
ARTICLE IN PRESS
Computers & Operations Research ( ) --

Contents lists available at ScienceDirect

Computers &Operations Research

journal homepage: www.e lsev ier .com/ locate /cor

Invited Review

Scheduling in sports: An annotated bibliography

Graham Kendalla, Sigrid Knustb,∗, Celso C. Ribeiroc, Sebastián Urrutiad

aUniversity of Nottingham, School of Computer Science, Jubilee Campus, Nottingham NG8 1BB, UK
bTechnical University of Clausthal, Department of Mathematics, 38678 Clausthal-Zellerfeld, Germany
cUniversidade Federal Fluminense, Department of Computer Science, Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil
dUniversidade Federal de Minas Gerais, Department of Computer Science, Av. Antônio Carlos 6627, Belo Horizonte, MG 31270-010, Brazil

A R T I C L E I N F O A B S T R A C T

Keywords:
Sports
Scheduling
Tournaments
Traveling tournament problem
Referee assignment
Metaheuristics
Local search
Integer programming
Constraint programming

Sports have worldwide appeal. Professional sport leagues involve significant investments in players. Events
such as the Olympics Games, the Football World Cup and the major golf and tennis tournaments generate
huge worldwide television audiences and many sports are multi-million dollar industries. A key aspect of
sporting events is the ability to generate schedules that optimize logistic issues and that are seen as fair
to all those who have an interest. This is not just restricted to generating the fixtures, but also to other
areas such as assigning officials to the games in the competitions. This paper provides an annotated bibli-
ography for sports scheduling articles. This area can be traced back over 40 years. It is noticeable that the
number of papers has risen in recent years, demonstrating that scientific interest is increasing in this area.
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1. Introduction

Sports have become a big business. In a globalized economy,many
countries and cities battle for the rights to organize major events
such as the Olympic Games and the Football World Cup, which often
bring thousands of jobs, urban regeneration and economic opportu-
nities to their hosts. Tournaments are followed by millions of peo-
ple across the world, eager for information on their teams progress
in each competition. Fans check newspapers, radio, television and,
more recently, the Internet in their quest for information.

Professional sport leagues involve millions of fans and significant
investments in players, broadcast rights, merchandizing, and adver-
tising. Multiple agents, such as the organizers, media, players, fans,
security forces, and airlines, play an important role in the leagues
and tournaments. Professional sports leagues are therefore part of
a major economic activity and face challenging optimization prob-
lems, such as revenue maximization and logistic optimization. On
the other side, amateur leagues usually do not have access to the
same amounts of money, but the number of tournaments and com-
petitors can be very large, also requiring coordination and logistical
efforts.

Sports scheduling and management has been attracting the at-
tention of an increasing number of researchers in multidisciplinary
areas such as operations research, scheduling theory, constraint
programming (CP), graph theory, combinatorial optimization, and
applied mathematics. Different optimization techniques have been
applied to solve problems arising from sports scheduling and man-
agement. The difficulty of the problems in the field lead to the use
of a number of exact and approximate approaches, including inte-
ger programming (IP), constraint programming, metaheuristics, and
hybrid methods.

Teams and leagues want to optimize their investments by playing
a good schedule which seeks to meet various criteria. Good fixtures
are important in order to maximize revenues, ensure the attractive-
ness of the games, and to keep the interest of both the media and
the fans. Good schedules can have significant financial implications
and interfere (for the bad and the good) in the performance of ev-
ery team participating in a tournament. Finding the best schedule of
games is a difficult task with multiple decision makers, constraints,
and objectives (involving logistics, organizational, economical, and
fairness issues).

The general problem of scheduling the games of a tournament
is certainly the most studied area of sports scheduling. It consists
in determining the date and the venue in which each game will
be played. Applications to real-life problems in the scheduling of
tournaments of sports such as football, baseball, basketball, cricket,
hockey, and others are common in the literature. However, there
are also other relevant scheduling problems in sports. One of them
is that of assigning referees to games, which also involve multiple
objectives.

Whilst the above motivations, by themselves, entirely justify the
study of scheduling problems in sports, we also remark that they
are very interesting and, arguably, more interesting and motivating
than other scheduling problems. Most people can relate to sport-
ing events. Even if they do not participate or watch sport, either
live or on TV, everybody has some relationship with sport. It might
be the fact that one can hardly avoid the coverage that is given to
events such as the Olympic Games, the Football World Cup or the
Super Bowl. Or it could be that parents need to organize their per-
sonal schedules around their children's sporting endeavors. Sporting
events (and therefore their schedules) are part of everybody's life
and one cannot avoid them. As a single illustrative example of the
role played by amateur sport leagues, in the MOSA (Monmouth &
Ocean Counties Soccer Association) league, New Jersey, children of
ages 8–18 make up six divisions per age and gender group with six

teams per division, making a total of 396 games every Sunday. These
games are officiated by hundreds of certified referees and attended
by thousands of parents, relatives, and friends, who travel to support
the players and to enjoy the games.

Due to our daily and continuous involvement with sports,
most sports scheduling problems are very easy to explain and
understood by researchers, developers, and practitioners. Sports
applications tend to motivate students and can be successfully used
in Operations Research courses and classrooms (see [10]).

Sports scheduling covers an extremely wide range of problems
and there are many possible ways to survey the area or to view the
different classes of problems. For example, we could be interested
in the underlying theoretical fundamentals (such as graph theory,
factorizations, or latin squares) of the problems, or in the solution of
real world applications in different sports and leagues. Or we could
look at different types of problems that are faced by different compe-
titions (such as scheduling fixtures and officials, or maximizing gate
receipts). In fact, the way we view sports scheduling depends on the
motivation for the individual researchers and practitioners involved.

This annotated bibliography has two main goals. Firstly, to
present a comprehensive list of sports scheduling papers. Although
we understand that it is almost impossible to provide a complete
coverage of all the work in the area, we hope this bibliography will
be as broad as possible and will serve as a starting point for those
requiring information about this area, or for those simply wishing
to bring their knowledge up to date. This would be beneficial, not
only for researchers, but also for potential users responsible for
real-life applications. We would be glad to hear from the readers
with suggestions and additional references to those presented here,
with a view that we can include any omissions in any subsequent
revision. The second aim is to present the methodologies that have
been utilized in solving these types of problems, so that other re-
searchers and practitioners are able to make an informed choice in
case of need.

The rest of this paper is organized as follows. Section 2 presents
the main definitions, principles, and fundamentals. Section 3 gives
an account of the use of different approaches in the solution of
scheduling problems in sports: decomposition strategies; integer
programming; constraint programming; heuristic search, meta-
heuristics and their hybrids. Finally, Section 4 surveys applications in
different sports disciplines like football, baseball, basketball, cricket,
and hockey. This section closes with references on further problems
such as referee assignment. Finally, the last section summarizes
some conclusions.

Some remarks on the style and organization of this annotated
bibliography should be made:

• We refer to football as the sport regulated by FIFA (Fédération
Internationale de Football Association), at which countries such
as Argentina, Brazil, England, and Germany excel and have won
11 out of the 18 preceding world cups (it is not by chance that
these are the countries of the coauthors of this bibliography). We
also use soccer as a synonym, to maintain consistency with the
citations. We use American football to refer to the sport played in
the United States.

• Some papers are relevant for different sections of this annotated
bibliography. Papers in this situation are usually discussed in one
of the relevant sections and merely cited elsewhere. A few papers
are discussed twice under different points of views.

• Due to space limitations, we mainly limit this annotated bibliogra-
phy to final versions of journal papers or full papers that appeared
in conference proceedings. Except for some relevant exceptions,
we do not cite unrefereed papers, abstracts, and theses.

• We have limited ourselves to scheduling problems in sports. There
are other optimization problems in sports that do not fall in this
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category and, consequently, are not reviewed here. Some of them
are briefly cited in Section 4.8.

We conclude this section by presenting a short list of some semi-
nal, introductory, relevant, or survey papers in the area. In particular,
readers new to this area might find these useful starting points.

[1] Anderson I. Combinatorial designs and tournaments. In: Ox-
ford lecture series in mathematics and its applications, 1997.

This book covers many of the basics that are of interest to sports
scheduling researchers. This includes latin squares, room squares,
scheduling leagues, balanced tournament designs, and whist tour-
naments.

[2] Dinitz JH, Fron�cek, D, Lamken ER, Wallis WD. Scheduling a
tournament. In: Colbourn CJ, Dinitz JH, editors. Handbook of combi-
natorial designs, 2nd ed. Boca Raton: CRC Press; 2007. p. 591–606.

Provides an excellent introduction to some of the fundamental is-
sues in tournament scheduling, including round-robin tournaments,
1-factorizations and balanced tournament designs. The chapter also
considers specific sports such as softball, golf, whist and bridge, as
well as other issues such as tournaments for trios, spouse avoiding
doubles tournaments, and elimination tournaments.

[3] Drexl A, Knust S. Sports league scheduling: graph- and
resource-based models. Omega 2007;35:465–71.

Surveys graphmodels for sports league scheduling and introduces
a model based on resource-constrained project scheduling.

[4] Easton K, Nemhauser GL, Trick MA. The travelling tournament
problem: description and benchmarks. In: Walsh T, editor. Principles
and practice of constraint programming. Lecture notes in computer
science, vol. 2239. Berlin: Springer; 2001. p. 580–5.

This is the seminal paper introducing the traveling tournament
problem (TTP) (see also Section 2.8), which was motivated by the
problem of scheduling the Major League Baseball (MLB). Its formu-
lation captures the fundamental difficulties of minimizing the travel
distance for a sports league.

[5] Easton K, Nemhauser GL, Trick MA. Sports scheduling. In:
Leung JT, editor. Handbook of scheduling. Boca Raton: CRC Press;
2004. p. 52.1–19.

Provides a survey of sports scheduling literature from the 1970s
to 2003. During this period much of the literature was concerned
with single and double round-robin tournaments, but other aspects
(such as balanced tournament designs and the bipartite tournament
problem) are also featured.

[6] Knust S. Classification of literature on sports scheduling, 2005.
Available online at: 〈http://www.inf.uos.de/knust/sportssched/
sportlit_class/〉, last visited on September 29, 2008.

This website provides an up to date account of sports scheduling
literature.

[7] Machol RE, Ladany SP, Morrison DG. Management science
in sports, studies in the management sciences, vol. 4. Amsterdam:
North-Holland; 1976.

An early account of applications of quantitative methods to prob-
lems in sports.

[8] Rasmussen RV, Trick MA. Round robin scheduling—a survey.
European Journal of Operational Research 2008;188:617–36.

Presents a comprehensive survey of the literature on round-robin
tournaments and helps to unify the terminology. Contributions pre-
sented during the last 30 years are outlined, with the papers being
divided into two categories according with their focus: break min-
imization and distance minimization. Directions for future research
in the area are discussed.

[9] Rokosz FM. Procedures for structuring and scheduling sports
tournaments: elimination, consolation, placement, and round-robin
design, 3rd ed. Charles C Thomas; 2000.

This book, whilst not referencing other work, provides a basic in-
troduction to many types of tournaments. The types of tournaments

discussed are single elimination, double elimination, round robin,
ladder, novelty elimination, and novelty placement. The book pro-
vides a set of homework questions/answers which might make it
suitable for an introductory course on sports scheduling.

[10] Trick MA. Using sports scheduling to teach integer program-
ming. INFORMS Transactions on Education 2004;5:10–7. Available
online at: 〈http://archive.ite.journal.informs.org/Vol5No1/Trick/〉.

Examples of sports scheduling models are given, showing how
they can be used to illustrate key concepts in an MBA level integer
programming course. The models have been selected so that they
can be solved within the standard version of Excel's solver (from
Frontline Systems, included in the standard Excel distribution). The
models are accessible to every student without the need for addi-
tional software.

2. Fundamentals, problems and definitions

Scheduling problems in sports leagues may be divided into two
main classes: temporally constrained and temporally relaxed prob-
lems. In the time-constrained case, the planning horizon consists
of the minimum number of periods (so-called rounds) required to
schedule all the games and, hence, each team has to play exactly one
game in each round. Tournaments following this pattern are said to
be compact. On the other hand, in the time-relaxed case the number
of periods is generally larger than the minimum number of rounds
needed for scheduling all games. In this situation not every team
necessarily plays in each round and thus teams may have some pe-
riods without a game.

The basic temporally constrained problem for scheduling a sports
league may be formulated as follows. The league consists of an even
number n of different teams indexed by i ∈ {1, . . . ,n}, where each
team has to play against each other team exactly ��1 times. The
number of rounds available to schedule these

( n
2
)
� = n(n − 1)�/2

games is equal to (n− 1)�, where each team has to play exactly one
game in each round. Thus, one has to determine which teams i, j ∈
{1, . . . ,n} play against each other in each round t=1, . . . , (n−1)� and,
for each of these pairings, whether it is played in the home stadium
of team i (home game for team i) or in the home stadium of team j
(away game for team i).

In most cases we have � = 1 (single round-robin tournament,
SRRT) or � = 2 (double round-robin tournament, DRRT). For double
round-robin tournaments the season is often partitioned into two
half series, where each pairing has to occur exactly once in each
half (with different home rights). The second half series is usually
not scheduled independently from the first. In a so-called mirrored
schedule, the second series is planned complementarily to the first,
i.e. the pairings of round t=1, . . . ,n−1 in the second half are exactly
the same as in round t of the first half, but with exchanged home
rights. Another possibility is the so-called “English” system, where
the pairings in the first round of the second half are the same as in
the last round of the first half and rounds 2, . . . ,n − 1 in the second
half equal rounds 1, . . . ,n − 2 of the first half.

If the league consists of an odd number of teams, in each round
one team has a bye, i.e. does not play. This situation may be reduced
to the previous case with an even number of teams by adding a
dummy team n + 1. Then, in each round the team playing against
n + 1 has a bye.

Usually, a schedule for a sports league is described by a so-called
opponent schedule and a so-called home–away pattern (HAP). An
opponent schedulemay be represented by an n×(n−1)-matrixwhere
the entry oppit ∈ {1, . . . ,n}\{i} specifies the opponent of team i in
round t. If this matrix is enlarged by an additional column containing
the teams 1, . . . ,n, its structure is a latin square (each column and
each row is a permutation of 1, . . . ,n such that in any column or row
no number occurs twice). Additionally, the latin squares fulfill the
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symmetry condition that oppit = j if and only if oppjt = i (i.e. if team
i plays against team j in round t, also team j plays against team i in
that round).

