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Abstract

We consider the problem of power assignment to the

nodes of an ad hoc wireless network, so as that the

total power consumption is minimized and the result-

ing network is biconnected, i.e., there are at least

two node-disjoint paths between any pair of nodes.

A biconnected communication graph is necessary to

ensure fault tolerance, since ad hoc networks are

used in critical application domains where failures are

likely to occur. We present a mixed integer program-

ming formulation for the problem, whose optimal so-

lutions can be computed by a commercial solver for

moderately-sized networks. Four problem variants are

discussed. We also propose a heuristic for solving

large problem instances, based on a greedy random-

ized algorithm that builds feasible solutions and on a

local search strategy to improve them. Computational

experiments are presented and discussed.
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1. Introduction

An ad hoc network consists of a collection of
transceivers, in which a packet may have to traverse
multiple consecutive wireless links to reach its final
destination. They have become an increasingly com-
mon and important object of study, due to their ap-
plications in battlefield communication, disaster relief
communication, and sensor networks, among others.

Ad hoc networks can be represented by a set V of
transceivers (nodes), numbered 0, 1, . . . , |V | − 1, to-
gether with their locations or the distances between
them. A transmission power pu is associated with
each node u ∈ V . For each ordered pair (u, v) of
transceivers, with u, v ∈ V , we are given a non-
negative arc weight e(u, v) such that a signal trans-
mitted by the transceiver u can be received at node
v if and only if the transmission power of u is at least
equal to e(u, v), i.e. if pu ≥ e(u, v).

Wireless networks face a variety of constraints that
do not appear in wired networks. Nodes in a wireless

network are typically battery-powered, and it is ex-
pensive and sometimes even infeasible to recharge the
device. We focus on radio power consumption, since
radios tend to be the major source of power dissipa-
tion in wireless networks [1]. Instead of transmitting
with maximum power, the proposed algorithms ad-
just the transmission power of each node.

There are also fault-tolerance requirements, due to
their evolving critical application domains and to the
large number of failures that may result from mobil-
ity, fading, or obstructions [2]. A connected graph
is usually assumed as the minimum connectivity re-
quirement by the algorithms running in different lay-
ers of the network, such as routing protocols [3]. How-
ever, if there is only one path between a pair of nodes,
failure of a single node (or link) between them will
result in a disconnected graph. Therefore, topologies
with multiple, alternative disjoint paths between any
pair of nodes are often required [4].

The transmission graph G = (V,E), where E =
{(u, v) : u ∈ V, v ∈ V, pu ≥ e(u, v)} is said to be 2-
node connected if, for any two nodes u, v ∈ V , there
exist two node-disjoint paths connecting u to v. Since
a 2-node connected graph is also 2-edge connected,
but the converse is not necessarily true, we say that
a graph is biconnected if it is 2-node connected.

Given the node set V and non-negative arc weights
e(u, v) for any u, v ∈ V , the biconnected minimum

power consumption problem consists of finding an op-
timal assignment of transmission powers p : V → R+
to every node u ∈ V , such that the total power con-
sumption

∑
u∈V pu is minimized and the resulting

transmission graph G = (V,E) is biconnected. This
problem was proved to be NP-hard by Calinescu and
Wan [5].

Four variants of the biconnected minimum power con-
sumption problem are discussed in this paper. The
system model is described in detail in the next sec-
tion. Previous work is reviewed in Section 3. A
mixed integer programming formulation to exactly
solve problems in moderately-sized networks is given
in Section 4. A GRASP heuristic to approximately
solve large problems instances is proposed in Sec-
tion 5. Computational results are reported and dis-
cussed in Section 6. Concluding remarks are made in
the last section.



2. System Model

We are given a set V of transceivers, with |V | = n,
each of them equipped with an omnidirectional an-
tenna which is responsible for sending and receiving
signals. An ad hoc network is established by assigning
a transmission power pu to each transceiver u ∈ V .
Each node can (possibly dynamically) adjust its
transmitting power, based on the distance to the re-
ceiving nodes and on the background noise. In the
most common power attenuation model [6], the signal
power falls with 1/dε, where d is the distance from
the transmitter and ε is the loss exponent (typical
values of ε are between 2 and 4). Under this model,
the power requirement at node u for supporting the
transmission through a link from u to v is given by

pu ≥ dε
uv.qv, (1)

where duv is the Euclidean distance between the
transmitter u and the receiver v, and qv is the re-
ceiver’s power threshold for signal detection, which is
usually normalized to one.
We first define the symmetric input version of the bi-
connected minimum power consumption problem. In
this case, the power requirement (also referred to as
the weight of arc (u, v)) for supporting a transmis-
sion between nodes u and v separated by a distance
duv becomes e(u, v) = e(v, u) = dε

