
Experimental Analysis of Algorithms for

Updating Minimum Spanning Trees on Graphs

Subject to Changes on Edge Weights

Celso C. Ribeiro⋆ and Rodrigo F. Toso⋆⋆

Institute of Computing, Universidade Federal Fluminense
Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil

Emails: celso@inf.puc-rio.br, rtoso@rutcor.rutgers.edu

Abstract We consider the problem of maintaining a minimum spanning
tree of a dynamically changing graph, subject to changes on edge weights.
We propose an on-line fully-dynamic algorithm that runs in time O(|E|)
when the easy-to-implement DRD-trees data structure for dynamic trees
is used. Numerical experiments illustrate the efficiency of the approach.

Keywords: Minimum spanning trees, dynamic graph algorithms, exper-
imental analysis, algorithms, data structures, DRD-trees.

1 Introduction

The dynamic minimum spanning tree problem is that of maintaining a mini-
mum spanning tree (MST) of a dynamically changing graph G = (V,E), where
changes can be vertex insertions and deletions, edge insertions and deletions,
or edge weight modifications. The problem is said to be fully dynamic if inser-
tion and deletion operations are allowed (or if the edge weights can increase
and decrease). The problem is said to be partially dynamic if only one kind of
operation is allowed (either deletions or insertions, either weight increases or
weight decreases). The problem is said to be on-line if the dynamic changes
must be processed in real time (i.e., there is no preprocessing and the updates
are performed one at a time) [1].

There are several variants of the dynamic minimum spanning tree problem.
Spira and Pan [16] proposed algorithms for vertex insertion and vertex deletion
variants. Zaroliagis [18] surveyed experimental studies on dynamic graph prob-
lems subject to edge insertions and deletions. See also [7,8,9,10,11] for algorithms
and [1,5] for experimental studies involving edge insertions and edge deletions.

In this work, we make a step toward the experimental evaluation of algo-
rithms to update a minimum spanning tree after edge weight changes. Such
algorithms are needful in the implementation of local search heuristics for solv-
ing broadcast and design problems in communication networks, similarly to the

⋆ Supported by CNPq and FAPERJ research grants.
⋆⋆ Supported by a CNPq scholarship.

algorithms for dynamic shortest path problems studied by Buriol et al. [2,3,4] in
the context of the weight setting problem in OSPF/IS-IS routing.

In the next section, we describe and evaluate a new and easy-to-implement
supporting data structure for dynamic trees representation, called DRD-trees. A
new fully-dynamic algorithm for updating a minimum spanning tree after edge
weight changes is proposed in Section 3. Complexity issues are also considered
in this section. An experimental evaluation of several algorithms is carried out
in Section 4 on a comprehensive set of test instances, showing that our approach
outperforms the fastest algorithms for real-size instances. Concluding remarks
are drawn in the last section.

2 Data structures: doubly-linked reversed dynamic trees

We are given a dynamic graph G = (V,E) with vertex set V , edge set E, and
non-negative weights w(i, j) associated with each edge (i, j) ∈ E. Let T = (V,E′)
be a dynamic minimum weight spanning tree of G, i.e., a minimum spanning
tree subject to structural changes caused by modifications in the edge weights.

The dynamic trees problem [15] consists in maintaining a forest of disjoint
trees that change over time through edge insertions and deletions. For example,
one may want to link two trees by adding an edge or to cut a tree by removing
an edge. We denote by Link(i, j, w) (resp. Cut(i, j)) the operation of inserting
(resp. deleting) edge (i, j) into (resp. from) tree T = (V,E′). A simple way to
represent a forest of disjoint trees is through a set of rooted, directed trees. To
manipulate these trees, the following operations are also made available:

– Root(i): returns the root of the tree containing vertex i;
– Evert(i): makes vertex i the root of its tree; and
– Find Max(i): returns the max-weight edge in the path from i to Root(i).

Operations Link(i, j, w) and Cut(i, j) can be implemented in constant time
using rooted reversed dynamic trees (RD-trees): each vertex i ∈ V stores its
parent and the weight of the edge between them. Operations Evert(i), Root(i)
and Find Max(i) run in linear time, since they depend on the length of the path
from vertex i to Root(i). However, a link operation may require the execution
of an evert operation in the case of undirected trees, therefore resulting in linear
running time. Sleator and Tarjan [15] (resp. Henzinger and King [10] and Wer-
neck and Tarjan [17]) proposed the ST-trees (resp. ET-trees and self-adjusting
top trees), designed to support all the above operations in logarithmic time (in
fact, ET-trees do not support Find Max(i)).