A home–away pattern is defined as n × (n − 1)-matrix H = (hit),
where hit equals “H” (resp. “A”) when team i has a home (resp. away)
game in round t. If two consecutive entries hi,t−1 and hit in a row i
are equal for some t = 2, . . . ,n − 1, then team i has a so-called break
in round t (i.e. the alternating sequence of home and away games is
broken).

2.1. Graph coloring and factorizations

Traditional models for constructing sports league schedules are
based on graphs. The complete graph Kn on n nodes is used to rep-
resent single round-robin tournaments. Its nodes i = 1, . . . ,n repre-
sent the teams, while the edge i − j represents the game between
teams i, j ∈ {1, . . . ,n}. An edge coloring with n − 1 colors, i.e. a parti-
tioning of the edge set into 1-factors F1, . . . , Fn−1 (each consisting of
n/2 non-adjacent edges), corresponds to the games scheduled in the
rounds t = 1, . . . ,n − 1. If additionally home and away games have
to be distinguished, the edges are directed into arcs (i, j) for a game
in the home stadium of team j or (j, i) for a game in the stadium of
team i.

[11] de Werra D. Geography, games, and graphs. Discrete Applied
Mathematics 1980;2:327–37.

Graph theoretical models are used to deal with geographical con-
straints for teams located in different cities. For the situation that
the number of teams is a multiple of four and the teams are parti-
tioned into two subsets of equal, size schedules with n − 2 breaks
are constructed where each round is either “internal” (i.e. each team
plays against a team belonging to the same subset) or “external” (i.e.
each team plays against a team belonging to the other subset).

[12] deWerra D. Scheduling in sports. In: Hansen P, editor. Studies
on graphs and discrete programming. Amsterdam: North-Holland;
1981. p. 381–95.

Based on the complete graph model, it is shown that schedules
for n teams with even n have at least n − 2 breaks. Corresponding
schedules which achieve this lower bound value are constructed
by the so-called canonical 1-factorization. Furthermore, for odd n
schedules without any breaks are constructed.

[13] de Werra D. Minimizing irregularities in sports schedules
using graph theory. Discrete Applied Mathematics 1982;4:217–26.

Graph theoretical properties are stated for schedules with n − 2
breaks. Furthermore, schedules are constructed in which the number
of rounds with breaks is minimal.

[14] de Werra D. On the multiplication of divisions: the use of
graphs for sports scheduling. Networks 1985;15:125–36.

A generalization of the situation in de Werra [11] with more than
two subsets (the so-called divisions) is studied.

[15] de Werra D. Some models of graphs for scheduling sports
competitions. Discrete Applied Mathematics 1988;21:47–65.

Graph theoretical models are introduced for scheduling sports
leagues with a minimum number of breaks.

[16] de Werra D, Descombes J, Masson P. A constrained sports
scheduling problem. Discrete Applied Mathematics 1990;26:41–9.

Schedules are constructed by graph theoretical methods for two
Australian basketball leagues in which constraints on breaks and
teams sharing the same stadium are regarded.

[17] Fron�cek D, Meszka M. Round robin tournaments with one
bye and no breaks in home–away patterns are unique. In: Kendall G,
Burke E, Petrovic S, Gendreau M, editors. Multidisciplinary schedul-
ing: theory and applications. Berlin: Springer; 2003. p. 331–40.

It is shown that for an odd number of teams a schedule with one
bye per team and no breaks is unique (up to a permutation of teams).
Furthermore, the same results holds if for an even number of teams

one more round is used (i.e. there are n rounds for a tournament
with n teams).

[18] Griggs T, Rosa A. A tour of European soccer schedules, or test-
ing the popularity of GK2n. Bulletin of the Institute of Combinatorics
and its Applications 1996;18:65–8.

It is investigated according to which 1-factorizations 25 European
soccer leagues are scheduled.

[19] Knust S, von Thaden M. Balanced home–away assignments.
Discrete Optimization 2006;3:354–65.

A balanced home–away assignment is a collection of modes de-
termining the home and away team for each game such that the
difference between the number of home games and the number of
away games is at most one for each team. By graph theoretical con-
siderations it is shown how balanced home–away assignments can
be constructed, how they can be changed according to a connected
neighborhood structure, and how mode preassignments can be han-
dled with network flow techniques.

[20] Mendelsohn E, Rosa A. One-factorizations of the complete
graph—a survey. Journal of Graph Theory 1985;9:43–65.

Results on the existence and enumeration of different
1-factorizations of the complete graph are surveyed. Especially,
applications to round-robin tournaments are discussed.

[21] Rosa A, Wallis W. Premature sets of 1-factors or how not to
schedule round robin tournaments. Discrete Applied Mathematics
1982;4:217–26.

Greedy approaches for scheduling a round-robin tournament
round by round are studied. It is shown that such a procedure does
not always lead to feasible complete schedules.

[22] Schreuder J. Constructing timetables for sport competitions.
Mathematical Programming Study 1980;13:58–67.

Based on graph theoretical results and the canonical
1-factorization, an algorithm is presented which constructs sched-
ules with n − 2 breaks.

[23] Schreuder J. Combinatorial aspects of construction of com-
petition Dutch professional football leagues. Discrete Applied Math-
ematics 1992;35:301–12.

Schedules are determined for the Dutch soccer league by first
constructing a schedule with n − 2 breaks and assigning the teams
afterwards.

[24] vanWeert A, Schreuder J. Construction of basic match sched-
ules for sports competitions by using graph theory. In: Burke E, Carter
M, editors. The 2nd international conference on the practice and the-
ory of automated timetabling. Lecture notes in computer science,
vol. 1408. Berlin: Springer; 1998. p. 201–10.

For a Dutch volleyball competition where each team has to play
two games in each round, schedules are constructed using 2-factors
in the complete graph.

2.2. Model development

Most of the sports scheduling problems discussed in this paper
present some form of objective function, together with a set of con-
straints. Some of these models are presented formally (e.g. as an
integer program formulation) and some are simply descriptive.

It is not possible to provide standard objective functions and sets
of constraints for what may first appear to be very similar problems;
at least for real world problems. A good example is provided by the
referee assignment. Yavuz et al. [156] (see Section 4.7) assigns ref-
erees in the context of professional football leagues. The objective
function is a summation of five soft constraint violations which cap-
ture the following aspects: (1) a fair dispersion of referees to games
throughout the season, (2) the number of times a referee is assigned
to a fixture throughout the season, (3) the number of times a referee
is assigned a team when it is playing at home, (4) the higher skilled
referees should be assigned more games than lesser qualified refer-
ees, and (5) the same referee does not officiate both games between

Please cite this article as: Kendall G, et al. Scheduling in sports: An annotated bibliography. Computers and Operations Research (2009), doi:
10.1016/j.cor.2009.05.013

http://dx.doi.org/10.1016/j.cor.2009.05.013


ARTICLE IN PRESS
G. Kendall et al. / Computers & Operations Research ( ) -- 5

the same pair of teams. In Duarte and Ribeiro [145] (see Section 4.7)
the problem is essentially the same, however, the objective func-
tions (and constraints) are quite different. The objective is to allocate
each referee to an agreed number of games (which might be differ-
ent for each referee), penalizing both over and under assignments,
and to provide the referees with a good spread of games through-
out each round (actually defined as minimizing the sum of the idle
times between consecutive games assigned to the same referee). It
is apparent that for seemingly similar problems the objective func-
tions and constraints can have similarities (e.g. give a fair spread of
games), but they are essentially tailored for the problem at hand and
their formulations are presented in different ways.

Some problems do not tackle a real world application, but have
been introduced for the benefit of researchers to enable them to use
a common model. Perhaps the most useful of these is the travel-
ing tournament problem, which aims to minimize the total distance
traveled (see Section 2.8). It provides a simplified objective of a real
world problem, together with a set of benchmark instances. The TTP
also provides researchers with the ability to compare their method-
ologies with those that have been previously reported. Kendall [120]
(see Section 4.1) handles the same objective, but the problems are
distinctly different. While the TTP assumes that teams go on road
trips and the distance traveled is minimized across the entire sea-
son, Kendall [120] aims to minimize travel distances for English foot-
ball teams for just two days of the season. As such, the objective is
slightly different and the constraints which must be respected are
different for each problem. For example, the constraints in the TTP
are limited to playing three consecutive home or away matches and
not playing the same team in consecutive rounds, while many more
constraints have to be respected in a real world problem.

It is apparent that sports scheduling is as much about develop-
ing an appropriate model of the problem, as it is about the solution
methodology that is employed. Researchers are able to draw upon
previous work to provide inspiration, and may be able to use exist-
ing work for some parts of the problem but, to solve a real world
problem, model development is as much of an issue as the choice of
solution methodology.

2.3. Breaks optimization

The first objective in sports league scheduling (and perhaps the
most studied subject in this area) is the minimization of breaks. A
lot of league organizers restrict themselves to schedules having a
minimum number of breaks (i.e. n − 2 for a league with an even
number n of teams, and 0 for an odd number n). De Werra was the
first who did a lot of pioneering work concerning breaks, cf. deWerra
[11] in Section 2.1, de Werra [12] in Section 2.1, de Werra [13] in
Section 2.1, and de Werra [15] in Section 2.1.

In connection with “first-schedule, then break”-approaches
(cf. Section 3.1) especially the problem of finding a good home–away
pattern for a given opponent schedule was studied (see Brouwer
et al. [76] in Section 3.1, Elf et al. [77] in Section 3.1, Miyashiro and
Matsui [78] in Section 3.1, Miyashiro and Matsui [79] in Section 3.1,
and Post and Woeginger [80] in Section 3.1).

Other papers dealing with breaks are Rasmussen and Trick [8]
in Section 1, Regin [94] in Section 3.3, and Suzuka et al. [87] in
Section 3.2.

Finally, Urrutia and Ribeiro [74] in Section 2.8, showed that some-
times also a large number of breaks is advantageous since then travel
distances are minimized in the traveling tournament problem.

2.4. Carry-over effects

For a given single round-robin schedule with n teams, it is said
that team i gives a carry-over effect to team j if some other team plays
consecutively against teams i and j, i.e. some team plays against i in

round t and against j in round t+1 for some t ∈ {1, . . . ,n−1}, where the
rounds are considered cyclically (i.e. round n corresponds to round 1).
If team i is a very strong or very weak team and several teams play
consecutively against teams i and j, team j may be, respectively,
handicapped or favored compared with other teams. In an “ideal”
schedule with respect to carry-over effects, no teams i, j, x, y should
exist such that teams x and y both play against team j immediately
after playing against team i.

The carry-over effects n × n-matrix C = (cij) has been introduced
in order to measure the balance with respect to this criterion. Each
entry cij of this matrix counts the number of carry-over effects given
by teams i to j. It can be seen that cii =0 and

∑n
j=1cij =

∑n
i=1cij =n−1

for all rows and columns i, j=1, . . . ,n. The quality of a schedule with
respect to carry-over effects is measured by the carry-over effects
value coe = ∑n

i=1
∑n

j=1c
2
ij . An ideal or balanced schedule is one in

which the lower bound value n(n−1) is achieved, i.e. all non-diagonal
elements of the corresponding matrix C are equal to 1.

More generally, it is said that team i gives a carry-over effect to
team j at level ��1 if some other team plays against team i in round
t and against team j in round t + � (the carry-over effect introduced
above corresponds to �=1). A schedule is called completely balanced
if it is balanced for all levels � = 1, . . . ,n − 2.

[25] Anderson I. Balancing carry-over effects in tournaments. In:
Holroyd F, Quinn K, Rowley C, Webb B, editors. Combinatorial de-
signs and their applications. Chapman & Hall/CRC research notes in
mathematics; 1999. p. 1–16.

A construction scheme for schedules with small carry-over effects
values is proposed. The construction is based on the algebraic con-
cept of starters in the group Zn−1. For n�24 this construction pro-
duced schedules with the smallest carry-over effect values known
at the time of writing. For n = 20 and 22 even balanced schedules
are found, which implies that Russell's conjecture in Russell [32] is
false. Finally, bipartite tournaments are studied, where two sets with
n teams each are given and each team in one set has to play against
each team of the other set. It is shown that for each even n schedules
exist which are balanced for both sets.

[26] Anderson I, Bailey R. Completeness properties of conjugates
of latin squares based on groups, and an application to bipartite tour-
naments. Bulletin of the Institute of Combinatorics and its Applica-
tions 1997;21:95–9.

A bipartite tournament with two groups of n teams (players) and
n rounds is considered where every team has to play against each
of the n teams in the other group once. Based on a construction of
special latin squares, it is shown that for all even n a schedule can
be constructed which is balanced with respect to carry-over effects
for both groups.

[27] Anderson I, Ferguson C. Training schedules balanced for car-
ryover effects. Bulletin of the Institute of Combinatorics and its Ap-
plications 2004;40:5–12.

Training schedules for n(n−1) athletes which have to be balanced
with respect to carry-over values in different ways are constructed.
Each athlete has to perform n tasks twice in two consecutive per-
mutations such that for each athlete no carry-over effect of the tasks
occurs twice, in any two consecutive periods each of the n(n − 1)
carry-over effects occurs exactly once, and each athlete performs
different tasks in the two permutations at the same position. Cor-
responding schedules are constructed when n is an odd prime or
n ∈ {9, 15, 25}.

[28] Beintema M, Bonn J, Fitzgerald R, Yucas J. Orderings of finite
fields and balanced tournaments. Ars Combinatoria 1998;49:41–8.

It is shown that completely balanced schedules exist for all n
which are a power of 2 by modifying Russell's construction method
in Russell [32] based on Galois fields.

[29] Guedes A, Ribeiro CC. A hybrid heuristic for minimizing
weighted carry-over effects in round robin tournaments. In: Pro-

Please cite this article as: Kendall G, et al. Scheduling in sports: An annotated bibliography. Computers and Operations Research (2009), doi:
10.1016/j.cor.2009.05.013

http://dx.doi.org/10.1016/j.cor.2009.05.013


6 G. Kendall et al. / Computers & Operations Research ( ) --

ARTICLE IN PRESS

ceedings of the 4th multidisciplinary international conference on
scheduling theory and applications, Dublin, 2009.

A new, weighted variant of the minimum carry-over effects value
problem is introduced and discussed. The problem is formulated by
integer programming and a heuristic based on the hybridization of
the iterated local search (ILS) metaheuristic with a multistart strat-
egy is proposed for its approximate solution. Numerical results are
presented.

[30] Keedwell A. Construction, properties and application of fi-
nite neofields. Commentationes Mathematicae Universitatis Caroli-
nae 2000;41:283–97.

