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Abstract. We consider the problem of assigning transmission powers to the

nodes of an ad hoc wireless network, so as that the total power consumed is
minimized and the resulting network is biconnected, i.e., there are at least two
node-disjoint paths between any pair of nodes. Biconnected communication
graphs are important to ensure fault tolerance, since ad hoc networks are used
in critical application domains where failures are likely to occur. A mixed
integer programming formulation of the problem can be exactly solved to op-
timality by a commercial solver only for moderately sized problems. We recall

a mixed integer programming formulation that can be exactly solved to opti-
mality by a commercial solver only for very moderately sized problems. We
propose a quick greedy algorithm and a GRASP with path-relinking heuristic
for solving real-life sized problems. Computational experiments involving prac-

tical issues such as energy consumption and interference have been performed
and reported for problems with up to 800 nodes, illustrating the effectiveness
and the efficiency of the new algorithms. Both the greedy algorithm and the

GRASP heuristic outperformed the best heuristic in the literature for very
large problem sizes.

1. Introduction

Ad hoc networks consist of a collection of transceivers, in which a packet may
have to traverse multiple consecutive wireless links to reach its destination. They
have become increasingly common due to their large number of applications. They
face a variety of constraints that do not appear in wired networks. Nodes in a
wireless network are typically battery-powered, and it is expensive and sometimes
even infeasible to recharge the device. We focus on radio power consumption, since
radios tend to be the major source of power dissipation in wireless networks (Xing
et al., 2007).

There are also increasing fault-tolerance requirements, due to the evolving criti-
cal applications and to the large number of failures that may result from mobility,
fading, or obstructions. A connected graph is usually assumed as the minimum con-
nectivity requirement by the algorithms running in different layers of the network.
However, if there is only one path between a pair of nodes, the failure of a single
node or link between them will result in a disconnected graph. Topologies with
alternative disjoint paths between any pair of nodes are often required (Marina and
Das, 2001).
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Ad hoc networks can be represented by a set V of transceivers (nodes) numbered
from 0 to |V |−1, together with their locations. A transmission power pu is assigned
to each node u ∈ V . For each ordered pair (u, v) of transceivers, with u, v ∈ V , there
is a non-negative arc weight e(u, v) such that a signal transmitted by transceiver
u can be received at node v if and only if pu ≥ e(u, v). Each node can adjust
its transmitting power, based on the distances to the receiving nodes and on the
background noise. In the most common power attenuation model (Rappaport,
2001), the signal power falls with 1/dε, where d is the distance from the transmitter
and ε is the path loss exponent (typically between 2 and 4). The power requirement
at node u for supporting transmission through a link from u to v is given by
e(u, v) = dεuv · qv, where duv is the Euclidean distance between the transmitter u
and the receiver v, and qv is the receiver’s power threshold for signal detection
(usually normalized to 1).

This model holds only for free-space environments with non-obstructed lines
of sight. In practice, power requirement values for two nodes u and v may be
asymmetric, because of batteries with different power levels, heterogeneous nodes,
and different ambient noise levels in the two regions. Therefore, in the general
asymmetric input version of the problem there may be pairs of transceivers u, v ∈ V
for which e(u, v) 6= e(v, u).

In a bidirectional topology, communication between nodes u and v is enabled
whenever pu ≥ e(u, v) and pv ≥ e(v, u). The edge [u, v] is used as a communication
link to enforce biconnectedness if v is within the transmission range of u and vice-
versa. The transmission graph associated with a power assignment p = {pu : u ∈ V }
is defined as the undirected graph G(p) = (V,B(p)), where B(p) = {[u, v] : u ∈
V, v ∈ V, pu ≥ e(u, v), pv ≥ e(v, u)}.

Given the node set V and arc weights e(u, v) for any u, v ∈ V , the bidirectional
biconnected minimum power consumption problem consists in finding an optimal
assignment of transmission powers pu to every node u ∈ V , such that the total
power consumption

∑
u∈V pu is minimized and the resulting transmission graph is

biconnected. It was proved to be NP-hard by Calinescu and Wan (2006), who also
described a 4-approximation algorithm. Among other results, Lloyd et al. (2005)
presented a 2(2 − 2/n)(2 + 1/n)-approximation algorithm and computational re-
sults with experimental and more realistic networks. Taghi et al. (2007) obtained an
O(k)-approximation algorithm for the general problem version for k-connectivity.
For the particular case in which biconnectivity is sought, they implemented central-
ized and distributed algorithms for its solution and compared their experimental
results.

The transmission power assignments obtained with approximation algorithms (Ca-
linescu and Wan, 2006; Lloyd et al., 2005; Taghi et al., 2007) based on submodular
flow algorithms (Frank and Tardos, 1989; Khuller and Raghavachari, 1996; Kortsarz
and Nutov, 2000) have constant approximation ratios. However, they run in time
O(n2m) in networks with n vertices and m edges (Gabow, 1993). Furthermore,
they have very complicated implementations and are not practical for wireless ad
hoc networks (Calinescu and Wan, 2006). We propose in this paper new algorithms
based on the approach of expanding an spanning tree. These new algorithms are
compared with our implementation of the O(n log n) MST-aug algorithm originally
presented by Calinescu and Wan (2006) which also produces a biconnected graph
by augmenting a spanning tree and and also achieves a constant approximation
ratio.
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A mixed integer programming formulation to solve problems in moderately sized
networks is recalled in Section 2. A GRASP with path-relinking heuristic to ap-
proximately solve large problem instances is proposed in Section 3. Computational
experiments are presented and numerical results involving practical issues such as
energy consumption and interference are discussed in Section 4. Concluding re-
marks are made in the last section.