We propose an extension of the RD-trees by building doubly-linked trees
(DRD-trees), instead of simply reversed trees. This can be accomplished by an
additional list associated with each vertex v ∈ V , storing each of its children.

The motivation for this extension comes from the need to detect if an arbi-
trary edge (x, y) ∈ E reconnects the two disjoint subtrees Ti and Tj resulting
from the removal of an edge (i, j) ∈ E′, where Ti (resp. Tj) is the resulting sub-
tree containing vertex i (resp. j). This connectivity query can be answered by

checking if x and y belong to different subtrees (i.e., if the roots of their subtrees
are different). However, storing all vertices adjacent to j and assuming (without
loss of generality) that vertex i is the parent of j, one may apply a depth-first
search starting from j and label all reachable vertices (i.e., those in Tj) with one,
zero otherwise. These labels can then be used to answer the above connectivity
query in amortized constant time when the number of queries is O(n), in con-
trast with the root-based data structures, which depend on the implementation
of Root(i) and take at least logarithmic time.

3 Fully-dynamic algorithm

We present a new fully dynamic algorithm to update the minimum spanning
tree of a graph subject to edge weight changes. It makes use of DRD-trees,
which combine easy implementation with efficiency. Two cases are considered
separately: edge weight decreases are considered in Section 3.1, while edge weight
increases are handled in Section 3.2.

Externally to both algorithms, we maintain an edge list A sorted from left to
right by the non-decreasing order of edge weights. Whenever an edge weight is
increased or decreased, this list is updated to reflect the new ordering. Let A(k)
be the k-th edge in the ordered list A, with k = 1, . . . , |E|, and A(i, j) be the
position of edge (i, j) ∈ E in the ordered list A. List A is stored as a skip list [14]
for improved efficiency. The general framework used to update the minimum
spanning tree, maintaining list A correctly ordered, is shown in Algorithm 1.

Algorithm 1 Updates a minimum spanning tree subject to edge weight changes

Input: Graph G = (V, E), weights w.
1: Build a list A with all (i, j) ∈ E;
2: Sort list A by non-decreasing order of weights;
3: Use list A to compute the MST T = (V, E′);
4: while there is an update to be processed do

5: Let (i, j) ∈ E be the edge whose weight will change to wnew;
6: s← A(i, j);
7: Save the old edge weight: wold ← w(i, j);
8: Set the new edge weight: w(i, j)← wnew;
9: Reorder list A by non-decreasing edge weights;

10: f ← A(i, j);
11: if wnew < wold and (i, j) /∈ E′ then

12: Apply Algorithm 2 with parameters T , (i, j), and w;
13: else if wnew > wold and (i, j) ∈ E′ then

14: Apply Algorithm 3 with parameters T , (i, j), s, f , and w;
15: end if

16: end while

The ordered list A is initialized in lines 1 and 2. A minimal spanning tree
T = (V,E′) is computed in line 3 using Kruskal’s algorithm [12]. The loop in

lines 4 to 16 is performed until all updates have been processed. The edge to be
updated and its new weight are read in line 5. The position s of edge (i, j) in the
current list A is saved in line 6, before the list is reordered. The old weight wold

of edge (i, j) is saved in line 7, while the new weight wnew is set in line 8. The
list A is reordered in line 9 after the change of the weight w(i, j) of edge (i, j).
To ensure the correctness of the decremental updates, in case the new weight
wnew of (i, j) is equal to the weight of other edges, then edge (i, j) should be
placed in the last position among all edges with the same weight. The position
f of edge (i, j) in the reordered list A is saved in line 10. If the comparison in
line 11 (resp. in line 13) determines that the new weight of edge (i, j) is smaller
(resp. larger) than the old one and (i, j) is a non-tree (resp. tree) edge, then
Algorithm 2 (resp. Algorithm 3) is applied in line 12 (resp. line 14) to update
the current minimum spanning tree, since decreasing the weight of a tree edge
(resp. increasing the weight of a non-tree edge) does not change the latter. We
notice that updates in the weight function are reflected both in list A and in the
data structure used to store the minimum spanning tree T .