Based on the algebraic structure of the so-called finite neofields,
it is shown that a sufficient condition for the existence of a balanced
schedule is that a cyclic neofield with additional properties exist.
These neofields are known to exist for all n which are a power of 2
or n = 20 and 22.

[31] Miyashiro R, Matsui T. Minimizing the carry-over effects
value in a round robin tournament. In: Burke EK, Rudová H, editors.
Proceedings of the 6th international conference on the practice and
theory of automated timetabling, Brno, 2006. p. 460–3.

A simple heuristic is proposed to quickly generate schedules with
small carry-over effect values. The heuristic makes use of the circle
method for constructing canonical 1-factorizations associated with
schedules with high carry-over effect values. Permutations of the
rounds of the schedules generated by the circle method give better
solutions with small carry-over effect values in less than 1 s.

[32] Russell K. Balancing carry-over effects in round robin tour-
naments. Biometrika 1980;67:127–31.

The concepts of carry-over effects and balanced schedules are
introduced. It is shown that balanced schedules exist for all n=2m by
giving a construction scheme based on the Galois fields GF(2m). It is
conjectured that balanced schedules exist if and only if n is a power
of 2. Later on in Anderson [25] it was proved that this conjecture is
false by providing balanced schedules for n=20 and 22. A heuristic is
proposed for the case n=pm+1 where p is a prime, which constructs
schedules with small (but not necessarily minimal) carry-over effects
values.

2.5. Group-changing schedules

For sports leagues in which the teams are partitioned into g�2
different strength groups, the objective is to avoid that a team plays
against extremely weak or extremely strong teams in consecutive
rounds. Two concepts have been introduced assuring a certain degree
of fairness with respect to groups. A schedule for a SRRT is called
group-changing if no team plays against teams of the same group in
two consecutive games. It is called group-balanced if no team plays
more than once against teams of the same groupwithin g consecutive
games.

The second property implies the first one, since each group-
balanced schedule (where each team plays against each group ex-
actly once within g�2 consecutive matches) is also group-changing.

[33] Briskorn D. Combinatorial properties of strength groups in
round robin tournaments. European Journal of Operational Research
2009;192:744–54.

The concepts of group-changing and group-balanced schedules
are introduced. For several cases (even number of teams, g = 2 or
g�4 groups) corresponding schedules are constructed or it is shown
that they cannot exist.

[34] Briskorn D, Knust S. Constructing fair sports leagues sched-
ules with regard to strength groups. Discrete Applied Mathematics
2008, in press.

Group-balanced schedules based on graph models are con-
structed for an odd number of teams. Group-changing schedules
are constructed for an even number of teams and g = 3 groups.

Additionally, generalized problems with arbitrary group sizes are
studied.

2.6. Minimizing costs

In a very general model, it is assumed that costs (or benefits) de-
pending on the rounds are given for every game. For all teams i� j
and rounds t, a cost cijt is incurred for scheduling the game between
teams i and j as a home game for team i in round t. The objective is
to find a feasible single or double round-robin tournament schedule
satisfying several constraints with minimum total costs (or maxi-
mum total benefits).

[35] Briskorn D, Drexl A. A branch-and-price algorithm for
scheduling sport leagues. Journal of the Operational Research Soci-
ety 2009;60:84–93.

A branch-and-price algorithm is presented in order to find a fea-
sible schedule for a round-robin tournament with minimum num-
ber of breaks and minimum total costs. Computational results are
presented for leagues with up to 12 teams.

[36] Briskorn D, Drexl A. A branching scheme for finding cost-
minimal round robin tournaments. European Journal of Operational
Research 2009;197:68–76.

For the same problem as in Briskorn and Drexl [35] a branch-and-
bound algorithm is developed which uses an integer programming
formulation and a branching scheme based on home–away pattern
sets. Computational results are presented for leagues with up to 10
teams.

[37] Knust S, Lücking D. Minimizing costs in round robin tour-
naments with place constraints. Computers & Operations Research
2009;36:2937–43.

The objective is to find a feasible schedule for a round-robin
tournament with minimum number of breaks and minimum total
costs, where additionally place constraints are taken into account.
A “first-break, then schedule”-approach is presented which uses an
enumerative procedure to generate home–away patterns and integer
programming for finding corresponding schedules. Computational
results are presented for leagues with up to 14 teams.

2.7. Problems with venues and balanced tournament designs

Special requirements regarding the venues (courts, fields, sta-
diums, locations) have to be taken into account for some sports
scheduling problems. In the so-called balanced tournament problem,
2n teams (or players) have to play a single round-robin tournament
in 2n − 1 rounds using n different courts in each round. In order to
balance the effects of the different courts, it is required that no team
plays more than twice on any court (i.e. each team plays twice on
n − 1 courts and once on the remaining court). Such a schedule is
also called a balanced tournament design BTD(n) of order n. It may
be represented by a matrix where the columns correspond to the
rounds and the rows to the courts. In some versions of the problem
instead of courts the assigned time slots in the rounds (starting times
for the games) have to be balanced. This problem is also known as
prob026 of the CSPLib in the constraint programming community.
In the BTD*(n) variant of the balanced tournament design problem,
each of the 2n teams plays 2n games (implying that each team plays
against one opponent twice) and each team plays exactly twice on
any court.

A factored balanced tournament design FBTD(n) is a BTD(n) with
the property that each team plays exactly once on each court in the
first n rounds. A partitioned balanced tournament design PBTD(n) is
a FBTD(n) where each team additionally plays exactly once on each
court in the last n rounds.

Although it has been shown that a BTD(n) or even an FBTD(n) ex-
ists for every integer n�2 (cf. Schellenberg et al. [60], Lamken and
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Vanstone [54]), the proofs do not lead to a concrete constructive
method for building such schedules. Therefore, besides some con-
struction schemes for specific values of n, several procedures have
been developed for the general case using tabu search, constraint
programming, or integer programming.

[38] Blest D, Fitzgerald D. Scheduling sports competitions
with a given distribution of times. Discrete Applied Mathematics
1988;22:9–19.

Balanced tournament designs are constructed for an odd number
of teams and for an even number of teams which is not a multiple
of four.

[39] Corriveau J. Enumeration of balanced tournament designs.
Ars Combinatoria 1988;25:93–105.

It is shown that 47 non-isomorphic balanced tournament designs
BTD(4) exist.

[40] de Werra D, Ekim T, Raess C. Construction of sports
schedules with multiple venues. Discrete Applied Mathematics
2006;154;47–58.

The variant BTD* of balanced tournament designs is considered,
where each of the 2n teams plays 2n games. An inductive construc-
tion based on a graph model is given for all 2n which are a power
of two.

[41] Dinitz J, Dinitz M. Enumeration of balanced tournament de-
signs on 10 points. Journal of Combinatorial Mathematics and Com-
binatorial Computing 2005;52:51–64.

It is shown that 30220557 non-isomorphic balanced tournament
designs BTD(5) exist.

[42] Finizio N. Tournament designs balanced with respect to sev-
eral bias categories. Bulletin of the Institute of Combinatorics and its
Applications 1993;9:69–95.

A generalization of balanced tournaments is studied in which not
only the courts are regarded, but several other bias categories should
be balanced (e.g. day of the week, time of the day, number of games
per week). Existence results and specific schedules are presented.

[43] Franek F, Fron�cek D, Rosa A. Imbalance in tournament de-
signs. Australasian Journal of Combinatorics 2001;23:237–51.

Two measures of imbalance are introduced for schedules using a
given number of courts: the team imbalance and the court imbalance,
which are both defined by counting how often each team plays on
any court. Bounds are given for the general case after determining all
possible imbalances for up to eight teams. Tournaments with large
imbalances are constructed.

[44] Geinoz A, Ekim T, de Werra, D. Construction of balanced
sports schedules using partitions into subleagues. Operations Re-
search Letters 2008;36:279–82.

Balanced tournaments BTD(n) are constructed for specific values
of n using a partition of the league into subleagues.

[45] Gelling E, Odeh R. On 1-factorizations of the complete graph
and the relationship to round robin schedules. Congressus Numer-
antium 1974;9:213–21.

Introduces the concept of balanced tournament designs. The non-
isomorphic 1-factorizations of the complete graphs K8 (six equiva-
lence classes) and K10 (396 equivalence classes) are analyzed with
respect to different properties. As an application, a BTD(4) for eight
teams is constructed.

[46] Hamiez J-P, Hao J-K. Solving the sports league scheduling
problem with tabu search. In: Nareyek A, editor. Local search for
planning and scheduling. Lecture notes in artificial intelligence, vol.
2148. Berlin: Springer; 2001. p. 24–36.

The balanced tournament problem (prob026 of CSPLib) is solved
with a tabu search algorithm based on a swap neighborhood. Com-
putational results are presented for instances with up to 40 teams.

[47] Hamiez J-P, Hao J-K. A linear-time algorithm to solve the
sports league scheduling problem (prob026 of csplib). Discrete Ap-
plied Mathematics 2004;143:252–65.

The balanced tournament problem (prob026 of CSPLib) for 2n
teams is considered for the special situation where (2n−1)mod3�0,
which was previously studied in Haselgrove and Leech [49]. It is
shown that this case can be solved by a linear-time repair-based al-
gorithm. Starting with a conflicting schedule with specific properties
iteratively conflicts are removed by exchanging games.

[48] Hamiez J-P, Hao J-K. Using solution properties within an
enumerative search to solve a sports league scheduling problem.
Discrete Applied Mathematics 2008;156:1683–93.

The balanced tournament problem (prob026 of CSPLib) is solved
by an enumerative search algorithm where problem-specific prop-
erties are exploited in order to reduce the search space. Computa-
tional experiments have shown that instances with up to 50 teams
can be solved.

[49] Haselgrove J, Leech J. A tournament design problem. Ameri-
can Mathematical Monthly 1977;84:198–201.

A construction method for BTD(n) is given for all integers n with
(2n − 1)mod3�0.

[50] Ikebe Y, Tamura A. On the existence of sports sched-
ules with multiple venues. Discrete Applied Mathematics 2008;
156:1694–710.

Gives theoretical methods for creating sports schedules for the
BTD* variant of balanced tournament designs where there are mul-
tiple venues for the games, and the number of times each team uses
each venue should be balanced. A construction for leagues having
2p �8 teams was given by de Werra et al. [40]. It is shown that fea-
sible schedules exist when the league has an arbitrary even number
of teams greater than or equal to 8.

[51] Knust S. Scheduling sports tournaments on a single
court minimizing waiting times. Operations Research Letters
2008;36:471–6.

A single round tournament for an odd number of teams is con-
sidered where each team plays exactly two games per round and
all games in a round are scheduled consecutively on a single court.
Graph theoretical results are used to construct schedules minimiz-
ing the number of long waiting times and the total waiting time
simultaneously.

[52] Lamken E. A few more partitioned balanced tournament de-
signs. Ars Combinatoria 1996;43:121–34.

It is shown that a PBTD(n) exists for all integers n�5 with the
possible exceptions for n ∈ {9, 11, 15}.

[53] Lamken E. Balanced tournament designs. In: Colbourn CJ,
Dinitz JH, editors. Handbook of combinatorial designs. Boca Raton:
CRC Press; 2006. p. 333–6.

Surveys definitions and existence results for balanced tournament
designs.

[54] Lamken E, Vanstone S. The existence of factored balanced
tournament designs. Ars Combinatoria 1985;19:157–60.

It is shown that a FBTD(n) exists for all integers n�2.
[55] Lamken E, Vanstone S. Balanced tournament designs and

related topics. Discrete Mathematics 1989;77:159–76.
Surveys known results on balanced tournament designs and dis-

cusses several extensions and generalizations.
[56] Lim A, Rodrigues B, Zhang X. Scheduling sports competitions

at multiple venues—revisited. European Journal of Operational Re-
search 2006;175;171–86.

The problems studied in Urban and Russell [61] are solved heuris-
tically using beam search and simulated annealing. Feasible solutions
could be found for up to 2n = 16 teams.

[57] Mendelsohn E, Rodney P. The existence of court balanced
tournament designs. Discrete Mathematics 1994;133:207–16.

For a given number of courts, a court balanced tournament design
(CBTD) is a single round-robin tournament where every team plays
the same number of games on each court. Necessary and sufficient
conditions for the existence of a CBTD are provided.
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[58] Rodney P. The existence of interval-balanced tournament
designs. Journal of Combinatorial Mathematics and Combinatorial
Computing 1995;19:161–70.

For a given number c of courts, an interval-balanced tourna-
ment design (IBTD) is a single round-robin tournament where rest-
ing times for the teams between consecutive games are fairly dis-
tributed. Necessary and sufficient conditions for the existence of an
IBTD are provided.

[59] Russell R, Urban T. A constraint programming approach to the
multiple-venue, sport-scheduling problem. Computers & Operations
Research 2006;33:1895–906.

The problems studied in Urban and Russell [61] are solved using
constraint programming. Solutions are found for 2n ∈ {12, 14, 16}.
The constraint programming approach is compared against the inte-
ger goal programming approach of Urban and Russell. Optimal solu-
tions are produced for 16 team problems, and near-optimal solutions
for problems with up to 30 teams. By comparison, mathematical pro-
gramming was only able to find optimal solutions for problem sizes
up to ten teams. The success of the method relies on a formulation
that enables significant domain reduction during constraint prop-
agation. If this is not possible, then a mathematical programming
approach might be more appropriate.

[60] Schellenberg P, van Rees G, Vanstone S. The existence of
balanced tournament designs. Ars Combinatoria 1977;3:303–18.

It is shown that a BTD(n) exists for all integers n�2 by giving a
recursive construction scheme.

[61] Urban T, Russell R. Scheduling sports competitions
on multiple venues. European Journal of Operational Research
2003;148:302–11.

A BTD*(n) has to be constructed in order to schedule intra-squad
competitions on various drill stations. The problem is formulated
as an integer goal programming model and solved for 2n ∈ {8, 10}.
Additionally, it is shown that no solution exists for 2n ∈ {4, 6}. Finally,
generalizations of the problem with less than n courts or home/away
assignments are studied.

2.8. Traveling tournament problem

The traveling tournament problem was introduced by Easton
et al. [67]. It is a challenging combinatorial optimization problem in
sports scheduling that abstracts the most important aspects in cre-
ating timetables where team travel is an important issue. Given two
integer numbers L and U, and an even number n of teams whose
distances between their sites are known beforehand, the problem
calls for the schedule of a double round-robin tournament minimiz-
ing the total distance traveled by the teams and respecting a set of
constraints. Every team begins the tournament at home and must
return to home after its last away game. Whenever a team plays
two consecutive away games, it goes directly from the site of the
first opponent to that of the second, without going back to home.
No repeaters are allowed, i.e. no two teams can face each other in
two consecutive rounds. Furthermore, every sequence of consecu-
tive home games (or consecutive away games) played by any team
is formed by at least L and at most U games. Research on the TTP was
inspired by work done for the Major League Baseball in the United
States. The complexity of the traveling tournament problem is still
open to date.