2. Integer Programming Model by Incremental Powers

Moraes et al. (2009) proposed and compared three integer programming for-
mulations for the four variants of the k-connected minimum power consumption
problem, regarding the topologies of the input graph (symmetric or asymmetric)
and of the solution (unidirectional or bidirectional). We recall below the best mixed
integer programming multicommodity flow formulation for the biconnected mini-
mum power consumption problem for the variant with asymmetric input graphs
and bidirectional solutions.

To formulate the k-connected minimum power consumption problem, we first
define a set C of commodities. Raghavan (1995) has shown, in the context of the
network design problem with connectivity requirements (Magnanti and Raghavan,
2005), that a more compact model can be formulated using a k-connected undi-
rected requirement graph Gk = (V,Ek) with a minimum number |Ek| = ⌈k|V |/2⌉
of edges (Harary, 1962) built as follows:

• If k is even, there is an edge [i, j] in Ek for i, j ∈ V whenever (i − j)
mod |V | ≤ k/2.
• If k is odd and |V | is even, first build graph Gk−1. Next, obtain Ek from
Ek−1 by incorporating edges [i, i+ |V |/2] for i = 0, . . . , |V |/2.
• Otherwise, build graph Gk−1 and obtain Ek from Ek−1 by adding incor-
porating edges [0, (|V | − 1)/2)], [0, (|V | + 1)/2], and [i, i + (|V | + 1)/2] for
i = 1, . . . , (|V | − 1)/2.

The set C of commodities is built as follows. Let [i, j] be any edge in Ek, create
k commodities between nodes i and j with an unit demand, arbitrarily choosing
any of them as the origin and the other as the destination. This procedure entails
a multicommodity flow model for the k-connected minimum power consumption
problem with bidirectional topology using ⌈|V |/2⌉ commodities.

For each commodity c ∈ C, let o(c) be its origin and d(c) its destination. For
any node i ∈ V and any commodity c ∈ C, let Dc(i) = −k if i = o(c), Dc(i) = +k
if i = d(c), Dc(i) = 0 otherwise. Since we are solving the biconnected minimum
power consumption problem, the value of k is fixed to 2. The discrete variable
f c
ij and the continuous variable pi represent, respectively, the flow of commodity c
through arc (i, j) and the power assignment to node i. The binary variable f c

ij is
equal to one if arc (i, j) is used by commodity c for communication from node i to
j, zero otherwise.

Let Pi = [p1i , . . . , p
φ(i)
i ] be a finite list of efficient increasing power levels that

can be assigned to node i ∈ V , where p1i is the minimum power assignment such

that transmissions from node i reach at least one node in V \ {i} and pℓ+1
i > pℓi ,

for any ℓ = 1, . . . , φ(i) − 1. By efficient, we mean that for any power assignment

pi ∈ [pℓi , p
ℓ+1
i ), ℓ = 1, . . . , φ(i)−1, the nodes reachable from i are the same reachable

with the power level pi = pℓi , while taking pi = pℓ+1
i reaches at least one additional

node. For ease and completeness of notation, we assume that p0i = 0. Furthermore,
we denote by T ℓ

i 6= ∅ the set of new nodes reachable from node i when its power

assignment increases from pℓ−1
i to pℓi , for any ℓ = 1, . . . , φ(i). We also define the
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increment list Qi = [q1i , . . . , q
φ(i)
i ] such that q1i = p1i and qℓi = pℓi − pℓ−1

i for any
ℓ = 2, . . . , φ(i); see Figure 1 for an example. The binary variable xℓ

i takes the value
one if there is a node j ∈ T ℓ

i such that (i, j) is used for communication from i to j,
zero otherwise.

Figure 1. Example: Pa = [2, 3, 5, 8], Qa = [2, 1, 2, 3] and T 1
a =

{b}, T 2
a = {c, d}, T 3

a = {e}, T 4
a = {f}.

Since the transmission graph G(p) is required to be biconnected, each node must

be able to communicate with at least two other nodes. Therefore, we denote by pℓ̄i
the minimum power level such that transmissions from node i reach at least two
nodes in V \ {i}.

The mixed integer program defined by the objective function (1) and constraints
(2)-(8) below is a valid formulation for the asymmetric input with bidirectional
topology version of the biconnected minimum power consumption problem:

(1) min
∑

i∈V

φ(i)∑

ℓ=1

qℓi · x
ℓ
i

subject to:

(2)
∑

j∈V

f c
ji −

∑

l∈V

f c
il = Dc(i), ∀c ∈ C, ∀i ∈ V

(3)
∑

j∈V

f c
ij ≤ 1, ∀c ∈ C, ∀i ∈ V : i 6= o(c), i 6= d(c)

(4) xℓ
i ≥ f c

ij + f c
ji, ∀i ∈ V, ∀c ∈ C, ∀j ∈ T ℓ

i , ℓ = 1, . . . , φ(i).

(5) xℓ+1
i ≤ xℓ

i , ∀i ∈ V, ℓ = 1, . . . , φ(i)− 1

(6) xℓ
i = 1, ∀i ∈ V, ℓ = 1, . . . , ℓ̄(i)

(7) f c
ij ∈ {0, 1}, ∀i, j ∈ V, ∀c ∈ C

(8) xℓ
i ∈ {0, 1}, ∀i ∈ V, ℓ = 1, . . . , φ(i).

Constraints (2) are the flow conservation equations. Inequalities (3) ensure node-
disjointness. Inequalities (4) state that xℓ

i must be set to one if there is a node j ∈ T ℓ
i

such that arc (i, j) or (j, i) is used for communication from node i to j (or from

node j to i) by commodity c. Constraints (5) enforce xℓ+1
i to be equal to zero if

the previous increment was not used, i.e. if xℓ
i = 0. Constraints (6) set to one the
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power increments that are necessary to reach at least the two closest nodes to each
node i. Constraints (7) and (8) express the integrality requirements.