uv. Although the
symmetric version is widely accepted as reasonable,
inequality (1) holds only for free-space environments
with non-obstructed lines of sight. It does not con-
sider the possible occurrence of reflections, scattering,
and diffraction caused e.g. by buildings and terrains.
In practice, power requirement values for two nodes
u and v may be asymmetric because of many reasons.
For example, asymmetric arc weights can be used to
model batteries with different power levels [7] and
heterogeneous nodes [8]. Also, the ambient noise lev-
els of the regions containing the two nodes may be dif-
ferent [9]. Therefore, we also study the more general
asymmetric input version of the problem. Under this
model, there may be pairs of transceivers u, v ∈ V
such that e(u, v) 6= e(v, u).
Communication from node u to node v is enabled
whenever pu ≥ e(u, v). The transmission graph asso-
ciated with a power assignment pu to each transceiver
u ∈ V is defined as the direct graph G = (V,E),
where E = {(u, v) : u ∈ V, v ∈ V, pu ≥ e(u, v)}.
Two different graph topology structures may be used
to enforce biconnectedness. In a unidirectional topol-

ogy, all arcs established by the power settings in the
transmission graph G = (V,E) are considered to en-
force the connectivity constraints. In a bidirectional

topology, the edge [u, v] is used as a communication
link to enforce biconnectedness not only if v is within
the transmission range of u, but if u is also within
the transmission range of v. In this case, the arc set

considered to enforce the connectivity constraints in
the transmission graph is restrained to B = {(u, v) :
u ∈ V, v ∈ V, pu ≥ e(u, v), pv ≥ e(v, u)} ⊆ E.

3. Previous Work

Four versions of the biconnected minimum power con-
sumption problem are considered:

• symmetric input with unidirectional topology,

• symmetric input with bidirectional topology,

• asymmetric input with unidirectional topology,
and

• asymmetric input with bidirectional topology.

The symmetric version of the minimum power con-
sumption problem establishing a unidirectional con-
nected transmission graph was proved to be NP-
hard by Chen and Huang [10], who presented a 2-
approximation algorithm based on minimum span-
ning trees. Kirousis et al. [11] proved that the prob-
lem is NP-hard in the three-dimensional Euclidean
space, and described a 2-approximation algorithm.
Clementi et al. [12] gave a reduction proving that the
same problem is also NP-hard in the two-dimensional
Euclidean space. Calinescu and Wan [5] discussed
algorithms for the symmetric input with unidirec-
tional topology version of the biconnected minimum
power consumption problem and established its NP-
hardness. They also described a 4-approximation al-
gorithm for the problem.
Although implementing wireless unidirectional links
is technically feasible [13], and imposing the require-
ment of symmetry incurs in a considerable additional
cost, the advantage of using unidirectional links is
questionable. There is a potential for packet loss and
error in realistic networks, and thus acknowledgments
and retransmissions are required [10]. Therefore, to
improve the network performance, link bidirection-
ality is implicitly assumed in many routing proto-
cols [14]. Marina and Das [15] showed that the over-
head needed to handle unidirectional links in rout-
ing protocols outweighs the benefits they can provide,
and that better performance can be achieved by sim-
ply avoiding them.
The minimum power consumption problem with a
bidirectional connected transmission graph and sym-
metric inputs was proposed in [16], where its decision
version was proved to be NP-complete. Cheng et al.
[17] showed the importance of the problem in the
case of sensor networks, proved its NP-completeness,
and proposed two approximate algorithms. The 2-
approximation algorithm in [11] solves the symmet-
ric version of the minimum power consumption prob-
lem with bidirectional connectivity. These approxi-
mation factors have been improved by Althaus et al.



[18] to 5/3 + ǫ, who also gave an exact branch-and-
cut algorithm based on a new integer programming
formulation. Another exact algorithm was presented
in [19]. Lloyd et al. [20] studied the symmetric in-
put with bidirectional topology version of the bicon-
nected minimum power consumption problem. They
gave an algorithm with an approximation ratio of at
most 2(2 − 2/n)(2 + 1/n).
While the symmetric version of the minimum power
consumption problem has received significant at-
tention in recent years, only a few approximation
algorithms have been proposed for the case with
asymmetric power requirements. Krumke et al. [9]
considered the asymmetric version of the unidirec-
tional connected minimum power consumption prob-
lem. They showed that an Ω(log n)-approximation
algorithm cannot exist unless P = NP and pre-
sented an O(log n)-approximation algorithm. Inde-
pendently, Calinescu et al. [7] achieved a similar ap-
proximation bound by an algorithm which incremen-
tally constructs a tree. Caragiannis et al. [21] also
obtained an O(log n)-approximation algorithm.
For the asymmetric version of the bidirectional con-
nected minimum power consumption problem, Al-
thaus et al. [18] obtained an inapproximability result
within a factor of O(log n). Caragiannis et al. [21] de-
veloped an O(1.35 ln n)-approximation algorithm for
the same problem. An O(lnn)-approximation algo-
rithm has been independently obtained in [7] by dif-
ferent techniques.
In the following, we present an integer program-
ming formulation for tackling the four variants of the
biconnected minimum power consumption problem,
together with computational results obtained with
a commercial integer programming solver. For the
more interesting case in practice, corresponding to
the asymmetric input and bidirectional topology vari-
ant, we propose a GRASP heuristic to approximately
solve large, real-size problem instances.

