

SURVEYS IN
CO M BI N ATOR I AL 0 PTI M IZATl ON

NORTH-HOLLAND MATHEMATICS STUDIES 132
Annals of Discrete Mathematics (31)

General Editor: Peter L. HAMMER
Rutgers University, New Brunswick, NJ, U. S.A.

Advisory Editors
C. BERGE, Universite de Paris, France
M. A. HARRISON, University of California, Berkeley, CA, U.S.A.
V: KLEE, University of Washington, Seattle, WA, U.S.A.
J. -H. VAN LINT, California Institute of Technology, Pasadena, CA, U.S.A.
G. -C. ROTA, Massachusetts Institute of Technology, Cambridge, MA, U. S.A.

NORTH-HOLLAND -AMSTERDAM NEW YORK 'OXFORD 'TOKYO

SURVEYS IN
COM BI NATORIAL OPTIMIZATION

Edited by

Silvano MARTELLO
DEIS - University of Bologna
Italy

Gilbert LAPORTE
Ecole des H. E. C.
Montreal, Quebec, Canada

Michel MINOUX
CNET
Paris, France

Celso RlBElRO
Catholic University of Rio de Janeiro
Brazil

1987

NORTH-HOLLAND -AMSTERDAM .NEW YORK 'OXFORD ,TOKYO

Elsevier Science Publishers E.V., 1987

All rights reserved. No part of this publication may be reproduced, stored in a retrievalsystem,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the priorpermission of the copyright owner.

ISBN: 0 444 70136 2

Publishers:

ELSEVIER SCIENCE PUBLISHERS B.V.
P.O. Box 1991
1000 BZ Amsterdam
The Netherlands

Sole distributors forthe U.S.A. andCanada:

ELSEVIER SCIENCE PUBLISHING COMPANY, INC.
52Vanderbilt Avenue
NewYork, N.Y. 10017
U.S.A.

i l rr:~r \ (4 (',tllgrcr\ ('ai;illigiiig-iii-Pl,blicatinll h a

Surveys i n c o r b i n a t o r i n l o p t i m i z n t i o n .

(iiorth-IIolland mathematics f i t d i e s ; 1 3) (A n r m l s
of d i s c r e t e r rnt i~ent i t ics ; 31)

"2ased on a s e r i e s o f t u t o r i a l l e c t u r e s i4vt-n a t t h e
School on Con 'c i ia tor ia l Qtirnizat . icr1, h e l d a t t h e Federa l
" r i v r r s i t y cf riio de J a n e i r o , n r e z i l , J u l y L-19, 190i"--
CIP fwd.

1. Coirb-liiatorial oFt ic i ;x . t icn. 1. M a r t e l l o , S i lvano .
11. S e r i e s . 111. G e r i c s : Aiinals r i f d i s c r e t e
nathematics ; 31.
C$4OU.5.S..5 lC,~'j 519 ;I -. 41.
ICBK 0-444-701 j

PRINTED IN THE NETHERLANDS

V

FOREWORD

This book is based on a series o f tutorial lectures given a t the School on Combi-
natorial Optimization. held at the Federal University of Rio de Janeiro, Brazil,

Over 100 participants benefitted from the high quality of the tutorial lectures
and technical sessions. This event was the first of its kind held in Latin America
and undoubtedly contributed to the diffusion o f knowledge in the field o f Com-
binato rial Opt im iza tion.

I would like to take this opportunity to acknowledge with pleasure the efforts
and assistance provided by Professors Ruy Eduardo Campello, Gerd Finke, Peter
Hammer, Gilbert Laporte, Silvuno Martello, Michel Minoux and Celso Ribeiro in
the organization of the School. I am also very grateful to CNPq - Conselho
Nacional de Desenvolvimento Cientifico e Tecnoldgico and to FINEP - Financia-
dora de Estudos e Projetos o f the Brazilian Ministry of Science and Technology,
who provided financial support for this stimulating meeting.

July 8 - 1 9 , 198.5.

Nelson Maculan, chairman
Rio de Janeiro, 1985

This Page Intentionally Left Blank

V i i

PREFACE

Ever since the field of Mathematical Programming was born with the discovery
of the Simplex method by G.B. Dantzig in the late 1940s, researchers have
devoted considerable attention to optimization problems in which the variables
are constrained to take only integer values, o r values from a finite or discrete
set of numbers.

After the first significant contributions of R.E. Gomory to the field of Integer
Programming, discrete optimization problems were to attract growing interest,
partly because of the fact that a large number of practical applications of Opera-
tions Research techniques involved integrality constraints, and partly because
of the theoretical challenge.

During the same period, Graph Theory had been developing, providing a natural
and effective conceptual framework for expressing and sometimes solving combi-
natorial problems commonly encountered in applications, thus giving rise to
network flow theory, matroid theory and complexity theory.

What is nowadays referred to as Combinatorial Optimization therefore derives
from the combination and cross-fertilization of various research streams, all
developed somewhat independently over the past two or three decades (such as
Graph Theory, Integer Programming, Combinatorics and Discrete Mathematics).

The present volume is an attempt to provide a synthetic overview of a number
of important directions in which Combinatorial Optimization is currently deve-
loping, in the for& of a collection of survey papers providing detailed accounts of
recent progress over the past few years.

A number of these papers focus more specifically on theoretical aspects
and fundamental tools of Combinatorial Optimization: ((Boolean Programming))
and ((Probabilistic Analysis of Algorithms)). From the computational point of
view, a good account of recent work on the use of vector processing and parallel
computers for implementing algorithms will be found in the paper on ((Parallel
Computer Models and Combinatorial Algorithms)).

In addition, substantial space has been allocated to a number of well-known
problems, which have some relation with applications, but which are addressed
here as prototypes of hard-to-solve combinatorial problems, and which, as such,
have traditionally acted as stimulants for research in the field: we refer, in parti-
cular, to the papers on ((The Linear Assignment Problem >), ((The Quadratic
Assignment Problem)), ((The Knapsack Problem)) and ((The Steiner Problem in
Graphs)).

Besides these, it also seemed important that the wide applicability of the
techniques and algorithmic tools developed in the field of Combinatorial Optimi-

V i i i Prefoce

zation be illustrated with a number of more complicated models chosen for their
technical, industrial or economic importance. Accordingly, the reader will find
a number of applications oriented papers devoted to combinatorial problems
arising in such practical contexts as: communication networks (((Network Synthe-
sis and Dynamic Network Optimization))), location and routing (((Single Facility
Location Problems on Networks)) and ((The Vehicle Routing Problem))), manufac-
turing and planning in production systems (((Scheduling Problems))).

All the survey papers included herein have been written by well-known specia-
lists in the field, with particular emphasis on pedagogical quality (in this respect,
special mention should be given to the bibliography which contains almost
1000 titles) and, as far as possible, completeness.

The Editors wish to thank the participants of the School on Combinatorial
Optimization for their valuable comments and criticisms on preliminary versions
of the papers. The financial support of the Federal University of Rio de Janeiro,
the National Research Council of Italy and the ficole des Hautes etudes Commer-
ciales de MontrCal is gratefully acknowledged.

We hope that this volume will be considered as a milestone in the rich and
fast evolving field of Combinatorial Optimization.

Silvano Martello
Gilbert Laporte
Michel Minoux
Celso Ribeiro

ix

CONTENTS

Preface
1 . J . BKAZEWICZ, Selected topics in scheduling theory
2. G . FLNKE, R.E. BURKARD, F. RENDL, Quadratic assignment problems
3 . P.L. HAMMER, B . SNEONE, Order relations of variables in 0-1 pro-

4. P . HANSEN, M. LABBE, D. PEETERS, J . - F . THJSSE, Single facility location

5 . G. LAPORTE, Y. NOBERT, Exact algorithms for the vehicle routing

6. N. MACULAN, The Steiner problem in graphs
7. S. MARTELLO, P. TOTH, Algorithms for knapsack problems
8. S. MARTELLO, P. TOTH. Linear assignment problems
9. M . MLNOUX, Network synthesis and dynamic network optimization

gramming

on networks

problem

10. C.C. RBEIRO, Parallel computer models and combinatorial algorithms
11. A.H.G. RNNOOY KAN. Probabilistic analysis of algorithms

1
61

83

113

147
185
213
259
283
325
365

This Page Intentionally Left Blank

Annals of Discrete Mathematics 3 1 (1987) 1 - 60
0 Elsevier Science Publishers B.V. (North-Holland)

SELECTED TOPICS IN SCHEDULING THEORY

Jacek BZAZEWICZ

1. Introduction

This study is concerned with deterministic problems of scheduling tasks on
machines (processors), which is one of the most rapidly expanding areas of
combinatorial optimization. In general terms, these problems may be stated as
follows. A given set of tasks is to be processed on a set of available processors,
so that all processing conditions are satisfied and a certain objective function
is minimized (or maximized). It is assumed, in contrast to stochastic scheduling
problems, that all task parameters are known a priori in a deterministic way.
This assumption, as will be pointed out later, is well justified in many practical
situations. On the other hand, it permits the solving of scheduling problems
having a different practical interpretation from that of the stochastic approach.
(For a recent survey of stochastic scheduling problems see [117, 1181). This
interpretation is at least a valuable complement to the stochastic analysis and
is often imposed by certain applications as, for example, in computer control
systems working in a hard -real -time environment and in many industrial applica-
tions. In the following we will emphasize the applications of this model in com-
puter systems (scheduling on parallel processors, task preemptions). However, we
will also point out some other interpretations, since tasks and machines may
also represent ships and dockyards, classes and teachers, patients and hospital
equipment, or dinners and cooks. To illustrate some notions let us consider
the following example.

Let us assume that our goal is to perform five tasks on three parallel identical
processors in the shortest possible time. Let the processing times of the tasks
be 3 , 5, 2 , 1 , 2 , respectively, and suppose that the tasks are to be processed
without preemptions, i.e. each task once started must be processed until com-
pletion without any break o n the same processor. A solution (an optimal schedu-
le) is given in Fig. 1 . I , where a Gantt chart is used to present the assignment of
the processore to the tasks in time. We see that the minimum processing time
for these five tasks is 5 units and the presented schedule is not the only possible
solution. In this case, the solution has been obtained easily. However, this is not
generally the case and, to construct an optimal schedule, one has to use special
algorithms depending on the problem in question.

1

2 J. BIaiewicz

PI

p2

p3

Processors
~

T2

I Idle t ime T2

TI
I I c

In this paper we would like to present some important topics in scheduling
theory. First, and interpretation of its assumptions and results, especially in
computer systems, is described and some other applications are given. Then a
general approach to the analysis of scheduling problems is presented in detail
and illustrated with an example. In the next two sections, the most important
results, in our opinion, concerning the classical scheduling problems with parallel
machines and in job systems, are summarized. These include "-hardness results
and optimization as well as approximation algorithms with their accuracy evalua-
tion (mean or in the worst case). Because of the limited space we have not been
able to describe all the existing results. Our choice has been motivated first
by the importance of a particular result, e.g. in the case of algorithms, their
power to solve more than one particular scheduling problem. This is, for example,
the case with the level algorithm, network flow or linear programming approaches.
Secondly, our choice has been influenced by the relevance of the results present-
ed to a computer scheduling problem. Hence, not much attention has been
paid to enumerative methods. However, in all the considered situations we refer
to the existing surveys which cover the above issues in a very detailed way. New
directions in scheduling theory are then presented, among which special attention
is paid to scheduling under resource constraints and scheduling in microprocessor
systems. An Appendix for the notations of scheduling problems can be found at
the end of this study.

2 . Basic Notions

2.1. Problem formulation

In general, we will be concerned with two sets: a set of n tasks ."7 =
= { T,, T,, . . . , T,,} and a set of m processors 9= { P I , Pz, . . . , P,}. There are two
general rules to be followed in classical scheduling theory. Each task is to be
processed by at most one processor at a time and each processor is capable of
processing at most one task at a time. In Section 6 we will show some new applica-
tions in which the first constraint will be removed.

We will now characterize the processors. They may be either parallel, perform-

Selected topics in scheduling theory 3

ing the same functions, o r dedicated, i.e. specialized for the execution of certain
tasks. Three types of parallel processors are distinguished depending on their
speeds. If all processors from set 9 have equal task-processing speeds, then we call
them identical processors. If the processors differ in their speeds, but the speed
of each processor is constant and does not depend on the tasks of cT, then they
are called uniform. Finally, if the speeds of the processors depend on the partic-
lar task which is processed, then they are called unrelated.

In the case of dedicated processors, there are three modes of processing:
flow shop, open shop and job shop systems. In a f l o w shop system each task
from set cy must be processed by all the processors in the same order. In an
open slzop system each task must also be processed by all processors, but the
order of processing is not given. In a job shop system the subset of processors
which are to process a task and the order of the processing are arbitrary, but must
be specified a priori.

We will now describe the task set in detail. In the case of parallel processors
each task can be processed by any given processor. When tasks are to be processed
on dedicated processors, then each 5 E y i s divided into operations O i l , Oiz, . . . ,
O j k j , each of which may require a different processor. Moreover, in a flow shop
system, the number of operations per task is equal to m and their order of pro-
cessing is such that Oil is processed on processor <, O j z on 4, and so on. Moreover,
the processing of O j , i - , must always precede the processing of Oii, j = 1, 2 , . . . , n,
i = 2 , . . . , m. In the case of an open shop system, each task is also divided into
m operations with the same allocation of the operations to processors, but the
order of processing operations is not specified. In a j o b shop system, the number
of operations per task, their assignment to processors and the order of their
processing, are arbitrary but must be given in advance.

Task
1 . A vector o f processing times - f i = [p j l , p j z , . . . ,pi,], where pii is the

time needed by processor P, to complete q. In the case of identical processors
we have pji = p i , i = 1, 2 , . . . , m. If the processors in 9 are uniform then p j i =

= pi/bi, i = 1, 2 , . . . , m, where pi is a standard processing t ime (usually on the
slowest processor) and bi is a processing speed factor of processor 4..

2. A n arrival t ime (a ready time) - ri, which is the time at which 1; is ready
for processing. If for all tasks from . F t h e arrival times are equal, then it is assum-
ed that rj = 0, j = 1, 2 , . . . , n.

must be completed at time di,
then d j is called the deadline.

E ,?is characterized by the following data.