The mirrored traveling tournament problem and the traveling
tournament problem with predefined venues (TTPPV) are two vari-
ants of the traveling tournament problem, described in Ribeiro and
Urrutia [73] and Melo et al. [71], respectively. The mirrored travel-
ing tournament problem has the additional constraint that games
played in round t are exactly the same played in round t + (n − 1)
for t = 1, . . . ,n − 1, but with reversed venues. Such tournaments are
a common tournament structure in Latin America.

The traveling tournament problem with predefined venues is a
single round-robin variant of the TTP, in which the venue of each
game to be played is known beforehand.

The TTP and its variants have been tackled by different exact
and approximate solution methods. Three sets of test instances
available from the literature are widely used for benchmark studies:
circle instances CIRCn, National League instances NLn, and con-
stant instances (for which the minimization of the travel distance
is equivalent to the maximization of the number of breaks). The
two first sets were created by Easton et al. [67] and the third by
Urrutia and Ribeiro [74]. Instances derived from the National Foot-
ball League and from the Brazilian national football championship
are also available. Input data, together with the best lower and
upper bounds considering L = 1 and U = 3 for all these instances
can be found at http://mat.tepper.cmu.edu/TOURN/. The largest in-
stances regularly solved to optimality to date consider only eight
teams.

[62] Araújo A, Boeres MC, Rebello VE, Ribeiro CC, Urrutia S. Ex-
ploring grid implementations of parallel cooperative metaheuristics:
a case study for the mirrored traveling tournament problem. In:
Doerner K, Gendreau M, Greistorfer P, Gutjahr W, Hartl R, editors.
Metaheuristics: progress in complex systems optimization. Berlin:
Springer; 2007. p. 297–322.

Different strategies for the parallelization of greedy random-
ized adaptive search procedures (GRASP) with ILS hybrid heuristic
proposed by Ribeiro and Urrutia [73] for the mirrored TTP are
presented, with the objective of harnessing the benefits of grid
computing, which offers significantly more computing power than
traditional clusters. Computational experiments on a dedicated
environment illustrate the effectiveness and the scalability of the
proposed strategies. The parallel strategy implementing cooperation
through a pool of elite solutions scales better and is able to find
solutions that cannot be found by the others. Pioneering computa-
tional experiments on a shared computational grid formed by 82
machines distributed over four clusters in three cities illustrate the
potential of the application of computational grids in the fields of
metaheuristics and combinatorial optimization.

[63] Benoist T, Laburthe F, Rottembourg B. Lagrange relaxation
and constraint programming collaborative schemes for travelling
tournament problems. In: Proceedings of the third international
workshop on integration of AI and OR techniques in constraint pro-
gramming for combinatorial optimization problems, Ashford, 2001.
p. 15–26.

The TTP is solved by a hybrid algorithm combining Lagrangian re-
laxation and constraint programming in a hierarchical architecture.
The main component is a constraint programming model capturing
the entire problem. This model can be either solved directly or to-
gether with a global constraint to improve the bounds during the
search. This global constraint is obtained from the Lagrangian relax-
ation, which is solved by subgradient optimization or modified gra-
dient techniques. The Lagrange multipliers are adjusted by solving
one subproblem for each team. Each subproblem corresponds to an
instance of the traveling salesman problem, consisting in scheduling
the games for the corresponding team such that its travel distance
is minimized.

[64] Cheung KKH. Solving mirrored traveling tournament prob-
lem benchmark instances with eight teams. Discrete Optimization
2008;5:138–43.

A two-phase method based on generating timetables from 1-
factorizations and finding optimal home/away assignments solves
the mirrored traveling tournament problem benchmark instances
NL8 and CIRC8.

[65] Cheung KKH. A Benders approach for computing lower
bounds for the mirrored traveling tournament problem. Discrete
Optimization 2009;6:189–96.
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A Benders approach for computing lower bounds for the mirrored
traveling tournament problem is proposed.

[66] Costa FN, Urrutia S, Ribeiro CC. An ILS heuristic for the travel-
ing tournament problem with fixed venues. In: Burke EK, Gendreau
M, editors. Proceedings of the 7th international conference on the
practice and theory of automated timetabling, Montréal, 2008.

An ILS heuristic for solving real-size instances of the TTPPV is
proposed, making use of two types of local search moves and two
types of perturbations. Initial solutions are derived from canoni-
cal 1-factorizations of the tournament graph or of its subgraphs.
Computational results showed that the ILS heuristic performs
much better than heuristics based on integer programming for-
mulations and improves the best-known solutions for benchmark
instances.

[67] Easton K, Nemhauser G, Trick MA. The travelling tournament
problem: description and benchmarks. In: Walsh T, editor. Principles
and practice of constraint programming. Lecture notes in computer
science, vol. 2239. Berlin: Springer; 2001. p. 580–5.

This paper is the seminal work on the traveling tournament prob-
lem, in which the latter was formulated for the first time. Two
classes of benchmark test instances are described and tackled by con-
straint programming and integer programming: circle instances and
National League instances. Computational experiments have shown
that test problems with four teams are easily solvable in a few sec-
onds of computation time, while instances with six teams can be
exactly solved in several hours. No instance with eight teams could
be solved to proven optimality.

[68] Easton K, Nemhauser GL, Trick MA. Solving the travelling
tournament problem: a combined integer programming and con-
straint programming approach. In: Burke E, de Causmaecker P, edi-
tors. The 4th international conference on the practice and theory of
automated timetabling. Lecture notes in computer science, vol. 2740.
Berlin: Springer; 2003. p. 100–9.

Solution algorithms for the TTP are proposed. At first the so-
called “independent lower bound” is described which is obtained by
considering a TSP for each team separately. Afterwards, a parallel
implementation of a branch-and-price algorithm that uses integer
programming to solve the master problem and constraint program-
ming to solve the pricing problem is presented. The master problem
is solved by column generation, with the columns corresponding to
tours for the teams. Columns are generated only if a node is about to
be cut off. Constraint programming is used as a primal heuristic to
find feasible solutions. The first provably solution for a TTP instance
with eight teams is presented, although the no-repeaters constraint
has been discarded.

[69] Fujiwara N, Imahori S, Matsui T, Miyashiro R. Constructive
algorithms for the constant distance traveling tournament problem.
In: Burke EK, Rudová, H, editors. Practice and theory of automated
timetabling VI. Lecture notes in computer science, vol. 3867. Berlin:
Springer; 2007. p. 135–46.

A lower bound is proposed to the optimal value of constant dis-
tance instances of the traveling tournament problem, together with
two constructive algorithms that produce feasible solutions whose
objective values are close to the proposed lower bound.

[70] Irnich S. A new branch-and-price algorithm for the traveling
tournament problem. Technical Report, OR-01-2009, RWTH Aachen;
2009.

Based on a new compact IP-formulation the traveling tourna-
ment problem is solved with branch and price. Contrary to Easton
et al. [68] who solved the tour-generation subproblem with con-
straint programming, in this work the network structure is explicitly
utilized. The column-generation subproblem is reduced to a shortest-
path problem, which is efficiently solved. Computational results are
presented for the National League and circle instances. On the one
hand, the benchmark instance NL8 is solved to optimality for the

first time, additionally, some best known lower bound values are
improved.

[71] Melo RA, Urrutia S, Ribeiro CC. The traveling tournament
problem with predefined venues. Journal of Scheduling 2009, in
press.

Three integer programming formulations for the TTPPV are pro-
posed and compared. Simple enumeration strategies to generate
feasible solutions to real-size instances in a reasonable amount of
time are also proposed. Numerical results comparing the three for-
mulations are presented. They show that the formulation with the
largest number of decision variables produces better lower bounds
and smaller enumeration trees. They also show that two original
enumeration strategies outperformed an improvement heuristic em-
bedded within the commercial solver CPLEX.

[72] Rasmussen RV, Trick MA. The timetable constrained distance
minimization problem. In: Beck J, Smith B. editors. Integration of
AI and OR techniques in constraint programming for combinatorial
optimization problems. Lecture notes in computer science, vol. 3990.
Berlin: Springer; 2006. p. 167–81.

The timetable constrained distance minimization problem is ap-
plicable for tournaments where the total travel distance must be
minimized. The problem is defined and integer programming and
constraint programming formulations are given. A hybrid approach
combining integer programming and constraint programming is pro-
posed for its solution. Also proposed is a branch-and-bound algo-
rithm. The solution methods are tested and compared. The method
showing the best performances is a two-phase hybrid IP/CP approach
which generates all feasible patterns in a first phase using constraint
programming and assigns teams to patterns in the second phase us-
ing integer programming.

[73] Ribeiro CC, Urrutia S. Heuristics for the mirrored travel-
ing tournament problem. European Journal of Operational Research
2007;179:775–87.

A hybrid heuristic based on principles of the GRASP and ILS
metaheuristics is proposed for the mirrored TTP. Four different
neighborhood structures are used for local search, while an ejection
chain mechanism is used for perturbations within the ILS phase.
The results obtained by the hybrid heuristic were even better than
those available at the time of writing for some instances of the less
constrained TTP, with the execution times limited to 15min. State-
of-the-art algorithms at the time of writing usually reported up to
several days of computation time.

[74] Urrutia, S, Ribeiro CC. Maximizing breaks and bounding so-
lutions to the mirrored traveling tournament problem. Discrete Ap-
plied Mathematics 2006;154:1932–8.

A relation is established between two aspects of round-robin
tournament scheduling problems: breaks and trips. The number of
breaks plus twice the number of trips is proved to be equal to nR,
where n is the number of teams and R is the number of rounds in
a single or double round-robin tournament. A new class of constant
instances of the TTP is proposed, in which the distance between any
pair of venues is equal to one. In this case, the total distance trav-
eled is equal to the number of trips. Lower bounds to the number
of trips are derived for several tournament types. The lower bounds
reached the primal bound found by the hybrid heuristic proposed
by Ribeiro and Urrutia [73] for some instances. Instances of the mir-
rored TTP with constant distances and up to 16 teams were solved
to optimality.

[75] Urrutia S, Ribeiro CC, Melo RA. A new lower bound to the
traveling tournament problem. In: Proceedings of the IEEE sympo-
sium on computational intelligence in scheduling, Honolulu. IEEE;
2007. p. 15–8.

A new lower bound is proposed for the TTP. It improves the inde-
pendent lower bound introduced in Easton et al. [68] by considering
the difference between the sum of the minimum number of trips
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every team must perform and the known optimal solution values for
the associated constant instances. Numerical results on benchmark
instances showed reductions as large as 38.6% in the gaps between
lower and upper bounds.

Additional algorithms for the TTP are reviewed in other sections,
e.g. Anagnostopoulos et al. [108,109] in Section 3.4, Di Gaspero and
Schaerf [111] in Section 3.4, Lim et al. [112] in Section 3.4, Rasmussen
and Trick [86] in Section 3.2, Rasmussen and Trick [8] in Section 1,
and Ribeiro and Urrutia [113] in Section 3.4.

3. Methodologies

Some solution approaches such as decomposition, integer pro-
gramming, constraint programming, andmetaheuristics are common
to most optimization problems in sports scheduling.

3.1. Decomposition approaches

Sports scheduling problems are often decomposed into subprob-
lems which are solved sequentially by exact or heuristic algorithms.
Mainly, the following two approaches can be distinguished:

(1) “First-schedule, then-break”: At first only the pairings are deter-
mined for each round (i.e. which teams play against each other
in this round). Afterwards, a corresponding home–away pattern
is calculated for these pairings (often with a minimum number
of breaks).

(2) “First-break, then-schedule”: At first a feasible home–away pat-
tern (often with a minimum number of breaks) is determined.
Afterwards, the pairings for the corresponding pattern are fixed.
In this case, sometimes placeholders are used at first to deter-
mine the pairings and specific teams are assigned to the place-
holders afterwards.

Both approaches have been studied in the literature for different
problem settings. They are often used in combination with integer
linear programming or constraint programming formulations.

In a “first-schedule, then-break” approach, the subproblem of the
second stage is to find a home–away pattern (with a minimum num-
ber of breaks) corresponding to the pairings determined in the first
stage. The complexity status of this problem is unknown, but it is
conjectured to be NP-complete. On the other hand, it can be decided
in polynomial time whether the given pairings can be scheduled
with at most n breaks or not.

[76] Brouwer A, Post G, Woeginger G. Tight bounds for break
minimization. Journal of Combinatorial Theory A 2008;115:1065–8.

For the break minimization problem it is shown that an infi-
nite family of opponent schedules with n teams exist for which any
home–away pattern has at least n(n−2)/4 breaks. This lower bound
matches the upper bound derived in Post and Woeginger [80].

[77] Elf M, Jünger M, Rinaldi G. Minimizing breaks by maximizing
cuts. Operations Research Letters 2003;36:343–9.

The break minimization problem for a given opponent schedule
is transformed into a maximum cut problem in an undirected graph
which is solved by a branch-and-cut algorithm.

[78] Miyashiro R, Matsui T. A polynomial-time algorithm to find
an equitable home–away assignment. Operations Research Letters
2003;33:235–41.

It is proved that for a given opponent schedule with n teams
it can be checked in polynomial time whether a home–away pat-
tern with n − 2 breaks exists or not by reducing the problem to the
2-satisfiability problem. The same idea can be applied in order to
check whether a pattern with n breaks exists. Furthermore, it is
proved that break maximization is equivalent to break minimization
by showing that each home–away pattern with k breaks can be con-

verted into a pattern with n(n−2)−k breaks and vice versa. The idea
of the transformation is to convert each break into a non-break and
vice versa by keeping the home rights in the odd-numbered rounds
1, 3, . . . ,n − 1 and flipping the home rights in the even-numbered
rounds 2, 4, . . . ,n − 2.

[79] Miyashiro R, Matsui T. Semidefinite programming based ap-
proaches to the break minimization problem. Computers & Opera-
tions Research 2006;33:1975–82.

The break minimization problem for a given opponent schedule
is formulated as the MAX RES CUT and MAX 2SAT problems. These
problems are heuristically solved using semidefinite programming.