4. Integer Programming Formulation

We propose a mixed integer programming multicom-
modity flow model for the bidirectional biconnected
minimum power consumption problem. Let C denote
a set of ⌈|V |/2⌉ commodities. For each commodity
c ∈ C, let o(c) be its origin and d(c) its destination.
For any node i ∈ V and any commodity c ∈ C, let
Dc(i) = −2 if i = o(c), Dc(i) = +2 if i = d(c),
Dc(i) = 0 otherwise. The discrete variable fc

ij and
the continuous variable pi represent, respectively, the
flow of commodity c through arc (i, j) and the power
assignment to node i. The binary variable fc

ij is equal
to one if arc (i, j) is used by commodity c for com-
munication from node i to j, zero otherwise.

Let Pi = [p1
i , . . . , p

φ(i)
i ] be a list of increasing power

levels that can be assigned to node i ∈ V , where

p1
i is the minimum power pi such that transmissions

from node i reach at least one node in V \ {i} and
pℓ+1

i > pℓ
i for any ℓ = 1, . . . , φ(i)−1. Also, let p0

i = 0.
For any ℓ = 1, . . . , φ(i), let T ℓ

i be the set of new nodes
reachable from node i if the power level assigned to
node i increases from pℓ−1

i to pℓ
i , as illustrated in Fig-

ure 1. The binary variable xℓ
i takes the value one if

there is a node j ∈ T ℓ
i such that (i, j) is used for

communication from i to j, zero otherwise. Since the
transmission graph G is required to be biconnected,
each node must be able to communicate with at least
two other nodes. Therefore, we denote by p

ℓ̄(i)
i the

minimum power level such that transmissions from
node i reach at least two nodes in V \ {i}.

Fig. 1: Example with Pa = [2, 3, 5, 8] and T 1
a = {b},

T 2
a = {c, d}, T 3

a = {e}, T 4
a = {f}.

The mixed integer program defined by the objective
function (2) and constraints (3)-(9) below is a valid
formulation for the asymmetric input with unidirec-
tional topology version of the biconnected minimum
power consumption problem:

min
∑

i∈V

φ(i)∑

ℓ=1

(pℓ
i − pℓ−1

i ) · xℓ
i (2)

∑

j∈V

fc
ji −

∑

l∈V

fc
il = Dc(i), ∀c ∈ C,∀i ∈ V (3)

∑

j∈V

fc
ij ≤ 1, ∀c ∈ C,∀i ∈ V : i 6= o(c), i 6= d(c)

(4)

xℓ
i ≥ fc

ij , ∀i ∈ V,∀c ∈ C,

∀j ∈ T ℓ
i , ℓ = 1, . . . , φ(i) (5)

xℓ+1
i ≤ xℓ

i , ∀i ∈ V, ℓ = 1, . . . , φ(i) − 1 (6)

xℓ
i = 1, ∀i ∈ V, ℓ = 1, . . . , ℓ̄(i) (7)

fc
ij ∈ {0, 1}, ∀i, j ∈ V,∀c ∈ C (8)

xℓ
i ∈ {0, 1}, ∀i ∈ V, ℓ = 1, . . . , φ(i). (9)

Constraints (3) are the flow conservation equations.
Inequalities (4) ensure node-disjointness. Inequali-
ties (5) state that xℓ

i must be set to one if there is



a node j ∈ T ℓ
i such that arc (i, j) is used for com-

munication from node i to j by commodity c. Con-
straints (6) enforce xℓ+1

i to be equal to zero if the
previous increment level was not used, i.e. if xℓ

i = 0.
Constraints (7) set to one the power increments that
are necessary to reach at least the two closest nodes to
each node. Constraints (8) and (9) express the inte-
grality requirements. Whenever a bidirectional topol-
ogy is sought, it suffices to replace constraints (5) by

xℓ
i ≥ fc

ij + fc
ji, ∀i ∈ V,∀c ∈ C,

∀j ∈ T ℓ
i , ℓ = 1, . . . , φ(i) (10)

to ensure the existence of one arc in each direction.