3. A due-date -d i . If the processing of

4. A weight (priority) - w j , which expresses the relative urgency of q .
Below, some definitions concerning task preemptions and precedence con-

straints among tasks are given.
The mode of processing is called preemptive if each task (each operation in

the case of dedicated processors) may be preempted at any time and restarted
later at no cost, perhaps on another processor. If the preemption of any task is not

4 .I. Blaiewicz

allowed we will call the scheduling nonpreemptive.
In set Fprecedence constraints among tasks may be defined. 7; < 7; means

that the processing of T must be completed before q can be started. In other
words, set cy is ordered by a binary relations <. The tasks in set F a r e called
dependent if at least two tasks in cT are ordered by this relation. Otherwise,
the tasks are called independent. A task set ordered by the precedence relation
is usually represented as a directed graph (a digraph) in which nodes correspond
to tasks and arcs to precedence constraints. An example of a dependent task
set is shown in Fig. 2.1 (nodes are denoted by ?/pi). Let us notice that in the
case of dedicated processors (except in the open shop system) operations that
constitute a task are always dependent, but tasks can be either independent or
dependent. It is also possible to represent precedence constraints as a task-on-arc
graph, which is also called an activity network representation. Usually, the first
approach is used, but sometimes the second presentation may be useful and we
will mention these cases in what follows. Task q will be called available at
moment t if ri S t and all its predecessors (with respect to the precednece con-
traints) have been completed at time t .

Now we will give the definitions concerning schedules and optimality criteria.
A schedule is an assignment of processors from set 9 to tasks from set 9 in

- at every moment each processor is assigned to at .most one task and each

- task q is processed in time interval [ri, DO);

- all tasks are completed;
- for each pair T , 7;, such that q. < T i , the processing of ';. is started after the

completion of T, ;
- in the case of nonpreemptive scheduling no task is preempted (the schedule

is called nonpreemptive), otherwise the number of preemptions of each task is

time such that the following conditions are satisfied:

task is processed by at most one processor;

Fig. 2.1. An example of a task set.

Selected topics in scheduling theory 5

finite (the schedule is called preemptive) (1). An example schedule for the task set
of Fig. 2.1, is given in Fig. 2 . 2 .

The following parameters can be calculated for each task q , 1 = 1, 2 , . . . , n ,
processed in a given schedule:
- a completion time - c,:
- a flow time -6 , being the sum of waiting and processing times

4 = c. - r . :
I I

- a lateness - 1,

1. = C. - d . :
I l l

- a tardiness - tl

ti = max {cj - di, 0) .

A schedule for which the value of a particular performance measure is at its
minimum will be called optimal. To evaluate schedules we will use three main
criteria.

Schedule length (makespan)

Cmax = max { c,}.

Mean f low time

or mean weighted flow time

n n

F, = W J w,.
j = I j = 1

2 4 6 8 10 t 0

Fig. 2.2. A schedule for the task set given in Fig. 2.1.

(1) The last condition is imposed by practical considerations only

6 J. Btaiewicz

Maximum lateness

Lnlax = max {$} .

In some applications, other related criteria are also used, as for example: mean
tardinees T = l / n C;=, tc mean weighted tardiness Fw = .Z;= wj tilZ;=, w,, or
number of tardy jobs (I = Zr= ui , where u, = I , if cj > d i , and 0 otherwise.

We may now define the scheduling problem Il as a set of parameters described
in this subsection not all of which have numerical values, together with a criterion.
An instance I of problem Il is obtained by specifying particular values for all the
problem parameters. As we see, there is a great variety of scheduling problems
and to describe a particular one we need several sentences. Thus, having a short
notation of problem types would greatly facilitate the presentation and discussion
of scheduling problems. Such a notation has been given in [70, I021 and we
present it in the Appendix and use it throughout the paper.

2.2. Interpretation of assumptions and results

In this subsection, an analysis of the assumptions and results in deterministic
scheduling theory is presented taking especially computer applications into
account. However, also other practical applications, as mentioned in the Introdic-
tion, should not be forgotten.

Let us begin with an analysis of processors. Parallel processors may be inter-
preted as central processors which are able to process every task (every program).
Uniform processors differ from each other by their speeds, but they do not prefer
any type of task. Unrelated processors, on the contrary, are specialized in the
sense that they prefer certain types of tasks for example numerical computations,
logical programs or simulation procedures, since the processors have different
instruction lists. Of course, they can process tasks of each type, but at the
expense of longer processing time.

A different type are the dedicated processors which may process only certain
types of tasks. As an example let us consider a computer system consisting of an
input processor, a central processor and an output processor. It is not difficult
to see that the above system corresponds to a flow shop with rn = 3. On the other
hand, a situation in which each task is to be processed by an input/output
processor, then by a central one and at the end again by the input/output
processor, can be easily modelled by a job shop system with rn = 2. As far as an
open shop is concerned, there is no obvious computer interpretation. But this
case, like the other shop scheduling problems, has great significance in other
applications.

Let us now consider the assumptions associated with the task set. As mention-
ed in Subsection 2.1. in deterministic scheduling theory a priori knowledge of
ready times and processing times of tasks, is assumed. Ready times are obviously
known in computer systems working in an off-line mode. They are also often

Selected topics in scheduling theory I

known in computer control systems in which measurement samples are taken
from sensing devices at fixed time moments.

As far as processing times are concerned, they are usually not known a priori
in computer systems, unlike in many other applications. Despite this fact the solu-
tion of a deterministic scheduling problem is also important in these systems.
Firstly, when scheduling tasks to meet deadlines, the only approach (when the
task processing times are not known) is to solve the problem with assumed
upper bounds on the processing times. (Such a bound for a given task may be
implied by the worst case complexity function of an algorithm connected with
that task). Then, if all deadlines are met with respect to the upper bounds, no
deadline will be exceeded for the real task processing times (2). This approach
is often used in a broad class of computer control systems working in a hard-
-real-time environment, where a certain set of control programs must be proces-
sed before taking the next sample from the same sensing device.

Secondly, instead of exact values of processing times one can take their mean
values and, using the procedure described in [37], calculate an optimistic estimate
of the mean value of schedule length.

Thirdly, one can measure the processing times of tasks after processing a task
set scheduled according to a certain algorithm A . Taking these values as an input
in the deterministic scheduling problem, one may construct an optimal schedule
and compare it with the one produced by algorithm A , thus evaluating the latter.

Apart from the above, optimization algorithms for deterministic scheduling
problems give some indications for the construction of heuristics for weaker
assumptions than those made in stochastic scheduling problems (c.f. [3 I , 321).

The existence of precedence constraints also requires an explanation. In the
simplest case the results of certain programs may be the input data for others.
Moreover, precedence constraints may also concern parts of the same program.
A conventional serially written program may be analyzed by a special procedure
looking for parallel parts in it (see for example [122, 130, 1461). These parts
may also be defined by the programmer who can use special programming langua-
ges (see [66]). Apart from this, a solution of certain reliability problems in operat-
ing systems, for example the determinacy problem [2, 6 , lo] , requires an intro-
duction of additional precedence constraints. In other applications, the existence
of precedence constraints is more obvious and follows, for example, from techno-
logical constraints.

We will not analyze the importance of particular criteria for scheduling
problems. Minimizing schedule length is important from the viewpoint of the
owner of a set of processors (machines), since it leads to a maximization of the
processor utilization factor. This criterion may also be of importance in a
computer control system in which a task set arrives periodically and is to be

(2) However, one has to take into account list scheduling anomalies which will be explained in Section 3 .

8 J. Bfaiewicz

processed in the shortest time.
The mean flow time criterion is important from the user’s viewpoint since its

minimization yields a minimization of the mean response time.
The maximum lateness criterion is of great significance in computer control

systems working in the hard-real-time environment since its minimization leads
to the construction of a schedule with no task late whenever such a schedule
exists (i.e. when L L X < 0 for an optimal schedule). Other criteria involving
deadlines are of importance in some economic applications.

The three criteria mentioned above are basic in the sense that they concern
three main applications and require three different approaches to the designing
of optimization algorithms.

2.3. An approach to the analysis of scheduling problems

Deterministic scheduling problems are a part of a much broader class of combi-
natorial optimization problems. Thus, the general approach to the analysis of
these problems can follow similar lines, but one should take into account their pe-
culiarities, which are evident in computer applications. I t is rather obvious that in
these applications the time we can devote to solving scheduling problems is
seriously limited so that only low order polynomial-time algorithms may be
used. Thus, the examination of the complexity of these problems should be the
basis of any further analysis.

It has been known for some time [45, 851 that there exists a large class of
combinatorial optimization problems for which most probably there are no
efficient optimization algorithms (3). These are the problems whose decision
counterparts (i.e. problems formulated as questions with ((yes)) or ((no)) answers)
are NP-complete. The optimization problems are called NP-hard in this case.
We refer the reader to [58] for a comprehensive treatment of the NP-complete-
ness theory, and in the following we assume knowledge of its basic concepts like
NP-completeness, NP-hardness, polynomial-time transformation, etc. It follows
that the complexity analysis answers the question whether or not an analyzed
scheduling problem may be solved (i.e. an optimal schedule found) in time
bounded from above by a polynomial in the input length of the problem (i.e.
in polynomial time). If the answer is positive, then an optimization, polynomial-
-time algorithm must have been found. Its usefulness depends on the order of
its worst -case complexity function and on a particular application. Sometimes,
when the worst-case complexity function is not low enough, although polyno-
mial, a mean complexity function of the algorithm may be sufficient. This issue
is discussed in detail in [4]. On the other hand, if the answer is negative, i.e.

(I) By an efficient (polynomial-time) algorithm we mean one whose worst-case complexity function
can be bounded from above by a polynoniial in the problem input length, and by an optimization algorithm
one which finds an optimal schedule for all instances of a problem.

Selected topics in scheduling theory 9

when the decision version of the analyzed problem is NP-complete, then there
are several ways of further analysis.

Firstly, one may try to relax some constraints imposed on the original problem
and then solve the relaxed one. The solution of the latter may be a good approxi-
mation to the solution of the original one. In the case of scheduling problems
such a relaxation may consist of the following:
- allowing preemptions, even if the original problem dealt with non-preemptive

schedules,
- assuming unit -length tasks, when arbitrary-length tasks were considered in

the original problem,
- assuming certain types of precedence graphs, e.g. trees or chains, when

arbitrary graphs were considered in the original problem, etc.
In computer applications, especially the first relaxation can be justified in the

case when parallel processors share a common primary memory. Moreover, such
a relaxation is also advantageous from the viewpoint of certain criteria.

Secondly, when trying to solve hard scheduling problems one often uses
approximation algorithms which try to find an optimal schedule but do not
always succeed. Of course, the necessary condition for these algorithms to be
applicable is practice is that their worst-case complexity function is bounded
from above by a low-order polynomial in the input length. Their sufficiency
follows from an evaluation of the distance between the solution value they
produce and the value of an optimal solution. This evaluation may concern the
worst case or a mean behavior. To be more precise, we give here some definitions,
starting with the worst case analysis [58].

If II is a minimization (maximization) problem, and I is any instance of it,
we may define the ratio R,(O for an approximation algorithm A as

A(4 (R,(I)= - om(?, R A (4 = -
OPT (0 A (0

where A (4 is the value of the solution constructed by algorithm A for instance
I , and O € T (I) is the value of an optimal solution for I . The absolute performance
ratio R, for an approximation algorithm A for Il is given as

RA = inf { r 2 1 : R,(I) < r for all instances of H}.

The asymptotic performance ratio RY for A is given as

for some positive integer K , RA(I) < r for all
instances of Il satisfying OPT (0 2 K } .

RY = i n f { r > 1 :

The above formulae define a measure of the ((goodness)) of approximation algo-
rithms. The closer RY is t o 1, the better algorithm A performs (4). However,

(4) One can also consider several possibilities of the worst case behavior of an approximation algorithm
for which R; = 1, and we refer the reader to [SS] f-or detailed treatment of the subject.

10 J. Haiewicz

for some combinatorial problems it can be proved that there is no hope of finding
an approximation algorithm of a certain accuracy (i.e. this question is as hard as
finding a polynomial-time algorithm for any NP-complete problem).

Analysis of the worst-case behavior of an approximation algorithm may be
complemented by an analysis of its mean behavior. This can be done in two
ways. The first consists in assuming that the parameters of instances of the
considered problem Il are drawn from a certain distribution D and then one
analyzes the mean performance of algorithm A . One may distinguish between
the absolute error of an approximation algorithm, which is the difference between
the approximate and optimal solution values and the relative error, which is the
ratio of the two. Asymptotic optimality results in the stronger (absolute) sense
are quite rare. On the other hand, asymptotic optimality in the relative sense is
often easier to establish [86, 124, 1351.

It is rather obvious that the mean performance can be much better than the
worst case behavior, thus justifying the use of a given approximation algorithm.
A main obstacle is the difficulty of proofs of the mean performance for realistic
distribution functions. Thus, the second way of evaluating the mean behavior of
approximation algorithms, consisting of simulation studies, is still used very often.
In the latter approach one compares solutions, in the sense of the values of a
criterion, constructed by a given approximation algorithm and by an optimiza-
tion algorithm. This comparison should be made for a large representative sample
of instances. There are some practical problems which follow from the above
statement and they are discussed in [1341.

The third and last way of dealing with hard scheduling problems is to use
exact enumerative algorithms whose worst -case complexity function is exponen-
tial in the input length. However, sometimes, when the analyzed problem is not
NP-hard in the strong sense, it is possible to solve it by a pseudopolynomial
optimization algorithm whose worst -case complexity function is bounded from
above by a polynomial in the input length and in the maximum number appearing
in the instance of the problem. For reasonably small numbers such an algorithm
may behave quite well in practice and it can be used even in computer applica-
tions. On the other hand, ((pure)) exponential algorithms have probably to be
excluded from this application, but they may be used sometimes for other sche-
duling problems which may be solved by off-line algorithms.

The above discussion is summarized in a schematic way in Fig. 2.3. To illustrate
the above considerations, we will analyze an example of a scheduling problem
in the next section. (In the following we will use a term complexity function
instead of worst -case complexity function).