[80] Post G, Woeginger G. Sports tournaments, home–away as-
signments, and the break minimization problem. Discrete Optimiza-
tion 2006;3:165–73.

For the break minimization problem it is shown that for each
opponent schedule with n teams a home–away pattern with at most
n(n−2)/4 breaks exists. On the other hand, it is shown that opponent
schedules exist which cannot be played with less than n(n − 1)/6
breaks. Furthermore, it is proved that break minimization is NP-hard
for a given partial opponent schedule with r�3 rounds.

[81] Trick MA. A schedule-then-break approach to sports
timetabling. In: Burke EK, Erben E, editors. The 3rd international
conference on the practice and theory of automated timetabling.
Lecture notes in computer science, vol. 2079. Berlin: Springer; 2001.
p. 242–52.

A two-phase approach is presented for sports timetabling
problems. In the first stage, a schedule is generated ignoring any
home/away requirements using a constraint programming ap-
proach. The second phase (using an integer programming model),
which proves to be more challenging than the first stage, makes
the home/away assignments whilst minimizing bad structures
such as consecutive home and away games. This paper has a use-
ful discussion as to how the problem was formulated and it also
presents the resultant OPL code, which other researchers might find
useful.

In a “first-break, then-schedule” approach, the subproblem of the
second stage consists in finding a feasible opponent schedule for a
given home–away pattern. A HAP is called feasible if a corresponding
opponent schedule exists which is compatible with this HAP. The
pattern set feasibility problem is to determine whether a given HAP
is feasible or not. The complexity status of this problem is still not
known, but it is conjectured to be NP-complete.

[82] Briskorn D. Feasibility of home–away-pattern sets for round-
robin tournaments. Operations Research Letters 2008;36:283–4.

The pattern set feasibility problem is studied and a necessary
condition for feasibility based on a linear programming formulation
is given. It is shown that this condition is strictly stronger than those
provided in Miyashiro et al. [83].

[83] Miyashiro R, Iwasaki H, Matsui T. Characterizing feasible pat-
tern sets with a minimum number of breaks. In: Burke E, de Caus-
maecker P, editors. The 4th international conference on the practice
and theory of automated timetabling. Lecture notes in computer sci-
ence, vol. 2740. Berlin: Springer; 2003. p. 78–99.

The pattern set feasibility problem is studied and necessary con-
ditions for feasibility based on checking all possible subsets of teams
are provided. For pattern sets with n − 2 breaks these conditions
can be checked in polynomial time. It is shown by computational
experiments that in this case the conditions are also sufficient for
problems with up to 26 teams.

Other algorithms based on a “first-break, then-schedule” ap-
proach can be found in the sections on integer and constraint pro-
gramming, see e.g. Henz [128] in Section 4.2, Knust and Lücking [37]
in Section 2.6, Nemhauser and Trick [129] in Section 4.2, Rasmussen
[122] in Section 4.1, Rasmussen and Trick [72] in Section 2.8, Ras-
mussen and Trick [86] in Section 3.2, and Trick [81] in Section 3.1.
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3.2. Integer programming

Integer programming is a useful tool to model and solve sports
scheduling problems. Some round-robin tournament scheduling
problems can be solved by directly applying an integer program-
ming solver to the model. In most cases, decomposition schemes are
used to tackle each stage of the problem by integer programming
or other techniques such as constraint programming, complete
enumeration, or heuristics.

If n denotes the number of teams and r the number of rounds,
most models usually make use of the following variable definition:

xijt =
{
1 if team i plays at home against team j in round t,
0 otherwise,

for teams i, j=1, . . . ,n (with i� j) and rounds t=1, . . . , r. The constraints
of a double round-robin tournament may be formulated as

r∑
t=1

xijt = 1, ∀1� i, j�n, i� j,

n∑
j=1

xijt �1, ∀1� i�n, 1� t� r.

The first set of constraints imposes that every teammust play against
every other team at home. The second set establishes that no team
playsmore than once in each round. In the case of a compact schedule
(where every team has to play in each round), the last inequality
constraints turn into equalities.

Traveled distances cannot be directly modeled by variables xijt . If
they are an issue in the problem, then new binary variables have to
be used, e.g.

zkijt =
⎧⎨
⎩
1 if team k travels from the venue of team

i to that of j in round t,
0 otherwise.

When the length of the round trips and the length of the home
stands are limited, the number of distinct round trips and home
stands a given team may be involved in is polynomial with respect
to the numbers of teams. This fact usually allows the use of more
descriptive variables defining entire round trips or home stands, see
e.g. Melo et al. [71] in Section 2.8, and Costa et al. [66] in Section 2.8.
Exponentially many variables representing e.g. the entire sequence
of games of a given team during the tournament are also used in
some cases.

Integer programming methods applied to sport scheduling prob-
lems include branch and bound, branch and cut, Benders decom-
position, and column generation. These methods are used to deal
with real leagues scheduling problems as well as to tackle theoret-
ical problems such as the traveling tournament problem or break
minimization.

Hybridization with other methods is common in the literature.
Integer programming methods are often used as subproblem solvers
in several stage approaches involving, for example, constraint pro-
gramming or heuristics techniques.

[84] Briskorn D. Sport leagues scheduling: models, combinatorial
properties, and optimization algorithms. In: Lecture notes in eco-
nomics and mathematical systems, vol. 603. Berlin: Springer; 2008.

This book presents the work carried out by the author in his Ph.D.
thesis. Besides presenting basic and advanced formulations, the work
also focusses on real world problems. Many integer programming
formulations and proofs are provided. Some chapters can also be
found in other publications, see e.g. Briskorn and Drexl [85] or the
papers in Section 2.6.

[85] Briskorn D, Drexl A. IP models for round robin tournaments.
Computers & Operations Research 2009;36:837–52.

Variations on basic round-robin tournaments are described. In
addition, various real world constraints are discussed. These include
matches which cannot be scheduled at a certain time (perhaps the
stadium is in use for another event), limiting the number of matches
in a given geographical region, and balancing the distribution of
attractive matches. For each variation, the problem is formulated
as an integer programming model and CPLEX is used to study the
behavior of the various models.

[86] Rasmussen RV, Trick MA. A Benders approach for the con-
strained minimum break problem. European Journal of Operational
Research 2007;177:198–213.

A hybrid algorithm combining constraint programming and in-
teger programming is presented for finding a double round-robin
tournament schedule with a minimum number of breaks and
respecting place constraints. The algorithm uses constraint pro-
gramming, integer programming, and Benders cuts in order to ob-
tain feasible home–away patterns and constraint programming for
finding the corresponding schedules. The algorithm is also applied
to the traveling tournament problem with constant distances.

[87] Suzuka A, Miyashiro R, Yoshise A, Matsui T. The home–away
assignment problems and break minimization/maximization
problems in sports scheduling. Pacific Journal of Optimization
2007;3:113–33.

Presents a unified view of the home–away assignment problem
(i.e. distance minimization) and the break minimization problem
(i.e. the number of consecutive home/away games) in the context of
round-robin tournaments. An integer programming formulation is
given for the home–away assignment problem, together with some
rounding algorithms. A technique is also presented to transform the
home–away assignment problem toMIN RES CUT, to which Goemans
and Williamson's algorithm for MAX RES CUT is applied. Computa-
tional results demonstrate that the approaches generate solutions
with good approximation ratios, in fast computational times.

[88] Trick MA. Integer and constraint programming approaches
for round-robin tournament scheduling. In: Burke E, de Causmaecker
P, editors. The 4th international conference on the practice and the-
ory of automated timetabling. Lecture notes in computer science,
vol. 2740. Berlin: Springer; 2003. p. 63–77.

Shows that practical round-robin schedules can be modeled by
both constraint programming and integer programming. Constraint
programming is often faster, but it does depend on the constraints
and the objective function. Several interesting research directions
are suggested in the conclusions of the paper.

Additionally, integer programming was used for solving schedul-
ing problems in football leagues in Bartsch et al. [115] in Section 4.1,
Briskorn [82] in Section 3.1, Della Croce and Oliveri [116] in Section
4.1, Goossens and Spieksma [119] in Section 4.1, Noronha et al. [121]
in Section 4.1, and Rasmussen [122] in Section 4.1. Furthermore, for
the traveling tournament problem integer programming was applied
in Easton et al. [68] in Section 2.8, Irnich [70] in Section 2.8, Melo et
al. [71] in Section 2.8, and Rasmussen and Trick [72] in Section 2.8.
It was also used to solve other applications in Farmer et al. [151] in
Section 4.7, Nemhauser and Trick [129] in Section 4.2, Ribeiro and
Urrutia [123] in Section 4.1, Trick [81] in Section 3.1, and Urban and
Russell [61] in Section 2.7.

3.3. Constraint programming

In order to apply constraint programming techniques to an op-
timization problem, the problem must be modeled by inter-related
sets of variables and constraints. Each variable has a finite domain of
possible instantiation values. Constraint programming derives new
constraints and fixes variable values by manipulating the original
sets of constraints and variable domains. Furthermore, variables are
fixed from logical conclusions. In defining a constraint satisfaction
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problem, typically (at least) the following questions have to be
settled:

• Which variables are used to model the problem?
• Which values are those variables allowed to take?
• What are the constraints of the problem?
• What are the relationships between the variables so that only valid

solutions are allowed once all the variables have been instanti-
ated?

• How can decisions be propagated in order to derive new con-
straints?

There are many references describing constraint satisfaction
methodologies. The reader is referred e.g. to Castillo et al. [89] and
Marriott and Stuckey [93].

[89] Castillo L, Borrajo D, Salido M, Oddi A. Planning, scheduling
and constraints satisfaction: from theory to practice. IOS Press; 2005.

Edited volumewhichmight be useful for those interested in using
constraint programming.

[90] Henz M. Constraint-based round robin tournament planning.
In: de Schreye D, editor. Proceedings of the international conference
on logic programming. Las Cruces, New Mexico: MIT Press; 1999.
p. 545–57.

Proposes that the planning of a sports tournament can be split
into three stages, which can all be solved using finite-domain con-
straint programming. The design of the Friar Tuck system (see also
Henz [91]) is outlined, the former being a generic constraint-based
round-robin planning tool. Results demonstrate the effectiveness of
this approach.

[91] Henz M. Friar tuck—a constraint-based tournament-
scheduling tool. IEEE Intelligent Systems 2000;15:5–7.

This is a short note on the Friar Tuck system (see also Henz [90]).
[92] Henz M, Müller T, Thiel S. Global constraints for round robin

tournament scheduling. European Journal of Operational Research
2004;153:92–101.

Using the domain of round-robin tournaments, this paper an-
alyzes arc-consistent propagation algorithms for the all-different
and one-factor global constraints. The paper concludes that arc-
consistent propagation for the all-different constraint is important
for the tournament problems studied in the paper.

[93] Marriott K, Stuckey P. Programming with constraints. Cam-
bridge: The MIT Press; 1998.

Textbook which might be of interest for those interested in using
constraint programming.

[94] Regin J-C. Minimization of the number of breaks in sports
scheduling problems using constraint programming. In: Freuder E,
Wallace R, editors. Constraint programming large scale discrete op-
timization. DIMACS series in discrete mathematics and theoretical
computer science, vol. 57, 2001. p. 115–30.

Presents constraint programming approaches for break mini-
mization in single round-robin tournament problems. Solutions
for the (polynomially solvable) problem of only finding a schedule
with n − 2 breaks for instances with n = 20 teams are produced in
0.61 s and in less than a minute for 60 team instances. Afterwards,
some experiments are done for the much more difficult situation
when a timetable (opponent schedule) is given and breaks are to be
minimized. Instances with up to 12 teams can be solved by intro-
ducing additional global constraints in the constraint programming
formulation.

[95] Schaerf A. Scheduling sport tournaments using constraint
logic programming. Constraints 1999;4:43–65.

Utilizing constraint logic programming, a two stage approach pro-
vides solutions to round-robin tournaments. The first stage produces
a tournament pattern, with the second stage assigning teams to the
pattern. The author shows that the problem being tackled is NP-

complete. The paper also discusses the use of an interactive system
in order to enable the user to participate in the generation of the
schedule.

Additionally, constraint programming is used for the scheduling
problems in Easton et al. [68] in Section 2.8, Henz [128] in Section
4.2, Ordonez and Knowles [154] in Section 4.7, Rasmussen and Trick
[72] in Section 2.8, Rasmussen and Trick [86] in Section 3.2, Russell
and Urban [59] in Section 2.7, Trick [81] in Section 3.1, and Trick
[88] in Section 3.2.

3.4. Heuristic search and metaheuristics

Most optimization problems in scheduling are very hard in com-
putational terms, in the sense that no polynomial-time algorithms
are known for their solution. Although some scheduling problems
in sports are amenable to be exactly solved by integer programming
due to their small size or intrinsic structure, this is not the general
case. Therefore, heuristics (or approximate algorithms) that find sub-
optimal solutions in reasonable computation times are often used in
practice. Research in heuristics started with the pioneering work of
Hart et al. [96] on algorithm A*, which follows a scheme very similar
to a branch-and-bound algorithm using a best-first strategy:

[96] Hart PE, Nilsson NJ, Raphael B. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics 1968;4:100–7.

AlgorithmA* is a graph-search based on heuristic information and
lower bounds to speedup the search. It extends the less-informed
breadth search strategywhich corresponds to Dijkstra's shortest path
algorithm when every edge has a unit weight. This is the seminal
work describing algorithm A*, its principles and properties.

[97] Nilsson NJ. Problem-solvingmethods in artificial intelligence.
New York: McGraw-Hill; 1971.

This book describes solution methods applied to search problems
in artificial intelligence, such as theorem proving and two-person
games. Special emphasis is given to algorithm A* and its basics.

[98] Nilsson NJ. Principles of artificial intelligence. Berlin:
Springer; 1982.

This book is an extended and updated version of Nilsson [97].
Constructive heuristics build feasible solutions from scratch and

are often based on quick greedy choices. The use of fast constructive
algorithms to provide initial solutions to more sophisticated proce-
dures often leads to impressive improvements in solution quality and
computation times. Local search heuristics are based on the investi-
gation of solution neighborhoods, successively replacing the current
solution by a better one within its neighborhood and terminating
when no better solution can be found. Metaheuristics are general
high-level procedures that coordinate simple heuristics and rules
to find good (often optimal) approximate solutions to computation-
ally difficult combinatorial optimization problems. Among them, we
find simulated annealing, tabu search, greedy randomized adaptive
search procedures, genetic algorithms, iterated local search, variable
neighborhood search (VNS), ant colonies, and others. They are based
on distinct paradigms and offer different mechanisms to escape from
locally optimal solutions, contrarily to greedy algorithms or to pure
local search methods. The customization (or instantiation) of some
metaheuristic to a given problem yields a heuristic to the latter.
We provide below some references focusing on local search and the
metaheuristics which are often applied to scheduling problems in
sports:

[99] Aarts E, Korst J, Michiels W. Simulated annealing. In: Burke
EK, Kendall E, editors. Search methodologies: introductory tutori-
als in optimization and decision support techniques. New York:
Springer; 2005. p. 187–210.