5. GRASP Heuristic

A greedy randomized adaptive search procedure
(GRASP) [22] is a multistart process. Each of its it-
erations consists of two phases: a construction phase,
in which a feasible solution is built, and a local search
phase, in which a local optimum in the neighborhood
of the current solution is sought. The best overall
solution is returned. in the neighborhood. In the
remainder of this section, we customize a GRASP
heuristic for the asymmetric input with bidirectional
topology version of the biconnected minimum power
consumption problem.

5.1. Construction Phase

The first stage of the construction phase builds a bidi-
rectional connected graph one node at a time. Given
an undirected input graph D = (V,A), the algorithm
sets pu = 0 for all u ∈ V , and initializes a working
graph H = (V ′, E) with V ′ = {r} and E = ∅, where
r ∈ V is any randomly selected initial node. The
greedy function that guides the construction is based
on the wireless multicast advantage property [23]: if
pu is the current power assignment to node u and
there is a node v such that e(u, v) > pu, then the
power required to set up communication from u to
v is e(u, v) − pu. Therefore, the greedy function is
g(u, v) = max{0, e(u, v)− pu}+ max{0, e(v, u)− pv},
for any u, v ∈ V . If g(u, v) = 0, the bidirectional
communication between u and v is already set up.
For every node u /∈ V ′, let g(u) = minv∈V ′{g(u, v)}
be the minimum power increment to connect it to
a node in V ′. Let g = minu∈V \V ′{g(u)} and g =
maxu∈V \V ′{g(u)} be, respectively, the minimum and
maximum power increments over all candidate nodes
(those not in the current solution). The restricted
candidate list RCL is formed by all nodes u ∈ V \ V ′

such that g(u) ≤ g+α(g−g), with 0 ≤ α ≤ 1. A node
u is randomly selected from RCL and inserted into
V ′. The power assignments of node u ∈ V \ V ′ and
node v ∈ V ′ such that g(u) = g(u, v) are increased

by max{0, e(u, v) − pu} and max{0, e(v, u) − pv}, re-
spectively, and the bidirectional edge [u, v] is inserted
into E. This stage finishes when V ′ = V , ensuring
that a connected graph H = (V,E) is obtained.
The next stage produces a biconnected graph G =
(V,B) with E ⊆ B. Its edge set starts with
B = E. A node is an articulation point of a
graph if it belongs to more than one of its bicon-
nected components. Tarjan’s algorithm [24] is used
to compute the biconnected components and artic-
ulation points of the current solution. For every
node u ∈ V that is not an articulation point, let
g′(u) = minv∈V {g(u, v) : u 6= v, node v is not an
articulation point and does not belong to the same
component as u} be the minimum power increment
to connect it to a node in a different biconnected com-
ponent which is not an articulation point. Let g′ =
minu∈V {g′(u) : u is not an articulation point} and
g′ = maxu∈V {g′(u) : u is not an articulation point}
be, respectively, the minimum and maximum power
increments over all nodes which are not articula-
tion points. The restricted candidate list RCL’ con-
tains all nodes u ∈ V which are not articulation
points and such that g′(u) ≤ g′ + α(g′ − g′), with
0 ≤ α ≤ 1. A node u is randomly selected from RCL’,
with g′(u) = g(u, v) for some node v which is not an
articulation point. The power assignments of nodes
u and v are increased by max{0, e(u, v) − pu} and
max{0, e(v, u) − pv}, respectively, the bidirectional
edge [u, v] is inserted into B, and a new iteration re-
sumes. Since linking two biconnected components by
an edge reduces their number at least by one. the
algorithm stops when a biconnected graph is built.

5.2. Local Search Phase

Pi = [p1
i , . . . , p

φ(i)
i ] was defined as a list of increasing

power levels that can be assigned to node i ∈ V in
Section 4. For a given power assignment pi to each

node i ∈ V , let (s1
i , . . . , s

φ(i)
i ) be a vector with com-

ponents sℓ
i ∈ {0, 1, 2}, for ℓ = 1, . . . , φ(i):

• sℓ
i = 0 if pℓ

i > pi (node i operates with a power
assignment smaller than pℓ

i);

• sℓ
i = 2 if pℓ

i ≤ pi and there exist a node j ∈ T ℓ
i

and a level k = 1, . . . , φ(j) such that pj ≥ pk
j and

i ∈ T k
j (power level pℓ

i supports a bidirectional
edge with node j); and

• sℓ
i = 1 otherwise (power level pℓ

i is used, but only
a unidirectional arc from i to j is established).