3. An example of a scheduling problem analysis

In this section an examplary scheduling problem will be analyzed along the

Selected topics in scheduling theory 11

Schedulinq problem
(Complexity analysis)

1
Easy problem NP -hard problem

Complexity improvement
- i n the worst case
- mean (probabilistic analysis) c

Exact enumerative Relax at ion
e. 9. preemptions

Approximation
a lgor i thms

Performance analysis
-worst case behavior
- mean behavior

algorithms

(also pseudopoly-
nornial -t ime)

a) probabilistic analysis
b) simulation studies

Fig. 2.3 . An analysis of a scheduling problem - schematic view.

lines described in Section 2 . We have chosen problem PI1 C-, i.e. the problem
of nonpreemptive scheduling of independent tasks on identical processors with
the objective of minimizing schedule length. A reason for this choice was the fact
that this is probably one of the most thoroughly analyzed problems. We will
start with the complexity analysis and the considered problem appears t o be not
an easy one, since a problem with two processors is already NP-hard.

Theorem 3.1. Problem P2 (1 C, is NP-hard.

Proof. The proof is very easy. As a known NP-complete problem we take
PARTITION [85] which is formulated as follows.

hutance: Finite set A and a size s (a i) E N (5) for each ai E A .
Question: Is there a subset A ' g A such that C O i r A , s (a i) = CaiEAPA,s(ai)?
Given any instance of PARTITION defined by the set of positive integers

{ s (a i) :a i € A } , we define a corresponding instance of the decision counterpart
of P2 11 C- by assuming n = I A 1 , pi = s(aj), j = 1, 2 , . . . , n and the threshold
value of schedule length JJ = (1/2) Z a i E A s (a i) . It is obvious that there exists a
subset A' with the desired property for the instance of PARTITION if, for the
corresponding instance of P2 11 C,, there exists a schedule with C,, S y (cf.

0 Fig. 3 . l) , and the theorem follows.

(5) N denotes the set of positive integers.

12 J. Blaiewicz

PI

p2

A'

A - A'
c

0 t

Fig. 3.1. A schedule for Theorem 3.1.

Since there is n o hope of finding an optimization polynomial-time algorithm
for P 11 C-, one may try to solve the problem along the lines presented in Subsec-
tion 2.3. Firstly, we may relax some constraints imposed on problem PIJC-
and allow preemptions of tasks. It appears that problem PI pmtn I C,, may be
solved very efficiently. It is easy to see that the length of a preemptive schedule
cannot be smaller than the maximum of two values: the maximum processing
time of a task and the mean processing requirement on a processor [1161, i.e.:

(3.1)

The following algorithm given by Mc Naughton [116] constructs a schedule
whose length is equal to C:=.

Algorithm 3.1. (Problem PI pmtn I C->
1. Assign any task to the first processor at time t = 0.
2 . Schedule any nonassigned task on the same processor on which the last assign-

ed task has been completed, at the moment of completion. Repeat this step
until either all tasks are scheduled or t = C:=. In the latter case go to step 3.

3. Schedule the remaining part of the task that exceeds C:= on the next processor
at time t = 0, and go to step 2.

Note that the above algorithm is an optimization procedure, since it always
find a schedule whose length is equal to C z m . It is complexity is O (n) (6) .

We see that by allowing preemptions we now have an easy problem. However,
there still remains the question of the practical applicability of the solution
obtained in this way. It appears that in multiprocessor systems with a common
primary memory, the assumptions of task preemptions can be justified and
preemptive schedules can be used in practice. If this is not the case, one may try to
find an approximation algorithm for the original problem and evaluate its worst
case as well as its mean behavior. We will present such an analysis below.

(6) The notation q (n) = O (p (n)) n m a n s that there exists a constant c 0 such that Iq(n) I < c p (n) for
all n > 0.

Selected topics in scheduling theory 1 3

One of the most often-used general approximation strategies for solving
scheduling problems is list scheduling, whereby a priority list of the tasks is
given and at each step the first available processor is selected to process the first
available task on the list [671. The accuracy of a given list scheduling algorithm
depends on the order in which tasks appear on the list. On the other hand, this
strategy may result in the unexpected behavior of constructed schedules, since
the schedule length for problem PI prec I C,, may increase if:
- the number of processors increases,
- task processing times decrease,
- precedence constraints are weakened, o r
- the priority list changes.
Figures 3.2 through 3.6 indicate the effects of changes of the above-mentioned

parameters [69]. These list scheduling anomalies have been discovered by Graham
[67], who has also avaluated the maximum change in schedule length that may be
induced by varying one or more problem parameter. We will quote this theorem
since its proof is one of the shortest in that area and illustrates well the technique
used in other proofs of that type. Let there be defined a task set .Ttogether with
precedence constraints <. Let the processing times of the tasks be given as vector
j7, and let cT be scheduled on m processors using list L , and the obtained value of
schedule length be equal to Cmm. On the other hand, let the above parameters
be changed: a vector of processing times p ’ < p (for all the components), prece-
dence constraints <’ c <, priority list L’ and the number of processors m’. Let
the new values of schedule length be CAm. Then the following theorem is valid.

Theorem 3.2. [67]. On the above assumptions

c : m m - 1
- < l + - .
Cmm m’

(3.2)

Proof. Let us consider the schedule S ’ obtained by processing the task set .Twith
primed parameters. Let an interval [0, C-) be divided into two subsets, A and
B , defined in the following way:
A = { t E [0, C-): all processors are busy at time t},
B = [0, C-) - -A .

Notice that both A and B are unions of disjoint half-open intervals. Let T,,
denote a task completed in S ’ at time C-, i.e. c, = Chm. Two cases may occur.

1. The starting time of q,, sj, , is an interior point of B. Then by the definition
of B there is some processor 4. which for some e > 0 is idle during interval
[si, - e , s j ,) . Such a situation may only occur if for some T2 we have T2 <‘?,
and ci2 = si .

2. The itarting time of 7, is not an interior point of B. Let us also suppose
that s,, # 0. Let x1 = sup{x : x < s i , and x E B) o r x1 = 0 if this set is empty.
By the construction of A and B , we see that x 1 E A and for some e > 0 processor

14 J. Haiewicz

0 12 t -

Fig. 3.2. A task set (a) and an optimal schedule (b);m = 3, L = (q, T,, T,, q, T,, q, T.,, Ts, TJ.

0 14 t

Fig. 3.3. Priority list changed: a new list L' = (q, T,, q, q, q, q, T9, T.,, T&.

0 15 t

Fig. 3.4. A number of processors increased: rn' = 4.

Selected topics in scheduling theory 15

Pl TI T5 T8

0 13 t

Fig. 3.5. Processing times decreased: p,! = pi - 1 , I = 1 , 2 , . . . , n.

0 16 t

Fig. 3.6. Precedence constraints weakened (a), a resulting list schedule (b).

Pi is idle in time interval [x, - E , xl) . But again, such a situation may only occur if
some task q, < ql is processed during this time interval.

It follows that either there exists a task q2 <'TI such that y E [ci,, s j ,) implies
y E A or we have: x < si, implies either x E A or x < 0.

The above procedure can be inductively repeated, forming a chain q3, q4,
. . . , until we reach task qr for which x <sir implies either x E A or x < 0. Hence
there must exist a chain of tasks

(3.3)

such that in S' at each moment t E B , some task Ti, is being processed. This
implies that

qr<*qr+ <'. . . <IT2 <'ql

(3.4)

where the sum of the left-hand side is made over all empty $'tasks in S'. But by

16 J. Biaiewicr

(3.3) and the hypothesis <’ C < we have

T < T . < . . . < q 2 < 7 ; . 1
l r Jr-1

Hence,

r r

ern=> x Pik> P : ’ k

k = 1 k = l

Furthermore, by (3.4) and (3.6) we have

1

rn
< 7 (m c,, + (m’ - 1) CmJ

It follows that

(3.5)

(3.6)

(3.7)

and the theorem is proved. 0

Using the above theorem, one can prove the absolute performance ratio for
an arbitrary list scheduling algorithm solving problem P I(C,, .

Corollary 3.3. [67]. For an arbitrary list scheduling algorithm LS for P 11 C,,, we
Aave

1
R = 2 - - . I‘S rn

(3.9)

Proof. The upper bound of (3.9) follows immediately from (3.2) by taking
m’ = m and by considering the list leading to an optimal schedule. To show that
this bound is achievable let us consider the following example: n = (m -1)m + 1,
p = [l , l , . . . , l , l , m] , < i s e m p t y , L = (T , , T , , T , , . . . , T l - l) a n d L ’ = (T , , T , ,

0

-

. . . , T,) . The corresponding schedules for rn = 4 are shown in Fig. 3.7.

It follows from the above considerations that an’arbitary list scheduling algo-
rithm can produce quite bad schedules, twice as long as an optimal one. An im-
provement can be obtained if we order the task list properly. The simplest algo-
rithm orders tasks on the list in order of nonincreasing pi (the so-called longest
processing time (LlT) rule). The absolute performance ratio for the LPT algo-
rithm is given in Theorem 3.4.

Selected topics in scheduling theory 17

0 1 2 3 4
-
t 0 1 2 3 7

4
t

Fig. 3.7. Schedules for Corollary 3.3.: an optimal one (a), an approximate one (b).

Theorem 3.4. [68]. If the LPT scheduling algorithm is used to solve problem
P 1 1 C-, then

4 1

3 3m
(3.10) - - - R”, =

Space limitations prevent us from including here the proof of the upper bound
in the above theorem. However, we will give an example showing that this bound
can be achieved. Let n = 2m + 1 , p = [2 m - 1 , 2m - 1, 2m - 2 , 2m - 2 , . . . ,
m + 1, m + 1 , m , m, m] . Fig. 3.8 shows an optimal and an LPT schedule for
m = 4 .

We see that an LPT schedule can be longer in the worst case by 33% than
an optimal one. However, one is led to expect better performance from the
LPT algorithm than is indicated by (3.10), especially as the number of tasks
becomes large. In [43] another absolute performance ratio for the LPT rule
was proved, taking into account the least number k of tasks on any processor.

Theorem 3.5. [43]. For the assumptions stated above, we have

1 1

k m k
R,,(k)< 1 + - - - .

-c

t

(3.1 1)

I Tl I T7 I T9 I

0 2 4 6 8 kY 1 2 1 4 t

Fig. 3.8. Schedules for Theorem 3.4: on optimal one (a), LPT one (b).

18 J. Bloiewicz

This result shows that the worst-case performance bound for the LPT algo-
rithm approaches unity approximately as 1 + l / k .

On the other hand, one can be interested in how good the LPT algorithm is
on the average. Recently such a result was obtained [38] where the relative error
was found for two processors on the assumption that task processing times are
independent samples from the uniform distribution on [0, 11.

Theorem 3.6. [38]. For the assumptions already stated, we have

n 1 n e - + < E (C $) < - + - . (3.12)
4 4(n + 1) 4 2(n + 1)

Taking into account that n /4 is a lower bound on E(C:,) we get
(E(CkZ)/E(C&)) < 1 + O(I/nz). Therefore, as n increases, E(P&q approaches
the optimum no more slowly than 1 + O(I / n 2) approaches 1. The above bound
can be generalized to cover also the case of m processors for which we have [391:

n

2 m
E (C Z) < - + 0

Moreover, it is also possible t o prove [49, 501 that C z - C& almost surely
converges to 0 as n -+ 00 if the task processing time distribution has a finite mean
and a density f satisfying f(0) > 0. It is also shown that if the distribution is
uniform or exponential, the rate of convergence is O(1og (log n) / n) . This result,
obtained by a complicated analysis, can also be guessed by simulation studies.
Such an experiment was reported in [88] and we present the summary of the
results in Table 3.1. The last column presents the ratio of schedule lengths obtain-
ed by the LPT algorithm and the optimal preemptive one. Task processing times
were drawn from the uniform distribution of the given parameters.

T o conclude the above analysis we may say that the LPT algorithm behaves
quite well and may be used in practice. However, if one wants to have better
performance guarantees, other approximation algorithms should be used, as
for example MULTIFIT [411 o r the algorithms proposed in [7 2] or in [84].
A comprehensive treatment of approximation algorithms for this and related
problems is given in [42].

We may now pass to the third way of analyzing our chosen problem PI\ Cmm.
Theorem 3.1. gave a negative answer to the question about the existence of an
optimization polynomial-time algorithm for solving P 2 11 Cm,, However, we have
not proved that our problem is NP-hard in the strong sense and we may try to
find a pseudopolynomial optimization algorithm. It appears that such an algo-
rithm may be constructed using ideas presented in [129, 104, 1091. It is based
on a dynamic programming approach and its formulation for P 11 C,, is follows.
Let

Selected topics in scheduling theory 19

Table 3.1. Mean performance of the LPT algorithm.

Parameters of task pro- ’” rn cessing time distribution C h X c;glc&$,

6,3 1,20 20 1 .oo
9,3 1,20 32 1 .oo

15,3 1,20 65 1 .oo
6,3 2030 59 1.05
9,3 2030 101 1.03

15,3 20,SO 166 1 .oo

8,4 1,20 23 1 .09
12,4 1,20 30 1 .oo
20.4 1,20 60 1 .oo

8,4 20,50 74 1.04
12,4 2030 108 1.02
20,4 2030 185 1.01

10,5 1,20 25 1.04
15,5 1,20 38 1.03
20,5 1,20 49 1 .oo
10,5 2030 65 1.06
15,s 20,50 117 1.03
2 5 3 2030 198 1.01

true if tasks T,, q , . . . , can be scheduled on processors
R,, Pz, . . . , P,, in such a way that 4. is busy in time
interval [0, t i] , i = 1, 2 , . . . , m x, (t, . t,, . . . 1 t) = m

false otherwise

with

true i f t i = 0 , i = 1, 2 , . . . , m ,
false otherwise. x o (t , , t , , . . . , t m) =

Then one defines the recursive equation in the following way

i = 1

(Of course, xi (t l , t,, . . . , tm) =false, for any ti < 0).
For j = 0, 1, . . . , 1 2 , compute xi (t l , t,, . . . , t m) for ti = 0 , 1, . . . , C: i = 1, 2,

. . . , m, where C denotes an upper bound on the optimal schedule length C;,.
Then C:= is determined.as

CLx= min{max{t, , t,, . . . , t m } : x , (t , , t,, . . . , t m) = true}.

The above procedure solves problem P 11 C,, in O(n 0”) time, thus, for fixed m it

20 J. BZaiewicz

is a pseudopolynomial-time algorithm. Hence, for small values of m and C the
algorithm can be used even in computer applications. In general, however, its
application is limited (see [1021 for a survey of other enumerative approaches).