[100] Aarts E, Korst J, Michiels W. Theoretical aspects of local
search. Berlin: Springer; 2007.
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[101] Dorigo M, Stützle T. The ant colony optimization meta-
heuristic: algorithms, applications, and advances. In: Glover F,
Kochenberger G, editors. Handbook of metaheuristics. Boston:
Kluwer Academic Publishers; 2003. p. 251–85.

[102] Glover F, Laguna M. Tabu search. Boston: Kluwer Academic
Publishers; 1997.

[103] Goldberg DE. Genetic algorithms in search, optimization
and machine learning. Reading: Addison-Wesley; 1989.

[104] Hansen P, Mladenovi�c N. Variable neighborhood search.
In: Glover F, Kochenberger G, editors. Handbook of metaheuristics.
Boston: Kluwer Academic Publishers; 2003. p. 145–84.

[105] Hoos HH, Stützle T. Stochastic local search: foundations and
applications. San Francisco: Morgan Kaufmann; 2005.

[106] Lourenço HR, Martin OC, Stützle T. Iterated local search.
In: Glover F, Kochenberger G, editors. Handbook of metaheuristics.
Boston: Kluwer Academic Publishers; 2003. p. 321–53.

[107] Resende MGC, Ribeiro CC. Greedy randomized adaptive
search procedures. In: Glover F, Kochenberger G, editors. Handbook
of metaheuristics. Boston: Kluwer Academic Publishers; 2003. p.
219–49.

Metaheuristics are among the most effective solution strategies
for solving combinatorial optimization problems in practice. Hy-
bridizations combining principles from different metaheuristics of-
ten produce the best results. In particular, metaheuristic implemen-
tations strongly benefit from good initial solutions such as those
obtained by greedy randomized constructive heuristics and repair
methods, as shown by numerical results reported e.g. in Ribeiro and
Urrutia [77] and Duarte et al. [146], respectively. Metaheuristics and
their hybrids have been applied to a broad variety of scheduling
problems in sports. References with original algorithmic contribu-
tions, innovative components, or intricate hybridization strategies
are cited, summarized, and discussed here. More straightforward
implementations applied to specific problems are only reviewed in
Section 4, e.g. Willis and Terrill [133] in Section 4.3, Wright [134] in
Section 4.3, Wright [135] in Section 4.3, Wright [136] in Section 4.3,
and Wright [131].

Additionally, heuristic methods were also used for the scheduling
problems in Costa et al. [66] in Section 2.8, Della Croce et al. [141] in
Section 4.1, Duarte et al. [146] in Section 4.7, Hamiez and Hao [46]
in Section 2.7, and Lim et al. [112] in Section 2.7.

[108] Anagnostopoulos A, Michel L, Van Hentenryck P, Verga-
dos Y. A simulated annealing approach to the traveling tournament
problem. In: Proceedings of CPAIOR'03, 2003.

This is a preliminary version of Anagnostopoulo et al. [109]. This
paper has been mentioned in order to highlight that some of the
results presented in the 2006 journal paper were produced earlier
in 2003.

[109] Anagnostopoulos A, Michel L, Van Hentenryck P, Verga-
dos Y. A simulated annealing approach to the traveling tournament
problem. Journal of Scheduling 2006;9:177–93.

A hybrid algorithm for the TTP is proposed, based on the
simulated annealing metaheuristic and exploring both feasible and
infeasible schedules. The heuristic buys some principles from other
metaheuristics: it uses a large neighborhood with complex moves
and includes advanced techniques such as strategic oscillation and
reheats to balance the exploration of the feasible and infeasible
regions and to escape local minima at very low temperatures. It
matches the best-known solutions on the small instances and pro-
duces significant improvements over previous approaches on the
larger instances. The algorithm is claimed to be robust, because the
worst solution value it produced over 50 runs is always smaller
than or equal to the best known solutions.

[110] Costa D. An evolutionary tabu search algorithm and the
NHL scheduling problem. INFOR 1995;33:161–78.

The focus of this paper is to investigate the hybridization of ge-
netic algorithms and tabu search in solving combinatorial optimiza-

tion problems. The National Hockey League (NHL) is used as an ex-
ample to illustrate the effectiveness of the approach.

[111] Di Gaspero L, Schaerf A. A composite-neighborhood tabu
search approach to the traveling tournament problem. Journal of
Heuristics 2007;13:189–207.

A family of tabu search solvers for the approximate solution
of the TTP is proposed. They make use of complex combinations
of many neighborhood structures. The different neighborhoods are
thoroughly analyzed and experimentally compared. The solvers are
evaluated on three sets of available benchmarks and their outcomes
are compared with previous results presented in the literature.

[112] Lim A, Rodrigues B, Zhang X. A simulated annealing and hill-
climbing algorithm for the traveling tournament problem. European
Journal of Operational Research 2006;174:1459–78.

A hybridization of simulated annealing with hill-climbing is pro-
posed for the TTP. The search space is divided into a timetable space
and a team assignment space. The timetable space is explored by a
simulated annealing algorithm, while the team assignment space is
explored by a hill-climbing algorithm. A controller fixes team assign-
ments and calls on the simulated annealing component to generate
better timetables. The timetable with best schedules is passed on
to the hill-climbing component, which searches for better team as-
signments. Team assignments that give best schedules for the given
timetable are then passed back to the simulated annealing com-
ponent. The process continues until there is no improvement for a
specified fixed number of consecutive cycles or when a time limit is
reached. The underlying idea is to look for better team assignments
only for timetables with a higher chance of giving better schedules,
and to search for better timetables only for team assignments that
have a higher chance of giving better schedules.

[113] Ribeiro CC, Urrutia S. Heuristics for the mirrored travel-
ing tournament problem. European Journal of Operational Research
2007;179:775–87.

A hybrid heuristic combining principles from the GRASP and ILS
metaheuristics is proposed for the mirrored TTP. A three-step con-
structive heuristic is used to build good initial solutions. In the
first step, the canonical 1-factorization is used for constructing a
timetable with placeholders. Next, a greedy heuristic is used to as-
sign teams to placeholders. The venues of the games are set round
by round and local search is used to repair possible infeasibilities
in the last step of the constructive heuristic. The hybrid heuristic
makes use of four simple neighborhoods for local search and one
ejection chain neighborhood for perturbations. The results obtained
by the hybrid heuristic were even better than the best known at the
time of writing for some instances of the less constrained TTP pro-
duced by Anagnostopoulos et al. [108], with execution times limited
to 15min. State-of-the-art algorithms at the time of writing usually
reported up to several days of computation time. It is also shown
that the constructive algorithm is very quick and produces good ini-
tial solutions that improve the quality of the best solution found by
the hybrid heuristic.

[114] Van Hentenryck P, Vergados Y. Traveling tournament
scheduling: a systematic evaluation of simulated annealing. In: In-
tegration of AI and OR techniques in constraint programming for
combinatorial optimization problems. Lecture notes in computer
science, vol. 3990. Berlin: Springer; 2006. p. 228–43.

This paper presents extensions and enhancements of the algo-
rithm in Anagnostopoulos et al. [108] for finding mirrored tourna-
ment schedules. The requirement of having a mirrored schedule is
modeled as a soft constraint and its violation is penalized in the
objective function. Variants of previously used neighborhoods that
preserve the mirrored structure are presented. A new neighborhood
is also described, consisting in the rearrangement of certain rounds
to reverse a sequence of consecutive away games. Other refinements
to the original algorithm are introduced. Numerical results showed
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that the new algorithm was able to improve some of the best known
results at the time of writing.

4. Applications

Exact and approximate optimization methods have been widely
applied to scheduling problems in sports. In this section we review
some of these applications, classified by their corresponding fields
or sports of application. Football and basketball are the sports with
more applications.

4.1. Football

[115] Bartsch T, Drexl A, Kröger S. Scheduling the professional
soccer leagues of Austria and Germany. Computers & Operations
Research 2006;33:1907–37.

The creation of suitable schedules for national top soccer league
in Europe has to address other constraints, besides numerous con-
flicting inner-league requirements and preferences. Additionally, the
games of the European Cup matches (Champions League, UEFA Cup,
National CupWinners) have to be taken into account. This paper con-
siders the case of Austria and Germany, that is the planning problem
the Deutsche Fuball-Bund (DFB) and the Österreichische Fuball-Bund
(ÖFB) are confronted with. For both leagues, models and algorithms
are developed which yield reasonable schedules quickly. Heuristics
and branch and bound are applied. The proposed approach gener-
ates schedules which have been accepted for play once by the DFB
and six times by the ÖFB.

[116] Della Croce F, Oliveri D. Scheduling the Italian football
league: an ILP-based approach. Computers & Operations Research
2006;33:1963–74.

Scheduling the Italian Major Football League (the so-called “Serie
A”) consists in finding a double round-robin tournament schedule
that takes into account both typical requirements such as conditions
on home–away matches and specific requests of the Italian Foot-
ball Association such as twin-schedules for teams belonging to the
same home-town. A solution procedure is presented which is able
to derive feasible schedules that are also balanced with respect to
additional cable televisions requirements. This procedure adapts the
approach of Nemhauser and Trick [129] to schedule a college bas-
ketball conference that considers, however, only half of the teams
involved here. The proposed procedure is divided into three phases:
the first phase generates a pattern set respecting the cable televi-
sions requirements and several other constraints; the second pro-
duces a feasible round-robin schedule compatible with the above
pattern set; and the third phase generates the actual calendar as-
signing teams to patterns. The procedure allows to generate within
short time several different reasonable calendars satisfying the ca-
ble television companies requirements and satisfying various other
operational constraints, while minimizing the total number of vio-
lations of the home–away matches conditions.

[117] Durán G, Guajardo M, Miranda J, Sauré D, Souyris S, Wein-
traub A, et al. Scheduling the Chilean soccer league by integer pro-
gramming. Interfaces 2007;37:539–52.

Since 2005, Chile's professional soccer league has used a game-
scheduling system that is based on an integer linear programming
model. The Chilean league managers considered several operational,
economic, and sporting criteria for the final tournaments' schedul-
ing. Thus, they created a highly constrained problem that had been,
in practice, unsolvable using their previous methodology. This led to
the adoption of a model that used some techniques that were new in
soccer-league sports scheduling. The schedules they generated pro-
vided the teams with benefits such as lower costs, higher incomes,
and fairer seasons. In addition, the tournaments were more attrac-
tive to sports fans. Readers are also referred to Durán et al. [118].

[118] Durán G, Guajardo M, Weintraub A, Wolf R. O.R. & soccer:
scheduling the Chilean league using mathematical programming.
OR/MS Today 2009;36:42–7.

This paper is a follow up to Durán et al. [117], written for a more
accessible audience. If you want an overview of the problem being
tackled you might want to read this paper, for more technical details
see Durán et al. [117].

[119] Goossens D, Spieksma F. Scheduling the Belgian soccer
league. Interfaces 2009;39:109–18.

It is described how the Belgian soccer league is scheduled using
an integer linear programming formulation. The objective is to find
a double round-robin tournament schedule for 18 teams taking into
account constraints on the use of stadiums as well as wishes made by
the teams, the police, and the broadcasting companies. The schedules
were used in practice for the seasons 2006–2007 and 2007–2008.

[120] Kendall G. Scheduling English football fixtures over holiday
periods. Journal of the Operational Research Society 2008;59:743–55.

This paper considers the minimization of the travel distances by
English football clubs over the Christmas and New Year period. The
results show that fixtures can be generated that adhere to all known
constraints and produce total travel distances that are about 25%
that of the fixtures that were actually used.

[121] Noronha TF, Ribeiro CC, Duran G, Souyris S, Weintraub A.
A branch-and-cut algorithm for scheduling the highly-constrained
Chilean soccer tournament. In: Practice and theory of automated
timetabling VI. Lecture notes in computer science, vol. 3867. Berlin:
Springer; 2007. p. 174–86.

The qualifying phase of the Chilean soccer championship follows
the structure of a compact single round-robin tournament. Good
schedules are of major importance for the success of the tourna-
ment, making them more balanced, profitable, and attractive. The
schedules were prepared by ad hoc procedures until 2004, when a
rough integer programming strategy was proposed. The original in-
teger programming formulation is improved in this work. Valid in-
equalities for improving the linear relaxation bound are derived and
a new branch-and-cut strategy is developed. Computational results
on a real-life instance illustrate the effectiveness of the approach and
the improvement in solution quality.

[122] Rasmussen RV. Scheduling a triple round robin tournament
for the best Danish soccer league. European Journal of Operational
Research 2008;185:795–810.

Scheduling the Danish football league is a highly constrained
problem, with many conflicting constraints. The problem is also dif-
ferent to many other leagues as it is a triple round-robin tourna-
ment, which leads to an uneven distribution of home and away
games. An IP model is presented and the solution methodology uti-
lizes a logic-based Benders decomposition and column generation.
The proposed approach is compared against the actual schedules
that were used for the 2005/2006 season, as well as for randomly
generated instances. The results demonstrate the effectiveness of the
approach.

[123] Ribeiro CC, Urrutia S. Scheduling the Brazilian soccer tour-
nament with fairness and broadcast objectives. In: Practice and the-
ory of automated timetabling VI. Lecture notes in computer science,
vol. 3867. Berlin: Springer; 2007. p. 147–57.

The Brazilian football tournament is yearly organized by the
Brazilian Football Confederation (CBF). Its major sponsor is TV
Globo, the largest media group and television network in Brazil,
who imposes constraints on the games to be broadcast. Scheduling
the games of this tournament is a very constrained problem, with
two objectives: breaks minimization (fairness) and the maximiza-
tion of the revenues from TV broadcasting. An integer programming
decomposition strategy to solve this problem to optimality is pro-
posed. Numerical results obtained for the 2005 and 2006 editions
of the tournament are reported and compared.
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Other papers dealing with scheduling problems for football
leagues are already reviewed in other sections, see e.g. Griggs
and Rosa [18] in Section 2.1, and Schreuder [23] in Section 2.1. A
scheduling problem for football referees is described in Yavuz et al.
[156] in Section 4.7.