3. GRASP with Path-relinking Heuristic

A greedy randomized adaptive search procedure (GRASP) (Feo and Resende,
1995; Resende and Ribeiro, 2003b) is a multi-start process. Each of its iterations
consists of two phases: construction and local search. The construction phase
builds a feasible solution. The local search phase investigates its neighborhood
until a local minimum is found. The best overall solution is returned. The best
overall solution is kept as the result (Resende and Ribeiro; 2010; 2003a; 2005)).
In spite of its simplicity and ease of implementation, GRASP is a very effective
metaheuristic and produces the best known solutions for many problems (Festa
and Resende (2002; 2009a;b)).

In the construction phase, a feasible solution is iteratively constructed, one ele-
ment at a time. At each construction iteration, the choice of the next element to
be added is determined by ordering all candidate elements (i.e. those that can be
added to the solution) in a candidate list L with respect to a real-valued greedy
function g(.). This function measures the benefit of selecting each element. In a
purely greedy implementation, the top candidate is always selected. The proba-
bilistic component of a GRASP is characterized by randomly choosing one of the
best candidates in the list, but not necessarily the top candidate. The list of best
candidates is called the restricted candidate list (RCL).

It is almost always beneficial to apply local search as an attempt to improve
each constructed solution. A local search algorithm works in an iterative fash-
ion by successively replacing the current solution by a better solution within its
neighborhood. It terminates when no better solution is found in the neighborhood.

In the remainder of this section, we customize a GRASP with path-relinking
heuristic for the asymmetric input with bidirectional topology version of the bicon-
nected minimum power consumption problem.

3.1. Construction Phase. Solution algorithms for the bidirectional biconnected
minimum power consumption problem have been developed by Calinescu and Wan
(2006), Lloyd et al. (2005), and Taghi et al. (2007). They gave approximation
bounds derived from algorithms based on that proposed by Frank and Tardos
(1989), which has O(n2m) time complexity (Gabow, 1993). Calinescu and Wan
(2006) also described a 4-approximation algorithm with O(n log n) time complex-
ity, which produces a biconnected graph by augmenting a spanning tree.

The first stage of our construction phase builds a bidirectional connected graph
one node at a time. Given the node set V and non-negative arc weights e(u, v) for
any u, v ∈ V , the algorithm sets pu = 0 for all u ∈ V , and initializes a working
graph H(p) = (V ′, E(p)) with V ′ = {r} and E(p) = {[u, v] : u ∈ V ′, v ∈ V ′, pu ≥
e(u, v), pv ≥ e(v, u)} = ∅, where r ∈ V is any randomly selected initial node. The
greedy function that guides the construction is based on the wireless multicast
property (Wieselthier et al., 2000): if pu is the current power assignment to node u
and there is a node v such that e(u, v) > pu, then the incremental power required
to set up communication from u to v is e(u, v) − pu. Therefore, the greedy cost
function is g(u, v) = max{0, e(u, v) − pu}+max{0, e(v, u) − pv}, for any u, v ∈ V .
If g(u, v) = 0, then the bidirectional communication between u and v is already set
up.

For every node u /∈ V ′, let g(u) = minv∈V ′{g(u, v)} be the minimum power
increment to connect it to a node in V ′. Let g = minu∈V \V ′{g(u)} and g =
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maxu∈V \V ′{g(u)} be, respectively, the minimum and maximum power increments
over all candidate nodes (i.e., those not in the current solution). The restricted
candidate list RCL is formed by all nodes u ∈ V \V ′ such that g(u) ≤ g+α(g− g),
with 0 ≤ α ≤ 1. The case α = 0 corresponds to a pure greedy algorithm, while
α = 1 is equivalent to a random construction. A node u is randomly selected
from RCL and inserted into V ′. The power assignments of the nodes u ∈ V \ V ′

and v ∈ V ′ such that g(u) = g(u, v) are increased by max{0, e(u, v) − pu} and
max{0, e(v, u) − pv}, respectively. Consequently, the bidirectional edge [u, v] is
inserted into E(p). This stage finishes when V ′ = V , ensuring that a connected
graph H(p) = (V,E(p)) is obtained.

The second construction stage produces a biconnected graph G(p) = (V,B(p)),
as illustrated in Figure 2. Basically, new edges connecting nodes that are not
articulation points of the current solution are directly connected by the algorithm,
progressively reducing the number of biconnected components until a biconnected
graph is obtained. The power assignments are initialized with the values obtained
in the first stage. Consequently, the edge set is initialized as B(p) = E(p). Tarjan’s
algorithm (Tarjan, 1972) is used to compute the biconnected components and the

(a) Connected graph H(p) obtained at the end

of the first construction stage, with three ar-
ticulation points (in shadow) and three bicon-
nected components.

(b) Directly connecting two articulation points

gives a weak contribution to biconnectivity,

since both remain articulation points.

(c) Directly connecting a node to an articula-
tion point in another biconnected component
gives a weak contribution to biconnectivity,
since the latter remains an articulation point.

(d) Directly connecting two non-articulation
points from different biconnected components
gives a strong contribution to biconnectivity:
this principle is explored in the second stage.

Figure 2. Second stage of the construction phase.
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articulation points of the current solution. A node u ∈ V is an articulation point
of G(p) if it belongs to more than one of its biconnected components. For every
node u ∈ V that is not an articulation point of the current solution, let g′(u) =
minv∈V {g(u, v) : u 6= v, node v is not an articulation point and does not belong to
the same component as u} be the minimum power increment necessary to connect
it to a node in a different biconnected component which is not an articulation point.
Let g′ = minu∈V {g

′(u) : u is not an articulation point} and g′ = maxu∈V {g
′(u) :

u is not an articulation point} be, respectively, the minimum and maximum power
increments over all nodes which are not articulation points.