3.1 Weight decreases

Whenever the weight of a non-tree edge (i, j) is decreased, one has to find the
maximum weight edge (x, y) along the path from i to j in T and to remove it if
w(x, y) > w(i, j) [16]. This can be accomplished by using any dynamic tree data
structure to store the MST.

The procedure to update the minimum spanning tree is described in Algo-
rithm 2. Vertex i is made the new root of the tree in lines 1 to 3. The maximum
weight edge (x, y) in the path from j to i is computed in line 4. If the weight
of edge (x, y) is larger than that of edge (i, j) (comparison in line 5), then the
former is removed from the tree by the Cut(x, y) operation in line 6 and the new
edge (i, j) is inserted by the Link(i, j, w(i, j)) operation in line 7. The updated
MST is returned in line 9.

The efficiency of the above computations depend on the underlying structure
used to maintain the MST and to implement the path operations. If RD-trees
or DRD-trees are used, then Algorithm 2 runs in time O(|V |). It runs in time
O(log |V |) if a more complex implementation (such as ST-trees) is used.

3.2 Weight increases

We now face the hardest part of the problem. If the weight of a tree edge (i, j)
is increased, the latter may have to be removed from the current minimum
spanning tree. In this case, one has to find the minimum weight edge connecting
the two resulting disjoint subtrees (namely, Ti = (Vi, E

′

i) and Tj = (Vj , E
′

j))

to be inserted in the new minimum spanning tree. There are up to O(n2) such
candidate edges [16].

The procedure to update the minimum spanning tree is described in Algo-
rithm 3. Vertex j is assumed to be a child of vertex i and a depth-first search

Algorithm 2 Non-tree edge weight decreases

Input: MST T = (V, E′), non-tree edge (i, j) subject to a weight decrease, weights w.
1: if i 6= Root(i) then

2: Evert(i);
3: end if

4: (x, y)← Find Max(j);
5: if w(x, y) > w(i, j) then

6: Cut(x, y);
7: Link(i, j, w(i, j));
8: end if

9: return updated minimum spanning tree T ;

is applied to the current MST from vertex j in line 1. Vertices in Tj are those
reachable from j by a depth-first search in T . The position k of the first can-
didate edge to replace (i, j) is set in line 2. The loop in lines 3 to 11 scans all
edges between positions s and f of list A. The next edge (x, y) to be investi-
gated is set in line 4 as that in position k of list A. If vertices x and y are in
different subtrees (comparison in line 5), then edge (i, j) is eliminated from the
current tree in line 6 and the two subtrees Ti and Tj are linked by edge (x, y)
in line 7. The updated minimum spanning tree is returned in line 8. Otherwise,
the current position in list A is incremented by one in line 10 and a new edge
is examined. If no improving edge can be found to replace edge (i, j), then the
unchanged current minimum spanning tree is returned in line 12.

Algorithm 3 Tree edge weight increases

Input: MST T = (V, E′), tree edge (i, j) subject to a weight increase, positions s and
f , weights w.

1: Assume j as child of i and perform DFS(j);
2: k ← s;
3: while k < f do

4: (x, y)← A(k);
5: if Label(x) 6= Label(y) then

6: Cut(i, j);
7: Link(x, y, w(x, y));
8: return updated minimum spanning tree T ;
9: end if

10: k ← k + 1;
11: end while

12: return unchanged minimum spanning tree T ;

Algorithm 3 can be adapted to make use of data structures based on the tree
roots, such as ST-trees or RD-trees.

The edge list A, which is externally reordered, can be updated in O(log |E|)
expected time if a skip list is used. The worst case occurs when edge (i, j) is

shifted from the first to the last position of A. In this case, |E| edges may have
to be considered for replacement. If DRD-trees (resp. ST-trees or RD-trees) are
used, each Label(v) (resp. Root(v)) operation takes time O(1) (resp. O(log |V |)
or O(|V |)). Therefore, the overall complexity of Algorithm 3 is O(|E|) if DRD-
trees are used, O(|E| log |V |) if ST-trees are used, and O(|E||V |) if RD-trees are
used. The following theorem establishes the correctness of the approach:

Theorem 1. Algorithms 1, 2, and 3 correctly update a minimum spanning tree.