4. Scheduling on parallel processors

4.1. introduction

A general scheme for the analysis of scheduling problems has been presented
in Subsection 2.3 and illustrated by an exemplary problem P 11 C,, in Section 3.
This pattern, however, cannot be fully repeated in this section, for other schedul-
ing problems. First of all, there are many open questions in that area concerning
especially the worst -case and probabilistic analysis of approximation algorithms
for NP-hard problems. On the other hand, even the existing results form a large
collection and we are not able to describe them all. Thus, we had to choose only
some. Our choice was based on the relative significance of the results and on the
inspiring role for further research they have had. We focused our attention on
polynomial-time optimization algorithms and NP-hardness results, mentioning
also some important results concerning worst -case analysis of approximation
algorithms.

At this point we would like to comment briefly on the existing books and
surveys concerning the area of scheduling problems which allow the reader to
study the subject more deeply and give him references to many source papers.
Two classical books [44, 71 give a good introduction to the theory of scheduling.
The same audience is addressed by [48]. Other books [36, 106, I231 survey the
state of the modern scheduling theory (i.e. taking into account most of the issues
discussed in Sections 2.3 and 3) around the mid-seventies. Up-to-date collections
of results can be found in the following survey-papers [70, 82, 102, 99, 1101.
There are also some other surveys but they deal with certain areas of deterministic
scheduling theory only. Let us also mention here an interesting approach to auto-
matic generation of problem complexity listings containing the hardest easy
problems, the easiest open ones, the hardest open ones, and the easiest hard
ones [94, 951. This generation program explores known complexity results
and uses simple polynomial transformations as shown in Fig. 4.1. For each
graph in the figure, the presented problems differ only by one parameter and
the arrows indicate the direction of the polynomial transformation. These simple
transformations are very useful in many practical situations when analyzing new
scheduling problems. Thus, many of the results presented in that study can be
immediately extended to cover a broader class of scheduling problems.

As we mentioned, in this section we will present some basic results concerned
with scheduling on parallel processors. The presentation is divided into three
subsections concerning the minimization of schedule length, mean flow time and
maximum lateness, respectively. This is because these are the most important
criteria and, moreover, they require quite different approaches.

Selected topics in scheduling theory 21

El
Fig. 4.1. Simple polynomial transformations among scheduling problems that differ by: type
and number of processors (a), mode of processing (b), type of precedence constraints (c),
ready times (d), processing times (e) and criterion (0.

4.2. Minimizing schedule length

A . Identical processors

The first problem to be considered is that of scheduling independent tasks on
identical processors. However, it was discussed in detail in Section 3 . We can
only add that the interested reader may find several other approximation algo-
rithms for the problem in question in the survey paper [42].

Let us pass now to the case of dependent tasks. At first tasks are assumed
to be scheduled nonpreemptively. It is obvious that there is no hope of finding
a polynomial-time optimization algorithm for scheduling tasks of arbitrary length
since already PI(C,, is NP-hard. However, one can try to find such an algorithm
for unit-processing times of all the tasks. The first algorithm has been given for
sceduling forests, consisting of either in-trees or out-trees [77]. We will first
present Hu’s algorithm for the case of an in-tree, i.e. a graph in which each task
(node) has at most one immediate successor and there is only one task (root)
with no successors (cf. Fig. 4.2). The algorithm is based on the notion of a task
level in an in-tree which is defined as the number of tasks in the path to the root
of the graph. (Thus, its name is also a level algorithm). The algortithm is as
follows.

Algorithm 4.1. (Problem PI in-tree, p, = 1 1 C-)
1. Calculate the levels of tasks.
2 . At each time unit, if the number of tasks without predecessors is no greater

than m , assign them to processors and remove these tasks from the graph.
Otherwise, assign to processors m non-assigned tasks with the highest levels
and also remove them from the graph.

This algorithm can be implemented to run in O (n) time. An example of its

22 J. Eloiewicz

4

PI

p2

p3

0 1 2 3 4 5 t
Fig. 4.2. An example of the application of Algorithm 4.1 for three processors.

application is shown in Fig. 4.2.
A forest consisting of in-trees can be scheduled by adding a dummy task

that is an immediate successor of only the roots of in-trees, and then applying
Algorithm 4.1. A schedule for an out-tree, i.e. a graph in which each task has
at most one immediate predecessor and where there is only one task with no
predecessor, can be constructed by changing the orientation of arcs, applying
Algorithm 4.1 to the obtained in-tree and then reading the schedule backward
(i.e., from right t o left). It is interesting to note that the problem of scheduling
opposing forests (that is, combinations of in-trees and out-trees) on an arbitrary
number of processers is NP-hard [60]. However, when then number of processors
is limited to 2, the problem is easily solvable even for arbitrary precedence graphs
[40, 5 1,521. We present the algorithm given in [40] since it can be further extend-
ed t o cover the preemptive case. The algorithm uses labels assigned to tasks, which
take into account the level of the tasks and the numbers of their immediate suc-
cessors. The following algorithm assigns labels and then uses them to find the
shortest schedule (A (TI denotes the set of all immediate’successors of r).

Algorithm 4.2. (Problem P 2 [prec, pi = 1 I C-).
1. Assign label 1 t o any T, for which A (Q = 4 .
2. Let labels 1,2, . . . , j - 1 be assigned. Let S be the set of unlabelled tasks with

Selected topics in scheduling theory 23

no unlabelled successors. For each T E S let l(ir3 denote a list of labels of
tasks belonging to A (7') ordered in decreasing order of their values. Let T* be
an element of S such that for all T i n S, 1 (T *) is lexicographically smaller than
1 (n. Assign label j to T*. Repeat step 2 until all tasks are labelled.

3. Assign the tasks to processors in the way described in Step 2 of Algorithm
4.1, using labels instead of levels.

A careful analysis shows that the above algorithm can be implemented to run
in time which is almost linear in n , plus the number of arcs in the precedence
graph [131], (thus, O(n*)), if the graph has no transitive arcs. Otherwise, they
can be deleted in O(n29 time [4]. An example of the application of Algorithm
4.2 is given in Fig. 4.3.

It must be stressed that the question concerning the complexity of problem
with a fixed number of processors, unit processing time tasks, and arbitrary,
precedence graphs is still open despite the fact that many papers have been
devoted to solving various subcases (see [1101). Hence, several papers have dealt
with approximation algorithms for these and more complicated problems. We
quote some of the most interesting results. The application of level (critical
path) algorithm (Algorithm 4.1) to solve PI prec,pi = 1 I C, has been analyzed
in [34, 921. The following bound has been proved.

413 for m = 2

2-- for r n 2 3.
R,ed = 1

rn - 1

Slightly better is Algorithm 4.2 [96], for which we have

2
R = 2 - - (m > 2) .

nz

0 1 2 3 4 5 6 7 8
-

t

Fig. 4.3. An example of the application of Algorithm 4.2 (nodes are denoted by task/label).

24 J. Blaiewicz

In this context one should not forget the results presented in Section 3 , where the
list scheduling anomalies have been analyzed.

The analysis carried out in Section 3 showed also that preemptions can be
profitable from the viewpoint of two factors. Firstly, they can make problems
easier to solve, and secondly, they can shorten the schedule. In fact, in the case
of dependent tasks scheduled on processors in order to minimize schedule length,
these two factors are valid and one can construct an optimal preemptive schedule
for tasks of arbitrary length and with other parameters the same as in Algorithm
4.1 and 4.2 [120 , 1211. The approach again uses the notion of the level of task
1; in a precedence graph, by which is now understood the sum of processing
times (including pi) of tasks along the longest path between T, and a terminal
task (a task with no successors). Let us note that the level of a task which is
being executed is decreasing. We have the following algorithm.

Algorithm 4.3. (Problems P2 1 pmtn, prec 1 C,, and PI pmtn, forest I C-)
1. Compute the level of all the tasks in the precedence graph.
2. Assign tasks at the highest level (say g tasks) to available processors (say / I

processors) as follows. If g > i t , assign /3 = Iz/g processors to each of the g
tasks, thus obtaining a processor-shared schedule. Otherwise assign one proces-
sor to each task. If there are any processors left, consider the tasks at the next
highest level and so on.

- a task is finished,
- a point is reached at which continuing with the present assignment means

that a task at a lower level will be executed at a faster rate than a task at
a higher one. In both cases go to step 2.

4. Between each pair of successive reassignment points (obtained in step 3), the

3. Process the tasks assigned in step 2 until one of the following occurs:

tasks are rescheduled by means of Algorithm 3.1.

The above algorithm can be implemented to run in O (n 2) time. An example of
its application to an instance of problem P21 pmtn, precl C- is shown in
Fig. 4.4.

At this point let us also mention another structure of the precedence graph
which enables one to solve a scheduling problem in polynomial time. To do this
we have to present precedence constraints in the form of an activity network
(task on arc precedence graph). Now, let S, denote the set of all the tasks which
may be performed between the occurrence of event (node) I and I + 1. Such sets
will be called main sets. Let us number from 1 to K the processor feasible sets,
i.e. those main sets and those subsets of the main sets whose cardinalities are
not greater than m. Now, let Q, denote the set of indices of processor feasible
sets in which task may be performed, and let xi denote the duration of set i.
Now, the linear programming problem may be formulated in the following way
[152, 191 (another LP formulation is presented for unrelated processors).

Selected topics in scheduling theory 2 5

I

Ir I I

TI TI T2 T3 T5 T6

0 1 2 3 4 5 6 t

Fig. 4.4. An example of the application of Algorithm 4.3 for m = 2 (I-processor-shared
schedule, 11-preemptive one).

K

minimize C-= xi
i = 1

subject t o xi =pi, j = 1 , 2, . . . , n .
i € Q . I

(4.2)

It is clear that the solution obtained depends on the ordering of the nodes of the

26 .I Btaiewicz

activity network, hence an optimal solution is found when this topological
ordering in unique. Such a situation takes place for a uniconnected activity
network (uan), i.e. one in which any two nodes are connected by a directed
path in one direction only. An example of a uniconnected activity network
(and the corresponding precedence graph) is shown in Fig. 4.5. On the other
hand, the number of variables in the above LP problem depends polynomially
on the input length, when the number of processors m is fixed. We may now
use Khachijan's procedure [89] which solves an LP problem in time which is
polynomial in the number of variables and constraints. Hence, we may conclude
that the above procedure solves problem Pm I pmtn, uan 1 C,, in polynomial time.

The general precedence graph, however, results in "-hardness of the schedul-
ing problem [143]. The worst-case behavior of Algorithm 4.3 in the case of
problem PI pmtn, prec I C- has been analysed in [96]:

2
R.4lg4.3 = 2 - - m

(m 2 2).

B. Uniform processors

Let us start with an analysis of independent tasks and nonpreemptive scheduling.
Since the problem with arbitrary processing times is already NP-hard for identical
processors, all we can hope to find is a polynomial-time optimization algorithm
for tasks with unit processing times only. Such an algorithm has been given in
[70], where a transportation network approach han been presented to solve
problem Q 1 pi = 1 1 C-. We describe it briefly below.

Let there be n sources j , j = I , 2, . . . , n and mn sinks (i , k) , i = 1 , 2 , . . . , in ,
k = 1 , 2 , . . . , n . Sources correspond to tasks and sinks to processors and posi-
tions on them. Set the cost of arc (j , (i , k)) equal t o ciik = k/b, ; it corresponds to
the completion time of task processed on 4. in the k-th position. The arc flow
xj jk has the following interpretation:

1 if is processed on 4. in the k- th position,

' I k I 0 otherwise.
x.. =

TI T4

Fig.4.5. An example of a simple uniconnected activity network (a) and the corresponding
precedence graph (b): S, = { q, q}, S, = { q, q, ci, S, = { q, T,}.

Selected topics in scheduling theory

The min-max transportation problem can be now formulated as follows:

minimize max {c i jk x i jk }
i , i , k

subject to xi jk = 1 for all j
i = l k = l

2 X i j k < 1 for all i , k
j = 1

x.. 2 0 for all i, I , k
t i k

The above problem can be solved in 0 (n 3) time 1701.

21

(4.3)

(4.4)

(4.5)

(4.6)

Since other problems of nonpreemptive scheduling of independent tasks are
NP-hard, one may be interested in applying some heuristics. One of them has
been presented in [1131. This is a list scheduling algorithm. Tasks are ordered on
the list in nonincreasing order of their processing times and processors are ordered
in nonincreasing order of their processing speeds. Now, whenever a processor
becomes free the first nonassigned task on the list is scheduled on it (if there
are more free processors, the fastest is chosen). The worst-case behavior of the
algorithm has been evaluated for the case of m + 1 processors in the system, m
of which have processing speed factors equal to 1 and the remaining processor
has the processing speed factor equal to 6 . The bound is as follows

2(m + b) i(for b < 2

f o r b > 2.
m + b

2

It is clear that the algorithm does better when b and m decrease. Other algorithms
have been analyzed in [114, 115,621.

By allowing preemptions one can find optimal schedules in polynomial time.
That is, problem Q I pmtn I C,, can be solved in polynomial time. We will present
the algorithm given in [76], despite the fact that there is a more efficient one
[65]. This is because the first algorithm also covers more general precedence
constraints than the second, and it generalizes the ideas presented in Algorithm
4.3. It is based on two concepts: the task level (defined as previously as the pro-
cessing requirement of the unexecuted portion of a task) and processor sharing
(i.e. the possibility of assigning a task a part p (0 </3 < max { b i }) of processing
capacity). Let us assume that tasks are given in order of Aonincreasing pi’s and
processors in order of nonincreasing hi's. It is quite clear that the minimum
schedule length is

(4.7)

28 J. Haiewicz

where X , is the sum of processing requirements (standard processing times pi) of
the first k tasks and B, the collective processing capacity (the sum of processing
speed factors bi) of the first k processors. The algorithm that constructs a sche-
dule with the length equal to C, may be presented as follows.

Algorithm 4.4. (Problem Q I pmtn I C-1
1 . Let h be the number of free (available) processors and g be the number of

tasks at the highest level. If g < h , assign g tasks to be executed at the same
rate on the fastest g processors. Otherwise, assign the g tasks onto the h proces-
sors. If there are any processors left, consider the tasks at the next highest
level.