The second stage restricted candidate list RCL′ is formed by all nodes u ∈ V
which are not articulation points and such that g′(u) ≤ g′ + α(g′ − g′), with 0 ≤
α ≤ 1. A node u which is not an articulation point is randomly selected from
RCL′, with g′(u) = g(u, v) for some node v which is not an articulation point.
The power assignments of nodes u and v are increased by max{0, e(u, v) − pu}
and max{0, e(v, u)− pv}, respectively. Consequently, the bidirectional edge [u, v] is
inserted into B(p) and a new iteration resumes. Since linking any two biconnected
components by an edge reduces their number at least by one, the algorithm stops
when a biconnected graph is built.

3.2. Local Search Phase. Pi = [p1i , . . . , p
φ(i)
i ] was defined in Section 2 as a list

formed by the only efficient increasing power levels that can be assigned to each

node i ∈ V . For a given power assignment p = {pi : i ∈ V }, let Si = (s1i , . . . , s
φ(i)
i )

be a vector with components sℓi ∈ {0, 1, 2}, for ℓ = 1, . . . , φ(i) and for each i ∈ V
such that (see Figure 3(a)):

• sℓi = 0 if pℓi > pi (node i operates with a power assignment smaller than
pℓi);
• sℓi = 2 if pℓi ≤ pi and there exist a node j ∈ T ℓ

i and a level k = 1, . . . , φ(j)
such that pj ≥ pkj and i ∈ T k

j (power level pℓi supports a bidirectional edge
with node j); and
• sℓi = 1 otherwise (power level pℓi is used, but only a unidirectional arc from
i to j is established).

Local search and the definition of the neighborhoods make use of two basic
operations for decreasing and increasing the power assignments. Applied to a node
i ∈ V (see Figure 3(b)), the first operation decreases its current power assignment

pi = pℓi (with ℓ ≥ 2) to pi = pℓ
′

i , where ℓ′ is the highest level which supports a

bidirectional edge: 1 ≤ ℓ′ < ℓ, sℓ
′

i = 2, and sℓ
′′

i = 1 for all ℓ′′ = ℓ′ + 1, . . . , ℓ− 1. It

removes the links (arcs and edges) between nodes i and j for all j ∈ T ℓ′+1
i ∪ . . . ∪

T ℓ−1
i ∪ T ℓ

i and the total power assignment is decreased by pℓi − pℓ
′

i .
Applied to a node i ∈ V (see Figure 3(c)), the second operation increases its

current power pi = pℓi (with ℓ ≤ φ(i) − 1) to pi = pℓ+1
i . If there exist a node

j ∈ T ℓ+1
i and a power level k = 1, . . . , φ(j) such that pj ≥ pkj and i ∈ T k

j , then

the objective function is increased by pℓ+1
i − pℓi . Otherwise, let j ∈ T ℓ+1

i such that

pj − p
k(j)
j = min

v∈T
ℓ+1

i

{pv − p
k(v)
v : i ∈ T

k(v)
v , for some k(v) = 1, . . . , φ(v)}. In

this case, the operation increases the current power pj to p
k(j)
j and the objective

function is increased by (pℓ+1
i − pℓi) + (p

k(j)
j − pj). The power increase operation

ensures the insertion of the bidirectional edge [i, j].
The local search phase explores the neighborhood of the current solution, at-

tempting to reduce the total power consumption. A move starts (see Figure 3) by
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(a) Current biconnected solution with pi + pj + pk = 18.

(b) A power decrease in node j (from 7 to 3) generates an infeasible solution.

(c) A power increase in nodes j and k (from 3 to 4) restores feasibility and
creates a better solution with pi + pj + pk = 16.

Figure 3. Example of a complete local search move.

decreasing the power assignment of as many nodes as needed to break biconnec-
tivity, followed by a sequence of as many power increases as necessary to restore
biconnectivity applied only to nodes not affected by previous power decrease opera-
tions. Decrease operations are performed in non-increasing order of power decrease
(i.e., start by largest power decrease). Increase operations are performed in non-
decreasing order of power increase (i.e., start by smallest power increase). The
first improving move is accepted and the search moves to the new neighbor. The
procedure continues until no further improving moves exist.

Given the current solution G(p) = (V,B(p)), there are O(|V |) possible power
decrease operations and O(|V |) possible power increase operations. Since the pro-
cedure to test feasibility runs in time O(|V |+ |B(p)|) with |B(p)| = O(|V |2), then
the neighborhood of a single solution can be searched in time O(|V |4).



POWER OPTIMIZATION 9

The number of power increase operations investigated may be reduced to speedup
the local search. A candidate list is built, with its nodes sorted by the correspond-
ing increase in the objective function (after the application of the decreasing oper-
ation). Whenever biconnectivity is destroyed by a power decrease operation, the
biconnected components are computed and two acceleration schemes are imple-
mented:

(1) the reduced scheme restricts the power increase operations to pairs of nodes
belonging to the same biconnected components of the pair of nodes affected
by the previous decrease; and

(2) the extended scheme considers power increase operations involving any pair
of nodes from different biconnected components.

Three local search procedures are implemented, depending on the acceleration
scheme used:

• reduced local search uses the reduced scheme;
• extended local search uses the extended scheme; and
• mixed local search first uses the reduced scheme until no further improving
moves can be found, followed by the extended scheme.

3.3. Path-Relinking. The GRASP heuristic may be enhanced by path-relinking
(Glover et al., 2000; Resende et al., 2010). Path-relinking is a very successful
intensification strategy to explore trajectories connecting elite solutions obtained
by the basic GRASP procedure. Path-relinking is usually carried out between
two solutions: one is called the initial solution, while the other is the guiding
solution. One or more paths in the solution space graph connecting these solutions
are explored in the search for better solutions.