Proof. The structure of list A is such that if an edge (i, j) belongs to the current
minimum spanning tree, then it is the first from left to right in the ordered
list A connecting Ti and Tj . This is initially ensured by Kruskal’s algorithm. It
also holds for Algorithm 3, since by construction the latter selects the left-most
minimum weight edge connecting Ti and Tj between positions s and f of list A.

We now show that letting the weight decreased edge be the right-most edge
between those with the same weight preserves the structure of list A, ensuring
the correctness of Algorithm 2. Assume edge (x, y) is the candidate edge to be
replaced by (i, j) in the updated MST. If w(x, y) > w(i, j), then edge (i, j)
replaces (x, y) in the tree and becomes the left-most edge in list A connecting
Ti and Tj , since otherwise (x, y) would not be in the current MST. In case
w(x, y) = w(i, j), then edge (i, j) does not replace (x, y). Due to the condition
imposed by each reordering procedure, edge (i, j) is to the right of (x, y). Thus,
(x, y) is the left-most in list A connecting Ti and Tj , and, therefore, the structure
of list A associated with the updated minimum spanning tree is preserved. ⊓⊔

4 Computational experiments

The computational experiments are presented in three sections. We first present
experiments concerning the ability of DRD-trees to answer connectivity queries
when compared to existing data structures. The next sections contain the exper-
imental analysis of algorithms for updating minimum spanning trees of dynamic
graphs, with numerical results for synthetic and realistic large graph instances.

The experiments were performed on a Pentium 4 processor with a 2.4 GHz
clock and 768 Mbytes of RAM under GNU/Linux 2.6.16. The algorithms were
coded in C++ and compiled with the GNU g++ compiler version 4.1, using
the optimization flag -O2. Although some codes were obtained from different
authors, all algorithms and data structures were revised and optimized for this
study. All processing times are average results over 100 instances of each size
(ten different trees or graphs subject to ten different update sequences). Both
random and structured sequences of updates are considered.

4.1 Dynamic trees

We evaluate the behavior of DRD-trees regarding its efficiency to answer connec-
tivity queries. Figure 1 depicts how fast the data structures can answer 100,000
connectivity queries in random trees containing from 2,000 to 400,000 vertices.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

 0 50000 100000 150000 200000 250000 300000 350000 400000

C
PU

 ti
m

es
 (

se
co

nd
s)

Number of vertices

RD-trees
DRD-trees (root-based)
DRD-trees (DFS label)

ST-trees
ET-trees

Figure 1. CPU times for processing 100,000 connectivity queries in random trees.

DRD-trees using the depth-first search labeling technique run in amortized
constant time if the labels are used to process the connectivity queries, while RD-
trees and DRD-trees run in linear time and ET-trees and ST-trees in logarithmic
time (all of them using the root-based approach). DRD-trees are faster than the
other data structures considered in this study.

4.2 Algorithms

This section presents a computational study addressing efficient algorithms for
updating minimum spanning trees on dynamic graphs.

Cattaneo et al. [5] have shown that, except for very particular instances,
a simple O(m log n)-time algorithm has the best performance in practice and
runs substantially faster than the poly-logarithmic algorithm HDT of Holm et
al. [11]: the latter was faster than the first for only one out of five different
classes of instances, namely those in k-clique graphs, in which small cliques are
connected by some inter-clique edges and all updates involve only the inter-
clique edges (see Section 4.2(a) below). Despite its theoretical running time of
O(log4 n) amortized, the complex chain of data structures supporting algorithm
HDT does not seem to lead to fast implementations and may require too much
memory. However, since Cattaneo et al. [5] have not applied it to grids and
road networks, the performance of HDT on the instances with large memory
requirements considered in Section 4.2(b) remains an open question.

We present the implemented algorithms together with their complexities in
Table 1. The names of algorithms from [5] start by C, while those of variants of

our approach start by RT. We indicate inside brackets the data structures used to
maintain the minimum spanning tree. The following algorithms were compared:
C(ET+ST), C(DRD+ST), RT(DRD), RT(ET+ST), and RT(DRD+ST). Results for algo-
rithms RT(RD) and RT(ST) are not reported, since their computation times are
too large when compared to the others. Algorithms RT had the ordered list A im-
plemented as a skip list with probability p = 0.25. The algorithms were applied
to the same benchmark instances considered by other authors [5]. Processing
times are average results over 100 instances of each size.

Table 1. Algorithms and running times per update.