2 . Preempt the processing and repeat step 1 whenever one of the following
occurs:
(a) a task is finished,
(b) a point is reached at which continuing with the present assignment means

that a task at a lower level is being executed at a faster rate than a task at
a higher level.

3. T o construct a preemptive schedule from the obtained shared one, reassign a
portion of the schedule between every pair of events (denote the length of
this interval by y) .
(a) If g tasks have shared g processors, assign each task to each processor for

y lg time units.
(b) Otherwise, i.e. if the number of tasks has been greater than the number

of processors (g > / I) , let each of the g tasks have a processing requirement
of p in the interval. If p /b < y , where b is the processing speed factor of
the slowest processor, then the tasks can be assigned as in Algorithm 3.1,
ignoring the different processor speeds. Otherwise, divide the interval into
g equal subintervals. Assign the g tasks so that each task occurs in exactly
h intervals, each time on a different processor.

The complexity of Algorithm 4.4 is O (m n Z) . An example of its application is
shown in Fig. 4.6.

When considering dependent tasks, only preemptive optimization algorithms
exist. Algorithm 4.4 also solves problem Q 2 I pmtn, prec I C-. Now, the level
of a task is understood as in Algorithm 4.3, assuming standard processing times
for all the tasks. When considering this problem one should also take into account
the possibility of solving it for uniconnected activity networks via a slightly
modified linear programming approach (4. I) - (4.2) or another LP formulation
described in the next subsection.

C. Unrelated processors

The case of unrelated processors is the most difficult. (For example it makes
no sense to speak about unit -length tasks). Hence, no polynomial-time optimiza-

Selected topics in scheduling theory 29

Fig. 4.6. An example of the application of Algorithm 4.4: n = 4 , m = 2,p= [35,26, 14,101,
b = [3.1]; a processor shared schedule (a) and an optimal one (b).
-

tion algorithms are known for problems other than preemptive ones. Also, very
little is known about approximation algorithms for this case. Some results have
appeared in [791, but the obtained bounds are not very encouraging. Thus, we
will pass to a preemptive scheduling model.

Problem R I pmtn [C,, can be solved by a two-phase method. The first phase
consists in solving a linear programming problem formulated independently in
[18,201 and in [1011. The second phase uses the solution of the above LP prob-
lem and produces an optimal preemptive schedule [101, 1411.

processed on 4.. The LP formulation is as
follows:

minimize C,, (4.8)

Let xii E [0, I] denote a part of

subject to

n

c,, - x Pii Xii 2 0,
j = 1

i = 1 , 2 , . . .

m

j = 1 , 2 , . . . , n
i = 1

m x Xii = 1 j = l , 2 , . . . , n.

(4.9)

(4.10)

(4.1 1)
i = 1

Solving the above problem, we get C,, = C& and optimal values x$. However,
we do not know the schedule i.e. the assignment of these parts to processors in
time. It may be constructed in the following way. Let t$ = piix$, i = 1, 2, . . . , m ;

30 J. Btaiewicz

j = 1, 2, . . . , n. Let T = [t;] be an mxn matrix. The j - th column of T corre-
sponding to task 1; will be called critical if Z,T= r; = C:,. By Y we denote an
mxm diagonal matrix whose element ykk is the total idle time on processor k ,
i.e. y,, = C& - Cr, t;. Columns of Y correspond to dummy tasks. Let V =

= [T , Y] be an mx(n + m) matrix. Now a set U containing nz positive elements
of matrix V can be defined as having exactly one element from each critical
column and at most one element from other columns, and having exactly one
element from each row. We see that U corresponds to a task set which may be
processed in parallel in an optimal schedule. Thus, it may be used to construct a
partial schedule of length 6 > O.An optimal schedule is then produced as the
union of the partial schedules. This procedure is summarized in Algorithm 4.5.

Algorithm 4.5.
1 . Find set U .
2. Calculate the length of a partial schedule

u . if C,, - urnin 2 urnax

otherwise
mm 6 =

where

urnin= min { u . . } ,
U’. E u

11

urnax = max {uii}.
u . . t u ‘I

3 . Decrease Cmax and uii E U by 6 . If C,, = 0, an optimal schedule has been
constructed. Otherwise go to step 1 .

Now we only need an algorithm that finds set U for a given matrix V . One of
the possible algorithms is based on the network flow approach. A corresponding
network has m nodes corresponding to processors (rows of V) and n + m nodes
corresponding tasks (columns of V) (c.f. Fig. 4.7). A node i from the first group
is connected by an arc to a node j of the second group if and only if K j > 0. Arc
flows are constrained by b from below and by c = 1 from above. The value of
b is equal t o 1 for arcs joining the source with processor-nodes and critical task
nodes with the sink, and to 0 for other arcs. We see that finding a feasible flow
in this network is equivalent to finding set U .

The overall complexity of the above approach is bounded from above by a
polynomial in the input length. This is because the LP problem may be solved
in polynomial time using Khachijan’s algorithm [89]; the loop in Algorithm
4.5 is repeated at most mn times and solving the network flow problem requires
0 (z 3) time, where z is the number of network nodes [87].

When dependent tasks are considered, linear programming problems similar
to (4.1) - (4.2) or to (4.8) - (4.1 1) can again be formulated taking into account
an activity network presentation. For example, in the latter formulation one
defines x i jk as a part of task 7j processed on processor 4 in the main set S,.

Selected topics in scheduling theory 31

Tasks

Processors -

\ I A

\ / I\ I ; /
\

\ / I

Fig. 4.7. Finding set U by the network flow approach.

Solving the LP problem for x i j k , one then applies Algorithm 4.5 for each main
set. If the activity network is uniconnected, an optimal schedule is constructed
in this way.

We can complete this subsection by remarking that introducing different ready
times into the considered problems is equivalent to minimizing maximum lateness.
We will consider such problems in Section 4.4.

4.3. Minimizing mean flow time

A . Identical processors

In the case of identical processors preemptions are not profitable (when equal
ready times are assumed) from the viewpoint of the value of the mean flow
time [1 161. Thus, we can limit ourselves to considering nonpreemptive schedules
only.

When analyzing the nature of the criterion, one may expect that by assigning
tasks in nondecreasing order of their processing times the mean flow time will
be minimized. In fact, this simple SET rule (shortest processing time) minimizes
the criterion for a one-processor case [1141. A proper generalization will also
produce an optimization algorithm for P I(C C, [44]. It is as follows:

Algorithm 4.6. (Problem P 11 C 5)
1. Order tasks in nondecreasing order of their processing times.
2. Take consecutive m-tuples from the list and for each rn-tuple assign the tasks

32 J. BIaiewicz

to m different processors.
3. Process tasks assigned to each processor in SPT order.

The complexity of the algorithm is obviouslyO(n log n) .
In this context let us also mention that introducing different ready times

makes the problem strongly NP-hard even for the case of one processor [1121.
On the other hand, problem 1 1) E wj Cj, i.e. with non-equal weights of the tasks,
can be solved by the weighted-SPT rule, that is, the tasks are scheduled in nonde-
creasing order of ratios pj/wj [1421. However, unlike the mean flow time criterion,
an extension to the multiprocessor case does not exist here, since problem
P 2 11 Z wj Cj is already NP-hard [301.

Let us pass now to dependent tasks and first consider the case of one processor.
It appears that the WSPT rule can be extended to cover also the case of tree-like
precedence constraints [73, 3, 1331. The algorithm is based on the observation
that two tasks q, can be treated as one with processing time pi + pi and weight
wi + w j , if I ; < T, pi/wi >pj /wj and all other tasks either precede q, succeed
7, or are incomparable with either. In order to describe the algorithm we need the
notion of a feasible successor set of task I;. This set Z i , i = 1, 2, . . . , n, is defined
as one containing tasks that may be processed after I; has been finished without
the completion of any tasks not belonging to Zi. Thus, this set has the following
properties:
- I ; E Z i ,
- i fT ,EZi and q# q, then q<q,
- if $ E Zi and T < $, then either 7 E Zi or T < I;.
Below we present an algorithm for out-trees.

Algorithm 4.7. (Problem 1 1 out-tree IE wi C,)
1. For each task calculate

where the minimum is taken over all feasible successor sets of task I;.
2. Process tasks in non-decreasing order of 6, observing precedence constraints.

The above algorithm can be implemented to run in O(n log n) time. The case of
in-trees can be solved by a similar modification as in the case of Algorithm 4.1.
Let us note that a more general case involving a series-parallel precedence graph
can also be solved in O(n1ogn) time [98], but general precedence constraints
result in NP-hardness of the problem even for equal weights or processing times
[98, 1071.

When the multiple processor case in considered, thenP lout-tree, p, = 1 I 2: Ci is
solved by Algorithm 4.1 adapted to the out-tree case [1281, and P 2 I prec, pi =

Selected topics in scheduling theory 33

= 1 I Z Ci is strongly NP-hard 11071, as are almost all problems with arbitrary
processing times since already problems P 2 I in-tree 12 C, and P 2 1 out-tree 1 Z Cj
are NP-hard [1321. Unfortunately, no approximation algorithms for these prob-
lems are evaluated from the point of view of their worst -case behavior.

B. Uniform and unrelated processors

The results of Subsection A also indicate that scheduling dependent tasks on
uniform (or unrelated) processors is in general an NP-hard problem. No heuristics
have been investigated either. Thus, we will not consider this subject below.

On the other hand, in this case preemptions may be worthwile, thus we have
to treat non-preemptive and preemptive scheduling separately. Let us start with
uniform processors and independent tasks to be scheduled nonpreemptively . In
this case the flow time of a task is given as l$, = (l /bi) Z/=,piljp where i[k] is
the index of a task which is processed in the k-th position on 4.. Let us denote
by ni the number of tasks processed on processor 4 . Thus, I? = C,?=, ? z i . The
mean flow time is now given by the formula

F =
n

(4.12)

It is easy to see that the numerator in the above formula is the sum of n terms
each of which is the product of a processing time and one of the following coeffi-
cients:

1 1 1 1

It is known that such a sum is minimized by matching n smallest coefficients
in nondecreasing order with processing times in nonincreasing order [44]. An
O(n logn) implementation of this rule has been given in [7 5] .

In the case of preemptive scheduling, it is possible to show that there exists
an optimal schedule for Q I pmtn I Z Cj in which cj < ck if pi < pk [10 1 1. On the
basis of this observation, the following algorithm may be proposed [61] (assume
that processors are ordered in nonincreasing order of their processing speed
factors).

Algorithm 4.8. (Problem Q I pmtn I C C,)
1. Place the tasks on the list in the SPT order.
2. Having scheduled tasks T , T,, . . . , T , schedule task to be completed as

34 J. Btaiewicr

early as possible (preempting when necessary).

The complexity of the algorithm is O(n logn + mn). An example of its applica-
tion is given in Fig. 4.8.

Let us now consider unrelated processors and problem R I(Z: Cj. An approach
to its solution is based on the observation that TLprocessed on processor 4, as
the last task contributes its processing time pij to F. The same task processed in
the last but one position contributes 2p,,, and so on [30]. This reasoning allows
one to construct a matrix Q presenting contributions of particular tasks processed
in different positions on different processors, to the value of F.

The problem is now to choose n elements from Q such that:
- there is exactly one element from each column,
- there is at most one element from each row,
- the sum of elements is minimum.
The above problem may be solved in a natural way via the transportation

problem. The corresponding transportation network is shown in Fig. 4.9.
Careful analysis of the problem allows its being solved in O(n3) [30].
To end this subsection, let us mention that the complexity of problem

R I pmtn 1 X Cj is still an open question.

4.4. Minimizing maximum lateness

A . Identical processors

It seems to be quite natural that in the case of this criterion the general rule

0 t
Fig. 4.8. An example of the application of Algorithm 4.8.

Selected topics in scheduling theory 35

total flow (n,O)

Fig. 4.9. The transportation network for problem R (1 c Cj: arcs are denoted by (c ,y) , where c
is a capacity and y the cost of a unit flow.

should be to schedule tasks according to their earliest due-dates (EDD-rule).
However, this simple rule of Jackson [80] produces optimal schedules in only
a few cases. In most cases more complicated algorithms are necessary or the
problems are NP-hard. Let us start with nonpreemptive scheduling and indepen-
dent tasks.

Problem 1 (lLmx may be solved by the EDD rule in O(n logn) time, but intro-
ducing different ready times makes the problem NP-hard in the strong sense [1 121.
Assuming, however, equal processing times, the problem of finding a feasible
schedule with respect to given ready times and deadlines, denoted by 1 (4 = p ,
5 , di 1 -, can be solved in O(n log n) time 1.591 by slightly modifying the EDD rule.
A bisection search over the possible L,, values leads to a polynomial algorithm
for 1 I r j , pi = p I L,.

Of course taking into account Fig. 4.1 and the relation between the C, and
L , criteria, we see that all the problems that are NP-hard with the C, criterion
remain NP-hard with the L,, one as well. For example P 2 (1 L , is NP-hard. On
the other hand, unit processing times of tasks make the problem easy and PI pi =

= 1, ';. I L,, can be solved by an obvious application of the EDD rule [121. Moreo-
ver, problem P i p j = p , q (L , can also be solved in polynomial time by an
extension of the above-mentioned single processor algorithm [5 91. Unfortuna-
tely, very little is known about the worst -case behavior of approximation algo-
rithms for the NP-hard problem in question.

The preemptive mode of processing makes the solution of the scheduling
problem much easier. The fundamental approach in that area is testing for feasibi-

36 J. Waiewicz

lity via the network flow approach [74] (problem PI pmtn, ri, di I -). Let the
ready times and the deadlines in PI pmtn, ri, dj I - be ordered on a list in such
a way that: e, < e, < . . . < ek, k < 2n. A corresponding network has two sets
of nodes. (Fig. 4.10). The first set corresponds to time intervals in a schedule,
i.e. node Wi, i = 1, 2 , . . . , k , corresponds to interval [ei-l, ei]. The second set
corresponds to the task set. The capacity of the arc joining the source of the
network with node Wi is equal to m(ei - ei-J and thus corresponds to the total
processing of m processors in this interval. If task can be processed in interval
[ei-l, ei] (because of its ready time and deadline) then q. is joined with by
an arc of capacity ei - ei- ,. Node Ti is joined with the sink of the network by
an arc with a capacity equal to pi and a lower bound also equal t o p i . We see
that finding a feasible flow pattern corresponds to constructing a feasible schedule
and this test can be made in O(n3) time. Then a binary search can be conducted
on the optimal value of L,, with each trial value of L,, inducing deadlines
which are checked for feasibility by means of the network computation. This
procedure can be implemented to solve problem PI pmtn, ri I L , in
O(n3min {n2, log n + log max {pj}}) [931.