Local search and the definition of the neighborhoods
make use of two basic operations for decreasing and
increasing the power assignments. Applied to a node
i ∈ V , the first operation decreases its current power
assignment pi = pℓ

i (with ℓ ≥ 2) to pi = pℓ′

i , where



Table 1: Exact optimal solutions.
Asymmetric Symmetric

Instance unidirectional bidirectional unidirectional bidirectional
|V | solved time (s) gap (%) solved time (s) gap (%) solved time (s) gap (%) solved time (s) gap (%)
10 15 0.89 11.06 15 0.47 7.51 15 0.78 10.90 15 0.48 7.25
15 15 16.20 13.75 15 7.55 10.34 15 16.03 14.23 15 7.24 10.14
20 15 177.59 13.40 15 66.61 8.10 15 179.02 12.80 15 47.26 8.27
25 15 1563.94 11.96 15 298.53 7.71 15 1600.28 12.15 15 509.83 7.70

E
u
c
li
d
e
a
n

30 5 2837.09 7.47 12 1351.98 4.56 6 4875.97 11.51 12 1373.72 4.20
50 – – – – – – – – – – – –
10 15 0.07 1.19 15 0.48 5.98 15 0.11 1.56 15 0.15 0.82
15 15 0.16 0.00 15 6.99 10.83 15 0.74 0.40 15 0.23 0.22
20 15 0.87 0.01 15 117.36 10.87 15 6.78 0.29 15 2.69 0.28
25 15 2.36 0.01 15 872.44 13.48 15 20.43 0.32 15 10.95 0.12

R
a
n
d
o
m

30 15 5.69 0.02 1 5559.86 13.55 15 102.12 0.22 15 73.71 0.24
50 15 126.89 0.02 0 – – 12 2827.35 0.07 11 562.42 0.06

ℓ′ is the highest level which supports a bidirectional
edge: 1 ≤ ℓ′ < ℓ, sℓ′

i = 2, and sℓ′′

i = 1 for all
ℓ′′ = ℓ′ + 1, . . . , ℓ − 1. It removes the links between

nodes i and j for all j ∈ T ℓ′+1
i ∪ · · · ∪ T ℓ−1

i ∪ T ℓ
i and

the total power assignment is decreased by pℓ
i − pℓ′

i .
Applied to a node i ∈ V , the second operation in-
creases its current power pi = pℓ

i (with ℓ ≤ φ(i) − 1)
to pi = pℓ+1

i . If there exist a node j ∈ T ℓ+1
i and

a power level k = 1, . . . , φ(j) such that pj ≥ pk
j

and i ∈ T k
j , then the objective function is increased

by pℓ+1
i − pℓ

i . Otherwise, let j ∈ T ℓ+1
i such that

pj−p
k(j)
j = min

v∈T
ℓ+1

i

{pv−p
k(v)
v : i ∈ T

k(v)
v , for some

k(v) = 1, . . . , φ(v)} and increase its current power pj

to p
k(j)
j . In this case, the objective function is in-

creased by (pℓ+1
i − pℓ

i) + (p
k(j)
j − pj). In both cases,

the bidirectional edge [i, j] is inserted into solution.

The local search phase explores the neighborhood of
the current solution, attempting to reduce the total
power consumption. A move starts by decreasing the
power assignment of one node, followed by as many
power increases as needed to restablish biconnectiv-
ity. The first improving move is accepted and the
search moves to the new neighbor. The procedure
continues until no further improving moves exist.

The number of increase operations investigated may
be reduced to speedup the local search. Whenever
biconnectivity is destroyed by a power decrease, the
biconnected components are computed and two ac-
celeration schemes are implemented: (1) the reduced

scheme restricts the increases to pair of nodes be-
longing to the same biconnected components of the
pair of nodes affected by the previous decrease; and
(2) the extended scheme considers increases involving
any pair of nodes from different biconnected compo-
nents. The local search procedure first makes use of
the reduced scheme until no further improving moves
can be found, followed by the extended scheme.

6. Computational Results

Computational experiments have been carried out on
two classes of randomly generated asymmetric test

problems with 10 to 800 nodes. For each problem
size and type, 15 test instances have been generated:

• Euclidean instances: the nodes are uniformly
distributed in the unit square grid. The weight
of the arc between nodes u, v ∈ V is e(u, v) =
F · dε

u,v, where du,v is the Euclidean distance be-
tween nodes u and v, the loss exponent ε is set
at 2, and F ∈ [0.8, 1.2] is a random perturbation
generated from a uniform distribution.

• Random instances: the weight e(u, v) of the arc
between nodes u, v ∈ V is randomly generated
in (0, 1].