To hybridize path-relinking with the GRASP procedure, one usually makes use
of an elite set, i.e. a diverse pool of high-quality solutions found during the search.
The elite set starts empty and is limited in size by a number Max Elite. Each
locally optimal solution produced by a GRASP iteration is relinked with one or
more solutions from the elite set. Each solution produced by path-relinking is a
candidate for inclusion in the elite set, where it can replace an elite solution of
worse value.

Given a pair of solutions (p(1), p(2)), the algorithm starts by computing the set
∆(p(1), p(2)) of moves which should be applied to one of them (the initial solution)
to reach the other (the guiding solution). One move from ∆(p(1), p(2)) still not per-
formed is randomly selected to produce the next step in the path, until the guiding
solution is attained. A move is defined as the difference between the power level
of node i in the initial solution and the power level of node i in the guiding solu-
tion, for any i ∈ V . The randomized move selection strategy is very instrumental
to obtain diversity along path-relinking, avoiding that infeasible solutions be often
obtained.

Path-relinking is applied at every GRASP iteration using a backward strat-
egy (Ribeiro et al., 2002), which usually outperforms other approaches (Resende
et al., 2010). Suppose that path-relinking is be applied to a minimization problem
between solutions p(1) and p(2) such that f(p(1)) ≤ f(p(2)), where f(·) denotes the
objective function. In backward path-relinking, the initial and guiding solutions
are set to p(1) and p(2), respectively.
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Require: Node set V , weights e(u, v) : ∀u, v ∈ V , Max Iterations and Seed.
Ensure: Best known solution p∗

1: f∗ ←∞;
2: Elite Set← ∅;
3: for iteration = 1, . . . ,Max Iterations do

4: p← Greedy Randomized Construction(Seed);
5: repeat

6: p← Reduced Local Search(p);
7: if no improvement then
8: p← Extended Local Search(p);
9: end if

10: until no improvement
11: if Elite Set 6= ∅ then
12: p← Path Relinking(p,Elite Set);
13: end if

14: Update EliteSet(p,Elite Set);
15: if f(p) < f∗ then

16: p∗ ← p;
17: f∗ ← f(p);
18: end if

19: end for

20: return p∗;
Algorithm 1: Pseudo-code of the GRASP with path-relinking heuristic.

The algorithm GRASP with path-relinking makes use of an elite set, i.e. a
diverse pool of high-quality solutions found during the search. The elite set starts
empty and is limited in size. Each locally optimal solution produced by the local
search procedure is relinked with one randomly selected solution from the elite set.
Each solution produced by path-relinking is a candidate for inclusion in the elite
set where it can replace an elite solution of worse value.

Algorithm 1 shows the pseudo-code of the GRASP with path-relinking heuris-
tic using the mixed local search procedure for the biconnected minimum power
consumption problem for asymmetric input graphs and bidirectional solutions. In
line 1 the objective function value is initialized. The pool of elite solutions is ini-
tially empty (line 2). Each iteration of the loop in lines 3 to 19 finds a new solution
to the problem, until the maximum number of iterations is reached. The procedure
in line 4 finds a greedy randomized solution which is submitted to the local search
procedure in lines 5 to 10. The mixed local search applies the reduced scheme until
no improvement is made, followed by the application of the extended scheme. If
a better solution is found with the extended scheme, then its neighborhood is ex-
plored again by reduced local search, until no improvement is made. Path-relinking
is applied in line 12 and the elite set is updated in line 14. If the solution found
by path-relinking improves upon the best previously found solution, then the best
solution and its value are updated in lines 16 and 17, respectively. The best power
assignment p∗ is returned in line 20.

4. Computational Results

Computational experiments have been carried out on two classes of randomly
generated asymmetric test problems with 10 to 800 nodes. For each problem size
and type, 15 test instances have been generated.
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• Euclidean instances: the nodes are uniformly distributed in the unit square
grid. The weight of the arc between nodes u, v ∈ V is e(u, v) = F · dεu,v,
where du,v is the Euclidean distance between nodes u and v, the loss ex-
ponent ε is set at 2, and F ∈ [0.8, 1.2] is a random perturbation generated
from a uniform distribution.
• Random instances: the weight e(u, v) of the arc between nodes u, v ∈ V is
randomly generated in (0, 1].

An Intel Core 2 Quad machine with a 2.40 GHz clock and 8 Gbytes of RAM
memory running under GNU/Linux 2.6.24 was used in all experiments. CPLEX
11.0 was used as the integer programming solver.

4.1. Optimal Solutions. For each problem type and size |V | = 10, 15, 20, 25, 30,
Table 1 shows the number of instances exactly solved to optimality by CPLEX in
less than three hours, the average running time in seconds over the instances exactly
solved, and the average relative linear relaxation gap in percent between the linear
relaxation value and the optimal value. Since CPLEX did not solve all instances
with |V | = 30 in three hours, the numbers in Table 1 are average results over
all instances solved to optimality. These results show that the minimum power
consumption problem is hard to solve, as already established by Moraes et al.
(2009).

Table 1. Exact optimal solutions.

Euclidean instances Random instances

|V | solved time (s) gap (%) solved time (s) gap (%)

10 15 0.47 7.51 15 0.48 5.98

15 15 7.55 10.34 15 6.99 10.83

20 15 66.61 8.10 15 117.36 10.87

25 15 298.53 7.71 15 872.44 13.48

30 12 1351.98 4.56 1 5559.86 13.55

The linear relaxation gaps are not small, which makes it difficult to the solver to
find exact optimal solutions within the imposed time limits. Since the computation
times increase very fast with |V |, CPLEX could not solve to optimality in three
hours of computations even moderately-sized networks with 30 nodes. Random
instances seem to be harder to solve than the Euclidean ones. The difficulties
faced by CPLEX to solve large instances support the need for efficient heuristics,
capable of finding good approximate solutions for large size problems in reasonable
computation times.