Now let us pass to dependent tasks. A general approach in this case consists
in assigning modified due dates to tasks, depending on the number and due
dates of their successors. Of coyrse, the way in which modified due dates are
calculated depends on the parameters of the problem in question. Let us start
with nonpreemptive scheduling and with one processor. Problem 1 I prec I L,,
may be solved in O(n 2, time by assigning the following due dates

j = 1 , 2, . . . , n d; = min {di, min {d i : 7 < q}}, (4.13)

and then scheduling tasks in nondecreasing order of these due dates, observing
precedence constraints [1041. Let us note that this algorithm can be generalized

Fig. 4.10. The network corresponding to problem PI pmtn, ri di I -.

Selected topics in scheduling theory 37

to cover the case of an arbitrary nondecreasing cost function [97]. When schedul-
ing on a multiple processor system only unit processing times can result in poly-
nomial-time scheduling algorithms. Let us start with in-tree precedence con-
straints and assume that if I ; < 5 then i > j . The following algorithm minimizes
L,, [2 8] (is (j) denotes an immediate successor of T) .

Algorithm 4.9. (Problem PI in-tree, pi = 1 1 L,%)

2. For q, k = 2 , 3 , . . . , n , compute a modified due date according to the formula
1 . Setd: : = 1 - d 1’

d f = max { 1 + dEck,, 1 - dk}.

3. Schedule tasks in nonincreasing order of their modified due dates subject
to precedence constraints.

This algorithm can be implemented to run in O(n logn) time. Surprisingly
out -tree precedence constraints result in the NP-hardness of the problem [29].
However, when we limit ourselves to two processors, a different way of comput-
ing modified due dates can be proposed which allows one to solve the problem
in O (n 2) time [56].

Algorithm 4.10. (Problem P 2 I prec,
1 . Choose q which is not assigned a modified due date and all of whose successors

2. Define set A (T,) consisting of all successors of q having modified due dates

d: :=min{dk,min{(d,?-1l/2g(k,d,?)l) : T , E A (T ,) } } (7)

If there is any task with no modified due date assigned, go to step 1 .
3 . Schedule tasks in nondecreasing order of their modified due-dates subject

to precedence constraints.

= 1 I L,=)

have been assigned these due dates.

not greater than d:. Define a modified due date of as:

The above algorithm may be generalized to cover the case of different ready
times too but the running time is then O(n3) [5 7] and this is as much as we can
get assuming nonpreemptive scheduling. Preemptions allow one to solve problems
with different processing times but, in general, other parameters remain the same
as in the nonpreemptive case.

When tasks are to be scheduled on one processor, problem 1 I pmtn, prec, 5 1 L,,
can be solved in O(n2) time by defining modified due dates according to formula
(4.13) and then scheduling available tasks in nondecreasing order of these due
dates, subject t o precedence constraints [I 11. Let us note that this approach can

(7) [XI denotes the smallest integer not smaller than x

38 J. Btaiewicr

be generalized again to cover the case of an arbitrary nondecreasing cost function

When considering the multiple processor case it is interesting to note that there
are preemptive counterparts of all of the nonpreemptive scheduling algorithms
for unit-length tasks, presented above. In [1001 algorithms have been presented
that are preemptive counterparts of Algorithms 4.9, 4.10 and the one presented
in [57]. Hence problems PI pmtn, in-tree I L,,, P 2 I pmtn, prec I L,, and
P 2 1 pmtn, prec, ';. I L , are solvable in polynomial-time. These preemptive
scheduling algorithms employ essentially the same techniques for dealing with
precedence constraints as the corresponding algorithms for unit -length tasks.
However, these algorithms are more complex and their lengthy description
prevents us from presenting them here.

181.

B. Uniform and unrelated processors

From the considerations of Subsection 4.2 and 4.4 A, we see that nonpreem-
tive scheduling to minimize L , is in general a hard problem, and practically
the only known polynomial-time optimization algorithm is that for problem
Q I pi = 1 I LmW. This can be solved via transportation problem formulation (4.3) -
(4.6), but now cijk = k/bi - d j . Thus, below we can concentrate on preemptive
scheduling.

We will consider uniform processors first. One of the most interesting algorithms
in that area has been presented for problem Q I pmtn, rj I L,, [47]. It is a genera-
lization of the network flow approach to the feasibility testing of problem
PI pmtn, 5 , d j I - described above.

In the case, of precedence constraints, Q 2 1 pmtn, prec 1 L , and Q 2 I pmtn,
prec, ';. I L , can be solved in O(n2) and O(n6) time, respectively, by the algorithms
already mentioned [1001.

As far as unrelated processors are concerned, problem R I pmtn 1 L,, can be
solved by LP formulation very similar to (4.8) - (4.1 1) [l o l l , but now x$ denotes
the amount of which is processed on 4 in time interval [d,-, + L,, d , + 15-1
(due dates are ordered: d , < d , < . . . < d,J. Moreover, Algorithm 4.5 is now
applied to each matrix T(,) = [ti:.*], k = 1 , 2, . . . , n . It this context let us also
mention that the case when precedence constraints form a uniconnected activity
network, can also be solved via the same modification of the LP problem as
described for the C, criterion [1381.

5 . Scheduling on dedicated processors

5.1. Introduction

In this section we will consider scheduling problem in which a task requires
processing on more than one machine and hence may be represented as a set of
operations. Unfortunately, in this case most of the scheduling problems are
NP-hard, and this is especially true for critsria other than C,. Below we will

Selected topics in scheduling theory 39

concentrate on polynomial-time algorithms and because of that only open-shop
and flow-shop scheduling problems are considered since the job shop scheduling
problem is NP-hard for almost all the cases (see [1021 as the survey).

5.2 Open shop schedulirig

Let us consider nonpreemptive scheduling first. Problem 02 I(C,, can be solved
in O(n) time [63]. We give here a simplified description of the algorithm presented
in [1021. For convenience let us denote u, = p,, , b, = p,,, A = { q :u, 2 b,},
B = (7 ; :u, < b,}and J , = E;=, u,, and J, = Z;= , b,.

Algorithm 5.1. (Problem 02 11 C,,,)
1 .

2 .

3.

4.

,,

Choose any two tasks T and Tfor which we have

a, 2 max { bi}. b, 2 max { uj }.

Let A ’ = A - { $, T]and B’ = B - { q, q}.
Construct separate schedules for B‘ U { T 1 and A’ U { T}. as depicted in Fig.
5.1. Other tasks from A’ and B’ are scheduled arbitrarily.
Suppose that J , -a , 2 J , - b, (J , -a, < J, - b, is symmetric). Join both
schedules in the way shown in Fig. 5.2. Move tasks from B’ U { T] processed
on 4 to the right.
Change the order of processing on Pz in such a way that 0, is processed as the
first one on this processor.

l j € A q E B

The above problem becomes NP-hard as the number of processors increases to
3. But again preemptions result in a polynomial time algorithm. That is, problem
0 1 pmtn 1 C,, can be solved [631 by taking

0 t 0 t

Fig. 5.1.

Pl

p2

0 t

Fig. 5.2.

40 J. Biaiewicz

and then applying Algorithm 4.5.
Let us also mention here that problems 0 2 I/ Z Cj and 0 2 11 L,, are NP-hard

[l] and [103], and problem 0 I pmtn, rj I L,,, is solvable via the linear program-
ming approach [35]. As far as heuristics are concerned, an arbitrary list scheduling
and SPT algorithms have been evaluated for 0 I / E C, [11. Their asymptotic perfor-
mance ratios are as follows

RLw = 1 1 , Rs& = m.

Since the number of tasks is usually much larger than the number of processors,
the bounds indicate the advantage of SPT schedules over arbitrary ones.

5.3. Flow shop scheduling

due to S. Johnson [81]. It is as follows.
One of the most classical algorithms in this area is that for problem F 2 11 C,,,

Algorithm 5.2. (Problem F 2 (1 Cmm)
1 . Choose tasks such that pli < p z j . Schedule them in nondecreasing order

2. Schedule other tasks in nonincreasing order of their p Z j ' s .
of their p l j ' s .

It is clear that this algorithm requires O(n logn) time. It can be extended to
cover also the special case of three-processor scheduling in which min { p l j } Z
2 mpx { p , ,) or min { p 3 , } 2 mpx {p,,). In this case the processing time on the
second processor 'is not important and an optimal schedule can be obtained
by applying Algorithm 5.2 to processing times (p l i + p,,, pzi + p 3 ,) . However,
more complicated assumptions concerning problem parameters (i.e. precedence
constraints, more processors involved or other criteria) make the problem strongly
NP-hard. Thus, one is interested in evaluating some heuristic algorithms, but
not much work has been done in this area. In fact, the only results have appeared
in [64], [9] and [1271. In the first paper, the worst-case behavior of an algorithm
If based on Algorithm 5.2 has been proposed for problem F(I Cmx. Its worst-
-case behavior is proved to be

I

In the second paper, a quite complicated heuristic A has been proposed whose
absolute performance ratio does not depend on I Z and is proved to be

R, = (m - 1)(3m - 1)ph/2.

In the last paper, heuristics are proposed that replace m machines by two ma-
chines, and the task processing times are defined as the sums of the appropriate
original processing times. Absolute performance ratios are proportional t o m ,

Selected topics in scheduling theory 41

As far as the preemptive scheduling is concerned, the situation is the same
as described above, i.e. F 2 I pmtn I C,, is solved by Algorithm 5.2 and other
problems are strongly NP-hard. The only exception is F 2 I pmtn 1 Z: Cj , which
is open.

6. New directions in scheduling theory

6.1. Introduction

In this section we will present some of the new directions in determinstic
scheduling theory. We have chosen two of them: scheduling under resource
constraints when each task, besides a processor, may also require certain addi-
tional scarce resources, and scheduling in microprocessor systems, when each
task may require more than one processor at a time. Our choice has been primari-
ly motivated by the relevance of the chosen topics to computer scheduling. Thus,
we have not been able to include some other very interesting areas, as for example:
- scheduling with a different model of task processing, e.g. relating the process-

ing speed of a task to the amounts of resources granted (see e.g. [147, 148, 149,
15 1] and [1 SO] as a survey);
- multicriteria analysis of scheduling problems (see e.g. [78, 139, 140, 144,

1451);
- vehicle routing and scheduling problems (see [1081 for an interesting survey

of the results obtained).
Also, we have not been able to discuss the connections between scheduling and

inventory theory, despite the fact that an integration of these two areas seems
necessary and may lead to better understanding of the general production
planning problem (cf. e.g. [l 111).

6.2. Scheduling under resource constraints

The model considered here is very similar to the one defined in Section 2. The
only difference is the existence of s types of additional resources R, , R,, . . . , R,,
available in m,, m,, . . , , m, units, respectively. Each task T, requires for its
processing one processor and certain amounts of additional resources specified
by resource requirement vector 7(T) = [r , (T) , r , (T > , . . . , r s (T)] , where r l (T)
(0 < r / (T) < ml) , 1 = 1, 2, . . . , s, denotes the number of units of R, required
for the processing of 7;. (In the case of job shop scheduling each operation is
characterized by a resource requirement vector). We will assume here that all
required resources are granted to a task before its processing begins or resumes
(in the case of preemptive scheduling), and they are returned by the task after
its completion or in the case of its preemption. These assumptions define the
simplest rule of preventing system deadlocks (see e.g. [37]) which is often used
in practice, despite the fact that it may lead to a not very efficient use of additional
resources. (For other methods which tend to maximize resource usage at the
expense of tedious overhead involved see e.g. [71, 31,321). On the other hand,

42 J. Btazewicz

this method allows the construction of optimization algoyithms for a wide class
of scheduling problems.

It is not hard t o see that the above model is especially justified in computer
systems, where additional resources can stand for primary memory, mass storage,
channels, i/o devices, etc. But one should not forget about other applications of
this model in which tasks besides machines, can also require other limited
resources for their processing, such as manpower, tools, space, etc.

At this point we would also like to present possible transformations among
scheduling problems that differ only in their resource requirements (see Fig. 6.1).
In this figure six basic resource requirements are presented. All but two of
these transformations are quite obvious. A transformation n (res. . .) a Il (resl . .)
has been proved for the case of saturation of processors and additional resources
[55] and we will not present it here. The second n (resl . .) a n (res.11) has been
proved quite recently [171 and we will quote this proof below. For a given in-
stance of the first problem we construct a corresponding instance of the second
problem by assuming the parameters all the same, except resource contraints.
Then for each pair q, such that r l (q) + r l (l ;) > nil (in the first problem),
resource Ri j available in the amount of one unit is defined. Tasks T9 5 require
a unit of Rii. Other tasks do not require this resource. It follows that r , (q > +
+ r , (T) S rn, in the first problem if and only if for each resource R,, r , (T) +
+ r , (T) < 1 in the second problem.

We will now pass to the description of basic results obtained in the area of
resource constrained scheduling. Space limitations prohibit us even from only
quoting all the results available in that area. Thus, we have chosen as an example
the problem of scheduling tasks on parallel identical processors to minimize
schedule length. Other cases have been considered in the following papers:

res. 11

res 111
Fig. 6.1. Polynomial transformations among resource -constrained scheduling problems.

Selected topics in scheduling theory 43

scheduling on uniform and unrelated processors [27, 137, 138, 1531 minimizing
mean flow time in [14, 25, 271, minimizing maximum lateness in [15, 16, 171
and scheduling in job shop systems in [27, 125, 261.

Let us first consider independent task and nonpreemptive scheduling. The
problem of scheduling unit-length tasks on two processors with arbitrary resource
constraints and requirements may be solved by the following algorithm [551.

Algorithm 6.1. (Problem P 2 I res. . . , pi = 1 I C-).
1. Construct an n-node (undirected) graph G with each node labelled as a distinct

task and with an edge joining T to if and only if

k = 1 , 2 , . . . , s . r k (T) + r k (T) < i n k ,

2. Find a maximal matching F of graph G. Put the minimal value of schedule

3. Process in parallel the pairs of tasks joined by the edges comprising set F.
length C:- = I I - 1 F I .

Process other tasks individually.