An Intel Core 2 Quad machine with a 2.40 GHz
clock and 8 Gbytes of RAM memory running un-
der GNU/Linux 2.6.24 was used in all experiments.
CPLEX 11.0 was used to solve the integer program-
ming formulation.
For each problem type and each size |V | =
10, 15, 20, 25, 30, 50, Table 1 shows the number of in-
stances solved to optimality by CPLEX in less than
three hours, the average running time in seconds over
the instances exactly solved, and the average relative
duality gap in percent between the linear relaxation
value and the optimal value. Since CPLEX did not
solve all instances in three hours, the numbers in Ta-

ble 1 are average results over all instances solved to
optimality. Cells in blank correspond to experiments
not performed, due do the hardness of exactly solving
the corresponding problems.
These results show that the minimum power con-
sumption problem is hard to solve. The duality gaps
are not small for the random instances of the asym-
metric input with bidirectional topology variant and
for the Euclidean instances, which makes it very dif-
ficult to the solver to find exact optimal solutions
within the imposed time limits. The other variants
of the random instances are easier to solve, because
the optimal solutions of their linear relaxations in the
root of the search tree are very close to their optimal
integer solutions.
Since the computation times increase very fast with
|V |, CPLEX could not solve to optimality in three



hours of computations even moderately-sized net-
works with 30 nodes. The difficulty faced by a
commercial solver to handle large instances supports
the need for efficient heuristics, capable of finding
good approximate solutions in reasonable computa-
tion times.

In the next, we focus our analysis into the asymmetric
input with bidirectional variant, since it is the more
interesting case in practice as discussed is Section 3.

Parameter α was set by using the reactive strategy
described in [25], with the probability distribution
being updated after every 100 iterations. We limited
the size of the candidate lists at |V |

1
2 .

We first notice that the GRASP heuristic found the
optimal solutions for all problems with up to 25
nodes. It obtained the optimal solutions for all Eu-
clidean instances in less than one second, but the ran-
dom instances were harder and took approximately
20 seconds on average.

For the instances with 200 and 400 nodes, Table 2
displays the average objective values over five runs for
one instance of each type as the running time limit
increases from five to 3125 seconds. The GRASP
heuristic continues to improve their solutions as the
time limit increases, showing that it may be benefited
if longer running times are allowed. These results are
summarized in Figure 2, which further illustrates the
continuous improvement in solution quality along the
total computation time.

In the final and more conclusive experiment, we com-
pare the GRASP heuristic described in this work us-
ing a fixed amount of computation time (one hour)
with the MST-aug heuristic of Calinescu [5]. Table 3
summarizes the average solution values over 15 in-
stances of each size. For both algorithms, we give
the number of arcs, the number of edges, the average
node degree, the maximum node power assignment,
and the total power consumption. The last column
shows the reduction (i.e., the gain) observed in the
total power consumption obtained by GRASP with
respect to algorithm MST-aug.

The existing heuristic MST-aug does not take into ac-
count the structure of biconnected components and
the gains offered by the wireless multicast advantage
property. The proposed GRASP heuristic systemat-
ically finds better solutions in all aspects. In par-
ticular, GRASP outperformed MST-aug for the Eu-
clidean instances with reductions in power consump-
tion ranging from 37.59% to 40.87%. These improve-
ments are even larger for random instances, ranging
from 57.45% to 87.32%. In addition, the solutions
produced by the GRASP heuristic are characterized
by fewer unidirectional arcs and smaller power assign-
ments, which are very useful to mitigate interference.
The average node degree in the solutions produced by
GRASP ranges from 2.45 to 2.69, being much smaller
than those obtained with MST-aug. Since the degree

of any node should be greater than or equal to two
in a biconnected graph, we may conclude that these
results are very close to the theoretical lower bounds.

7. Concluding Remarks

Ad hoc networks have become an increasingly impor-
tant object of study, due to their many applications
in situations where wired backbones are infeasible or
economically inefficient. Nodes of ad hoc networks
are typically equipped with limited power supply.
Therefore, one of the primary goals of their design
and operation consists of optimizing power consump-
tion. Energy conservation often reduces the number
of links, resulting in networks with smaller connectiv-
ity and more susceptible to system faults such as node
failures and departures. In this paper, we consid-
ered the problem of power control and optimization
in ad hoc networks to extend the functional lifetime
of both individual units and the network, imposing
fault-tolerant biconnectivity requirements.
We presented an integer programming formulation for
the bidirectional topology version of the biconnected
minimum power consumption problem. This formu-
lation can be easily extended to account for problems
with other connectivity requirements.
The formulation was applied to four variants of the
problem, regarding the topologies of the input graph
(symmetric or asymmetric) and of the solution (uni-
directional or bidirectional). A commercial integer-
programming solver was applied to the proposed
formulation. Computational results were given for
small- and medium-sized networks. We also showed
that large instances cannot be solved to optimality
by a state-of-the-art solver.
A GRASP heuristic was proposed to find good ap-
proximate solutions for real-size problems for the
asymmetric input with bidirectional topology vari-
ant. Comparative experimental results for large net-
works with up to 800 nodes showed that GRASP is
fast and finds effective solutions which significantly
improve those obtained by a literature heuristic. Fur-
thermore, we showed that the solutions obtained by
the GRASP heuristic are very close to the optimal
solutions, illustrating the effectiveness of the heuris-
tic.