4.2. Heuristic Solutions. The heuristics were coded in C++ and compiled with
the GNU g++ compiler version 4.1, using the optimization flag -O2. We considered
four GRASP variants using different local search procedures and path-relinking
strategies, as proposed in Section 3:

(1) GRASP-R uses the reduced local search,
(2) GRASP-X uses the extended local search,
(3) GRASP-M uses the mixed local search, and
(4) GRASP-Mpr uses the mixed local search with path-relinking (see Algo-

rithm 1).
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We evaluate the effectiveness of the GRASP variants in terms of the tradeoffs
between computation time and solution quality. Parameter α was set by using
the reactive strategy described by Prais and Ribeiro (2000) with the probability
distribution being updated after every 100 iterations. The size of the elite sets
handled by path relinking is limited to five.

Table 2 illustrates the very small computation times (in seconds) observed for
the GRASP heuristics on 15 instances with 25 nodes. We also notice that all
GRASP heuristics found the optimal solutions for all such instances. They found
the optimal solutions for the Euclidean instances in less than one second, but the
random instances were harder to be solved and took much longer. Variant GRASP-
Mpr was the fastest for all instances. The fact that the GRASP heuristics found
the optimal solutions for small problems in a few seconds is a strong indication
that they are robust and can be considered as good strategies to find approximate
solutions for large problems that cannot be tackled by exact methods.

Table 2. GRASP average times in seconds for instances with 25 nodes.

Algorithm Euclidean instances Random instances

GRASP-R 0.04694 17.65470

GRASP-X 0.05840 10.45372

GRASP-M 0.14988 10.16597

GRASP-Mpr 0.02107 1.57930

For the instances with 100, 200, and 400 nodes, Table 3 displays the average
objective values over five runs for one instance of each type as the running time
limit increases from five to 625 seconds. All variants of the heuristic continue to
improve their solutions as the time limit increases. Variant GRASP-Mpr found
the best average solution values in most of the situations, as depicted in bold in
Table 3. Figure 4 illustrates the behavior of each algorithm for one run and one
instance with |V | = 200 nodes of each type as the running time increases up to
3125 seconds, showing that better locally optimal solutions are continuously found.

We also compared the four GRASP variants on two selected instances with |V | =
25 and |V | = 100 using the methodology proposed by Aiex et al. (2002; 2007). Two
hundred independent runs have been performed for each algorithm and for each
instance. Each run was terminated when a solution with value less than or equal
to a given target was found. We use the optimal solution value as the target for
|V | = 25, while for |V | = 100 the target is taken as a sub-optimal value chosen
such that at least one run of the slowest variant could terminate in 15 minutes of
computation time. The empirical probability distributions of the time observed to
find a solution value less than or equal to the target are plotted in Figures 5 and 6.
To plot the empirical distribution for each algorithm, we associate a probability
pi = (i − 1

2 )/200 with the i-th smallest running time ti and we plot the points
zi = (ti, pi), for i = 1, . . . , 200.

Figures 5(a) and 5(b) display the results for the two instances with |V | = 25,
using their optimal value as targets. These figures show that, for all algorithms and
both instances, the probability of finding a solution as good as the target in less
than ten seconds is 100%. For these relatively easy targets, algorithm GRASP-R is
more efficient than the others because the size of its neighborhood is the smallest,
leading to a faster local search procedure. However, the small neighborhood sizes
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Table 3. Average total power consumption for instances with 100,
200 and 400 nodes.

Time (s) GRASP-R GRASP-X GRASP-M GRASP-Mpr

25 1.28578 1.28905 1.28684 1.28708

|V | = 100 125 1.28552 1.28730 1.28520 1.28441

625 1.28419 1.28556 1.28399 1.28340

3125 1.28303 1.28431 1.28303 1.28303

Time (s) GRASP-R GRASP-X GRASP-M GRASP-Mpr

25 1.76214 1.76272 1.76206 1.76089

|V | = 200 125 1.76072 1.76180 1.76081 1.76014

625 1.75985 1.76047 1.75893 1.75921

E
u
cl
id
ea
n
in
st
an
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s

3125 1.75840 1.75853 1.75819 1.75766

Time (s) GRASP-R GRASP-X GRASP-M GRASP-Mpr

25 2.85388 2.85282 2.85239 2.85240

|V | = 400 125 2.85053 2.84981 2.84868 2.84987

625 2.84811 2.84715 2.84736 2.84736

3125 2.84779 2.84682 2.84667 2.84653

Time (s) GRASP-R GRASP-X GRASP-M GRASP-Mpr

25 11.12841 11.08156 11.08692 11.05270

|V | = 100 125 11.01791 10.94067 10.98430 10.91835

625 10.96228 10.89523 10.92852 10.87664

3125 10.92757 10.87511 10.86481 10.86150

Time (s) GRASP-R GRASP-X GRASP-M GRASP-Mpr

25 17.11061 17.04288 17.03756 17.00152

|V | = 200 125 16.99810 16.96905 16.98448 16.91619

625 16.88499 16.89468 16.88522 16.88639

R
an

d
om

in
st
an

ce
s

3125 16.86827 16.83667 16.83449 16.81440

Time (s) GRASP-R GRASP-X GRASP-M GRASP-Mpr

25 24.83950 24.69378 24.69833 24.67034

|V | = 400 125 24.78642 24.63951 24.65960 24.66547

625 24.70407 24.60203 24.57762 24.60415

3125 24.63254 24.54719 24.57644 24.56174

become the main drawback of GRASP-R when the instances sizes grow and the
targets become harder.