Notice that the key idea here is the correspondence between a maximum
matching in a graph displaying resource constraints and the minimum-length
schedule. The complexity of the above algorithm clearly depends on the com-
plexity of the algorithm determining the maximum matching. There are several
algorithms for finding it, the complexity of the most efficient being O (H * . ~) [83].

We can do better if we restrict ourselves to the one-resource case. It is not
hard to see that in this case an optimal schedule will be produced by ordering
tasks in nonincreasing order of their resource requirements and assigning tasks
in that order to the first free processor on which a given task can be processed
because of resource constraints. Thus, problem P 2 I resl . . ,p i = 1 I C,, can be
solved in O(n log n) time.

If in the last problem tasks are allowed only for 0-1 resource requirements,
the problem can be solved in O(n) time even for arbitrary ready times and an
arbitrary number of processors, by first assigning tasks with unit resource requi-
rements up to m, in each slot, and then filling these slots with tasks with zero
resource requirements [131.

When we fix resource limits and resource requirements, problem PI res spr,
pi = 1 I C, is still solvable in linear time, even for an arbitrary number of pro-
cessors [24]. We describe this approach below, since it has more general applica-
tion. Let us note that we can divide all the tasks into k (which is fixed) classes
depending on their resource requirements (r l (7J, rz(T) , . . . , rs(T)) E { 0, 1, . . . , r}s.
For each possible resource requirement we define one such class. The correspond-
ence between the resource requirements and the classes will be described by
a 1 - 1 function f : { O , 1 , . . . , r}' -+ (1, 2, . . . , k } , where k is the number of dif-
ferent resource requirements, i.e. k = (r + 1)$. For a given instance, we denote
by ni the number of tasks belonging to the i- th class, i = 1, 2, . . . , k , thus having

44 J. Btajewicz

their resource requirements equal to f P 1 (i) . Let us observe that most of the
input information describing any instance of problem PI res spr, pi = 1 I C,,,
is given by the n resource requirements (we bypass for the moment the number
of processors M , the number of additional resources s and resource limits p) .
We may now replace this input by another vector, making use of the classes
introduced above. That is, we introduce a new vector U = (u l , u2, . . . , uk) E N t (*),
where ui is the number of tasks having resource requirements equal to f-.'(i),
i = 1 , 2 , . . . , k . Of course, the sum of the components of this vector is equal
to the number of tasks, i.e. Z/= ui = I J .

We now introduce some definitions useful in the following discussion. An
elementary instance of PI res spr, pi = 1 I C,, is defined as a sequence F (T) ,
F(q), . . . ,Y(q), where each F(T) E (0 , 1, . . . , r>S - (0 , 0 , . . . , O), with properties
1 < m and r (T) < (p , p , . . . , p) . Note that the minimal schedule length
for an elementary instance is always equal to 1 . An elemenaty vector is a vector
U E N i which corresponds to an elementary instance. If we calculate the number
K of different elementary instances, we will see that it cannot be greater than
(p + l)(rtl) '-l. However, this number is obviously much less than this upper
bound.

Let us denote the elementary vectors (in ally order) by bl, b,, . . . , b,. Let
us now observe two facts. Firstly, any input F(T ,) , ?(q), . . . , F(T) can be consi-
dered as a union of elementary instances. This is because any input consisting of
one task is elementary. Secondly, each schedule is also constructed from elemen-
tary instances, since all the tasks which are executed at the same time form an
elementary instance.

Now, taking into account the fact that the minimal length of a schedule for
any elementary instance is equal to one, we may formulate our problem as that
of finding a decomposition of a given instance into the minimal number of
elementary instances. One may easily notice that this is equivalent to finding
a decomposition of the vector U = (u l , u2, . . , , uk) E N,k into a linear combina-
tion of elementary vectors t,, g2, . . . , F,, for which the sum of coefficients
is minimal: Find el , e2, . . . , e, E No such that ZF= ei bi = and ZF= ei is
minimal..

Thus, we have obtained a linear integer programming problem, which in the
general case, would be "-hard. Fortunately, in our case the number of variables
K is fixed. It follows that we can apply a result due to H.W. Lenstra [1051, which
states that the linear integer programming problem with a fixed number of
variables can be solved in polynomial time in the number of constraints and loga,
but not in the number of variables, where a is the maximum of all the coefficients
in the linear integer programming problem. Thus, the complexity of the problem
is 0(2KZ(kloga)CK), for some constant c. In our case the complexity of that

-

-

(a) N o denotes the set of nonnegative integers.

Selected topics in scheduling theory 45

algorithm is 0 (2 K Z (k log n Y K) < O(n) . Since the time needed to construct the
data for this integer programming problem is 0 (2 $ (K + log n)) = O(logn), we
have proved that the problem PI res spr, pi = 1 I C,, may be solved in linear
time.

It follows that when we consider the nonpreemptive case of scheduling of
unit length tasks we have four polynomial time algorithms and this is probably
as much as we can get in this area, since other problems of nonpreemptive sche-
duling under resource constraints have been proved to be NP-hard. Let us men-
tion the parameters that have an influence on the hardness of the problem.
Firstly, different ready times cause the strong NP-hardness of the problem
even for two processors and very simple reource requirements, i.e. problem
P2 1 resl . . , ri, 4 = 1 1 C,, is already strongly NP-hard [17]. (From Fig. 6.1
we see that problem P2 I res .11, ri, pi = 1 I C,, is strongly NP-hard as well).
Secondly, an increase in the number of processors from 2 to 3 results in the
strong NP-hardness of the problem. That is, problem P3 I resl . . , p i = 1 1 C,,
is strongly NP-hard [5 5] . (Note that this is the famous 3-partition problem,
the first strongly NP-hard problem). Again from Fig. 6.1 we conclude that
problem P3 I res .11,& = 1 1 C,, is NP-hard in the strong sense. Finally, even
the simplest precedence constraints result in the NP-hardness of the scheduling
problem, that is, the P2 I resl 1 1, chain, 4 = 1 I C,, is NP-hard in the strong
sense [271.

Because of many NP-hard problems, there is a need to work out heuristics
with the guaranteed worst-case behavior. We quote some of the results. All
of the approximation algorithms considered here are list scheduling algorithms
which differ from each other in the ordering of tasks on the list. We mention
three approximation algorithms analyzed for the problem (9).

1. First fit (FF). Each task is assigned to the earliest time slot in such a way
that no resource (and processor) limits are violated.

2. First fit decreasing (FFD). A variant of the first algorithm applied to a list
ordered in nonincreasing order of r,(T) , where r-(T) = max{r,(T)/rn, :

3. Iterated lowest fit decreasing (ILFD - applied for s = 1 and pi = 1 only).
Order tasks as in the FFD algorithm. Put C as a lower bound on C&. Place

in the first time slot and proceed through the list of tasks, placing 7 in
a time slot for which the total resource requirement of tasks already assigned
is minimum. If we ever reach a point where cannot be assigned to any of

0

: 1 < l < S j .

C slots, we halt the iteration, increase C by I and start over.

(9) Let us note that the resource constrained scheduling for the unit processing times of the tasks is equi-
valent to the variant of a bin packing problem in which the number of items per bin is restricted to m . On
the other hand, several other approximation algorithms have been analyzed for the general bin packing
problem and the interested reader is referred to [421 for an excellent survey of the results obtained in that area.

46 J. Maiewicz

Below, we will present the main known bounds for the case m < 1 2 . In [90]
several bounds have been established. Let us start with the problem PI resl . . ,
pi = 1 I C,, for which the three above - mentioned algorithms have the following
bounds:

21 27 24
- - < RFF < - - -
10 10 10m

2
RFFD = 2 - -

rn

RZFD < 2.

We see that the use of an ordered list improves the bound by about 30%. Let us
pass now to the arbitrary processing times. Here some other bounds have been
established. For problem PI res . . . I C,, the first fit algorithm has been analyz-
ed [54]:

, s + 2 - - RFF = min -

Finally, when dependent tasks are considered, the first fit algorithm has been

2 s +
m 1,

evaluated for problem PI res . . . , prec I C, [541:

RFF = in.

Unfortunately, no results are reported on the probabilistic analysis of approxima-
tion algorithms for resource constrained scheduling. Now let us pass to preempti-
ve scheduling. Problem PI pmtn, resl . l I C,, can be solved via a modification of
Mc Naughton’s rule (Algorithm 3.1), by taking as the minimum schedule length

n

CL = max max { p i } , p,/m, pjlmlj.
T . E Z R

I
1 1 j = 1

where Z , is the set of tasks for which r , (T) = 1. The tasks are scheduled as in
Algorithm 3.1, the tasks from Z , being scheduled first. The complexity of the
algorithm is obviously O (n) .

Let us consider now the problem P 2 [pmtn, res. . . I C-. This can be solved
via a transformation into the transportation problem [27].

Without loss of generality we may assume that task T , j = 1, 2, . . . , n spends
exactly p i / 2 time units on each of the two processors. Let (T , c), j # r denote
a resource feasible task pair, i.e. a pair for which r k (T) + r k (l ;) < mk, k = 1,
2 , . . . , s. Let 2 be the set of all resource feasible pairs of tasks. 2 also includes
all pairs of the type (q , r, + 1> j = 1, 2 , . . . , n , where T, + is an idle time (dum-
my) task. Now we may construct a transportation network. Let n + 1 sender

Selected topics in scheduling theory 47

nodes correspond to tlie n + 1 tasks (including an idle time task) which are
processed on processor P, and let n + 1 receiver nodes correspond to the n + 1
tasks processed on processor 4. Stocks and requirements of nodes corresponding
to T , j = 1, 2, . . . , / I , are equal to pi /2 , since tlie amount of time each task
spends on each processor is equal to p j / 2 . The stock and requirement of two
nodes corresponding to T, + I are equal to Z,?= p j / 2 , since these are the maximum
amounts of time each processor may be idle. Then we draw directed arcs (T , T,)
and (7 ; , if and only if (7, T,) EZ, to express the possibility of processing
in parallel tasks 5 and T, on processors P, and 4. In addition we draw an arc
(T , + T,, , j . Then we assign for each pair (T , T) E 2 a cost associated with
arcs (7 , 7;j and (T , 7) equal to 1 , and a cost associated with the arc (TI T, + ,)
equal to 0. (This is because an interval with idle times on both processors does
not lengthen the schedule). Now it is quite clear that the solution of the cor-
responding transportation problem, i.e. the set x;, is simply the set of the num-
bers of time units during which corresponding pairs of tasks are processed (1;
being processed on PI and 7; on 4).

The complexity of the above algorithm is 0(n410g .Z pi) since this is the com-
plexity of finding a minimum cost flow in a network (the number of vertices
in the transportation network is O (n)) .

Now let us pass to the problem B n I pmtn, res. . . I Cmx. It can still be solved
in polynomial time via the linear programming approach (4.1) - (4.2) [1571, but
now, instead of the processor feasible set, the notion of a resource feasible set
is used. By the latter we mean the set of tasks which can be simultaneously
processed because of resource limits (including processor limit). At this point
let us also mention that problem PI pmtn, res. . 11 C,, can be solved by the
generalization of another linear programming approach (4.8) - (4.1 1) [137, 138,
1.531 (10). Let us also add that the latter approach can handle different ready times
and the L , criterion. On the other hand, both approaches can be adapted to
cover the case of the uniconnected activity network in the same way as that
described in Subsection 4.2.

Finally, when analyzing preemptive scheduling let us present bounds on the
worst -cass behavior of certain approximation algorithms [90] (problem PI pmtn,
resl . . I C,):

3 3
R" = 3 - - R , = 3 - -

m m
m

FF

Surprisingly, using an ordered list does not improve the bound.

(10) Strictly speaking, in this approach resource constraints slightly different from res. . 1 can be handled.
Details can be found in [153].

48 J. BIaiewicz

6.3. Scheduling in microprocessor systems

One of the assumptions imposed in Section 2 was that each task is processed
on at most one processor at a time. However, in recent years with the rapid
development of microprocessor and especially multi-microprocessor systems,
the above assumption has ceased to be justified in some important applications.
There are, for example, self-testing multi-microprocessor systems in which
one processor is used to test others or diagnostic systems in which testing signals
stimulate the tested elements and their corresponding outputs are simultaneously
analyzed [5 ,46] . When formulating scheduling problems in such systems, one
must take into account the fact that some tasks have to be processed on more
than one processor at a time. These problems create a new direction in processor
scheduling theory.

We will set up the subject more precisely [22, 231. Tasks are to be processed
on a set of identical processors denoted as previously P,, 4, . . . , P,. The set of
tasks is divided into k (or1ess)subsets y1 = {q , T,, . . . , T,,},y2 = IT2, q2, . . . ,
TnZ?}, . . . , Fk = { T k , qk, . . . , qi}, where n = n , + n2 + . . . + nk. Each task
ql, i = 1, 2 , . . . , n,, requires, one arbitrary processor for its processing and its
processing time is equal to t f . On the other hand, each task qk when k > 1,
requires k arbitrary processors simultaneously for its processing during a period
of time whose length is equal to t p . We will call tasks f r 0 m , 7 ~ width-k tasks or
Tk-tasks. All the tasks considered here are assumed to be independent, i.e. there
are no precedence constraints among them. A schedule will be called feasible if,
besides the usual conditions, each TI-task is processed by one processor and
each Tk-task is processed by k processors at a time. The schedule length is taken
as a criterion.

Let us start with the nonpreemptive scheduling. It is clear that the general
problem is NP-hard (cf. section 3), thus, we may concentrate on unit-length
tasks. Let us start with the problem of scheduling tasks which belong to two
sets only: Y1 and yk, for arbitrary k. This problem can be solved optimally
by the following algorithm [23].

Algorithm 6.2
1. Calculate the length of an optimal schedule according to the formula

2. Schedule the width-k tasks first in time interval [0, C&]. Then assign unit

('1) 1x1 denotes the greatest integer not greater than x.

Selected topics in scheduling theory 49

P,
p2

I
I

pk

Pi

Pi+k,

pm

width tasks to the remaining free processors.