References

[1] G. Xing, C. Lu, Y. Zhang, Q. Huang, and
R. Pless, “Minimum power configuration for
wireless communication in sensor networks,”
ACM Transactions on Sensor Networks, vol. 3,
pp. 200–233, 2007.

[2] A. Srinivas and E. Modiano, “Minimum en-
ergy disjoint path routing in wireless ad-hoc net-



Table 2: Average total power consumption for instances with 200 and 400 nodes.
|V | = 200 |V | = 400

Instances 5 s 25 s 125 s 625 s 3125 s 5 s 25 s 125 s 625 s 3125 s
Euclidean 1.74172 1.73922 1.73778 1.73714 1.73640 2.82601 2.82391 2.82177 2.82009 2.81920
Random 17.72963 17.64030 17.58805 17.50900 17.46120 25.08528 24.91952 24.83406 24.74227 24.68739

 1.736

 1.737

 1.738

 1.739

 1.74

 1.741

 1.742

 0  500  1000  1500  2000  2500  3000  3500

po
w

er

time (s)

(a) Euclidean instance with |V | = 200

 2.819

 2.82

 2.821

 2.822

 2.823

 2.824

 2.825

 2.826

 2.827

 0  500  1000  1500  2000  2500  3000  3500

po
w

er

time (s)

(b) Euclidean instance with |V | = 400

 17.45

 17.5

 17.55

 17.6

 17.65

 17.7

 17.75

 0  500  1000  1500  2000  2500  3000  3500

po
w

er

time (s)

(c) Random instance with |V | = 200

 24.65

 24.7

 24.75

 24.8

 24.85

 24.9

 24.95

 25

 25.05

 25.1

 0  500  1000  1500  2000  2500  3000  3500

po
w

er

time (s)

(d) Random instance with |V | = 400

Fig. 2: Improvement in the average total power consumption for instances with 200 and 400 nodes as a
function of the running time.

Table 3: Comparative average results for MST-aug and GRASP on large problems.
MST-aug GRASP

Instances arcs edges degree power total arcs edges degree power total gain
|V | (avg.) (avg.) (avg.) (max.) power (avg.) (avg.) (avg.) (max.) power (%)
25 130.00 54.73 4.37 0.18784 2.18646 81.60 32.80 2.62 0.15052 1.35089 38.22
50 275.73 111.60 4.46 0.11935 2.04944 168.33 65.66 2.62 0.07861 1.27900 37.59

100 608.73 239.20 4.78 0.06809 2.15343 327.66 130.13 2.60 0.04066 1.32409 38.51
200 1481.66 556.53 5.56 0.03857 2.84844 681.00 254.73 2.54 0.02249 1.76355 38.09

E
u
c
li
d
e
a
n

400 4502.13 1524.40 7.62 0.03199 4.72278 1538.20 507.93 2.53 0.01394 2.82529 40.18
800 14707.06 4530.40 11.32 0.02999 8.44331 3705.60 1033.06 2.58 0.01057 4.99252 40.87
25 329.33 100.60 8.04 0.92757 12.84646 149.93 31.26 2.50 0.55168 5.46654 57.45
50 1224.93 332.13 13.28 0.95827 24.20324 432.80 61.40 2.45 0.48981 8.35444 65.48

100 4509.73 1083.60 21.67 0.97475 44.97218 1197.80 131.20 2.62 0.41067 11.86145 73.62
200 16972.53 3748.93 37.48 0.99056 85.08285 3385.40 264.53 2.64 0.31773 17.14185 79.85

R
a
n
d
o
m

400 63143.00 12738.66 63.69 0.99039 158.26410 9583.46 532.73 2.66 0.23502 25.00776 84.20
800 233383.66 43080.53 107.70 0.99648 293.63736 27377.60 1077.20 2.69 0.18951 37.24512 87.32

works,” in Proceedings of the 9th Annual Inter-

national Conference on Mobile Computing and

Networking, San Diego, 2003, pp. 122–133.

[3] R. Madan and S. Lall, “Distributed algorithms

for maximum lifetime routing in wireless sen-
sor networks,” IEEE Transactions on Wireless

Communications, vol. 5, pp. 2185–2193, 2006.

[4] M. K. Marina and S. R. Das, “On-demand



multipath distance vector routing in ad hoc
networks,” in Proceedings of the 9th Interna-

tional Conference on Network Protocols, River-
side, 2001, pp. 14–23.

[5] G. Calinescu and P. J. Wan, “Range assign-
ment for biconnectivity and k-edge connectiv-
ity in wireless ad hoc networks,” Mobile Network

and Applications, vol. 11, pp. 121–128, 2006.

[6] T. Rappaport, Wireless Communications: Prin-

ciples and Practice. Upper Saddle River: Pren-
tice Hall, 2001.