Update type

Algorithm weight decreases weight increases

RT(DRD) O(n) O(m) amortized
RT(ET+ST) O(log n) O(m log n)
C(ET+ST) O(log n) O(m log n)
RT(DRD+ST) O(log n) O(m) amortized
C(DRD+ST) O(log n) O(m) amortized

(a) Synthetic inputs: Results for random sequences of 20,000 updates applied
to randomly generated graphs with 4,000 vertices and 8,000 to 100,000 edges are
displayed in Figure 2. The results show that algorithm RT(DRD+ST) is slightly
faster than the other approaches for random update sequences. Also, DRD-
trees can be used to significantly improve the computation times of algorithm
C(ET+ST).

As we are randomly selecting edges to update, the probability of increasing
the weight of a tree edge is (|V | − 1)/|E|, decreasing with the increase of |E|
when |V | is unchanged. Therefore, there are relatively fewer tree edge weights
to be updated when the total number of edges increases and, consequently, the
computation times become smaller. For all other cases (weight decreases and
non-tree edge weight increases), we described algorithms that work in logarithmic
time. The next experiments are more focused on the increase of tree edge weights,
which can be more interesting than just randomly selecting any edge to update.

Results for structured sequences of 20,000 updates applied to randomly gener-
ated graphs with 4,000 vertices and 8,000 to 100,000 edges are shown in Figure 3.
Here, 90% of the updates are tree edge weight increases and 10% are non-tree
edge weight decreases. As predicted, the behavior in this case is the opposite
to that in the previous situation. These are hard instances, since increasing the
weight of tree edges and decreasing the weight of non-tree edges are the situa-
tions where Algorithms 2 and 3 are really called and used. In this context, the
overall running time is dominated by the algorithms handling weight updates.
The best options are variants RT(DRD) and RT(DRD+ST), since DRD-trees per-
form better when a large number of connectivity queries has to be processed.

1

2

4

8

16

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

C
PU

 ti
m

es
 (

se
co

nd
s)

Number of edges

RT(DRD)
RT(ET+ST)

RT(DRD+ST)
C(ET+ST)

C(DRD+ST)

Figure 2. CPU times for 20,000 random updates on randomly generated graphs.

Moreover, algorithms C(DRD+ST) and C(ET+ST) did not perform well in this case,
showing their inability to deal efficiently with hard update sequences.

4

8

16

32

64

128

256

512

1024

2048

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

C
PU

 ti
m

es
 (

se
co

nd
s)

Number of edges

RT(DRD)
RT(ET+ST)

RT(DRD+ST)
C(ET+ST)

C(DRD+ST)

Figure 3. CPU times for 20,000 structured updates on randomly generated graphs.

Figure 4 presents results for graphs composed by isolated cliques connected
by a few inter-clique edges, named k-clique graphs [5]. The updates are only
incremental, applied exclusively to inter-clique edges. These are very hard in-
stances, since the set of candidates to replace the edge whose weight is increased
is very small. The number of edges in this experiment ranges from 4,000 to
499,008, while the number of vertices is fixed at 2,000. The behavior of the algo-
rithms is similar to that in Figure 3. The combination of edge weight increases
with highly structured graphs resulted in the largest computation times among
all instances considered in this section. Variants RT(DRD) and RT(DRD+ST) are
the best options in most cases. However, the latter is more robust, since Algo-
rithm 2 has logarithmic complexity due to the use of ST-trees (as one may want
to have good performance for both incremental and decremental updates).

1

4

16

64

256

1024

4096

 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

C
PU

 ti
m

es
 (

se
co

nd
s)

Number of edges

RT(DRD)
RT(ET+ST)

RT(DRD+ST)
C(ET+ST)

C(DRD+ST)

Figure 4. CPU times for 20,000 incremental updates on k-clique instances.

We conclude this section by reporting the number of connectivity queries
performed by each approach – C and RT – on the k-clique instances correspond-
ing to Figure 4. These numbers give an insight regarding the computation times
obtained in all experiments above. Figure 5 shows that algorithms from [5] per-
form many more connectivity queries (per instance) than the proposed approach,
what lead to the numerical advantage of algorithms RT along the experiments.

