovic, N.: Variable neighborhood search. In: F. Glover, G. Kochenberger
(eds.) Handbook of Metaheuristics, pp. 145-184. Kluwer (2002)

Costa, F.N., Urrutia, S., Ribeiro, C.C.: An ILS heuristic for the traveling tournament
problem with fixed venues. In: E.K. Burke, M. Gendreau (eds.) Proceedings of the 7th
International Conference on the Practice and Theory of Automated Timetabling (2008)
Glover, F.: Ejection chains, reference structures and alternating path methods for traveling
salesman problems. Discrete Applied Mathematics 65, 223-253 (1996)

Glover, F., Laguna, M.: Tabu Search. Kluwer (1997)

Glover, F., Laguna, M., Marti, R.: Fundamentals of scatter search and path relinking.
Control and Cybernetics 29(3), 653-684 (2000)

Duarte, A.R., Ribeiro, C.C., Urrutia, S., Haeusler, E.: Referee assignment in sports leagues.
In: Practice and Theory of Automated Timetabling VI, Lecture Notes in Computer Sci-
ence, vol. 3867, pp. 158-173. Springer (2007)

Lucena, A.P., Ribeiro, C.C., Santos, A.C.: A hybrid heuristic for the diameter constrained
minimum spanning tree problem. Journal of Global Optimization (to appear)

21