4.2. Basketball

[124] Ball BC, Webster DB. Optimal scheduling for even-
numbered team athletic conferences. AIIE Transactions 1977;9:161–9.

This paper handles a scheduling problem for a basketball confer-
ence similar to that in Campbell and Chen [126]. The problem of min-
imizing travel distances is modeled using an integer programming
formulation, but solved by a heuristic very similar to the method
developed by Campbell and Chen.

[125] Bean JC, Birge JR. Reducing travelling costs and player fati-
gue in the national basketball association. Interfaces 1980;10:98–102.

For the National Basketball Association (NBA) in the United States,
schedules for 22 teams are constructed where each team plays 82
games and resting times and building availabilities have to be taken
into account. Methods based on heuristics for the traveling salesman
problem are proposed in order to reduce the airline travelling costs.
Computational results are presented for the seasons 1978/1979 and
1979/1980, showing that the calculated schedules reduce the costs
by about 20% compared with the official NBA schedules.

[126] Campbell RT, Chen D-S. A minimum distance basketball
scheduling problem. In: Machol RE, Ladany SP, Morrison DG, editors.
Management science in sports. Studies in the management sciences,
vol. 4. Amsterdam: North-Holland; 1976. p. 15–25.

This is the first paper considering the problem of scheduling a
basketball conference of 10 teams, corresponding to a relaxed double
round robin tournament. The teams are allowed to play at most
two consecutive away games without returning home. In the first
phase, optimal trips for each team are derived. This is shown to be
equivalent to pairing the teams two by two such that the distances
between the paired teams are minimized. In the second phase, the
optimal pairing is used to build a number of feasible sequences using
a constructive approach attempting to minimize the total traveled
distance.

[127] Fron�cek D. Scheduling the Czech national basketball league.
Congressus Numerantium 2001;153:5–24.

Schedules are constructed for the Czech national basketball
league using graph models.

[128] Henz M. Scheduling a major college basketball conference—
revisited. Operations Research 2001;49(1):163–8.

A much faster constraint programming approach is provided for
the same problem as in Nemhauser and Trick [129]. The 179 solutions
from Nemhauser and Trick [129] were found in less than 1min,
whereas Nemhauser and Trick reported an overall running time of
about 24h.

[129] Nemhauser GL, Trick MA. Scheduling a major college bas-
ketball conference. Operations Research 1998;46:1–8.

The nine universities in the Atlantic Coast Conference (ACC) have
a basketball competition in which each school plays home and away
games against each other over a nine-week period. The creation of a
suitable schedule is a very difficult problemwith amyriad of conflict-
ing requirements and preferences. The paper presents an approach
that uses a combination of integer programming and enumerative
techniques. It yields reasonable schedules very quickly and gave a
schedule that was accepted by the ACC for play in 1997–1998.

[130] van Voorhis TV. Highly constrained college basket-
ball scheduling. Journal of the Operational Research Society
2002;53:603–9.

Considers the scheduling of three basketball conference leagues:
The Big 12, The Southeastern Conference and Conference—USA. Each

of these leagues has 12 teams, partitioned into 6-team divisions.
The scheduling problem is modeled as an integer program. The con-
straints that are catered for include that each team plays at home
during two of the last four rounds, each team plays two of its first
four games at home, each team is given four or five weekend home
games, and each pair of teams cannot meet twice within four consec-
utive rounds. A customized depth-first algorithm is presented. The
results show that the results are not only superior to the 2001 sched-
ules, but that the system can also create many alternative schedules
which can be used by the schedulers to consider other aspects such
as TV coverage.

[131] Wright M. Scheduling fixtures for basketball New Zealand.
Computers & Operations Research 2006;33:1875–93.

Describes a real-life problem in scheduling basketball fixtures in
New Zealand. The problem has only a few constraints, but many ob-
jectives. The problem is described in detail and a simulated anneal-
ing variant is used to produce high quality schedules. The system
was used to produce the 2004 schedule.

4.3. Cricket

[132] Armstrong J, Willis RJ. Scheduling the cricket World
Cup—a case-study. Journal of the Operational Research Society
1993;44:1067–72.

This paper describes the scheduling of the 1992 Cricket World
Cup tournament, whichwas co-hosted by Australia andNew Zealand.
The initial stage of the competition required that each of the nine
teams had to play each other once (36 matches) over 2 days. A vari-
ety of constraints had to be respected, which included satisfying lo-
cal populations and worldwide TV audiences and other practical and
logistical considerations. An integer programming formulation was
presented, which was not utilized due to the large number of con-
straints. The solution methodologies were developed in Lotus 1-2-3
(a spreadsheet package). One of these methods allowed interaction
with the user and was more useful, but took about 4h to run. None
of the schedules produced were ideal and a problem had to be de-
composed so that the 13 matches to be played in New Zealand were
produced first.

[133] Willis RJ, Terrill BJ. Scheduling the Australian state cricket
season using simulated annealing. Journal of the Operational Re-
search Society 1994:45:276–80.

Considers the scheduling of domestic cricket in Australia, includ-
ing both first class and one day matches. Various constraints had
to be respected, including scheduling around international fixtures.
Simulated annealing was utilized and, after some manual amend-
ments, the schedule was used for the 1992–1993 season.

[134] Wright M. A fair allocation of county cricket opponents.
Journal of the Operational Research Society 1992;43:195–201.

Presents a case study that produces a four year schedule
(1992–1995) for English county cricket. The nature of the schedul-
ing problem is such that some teams meet each other once during
a season, but some teams play each other twice. This could be
considered unfair if the teams playing twice were considered as
weak. However, certain teams would like to play each other twice
(whether they are considered strong or weak), due for example to
local rivalries and for maximizing gate receipts. The schedule has to
be as fair as possible (and to be seen to be fair), whilst respecting
the various constraints. The solution approach used is based on
simulated annealing.

[135] Wright M. Timetabling county cricket fixtures using a
form of tabu search. Journal of the Operational Research Society
1994;45:758–70.

Describes a system that was developed to automate the produc-
tion of English county cricket schedules. The constraints consider
aspects such as the times of international matches and knock out
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competitions, travel considerations between matches, and question-
naires that are sent to each club where they are able to make certain
requests. An initial solution is created, which takes into account the
constraints but is free to ignore them. A two phase local search based
on tabu search is then applied to the initial solution. The algorithm
runs overnight (or perhaps a weekend) with the best solutions being
presented to the cricket authorities who, after making a few manual
changes, present it to the various teams.

[136] Wright M. Scheduling fixtures for New Zealand cricket. IMA
Journal of Management Mathematics 2005;16:99–112.

Describes the methodology that was used to produce the
2003–2004 cricket fixtures for New Zealand cricket. Subcost-guided
simulated annealing is utilized paying particular attention to the
neighborhood moves as even simple moves can lead to an infeasible
solution.

Additionally, Wright [155] in Section 4.7 deals with the schedul-
ing problem for cricket umpires.

4.4. Baseball

[137] Cain WO. The computer-aided heuristic approach used to
schedule the major league baseball clubs. In: Ladany SP, Machol
RE, editors. Optimal strategies in sports. Amsterdam: North-Holland;
1977. p. 33–41.

For the National American Baseball League, schedules for 12
teams divided into two divisions have to be found, where each team
plays 162 games (18 times against each team of its own division
and 12 times against each team of the other division). The objective
is to determine a schedule regarding fairness aspects, maximizing
attendance and minimizing travel costs. The author describes how
schedules for this problem are created in practice assisted by a
computer. Results are reported for the seasons 1969 and 1975.

[138] Russell RA, Leung JM. Devising a cost effective schedule for
a baseball league. Operations Research 1994;42:614–25.

This paper discusses the complexity, and constraints, in producing
a schedule for a baseball league. Two heuristics are presented to
enable a low cost schedule to be found. The Texas Baseball League
is used as an example instance, with an improved schedule being
produced.

Additionally, Evans [149] in Section 4.7 deals with a scheduling
problem for baseball umpires.

4.5. Hockey

[139] Ferland JA, Fleurent C. Computer aided scheduling for a
sport league. INFOR 1991;29:14–25.

Describes a support system to help scheduling the National
Hockey League, a relaxed tournament with 21 teams. It is divided
into two conferences and each conference is divided into two
divisions. The schedules are subject to a number of constraints
involving aspects such as the places where the games take place,
how often teams can play, the minimum time between two games
with the same opponents, and the traveling distances. A number of
procedures to be used while the schedule is created manually are
presented.

[140] Fleurent C, Ferland JA. Allocating games for the NHL using
integer programming. Operations Research 1993;41:649–54.

In response to the National Hockey League expanding from 21
teams, the authors devised an integer linear programming formula-
tion for the problem to investigate how the increase in the number
of teams would add to the complexity of generating schedules. The
paper considers various scenarios (such as 23 or 24 teams and 80,
82, or 84 games). The solution accepted by the NHL managers for a
24-team problem is shown. It was used as the basis for a schedule,
with other matches being manually added.

Additionally, Costa [110] in Section 3.4 deals with a hockey
scheduling problem.

4.6. Tennis and table tennis

[141] Della Croce F, Tadei R, Asioli P. Scheduling a round robin
tennis tournament under courts and players availability constraints.
Annals of Operations Research 1999;92:349–61.

A tennis tournament is considered where courts and players are
not always available. The objective is to find a schedule in which the
number of scheduledmatches is maximized. The problem is modeled
as amaximummatching problem in a bipartite graphwith additional
constraints. It is solved by a two-stage heuristic. In the first step
pairings are determined which are assigned to courts afterwards
using local search.

[142] Knust S. Scheduling non-professional table-tennis leagues.
European Journal of Operational Research, 2007, in press.

Timetables for a time-relaxed scheduling problem in a non-
professional table-tennis league are calculated, where especially
constraints on team availabilities have to be taken into account.
The problem is modeled as an integer linear program and a multi-
mode resource-constrained project scheduling problem. Based on
the second model a heuristic solution algorithm is proposed, which
proceeds in two stages using local search and genetic algorithms.

[143] Schönberger J, Mattfeld DC, Kopfer H. Memetic algorithm
timetabling for non-commercial sport leagues. European Journal of
Operational Research 2004;153:102–16.

Timetables for a time-relaxed scheduling problem in a non-
professional table-tennis league are constructed by memetic algo-
rithms and constraint programming.

Additionally, Farmer et al. [151] in Section 4.7 study the schedul-
ing of tennis umpires.

4.7. Referee assignment

The assignment of officials (or crews of officials) to the already
scheduled games of a competition is possibly the mostly studied
scheduling problem in sports after that of game scheduling. Appli-
cations to professional leagues of sports such as baseball, cricket,
football, and tennis appear in the literature. Fairness issues, such as
avoiding frequent assignments of the same referee to games of the
same team, are among the most important constraints and motiva-
tions for these applications.

The referee assignment problem is also common to many am-
ateur leagues of different sports such as soccer, baseball, and bas-
ketball. In this problem, a limited number of referees with different
qualifications and availabilities should be assigned to a set of games
already scheduled. Typical applications involve leagues where hun-
dreds of referees should be assigned to hundreds of games taking
place in a short period of time such as a weekend. The assignment
of judges in some non-sporting competitions has some features that
are common to referee assignment in sport leagues.

[144] Dinitz JH, Stinson DR. On assigning referees to tournament
schedules. Bulletin of the Institute of Combinatorics and its Applica-
tions 2005;44:22–8.

It is shown how assigning referees to tournament schedules can
be done by using so-called room squares known from combinatorial
designs.

[145] Duarte AR, Ribeiro CC. Referee assignment in sports leagues:
approximate and exact multi-objective approaches. In: 19th inter-
national conference on multiple criteria decision making, Auckland,
2008. p. 58–60.

The bi-objective referee assignment problem consists in assigning
referees to all games of a tournament scheduled to a given time
interval, minimizing the sum over all referees of the absolute value
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of the difference between the target and the actual number of games
assigned to each referee and the sum over all referees of the idle
times between consecutive games assigned to the same referee. A
heuristic based on extensions of the three-phase strategy proposed
in Duart et al. [146] originally developed for the single objective
problem version is proposed to find good approximations of the
Pareto set for real-size instances. Numerical results show that the
biobjective heuristic gives a good approximation of the exact Pareto
frontier.

[146] Duarte AR, Ribeiro CC, Urrutia S. A hybrid ILS heuristic to
the referee assignment problem with an embedded MIP strategy. In:
Burke EK, Rudová H, editors. Hybrid metaheuristics. Lecture notes in
computer science, vol. 4771. Berlin: Springer; 2007. p. 82–95.

This paper extends and improves a previous three-phase ap-
proach for this problem proposed by Duart et al. [147], based on
a constructive heuristic, a repair heuristic to make the initial so-
lutions feasible, and an iterated local search improvement heuris-
tic. A new construction algorithm based on a greedy criterion is
proposed to build low-cost initial solutions. Also proposed is an in-
novative hybridization strategy, in which a mixed integer program-
ming exact algorithm replaces the original neighborhood-based local
search within the ILS heuristic. The use of time-to-target-solution-
value plots is emphasized in the evaluation of the numerical results
obtained for large realistic instances, illustrating the efficiency and
the robustness of the new approach. The proposed hybridization of
mixed integer programming with local search can be extended to
other metaheuristics and applications, opening a new research av-
enue to more robust algorithms.

[147] Duarte AR, Ribeiro CC, Urrutia S, Haeusler EH. Referee as-
signment in sports leagues. In: Burke EK, Rudová H, editors. Practice
and theory of automated timetabling VI. Lecture notes in computer
science, vol. 3867. Berlin: Springer; 2007. p. 158–73.

This paper introduces a novel problem in sports management, in
which a limited number of referees with different qualifications and
availabilities should be assigned to a set of games already scheduled.
The authors describe a number of rules and objectives that should be
taken into accountwhen referees are assigned to games. The problem
has applications in many amateur sport leagues of different sports.
A basic problem variant common to leagues of sports such as soc-
cer, baseball, and basketball is addressed. It is formulated by integer
programming and its decision version is proved to be NP-complete.
To tackle real-life large instances of the referee assignment problem,
the authors developed a three-phase heuristic approach based on a
constructive procedure, a repair heuristic to make solutions feasible,
and a local search heuristic to improve feasible solutions. Numerical
results on realistic instances with up to 500 games and 875 referees
are given, illustrating in particular the effectiveness of the construc-
tion and repair procedures and the importance of starting from good
initial solutions.

[148] Ernst AT, Jiang H, Krishnamoorthy M, Owens B, Sier D. An
annotated bibliography of personnel scheduling and rostering. An-
nals of Operations Research 2004;127:21–144.