[7] G. Calinescu, S. Kapoor, A. Olshevsky, and
A. Zelikovsky, “Network lifetime and power as-
signment in ad hoc wireless networks.” in Pro-

ceedings of the 11th Annual European Sympo-

sium on Algorithms, Budapest, 2003, pp. 114–
126.

[8] K. Romer and F. Mattern, “The design space of
wireless sensor networks,” IEEE Wireless Com-

munications, vol. 11, pp. 54–61, 2004.

[9] S. O. Krumke, R. Liu, E. L. Lloyd, M. V.
Marathe, R. Ramanathan, and S. Ravi, “Topol-
ogy control problems under symmetric and
asymmetric power thresholds,” in Proceedings of

the 2nd International Conference on Ad hoc and

Wireless Networks, vol. 2865, Montreal, 2003,
pp. 187–198.

[10] W. T. Chen and N. F. Huang, “The strongly
connecting problem on multihop packet radio
networks,” IEEE Transactions on Communica-

tions, vol. 37, pp. 293–295, 1989.

[11] L. M. Kirousis, E. Kranakis, D. Krizanc, and
A. Pelc, “Power consumption in packet radio
networks,” Theoretical Computer Science, vol.
243, pp. 289–305, 2000.

[12] A. E. F. Clementi, P. Penna, and R. Silvestri,
“Hardness results for the power range assignmet
problem in packet radio networks,” in Proceed-

ings of the 2nd International Workshop on Ap-

proximation Algorithms for Combinatorial Opti-

mization Problems, Berkeley, 1999, pp. 197–208.

[13] P. Santi, “Topology control in wireless ad hoc
and sensor networks,” ACM Computing Surveys,
vol. 37, pp. 164–194, 2005.

[14] V. Kawadia and P. R. Kumar, “Principles and
protocols for power control in wireless ad hoc
networks,” IEEE Journal on Selected Areas in

Communications, vol. 23, pp. 76–88, 2005.

[15] M. K. Marina and S. R. Das, “Routing perfor-
mance in the presence of unidirectional links in

multihop wireless networks,” in Proceedings of

the 3rd ACM International Symposium on Mo-

bile Ad Hoc Networking and Computing, Lau-
sanne, 2002, pp. 12–23.

[16] G. Calinescu, I. I. Mandoiu, and A. Zelikovsky,
“Symmetric connectivity with minimum power
consumption in radio networks,” in Proceedings

of the IFIP 17th World Computer Congress -

TC1 Stream, Montreal, 2002, pp. 119–130.

[17] X. Cheng, B. Narahari, R. Simha, M. X. Cheng,
and D. Liu, “Strong minimum energy topology
in wireless sensor networks: NP-Completeness
and heuristics,” IEEE Transactions on Mobile

Computing, vol. 2, pp. 248–256, 2003.

[18] E. Althaus, G. Calinescu, I. I. Mandoiu,
S. Prasad, N. Tchervenski, and A. Zelikovsky,
“Power efficient range assignment for symmetric
connectivity in static ad hoc wireless networks,”
Wireless Networks, vol. 12, pp. 287–299, 2006.

[19] R. Montemanni and L. M. Gambardella, “Ex-
act algorithms for the minimum power symmet-
ric connectivity problem in wireless networks,”
Computers and Operations Research, vol. 32, pp.
2891–2904, 2005.

[20] E. L. Lloyd, R. Liu, M. V. Marathe, R. Ra-
manathan, and S. S. Ravi, “Algorithmic as-
pects of topology control problems for ad hoc
networks,” Mobile Networks and Applications,
vol. 10, pp. 19–34, 2005.

[21] I. Caragiannis, C. Kaklamanis, and P. Kanel-
lopoulos, “Energy-efficient wireless network de-
sign,” Theory of Computing Systems, vol. 39, pp.
593–617, 2006.

[22] M. G. C. Resende and C. C. Ribeiro, “Greedy
randomized adaptive search procedures,” in
Handbook of Metaheuristics, F. Glover and
G. Kochenberger, Eds. Kluwer, 2003.

[23] J. E. Wieselthier, G. D. Nguyen, and
A. Ephremides, “On the construction of energy-
ef̈ıcient broadcast and multicast trees in wire-
less networks,” in Proceedings of the 9th An-

nual Joint Conference of the IEEE Computer

and Communications Societies, vol. 2, Tel-Aviv,
2000, pp. 585–594.

[24] R. Tarjan, “Depth-first search and linear graph
algorithms,” SIAM Journal on Computing,
vol. 1, pp. 146–160, 1972.

[25] M. Prais and C. C. Ribeiro, “Reactive GRASP:
An application to a matrix decomposition prob-
lem in TDMA traffic assignment,” INFORMS

Journal on Computing, vol. 12, pp. 164–176,
2000.