Figures 6(a) and 6(b) show that GRASP-Mpr (see Algorithm 1) becomes the
fastest variant for |V | = 100 when harder target solution values are sought. The
incomplete plots in the figures show that the target was not reached in 15 min-
utes for many runs for all but the fastest GRASP-Mpr variant. The combination
of the two acceleration schemes in this variant gives more diversity to the local
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Figure 4. Progressive improvement in solution values along the
running time for different GRASP variants on instances with 200
nodes.

search, while path-relinking is used as an intensification strategy. Diversification
and intensification improve the probability of finding good solutions in less time.
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Figure 5. Empirical distributions of the time to target-solution-
value for different GRASP variants on instances with 25 nodes.

In the next experiment, we compare the MST-aug heuristic of Calinescu and
Wan (2006) with the purely greedy implementation of the constructive algorithm
presented in Section 3.1 and with the best heuristic GRASP-Mpr using a fixed
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Figure 6. Empirical distributions of the time to target-solution-
value for different GRASP variants on instances with 100 nodes.

amount of time (ten minutes). Both algorithms MST-aug and the greedy heuristic
found all solutions in less then one second of computation, even for instances with
|V | = 800 nodes. Table 4 summarizes the average solution values over 15 instances
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Table 4. Comparative average structural results for MST-aug,
greedy and GRASP-Mpr on large problems: power consumption
and node degrees.

Instance Total power consumption Average degree

|V | MST- Greedy Impr. GRASP- Impr. MST- Greedy Impr. GRASP- Impr.

-aug (%) -Mpr (%) -aug (%) -Mpr (%)

25 2.02696 1.60533 20.80 1.37880 31.98 4.14 2.97 28.22 2.64 36.21

50 2.04944 1.47477 28.04 1.27934 37.58 4.46 2.97 33.57 2.63 41.04

100 2.15343 1.46062 32.17 1.32422 38.51 4.78 3.01 37.07 2.60 45.60

200 2.84844 1.84594 35.19 1.76441 38.06 5.57 2.92 47.50 2.55 54.10

400 4.72278 2.89544 38.69 2.82666 40.15 7.62 2.96 61.14 2.55 66.49

E
u
cl
id
ea

n
in
st
a
n
ce
s

800 8.44331 5.07814 39.86 4.99485 40.84 11.33 3.00 73,49 2.59 77.15

25 12.84646 6.15077 52.12 5.46654 57.45 8.05 3.08 61.76 2.50 68.92

50 24.20324 9.50228 60.74 8.35554 65.48 13.29 3.10 76.70 2.46 81.51

100 44.97218 13.47090 70.05 11.87711 73.59 21.67 3.15 85.48 2.64 87.80

200 85.08285 19.20624 77.43 17.16590 79.82 37.49 3.18 91.53 2.64 92.96

400 158.26410 27.70172 82.50 25.05689 84.17 63.69 3.18 95.01 2.67 95.81

R
a
n
d
o
m

in
st
a
n
ce
s

800 293.63736 40.89464 86.07 37.34825 87.28 107.70 3.20 97.03 2.71 97.48

of each size. For each algorithm, we give the average node degree, the average total
power consumption, and the improvements in percent obtained by the greedy and
GRASP-Mpr heuristics with respect to the solution values provided by the existing
algorithm MST-aug.

Heuristic MST-aug does not take into account the structure of biconnected com-
ponents. The greedy heuristic systematically finds better solutions in all aspects,
with its solutions being characterized by fewer bidirectional edges and smaller power
assignments. In particular, it outperformed MST-aug for the Euclidean instances
with reductions in power consumption ranging from 20.80% to 39.86%. For these
instances, the network density grows with the number of nodes. As the density
increases, the average distance between the nodes decreases and, consequently, so
do the power requirements. Hence, the reduction in the average number of edges
(or, equivalently, the reduction in the average node degree) (ranging from 28.22% to
73.49%) does not affect the power consumption by the same rate. For the random
instances, however, there is no density variation and the reduction in the number
of edges (ranging from 61.76% to 97.03%) directly impacts the reduction in power
consumption (reductions ranging from 52.12% to 86.07%).

Table 4 also illustrates that GRASP-Mpr always improves the greedy solutions,
being more effective with respect to the latter for the smaller instances. This is
due to the fact that since the computation times given to GRASP-Mpr are fixed
(ten minutes in this experiment), fewer GRASP iterations can be performed as the
instance size grows. Better solutions can be obtained by GRASP-Mpr even for
larger instances if more computation time is given, as already shown in Table 3.

This table also shows that the average node degree in the solutions produced
by GRASP-Mpr range from 2.46 to 2.71, being much smaller than in the solutions
found by MST-aug. Since the degree of any node must be at least 2 in a bicon-
nected graph, these results indicate that the GRASP-Mpr solution values are very
close to the best possible lower bounds and, consequently, to the exact optimal
solutions. Furthermore, the average node degree range also shows that the greedy
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Table 5. Comparative average structural results for MST-aug,
greedy and GRASP-Mpr on large problems: interference measures.

Instance Edge interference Node interference

|V | MST- Greedy Impr. GRASP- Impr. MST- Greedy Impr. GRASP- Impr.