This paper focusses on personnel scheduling and does not explic-
itly mention sports scheduling. However, it contains references to
over 700 papers, many of which could be applicable to areas such as
referee assignment or other personnel scheduling problems related
to sports. One section of the paper also refers to venue management,
which might also have relevance to sports scheduling.

[149] Evans JR. A microcomputer-based decision support system
for scheduling umpires in the American Baseball League. Interfaces
1988;18:42–51.

Umpire scheduling in the American Baseball League is a com-
plex, multicriteria problem, suited for an interactive decision support
system that incorporates optimization techniques, heuristic rules,
and human judgement. In assigning officials to games, one objec-

tive typically is to minimize total travel cost while satisfying a set
of frequency-oriented constraints. These constraints limit the num-
ber of times an official or crew of officials is exposed to each team,
balance home and away game exposures, and balance exposures to
teams over the course of a season. The American Baseball League is
composed of 14 professional teams. The season lasts about 26 weeks
and each team plays 168 games.

[150] Evans JR, Hebert JE, Deckro RF. Play ball—the scheduling of
sports officials. Perspectives in Computing 1984;4:18–29.

Considers the assignment of umpires for the American League
of Professional Baseball Clubs and the for the Atlantic Coast Con-
ference (football and basketball). These two are examples of fixed-
crew and variable-crew, fixed-position scheduling. In the first case
an official is assigned to a crew and that crew remains intact for the
entire season. The crews are then assigned to games. In the second
case, an individual always works in the same position but the crew
changes from one game to another. The assignment algorithms are
described.

[151] Farmer A, Smith JS, Miller LT. Scheduling umpire crews for
professional tennis tournaments. Interfaces 2007;37:187–96.

Professional tennis organizations, such as the United States Ten-
nis Association (USTA), the Association of Tennis Professionals (ATP),
the International Tennis Federation (ITF), and the Women's Tennis
Association (WTA), host tennis tournaments throughout the world.
At these tournaments, chief umpires assign and schedule line um-
pires for every match. This task is performed manually for most
tournaments. For large tournaments, such as the US Open, they can
use software developed to facilitate scheduling, which often creates
suboptimal or infeasible schedules that must be manually adjusted.
The authors developed a program based on optimization that auto-
mates the scheduling procedure. They claim that their program con-
sistently provides high-quality schedules in as little as 25% of the
time taken with other methods. The problem is formulated by inte-
ger programming. The objective includes components for which the
user can use a subjective weighting scheme to set priorities. The user
can thus assign umpires with lower skill ratings to some lines for
training purposes instead of umpires with better skill ratings. Since
all feasible schedules may have gender shortages, an arbitrarily high
penalty factor is used in the objective function to heavily penalize
shortages.

[152] Lamghari A, Ferland JA. Heuristic techniques to assign
judges in competitions. In: Prahlad V, Tan WW, Loh AP, editors.
Proceedings of the 3rd international conference on computational
intelligence, robotics and autonomous systems, Singapore, 2005.

Heuristic techniques are introduced to assign the judges for the
John Molson International Case Competition. This judge assignment
problem can be seen as that of forming maximally diverse groups,
which consists in partitioning a number of entities into a fixed num-
ber of groups having the same size and maximizing diversity within
groups. The complexity of the integer programming mathemati-
cal formulation accounting for the rules to be followed in assign-
ing the judges lead to the use of heuristic techniques to solve the
problem. Three different techniques are introduced and compared
numerically.

[153] Lamghari A, Ferland JA. Structured neighborhood tabu
search for assigning judges to competitions. In: Proceedings of IEEE
symposium on computational intelligence in scheduling, Honolulu.
IEEE; 2007. p. 238–45.

A metaheuristic approach including three different stages is in-
troduced to assign the judges for the John Molson International Case
Competition. The complexity of the mathematical formulation ac-
counting for the rules to be followed in assigning the judges inspired
the use of heuristics. Two different tabu search methods in the first
two stages are combined with a diversification strategy. Numeri-
cal results on problems with up to 500 individual competitions and
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2530 judges are provided to illustrate the efficiency of the approach
to generate good solutions.

[154] Ordonez R, Knowles TW. Solving the American League um-
pire crew scheduling problem as a constraint satisfaction problem.
In: Proceedings of the 29th annual meeting of the decision sciences
institute, vol. 2, Las Vegas, 1998. p. 1058–61.

This scheduling problem involves assigning seven crews of the
American Baseball League to officiate games over an 8-series sched-
ule segment. The schedule must satisfy a number of travel rules and
restrictions, while at the same time meeting a number of goals. The
associated integer programming set partitioning problem is refor-
mulated as a constraint satisfaction problem and solved by the ILOG
Solver.

[155] Wright MB. Scheduling English cricket umpires. Journal of
the Operational Research Society 1991;42:447–52.

This paper concerns a computer system which was devised to
schedule umpires for the major cricket games played in England. The
Test and County Cricket Board needs to allocate umpires to matches
every year, in such a way as to satisfy various constraints and meet
various objectives. Every cricketmatch requires two umpires. A num-
ber of professional umpires are employed full-time to cover major
cricket matches. In addition, there are a few other umpires who are
used occasionally. Results are reported for the 1990 season, involv-
ing 614 matches. Of these 478 required two topclass umpires, while
the other 136 required only one, hence the total number of alloca-
tions to be made was 1092. These games were not all of the same
length: their duration was 1, 3, 4, or 5 days. There were 26 full-
time umpires involved and five reserves, who could be used on a
prespecified number of occasions for particular types of games. An
outline of the solution method is given, rather than exact details of
the algorithms used.

[156] Yavuz M, Inan UH, Figlali A. Fair referee assignments for
professional football leagues. Computers & Operations Research
2008;35:2937–51.

This paper presents an integer programming model for the fair
assignment of referees to football games, avoiding frequent assign-
ments of the same referee to games of the same team. A constructive
heuristic and a local search procedure are developed for its solution.

4.8. Miscellaneous

In this section, we review some applications of optimization
methods to other miscellaneous problems in sports.

[157] Lucena CJP, Noronha TF, Ribeiro CC, Urrutia S. A multi-
agent framework to build integer programming applications to play-
off elimination in sports tournaments. International Transactions in
Operational Research 2008;15:739–53.

Describes a multi-agent framework for developing autonomous
applications of integer programming to playoff qualification and
elimination problems in sports tournaments. These applications in-
volve collecting results from several sources, processing them, and
publishing a report on the situation of each team taking part in the
competition, regarding qualification and elimination statistics. An
instance of this framework was created to follow the Brazilian na-
tional football tournament, showing very good results in practice in
terms of ease of use; speed of update, processing and publication;
and attractiveness to the users.

[158] Nowak M, Epelman M, Pollock SM. Assignment of swim-
mers to dual meet events. Computers & Operations Research
2006;33:1951–62.

Describes a problem where a swimming coach has to assign
swimmers across a number of swim meets, with the aim of max-
imizing the number of points won by the team. It is essentially a
rostering problem. A binary integer model is presented to capture
the variety of constraints that have to be respected. The model was

tested on a real world problem instance consisting of 17 swimmers
and 11 events. CPLEX found solutions in approximately 3.5 s.

[159] Ribeiro CC, Urrutia S. OR on the ball: applications in sports
scheduling and management. OR/MS Today 2004;31:50–4.

Two major sporting competitions—Major League Baseball in the
United States and the national soccer championship in Brazil—are
season-long tournaments divided in two stages. In the first stage,
classification for the playoffs is determined. Baseball fans in the
United States are much like soccer fans in Brazil: they love statistics
almost as much as they love the game itself. The paper describes
the use of two integer programming models developed to detect in
advance when a teal is qualified for, or eliminated from, the playoffs.

[160] Ribeiro CC, Urrutia S. An application of integer program-
ming to playoff elimination in football championships. International
Transactions in Operational Research 2005;12:375–86.

Football is the most followed and practiced sport in Brazil.
Thousands of jobs depend directly from the activity of the football
teams. Teams which are not qualified to the playoffs of the national
championship loose a lot of money and sometimes are even forced
to dismantle their structure due to the lack of resources. Two inte-
ger programming models are presented. Applied together, they are
able to detect in advance when a team is already qualified to, or
eliminated from, the playoffs. Both problems are NP-hard. Neces-
sary conditions for qualification are also established. Results from
these models can be used not only to guide teams and fans, but are
also very useful to identify and correct wrong statements made by
the press and team administrators.

[161] Russell T, van Beek P. Mathematically clinching a playoff
spot in the NHL and the effect of scoring systems. In: Advances in
artificial intelligence. Lecture notes in computer science, vol. 5032.
Berlin: Springer; 2008. p. 234–45.

The problem of determining when a National Hockey League
team has clinched a playoff spot is considered. An exact and fast ap-
proach based on constraint programming is proposed. Dominance
constraints and special-purpose propagation algorithms are intro-
duced. The approach was experimentally evaluated on two seasons
of the NHL. It could show qualification before the results posted in
the Globe and Mail, a widely read newspaper which uses a heuristic
approach. Each instance was solved within seconds. The solver was
used to examine the effect of scoring models on elimination dates.

[162] Scarf P, Yusof MM, Bilbao M. A numerical study of de-
signs for sporting contests. European Journal of Operational Research
2009;198:190–8.

This paper proposes a number of tournament metrics that can
be used to measure the success of a sporting contest or tournament,
and describe how these metrics may be evaluated for a particular
tournament design. Knowledge of these measures can then be used
to compare competing designs, such as round-robin, pure knockout,
and hybrids of these designs. It is shown, for example, how the design
of the tournament influences the outcome uncertainty of the tour-
nament and the number of unimportant matches within the tour-
nament. The implications of these designs may be explored within
a modeling paradigm.

5. Concluding remarks

This annotated bibliography references over 160 papers, with the
earliest being published in 1968.

In the following tables we provide a brief analysis of the papers
that we reference in this paper. Table 1 details how many papers
have been published each year. Table 2 provides an analysis of where
the papers have been published. The Others heading categorizes pub-
lications such as books, book chapters, and conference proceedings.

There has been a steady increase in sports scheduling articles
in recent years. This is due not only to the intrinsic computational
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Table 1
Analysis of cited papers by year.

Year Publications

1968 1
1969 0
1970 0
1971 1
1972 0
1973 0
1974 1
1975 0
1976 2
1977 4
1978 0
1979 0
1980 4
1981 1
1982 3
1983 0
1984 1
1985 3
1986 0
1987 0
1988 4
1989 2
1990 1
1991 2
1992 2
1993 3
1994 4
1995 2
1996 2
1997 3
1998 5
1999 4
2000 3
2001 9
2002 1
2003 11
2004 8
2005 10
2006 17
2007 19
2008 17
2009 12

Total 162

difficulty of the problems in the area and to their challenging nature,
but is also motivated by a large number of innovative applications
in practice. In fact, sporting events continue to generate a lot of
public interest, with fairness and technical criteria to be respected
and logistic issues to be optimized.

For researchers and practitioners who are interested in this area,
the articles that are discussed in this work provide access to all
the important contributions over the past 40 years. They may also
provide inspiration for teachers of Operations Research courses, who
may be able to use successful case studies to motivate students and
to illustrate in classroom the use of different formulation tools and
solution methods (see Trick [10] in Section 1).

The hardness of the optimization problems in sports scheduling
has led to the use of different techniques in their solution: decompo-
sition strategies, integer programming, column generation, Benders
cuts, constraint programming, heuristic search, metaheuristics, and
their hybrids. The best results are often obtained by methods derived
from the hybridization of integer programming, constraint program-
ming and metaheuristics. Optimal solutions can be found by exact
methods for some medium-size problems in professional leagues.

Interest by problems in this area has risen, in particular, since
the introduction of the traveling tournament problem and its bench-
mark instances in the seminal paper by Easton et al. [4], discussed in
Section 2.8. TTP benchmark instances and real-life instances are in-

Table 2
Analysis of cited papers by journal.

Journal Publications

Others 37
Lecture Notes in Computer Science 15
European Journal of Operational Research 14
Discrete Applied Mathematics 13
Computers & Operations Research 9
Journal of the Operational Research Society 8
Ars Combinatoria 5
Bulletin of the Institute of Combinatorics and its Applications 5
Interfaces 5
Operations Research Letters 5
Operations Research 4
Discrete Optimization 4
Annals of Operations Research 2
Congressus Numerantium 2
Discrete Mathematics 2
INFOR 2
International Transactions in Operational Research 2
Journal of Combinatorial Mathematics and Combinatorial
Computing

2

Journal of Scheduling 2
Management Science in Sports 2
OR/MS Today 2
AIIE Transactions 1
American Mathematical Monthly 1
Australasian Journal of Combinatorics 1
Biometrika 1
Constraints 1
DIMACS Series in Discrete Mathematics and Theoretical
Computer Science

1

IEEE Intelligent Systems 1
IEEE Transactions on Systems Science and Cybernetics 1
IMA Journal of Management Mathematics 1
INFORMS Transactions on Education 1
Journal of Combinatorial Theory 1
Journal of Graph Theory 1
Journal of Heuristics 1
Lecture Notes in Artificial Intelligence 1
Lecture Notes in Economics and Mathematical Systems 1
Mathematical Programming Study 1
Networks 1
Omega 1
Pacific Journal of Optimization 1
Perspectives in Computing 1

Total 162

trinsically difficult to solve: for many years, the largest TTP instance
exactly solved to optimality had only six teams. Only recently, in
June 2008, the 8-team NL8 benchmark TTP instance was solved to
optimality by an intricate branch-and-price algorithm described in
Irnich [70] (see Section 2.8).

The hardness of optimization problems in sports scheduling is
also driving research on new algorithmic directions for clusters and
computational grids, as outlined by Araújo et al. [62] (see Section
2.8). A hierarchical distributed implementation of cooperative meta-
heuristics such as GRASP and ILS on a medium-size grid lead to im-
proved results for several TTP benchmark issues. However, in spite
of its hardness, it is noticeable that the decision version of the trav-
eling tournament problem is not proved to be NP-complete at the
time of writing.

The literature reports real-life applications of optimization
methods to the scheduling of baseball, basketball, and hockey
tournaments in the North America, as well as to soccer leagues in
Austria, Chile, Denmark, England, Germany and Japan, to volleyball
tournaments in Argentina and The Netherlands, and to the rugby
World Cup. The Brazilian Soccer Confederation also used an opti-
mized fixture constructed by a decision support system powered by
an integer programming model for the 2009 edition of its annual
tournament.
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