(b) Realistic large inputs: We now provide results for more realistic graphs
from the DIMACS Implementation Challenge [6]. Table 2 displays results for four
different types of graphs. Random4-n correspond to randomly generated graphs

1e+06

4e+06

2e+07

7e+07

3e+08

1e+09

4e+09

 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

C
on

ne
ct

iv
ity

 q
ue

ri
es

 (
un

its
)

Number of edges

RT C

Figure 5. Number of connectivity queries performed during the execution of 20,000
incremental updates on k-clique instances.

with |E| = 4|V |. Square-n graphs are generated in a two-dimensional square
grid, with a small number of connections, while Long-n graphs are built on rect-
angular grids with long paths. Last, we present results for real-world instances
named USA-road-d, derived from USA road networks. All update sequences are
composed by 90% of weight increases and 10% of weight decreases.

The results in Table 2 show that variant RT(DRD+ST) performed better, pro-
viding fast algorithms for weight increases (using DRD-trees) and weight de-
creases (using ST-trees). This implementation was up to 110 times faster than
C(ET+ST), as observed for instance Random4-n.18.0. For road networks, variant
RT(DRD+ST) also presented the best performance, achieving speedups of up to
51 times when compared to C(ET+ST), as observed for instance USA-road-d.NY.

(c) Dynamic vs. non-dynamic algorithms: In this last section, we present
results comparing the dynamic algorithms with the static ones. We considered
the same instances used in the experiments reported in Table 2. In that situa-
tion, algorithm RT(DRD+ST) processed 20,000 updates for each instance, using
the amount of time showed in Table 2. We let Kruskal’s and Prim’s [13] algo-
rithms run for the same time RT(DRD+ST) have run. On average, Prim’s and
Kruskal’s algorithms were able to compute from scratch only 379 and 851 mini-
mum spanning trees, respectively.

The dynamic approach was, in average, 52 (resp. 23) times faster than Prim’s
(resp. Kruskal’s) algorithm. Thus, even though the proposed approach has the

Table 2. CPU times (seconds) for 20,000 structured updates on large instances.

Instance |V | |E| RT(DRD) RT(ET+ST) C(ET+ST) RT(DRD+ST) C(DRD+ST)

Random4-n.15.0 32,767 131,048 5.80 95.00 480.70 4.96 19.30
Random4-n.16.0 65,535 262,129 16.26 241.20 1,200.95 17.32 47.11
Random4-n.17.0 131,071 524,275 25.08 365.73 2,858.58 28.47 86.50
Random4-n.18.0 262,143 1,048,558 56.98 563.46 6,669.22 60.43 175.87
Random4-n.19.0 524,287 2,097,131 171.51 813.40 15,455.19 170.59 434.93
Square-n.15.0 32,760 65,156 4.87 32.60 141.13 4.19 10.33
Square-n.16.0 65,535 130,556 12.66 63.47 315.50 14.40 24.36
Square-n.17.0 131,043 261,360 28.23 101.89 847.71 30.42 51.03
Square-n.18.0 262,143 523,260 67.47 161.26 1,850.70 73.53 112.28
Square-n.19.0 524,175 1,046,900 132.73 324.63 4,321.13 140.09 229.80
Long-n.15.0 32,767 63,468 5.05 28.63 127.24 4.72 10.01
Long-n.16.0 65,535 126,956 15.03 45.25 313.92 16.17 26.86
Long-n.17.0 131,071 253,932 23.77 98.42 745.92 26.29 46.65
Long-n.18.0 262,143 507,884 59.35 184.20 1,683.73 62.95 103.20
Long-n.19.0 524,287 1,015,788 168.55 314.63 3,874.98 168.93 263.42

USA-road-d.NY 264,346 365,048 141.08 420.57 6,672.47 129.80 374.20
USA-road-d.BAY 321,270 397,414 188.44 674.85 6,832.83 174.84 416.60
USA-road-d.COL 435,666 521,199 233.69 889.54 7,351.65 216.42 560.23
USA-road-d.NW 1,207,945 1,410,384 589.47 3,196.67 23,843.47 566.80 1,518.80
USA-road-d.NE 1,524,453 1,934,008 752.20 4,112.73 47,990.40 737.60 2,152.56

same theoretical complexity of other classical algorithms, these results emphasize
the performance and the usefulness of dynamic algorithms.

5 Concluding remarks

We proposed a new framework for the implementation of dynamic algorithms for
updating the minimum spanning tree of a graph subject to edge weight changes.
An extensive empirical analysis of different algorithms and variants has shown
that the techniques presented in this paper are very suitable to hard update
sequences and outperform the fastest algorithm in the literature.