-aug (%) -Mpr (%) -aug (%) -Mpr (%)

25 17.26 14.73 14.66 12.06 30.13 7,80 6,53 16,24 5,67 27,35

50 24.73 18.46 25.35 14.13 42.86 9,47 7,53 20,42 6,60 30,28

100 29.20 17.66 39.52 13.33 54.35 12,00 7,60 36,67 6,60 45,00

200 40.73 16.46 59,59 15.33 62.36 15,27 8,40 44,98 8,13 46,72

400 69.06 17.60 74.51 17.26 75.01 21,67 10,20 52,92 9,80 54,77

E
u
cl
id
ea

n
in
st
a
n
ce
s

800 136.13 23.46 82.77 23.06 83.06 33,33 12,67 62,00 11,80 64,60

25 37.33 21.53 42.33 19.00 49.10 17,67 11,20 36,60 10,07 43,02

50 81.33 33.73 58.53 33.20 59.18 31,33 15,60 50,21 14,53 53,62

100 169.73 55.06 67.56 52.73 68.93 56,33 21,87 61,18 20,20 64,14

200 359.53 79.33 77.94 86.46 75,95 102,73 31,07 69,76 28,13 72,62

400 729.13 127.20 82.55 125.33 82.81 185,07 42,00 77,31 37,93 79,50

E
u
cl
id
ea

n
in
st
a
n
ce
s

800 1484.93 194.20 86.92 196.86 86.74 330,80 58,00 82,47 53,27 83,90

and GRASP-Mpr algorithms obtain good solutions independently of the instance
size, since, for all instance sizes, the average node degree values are very close to
the values of the known optimal solutions (given by GRASP-Mpr for |V | = 25).

Given the transmission graph G(p) = (V,B(p)), we denote by D(u) = {w ∈
V : p(u) ≥ e(u,w)} the radio coverage area of node u ∈ V . According to
Burkhart et al. (2004) and von Rickenbach et al. (2009), the interference EI(G(p))
is defined as the maximum coverage of a bidirectional edge in the transmission
graph, i.e. EI(G(p)) = max[u,v]∈B(p){Cov(u, v)}, where Cov(u, v) = |{w ∈ V :
w is covered by D(u)} ∪ {w ∈ V : w is covered by D(v)}|.

The interference of a node u ∈ V is defined by von Rickenbach et al. (2005)
as the number of nodes that potentially affect message reception at node u, i.e.,
NI(u) = |{w ∈ V \ {u} : u ∈ D(w)}|, where D(w) once again denotes the radio
coverage area of node w ∈ V . In other words, the interference of a node u ∈ V
represents the number of nodes covering u with their radio coverage areas, induced
by the power assignments. The graph interference is defined as the maximum node
interference over all nodes, i.e., NI(G(p)) = maxu∈V {NI(u)}.

Table 5 shows interference results based on the above static models (Burkhart
et al., 2004; von Rickenbach et al., 2009; 2005), defined independently of the network
traffic. This table gives the average solution values over 15 instances of each size
for the MST-aug heuristic of Calinescu and Wan (2006), for the purely greedy
implementation of the constructive algorithm presented in Section 3.1, and for
the best GRASP-Mpr heuristic using a fixed amount of time (ten minutes). For
all algorithms, we give the edge interference EI(G(p)) and the node interference
NI(G(p)) values. The reduction in percent obtained by the greedy algorithm and
GRASP-Mpr with respect to algorithm MST-aug in terms of both interference
measures are also reported. The results show that both the greedy algorithm and
the GRASP-Mpr heuristic give smaller interference values than MST-aug while
attempting to minimize the total power consumption.

We also observed that reductions in the interference measures are proportional to
the reduction in the number of edges (see Table 4). From the definitions of the node
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and edge interference measures, we notice that a high number of arcs or edges is the
major cause of interference. Therefore, algorithms leading to small number of arcs
and edges are certainly appropriate choices for obtaining low interference values.
We also noticed that unidirectional arcs increase interference, without contributing
to connectedness. Therefore, solutions characterized by fewer unidirectional arcs
are very useful to mitigate interference.

In the final experiment, we compare the average relative gap between the best
feasible solution and the best lower bound. The values of the best feasible solutions
are the optimal values for |V | = 25. For |V | ≥ 50, the best feasible solutions are
those obtained by GRASP-Mpr in ten minutes of computation time. The best
lower bound is given by CPLEX applied to the linear relaxation of the formulation
presented in Section 2, limited to three hours of computation.

Table 6 shows the average relative gaps for |V | ∈ {25, 50, 100, 200}. We observe
that the relative gaps are very small for the Euclidean instances. Therefore, we
may conclude that the solutions found by the GRASP-Mpr heuristic are very close
to the optimal solutions for the Euclidean instances, which are closer to real-life
applications. The experimental results also show that the GRASP-Mpr heuristic is
very effective: it was able to approximately solve problems with up to 800 nodes,
while an exact commercial solver such as CPLEX could not even find lower bounds
to instances with more than 200 nodes.

Table 6. Average relative gaps between the value of the best fea-
sible integer solution and the best lower bound.

Instances |V | = 25 |V | = 50 |V | = 100 |V | = 200

Euclidean 4.41 5.26 4.22 3.25

Random 13.65 22.30 27.64 35.83

5. Concluding Remarks

We considered the problem of assigning transmission powers to the nodes of an
ad hoc wireless network, so as that the total power consumption is minimized and
the resulting network is biconnected, i.e., there are at least two node-disjoint paths
between any pair of nodes. Biconnected communication graphs are important to
ensure fault tolerance.

We recalled an integer programming formulation of the bidirectional topology
version of the biconnected minimum power consumption problem. We showed
that only very moderately-sized instances of this problem can be exactly solved
to optimality by a state-of-the-art solver.

A very quick greedy algorithm and a GRASP with path-relinking heuristic were
proposed to find good approximate solutions to real-life sized problems. Different
implementation strategies have been considered and compared in the quest for algo-
rithm efficiency and effectiveness. Computational experiments have been performed
and reported for problems with up to 800 nodes.

A state-of-the-art integer programming solver such as CPLEX 11.0 provided op-
timal values for small problems and linear relaxation lower bounds for problems
with up to 200 nodes. The GRASP with path-relinking heuristic was able to sys-
tematically find solutions that are very close to the optimal solutions and to the
best lower bounds.
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The greedy algorithm was able to find good solutions extremely fast. Both the
greedy algorithm and the GRASP with path-relinking heuristic outperformed by
far the best known heuristic in the literature for very large problem sizes with up
to 800 nodes.
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