We also proposed an easy-to-implement data structure for the linking and
cutting trees problem. While DRD-trees provide linear time implementations
for almost all operations, they are considerably faster when used to handle a
large amount of connectivity queries. The experimental analysis showed that
this structure not only reduced the computation times observed for the algo-
rithm of Cattaneo et al. [5], but also contributed to the fastest algorithms in the
computational experiments: RT(DRD) and RT(DRD+ST).

Acknowledgments

We acknowledge Renato F. Werneck for making available his implementation of
ST-trees and Giuseppe F. Italiano for his implementation of algorithm C(ET+ST),
both used in the computational experiments performed in this paper.

References

1. G. Amato, G. Cattaneo, and G.F. Italiano. Experimental analysis of dynamic
minimum spanning tree algorithms (extended abstract). In Proceedings of the

8th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 314–323, New
Orleans, 1997.

2. L.S. Buriol, M.G.C. Resende, C.C. Ribeiro, and M. Thorup. A memetic algorithm
for OSPF routing. In Proceedings of the 6th INFORMS Telecom, pages 187–188,
Boca Raton, 2002.

3. L.S. Buriol, M.G.C. Resende, C.C. Ribeiro, and M. Thorup. A hybrid genetic
algorithm for the weight setting problem in OSPF/IS-IS routing. Networks, 46:36–
56, 2005.

4. L.S. Buriol, M.G.C. Resende, and M. Thorup. Speeding up shortest path algo-
rithms. Technical Report TD-5RJ8B, AT&T Labs Research, September 2003.

5. G. Cattaneo, P. Faruolo, U. Ferraro-Petrillo, and G.F. Italiano. Maintaining dy-
namic minimum spanning trees: An experimental study. In D.M. Mount and
C. Stein, editors, Algorithm Engineering and Experiments: 4th International Work-

shop, volume 2409 of Lecture Notes in Computer Science, pages 111–125, San Fran-
cicsco, 2002. Springer-Verlag.

6. C. Demetrescu, A. Goldberg, and D. Johnson. Ninth DIMACS im-
plementation challenge – shortest paths, 2006. On-line reference at
http://www.dis.uniroma1.it/~challenge9/, last visited in June 23, 2006.

7. D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissemzweig. Sparsification – A
technique for speeding up dynamic graph algorithms. Journal of the ACM, 44:669–
696, 1997.

8. G.N. Frederickson. Data structures for on-line updating of minimum spanning
trees, with applications. SIAM Journal on Computing, 14:781–798, 1985.

9. G.N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity
and k smallest spanning trees. In Proceedings of the 32nd Annual Symposium on

Foundations of Computer Science, pages 632–641, San Juan, 1991.
10. M.H. Henzinger and V. King. Maintaining minimum spanning trees in dynamic

graphs. In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proceed-

ings of the 24th International Colloquium on Automata, Languages, and Program-

ming, volume 1256 of Lecture Notes in Computer Science, pages 594–604, Bologna,
1997. Springer-Verlag.

11. J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity. In Proceedings of the 30th ACM Symposium on Theory of Computing,
pages 79–89, Dallas, 1998.

12. J.B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proc. of the American Mathematical Society, 7:48–50, 1956.

13. R.C. Prim. Shortest connection networks and some generalizations. Bell Systems

Technical Journal, 36:1389–1401, 1957.

14. W. Pugh. Skip lists: a probabilistic alternative to balanced trees. Communications

of the ACM, 33:668–676, 1990.
15. D.D. Sleator and R.E. Tarjan. A data structure for dynamic trees. Journal of

Computer and System Sciences, 26:362–391, 1983.
16. P.M. Spira and A. Pan. On finding and updating spanning trees and shortest

paths. SIAM Journal on Computing, 4:375–380, 1975.
17. R.F. Werneck and R.E. Tarjan. Self-adjusting top trees. In Proc. of the 16th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 813–822, Vancouver, 2005.
18. C.D. Zaroliagis. Implementations and experimental studies of dynamic graph al-

gorithms. In R. Fleischer, B. Moret, and E.M. Schmidt, editors, Experimental

Algorithms - From Algorithm Design to Robust and Efficient Software, volume
2547 of Lecture Notes in Computer Science, pages 229–278. Springer-Verlag, 2002.