I

1
I

Tk-tasks
I

I
I , I

0

I
! I

I
I L

It should be clear that (6.1) gives a lower bound on the schedule length of an
optimal schedule and this bound is always met by a schedule constructed by
Algorithm 6.2.

Let us consider now the case of scheduling tasks belonging t o sets T I , T* ,
Y3, . . . ,Fk, where k is a fixed integer. The approach used to solve the problem
is similar t o that for the problem of nonpreemptive scheduling of unit processing
time tasks under fixed resource constraints [24]. We have described that approach
in Subsection 6.2.

Now, we will pass to preemptive scheduling. Firstly, let us consider the prob-
lem of scheduling tasks from sets .TI ancl.Yk in order to minimize the schedule
length. In [2 2 , 231 it has been proved that among minimum-length schedules
for the problem there exists a feasible A-srhecltde, i.e. one in which first all
Th-tasks are assigned in time interval [O. CT-] using McNaughton's rule, and
then all TI-tasks are assigned, using the same rule, in the remaining part of
the schedule (cf. Fig. 6.2).

Following the above result, we will concentrate on finding an optimal schedule
among A-schedules. Now, we give a lower bound on a schedule length for our
problem. Define

" I "k

t l t , = max {ti' : q1 €TI}, tkm = max jtk : T k EY~} .

Fig. 6.2. An example A schedule.

so J. Biaiewicz

A bound on C,, is obtained as follows:

C-2 C = max {Zlm, Yllmlk], t:,, t&}. (6.2)

It is clear that no feasible schedule can be shorter that the maximum of the above
factors, i.e. mean processing requirement on one processor, mean processing
requirement of Tk-tasks on k processors, the maximum processing time of a
TI-task and the maximum processing time of a Tk-task. If m * C> 2, there will
be an idle time in any schedule and its minimum length IT = m - C - 2.

On the basis of bound (6.2) and the reasoning preceding it one can try to
construct a preemptive schedule of minimum length equal to C. However, this
is not always possible. Thus, one has to lengthen the schedule. Below we present
the reasoning that allows one to find the optimal schedule length. Let p = 1 YIC].
It is quite clear that the optimal schedule length C& must obey the following
inequality

Y

P
C < C L < -

We know that there exists an optimal A-schedule with k ' p processors devoted
entirely to Tk-tasks, k processors devoted to Tk-tasks in time interval [O , r] and
TI-tasks scheduled in the remaining time (cf. Fig. 6.2). Let the number of proces-
sors that can process T '-tasks in time interval [0, r] be

m , = m - (p + 1) e k

An A-schedule which completes all tasks by time D, where C < D < Y/p , will
have r = Y - Dp. Thus, the optimum value C& will be the smallest value of
D (D 2 C) such that the T '-tasks can be scheduled on rnl + k processors available
in the interval [O, D]. Below we give necessary and sufficient conditions for the
unit width tasks to be scheduled. To do this, let us assume that these tasks are
ordered in such a way that t : 2 ti 3 . . . 2 t j l . For a given pair D, r (r = Y - Dp),
let t : , t j , . . . , ti' be the only processing times greater than D - r . Then the T1-
-tasks can be scheduled if and only if

(6.3)
i = 1

To prove that the above condition really is necessary and sufficient, let us
first observe that if (6.3) is violated the TI-tasks cannot be scheduled. Suppose
now that (6.3) holds. Then one should schedule the excess (exceeding D - r)
of long tasks q, T,, . . . , 5 and (if (6.3) holds without equality) some other
tasks on m , processors in time interval [0, r] using McNaughton's rule. After
this operation the interval is completely filled with unit width tasks on m ,
processors.

Selected topics in scheduling theory 51

Now we describe how the optimum value of the schedule length (C&) can be
found. Let E: = C{= I ti’. Inequality (6.3) may be rewritten as

-j(D - Y) < w ~ , (Y - Dp),

Solving it for D we get

(j - m,) Y +
D >

(j - m , > p + i

Define

(j - t n ,) Y + p /
c. = . Thus, we may write

(i - 112,) P -k i I

Cn*, = max { C. C,, C,, . . . , C,,,}.

Finding the above maximum can clearly be done in O(n, log n ,) time by sorting
the unit-width tasks by ti. But one can do better by taking into account the
following facts.

1 . C , < C f o r i < m , a n d i > m , + k.
2. Ci has no local maxima for i = 112 , + 1 , . . . , rn , + k - 1.
Thus, to find a maximum over C,,ll + . . . , C,,, k - l and C we only need to

apply a linear time median finding algorithm [4] and binary search. This will
result in an O(n ,) algorithm that calculates C&. (Finding the medians takes
O(rr,) the first time, O(n , /2) the second time, O(n,/4) the third time, Thus
the total time to find the medians is O (n ,)) .

Now we can give an optimization algorithm for the considered case of schedul-
ing unit-width and width-k tasks

Algorithm 6.3
1 . Calculate the minimum length Cz,.
2. Schedule all the Tk-tasks (in any order) in interval [0, C&] using Mc Naugh-

ton’s rule.
3. Assign the excess of the long tasks (that exceed C:= - Y) and possibly some

other tasks to rn, processors in interval [0, Y]. Schedule the remaining process-
ing requirement in interval [Y, C:=] using Mc Naughton’s rule.

The optimality of the above algorithm follows from the discussion preceding
it. Its complexity is O (n , + n k) , thus weget O (n) .

To this end let us consider the general case of preemptively scheduling tasks
form sets T I , T2, . . . ,Fk, k fixed. Once more, we can use the very useful
linear programming approach (4.1) -(4.2) t o solve this problem in polynomial
time.

Now we will comment briefly on the possible extensions and refinements.

52 J. BIaiewicz

Firstly, one can consider additional resources besides central processors, thus
combining the models considered in Subsections 6.2 and 6.3. This subject is
partially covered by a forthcomong paper [21]. Then, one can consider slightly
different models, for example one assuming a kind of dedicated tests, where
each test (each task) is t o be carried out by an a priori specified set of processors.
Preliminary results in that area have been obtained in [91, 1191.

Appendix

To distinguish scheduling problems in a short way the three-field notation

The first field a = a1 a2 describes the processor environment. Parameter
a 10 I y has been proposed in [70, 102,271.

a1 E {q5, P, Q, R , 0, F , J } characterizes the type of processor used:
a1 = q5 : one processor (12); a1 = P : identical processors;
a1 = Q : uniform processor; a1 = R : unrelated processors;
a1 = 0 :dedicated processors: open shop system;
a1 = F : dedicated processors: flow shop system; a1 = J : dedicated

processors, job shop system.
Parametera, E {I$, k } denotes the number of processors in the problem:

a2 = q5 : the number of processors is assumed to be variable;
a, = k : the number of processors is equal to k (k is a positive

The second field P = P1, P 2 , B3 , P4, P , describes task and resource characteristics.
Parameter 0, E {pmtn, $I} indicates the possibility of task preemption:

P l = pmtn : preemptions are allowed;
P , = 4 : no preemption is allowed.

Pz = q5 : no additional resources exist;
P, = res hop: there are specified resource constraints;

integer).

Parameter P, E {q5, res hap} characterizes additional resources:

denote the number of additional resource types,
resource limits and resource requirements,
respectively ;

if
h, 0 , p = * then

and if
A , 0 , P = k ,

the number of additional resource types, resource
limits and resource requirements are respectively
arbitrary,

then respectively: the number of additional
resource types is equal to k , each resource is

(11) In this notation $J denotes an empty symbol, which will be omitted in presenting problems.

Selected topics in scheduling theory 53

available in the system in the amount of k units
and the resource requirements of each task are at
most equal to k units.

Parameter p3 E {q5, prec, uan, tree, chain} reflects the precedence contraints:
0, = $J, prec, uan, tree, chain: denotes respectively independent

tasks, general precedence constraints, uniconnect-
ed activity networks, precedence constraints
forming a tree or a chain.

Parameter P4 E { r j , q5} describes ready times:
/3, = ri : ready times differ per task,
p4 =

/3, = (pi = p) : all tasks have processing times equal to p units,
0, = (r, < pi < h) : no pi is less than - p and no greater than p .
0, = $J : tasks have arbitrary processing times.

: all ready times are equal t o zero.
Parameter /3, E {pi = p , p < p i < p , $ } describes task processing times:

The third field y denotes an optimality criterion (performance measure) i . 5
y E {C,,, ,-C Ci, C wi Cj. L, , , , C Ti, Z wi Ti, C Ui, C wi Uik where C Ci = F ,
C wi Ci = Cu, C = T , C wi 7 = c,, C Ui = U and C w. I 1 U. = U,.

Acknowledgment

I would like to thank Gerd Finke, Matteo Fischetti, Silvano Martello, Alexan-
der Rinnooy Kan and Jan Weglarz for valuable comments concerning the first
draft of this paper.

References

J . O . Achugbue and F.Y. Chin. ((Scheduling the open shop to mininiize mean flow timon, SIAM
Joumalon Computing 11,709 - 720, 1982.
ACM, Record of the project MAC conference on concurrent system and parallel computation,
Wood’s Hole, Mass., 1970.
D. Adolphson and T.C. Hu, ((Optimal linear ordering)), SIAM Journal on Applied Mathematics

A . V . Aho, J.E. Hopcroft and J .D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Mass., 1974.
A. Avizienis, ((Fault tolerance: the survival attribute of digital systems)), Proceedings o f t h e IEEE
66,No. 10, 1109- 1125. 1978.
J . L . Baer, ((A survey of some theoretical aspects of multiprocessing)), Computing Surveys 5, No. 1,
1973.
K.R. Baker, Introduction to Sequencingand Scheduling, J . Wiley & Sons, New York, 1974.
K.R. Baker, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, ((Preemptive scheduling of a
single machine to minimize maximum cost subject to release dates and precedence constraints)),
Operations Research 31, 381 - 386, 1983.
1. Barmy, ((A vector-sum theorem and its application to improving flow guaranteesu, Mathematics
of Operations Resenrch, 6,445 - 452, 1981.
A.J. Bernstein, ((Analysis of program for parallel programming)), IEEE Transactions on Computers
EC-IS, No. 5 , 1966.

25,403 - 423,1973.

54 J. Braiewicz

I111

1191

I331

J . Blazewicz, ((Scheduling dependent tasks with different arrival times to meet deadlines)), in C .
Gelenbe and H.Beilner (eds.), Modelling and Performance Evaluation of Computer Systems, North
Holland, Amsterdam, 57 - 65, 1976.
J . Blazewicz, ((Simple algorithms for multiprocessor scheduling to meet deadlines)), Information
hocessingLetters6, 162- 164, 1977.
J . Blazewicz, ((Complexity of computer scheduling algorithms under resource constraints)), Proceed-
ings ofI Meeting AFCET-SMFon Applied Mathematics, Palaiscau, 169 - 178. 1978.
J . Blazewicz, ((Scheduling tasks on parallel processors under resource constraints to minimize mean
finishing time>,Methods ofOperationsResearch, No. 35, 67 - 72,1979.
J. Blazewicz, ((Deadline scheduling of tasks with ready times and resource constraints)), Information
Processing Letters 8, 60 - 63, 1979.
J . Blazewicz, ((Solving the resource constrained deadline scheduling problem via reduction to the
network flow problem)), European Journal of Operational Research. 6, 75 - 79. 1981.
J. Blazewicz, J . Barcelo, W. Kubiak and H. Rock, ((Scheduling tasks on two processors with deadlines
and additional resources)) European Journal of Operational Research (to appear).
J. Blazewicz, W. Cellary, R. Slowinski and J. Weglarz, ((Deterministyczne problemy szeregowania
zadan na rownoleglych procesorachn, Cz. I. Zbiory zadan niezaleznych, Podstawy Sterowania 6 ,

J. Blazewicz, W. Cellary, R. Slowinski and J . Weglarz, ((Deterministyczne problerny szeregowania
zadan na rownoleglych processorachu, Cz. II. Zbiory zadan zaleznycb, Podstawy Sterowania 6,

J . Blazewicz, W. Cellary and J . Weglarz, ((A strategy for scheduling splittable tasks to reduce schedule
length)), Acta Cybernatica 3, 99 - 106, 1977.
J . Blazewicz, M. Drabowski, K. Ecker and J. Weglarz, ((Scheduling multiprocessor tasks with resource
constraintsr, (to appear).
J. Blazewicz, M . Drabowski and J. Weglarz, ((Scheduling independent 2-processor tasks to minimize
schedule length)), Information Processing Letters 18, 267 - 273, 1984.
J. Blazewicz, MDrabowski and J . Weglarz, ((Scheduling multiprocessor tasks to minimize schedule
length)), IEEE Transactions on Computers (to appear).
1. Blazewicz and K. Ecker, ((A linear time algorithm for restricted bin packing and scheduling prob-
lemsr, Operations Research Letters 2, 80 - 83, 1983.
J. Blazewicz, W. Kubiak, H. Rock and J . Szwarcfiter, ((Minimizing mean flow time under resource
constraints on parallel processors)), Report Technical University of Poznan, December 1984.
J. Blazewicz, W. Kubiak, H. Rock and J . Szwarcfiter. ((Scheduling unit-time jobs on flow-shops
under resource constraints)) (to appear).
J. Blazewicz, J.K. Lenstra and A.H.G. Rinnooy Kan, ((Scheduling subject to resource constraints:
classification and complexityr,Discrete Applied Mathematics 5, 11 - 21, 1983.
P.J. Brucker, ((Sequencing unit -time jobs with treelike precedence on m machines to minimize
maximum lateness)), Proceedings IX InternationalSymposium on MathematicalProgramming, Buda-
pest, 1976.
P. Brucker, MR. Carey and D.S. Johnson, ((Scheduling equal-length tasks under treelike precedence
constraints to minimize maximum lateness)), Mathematics of Operations Research 2,275 - 284,1977.
J . Bruno,,E.G. Coffman, Jr. and R. Sethi, ((Scheduling independent tasks to reduce mean finishing
time)), Communications of the ACM 17, 382 - 387, 1974.
W. CeUary, ((Task scheduling in systems with nonpreemtible resources, in E. Gelenbe and H. Beilner,
eds., Modelling. Measuring and Peformance Evaluation of Computer Systems, North Holland, Am-
sterdam, 1978.
W. Cellary, ((Scheduling dependent tasks from an infinite stream in systems with nonpreemptible
resource>, in G. Bracchi and P.G. Lockemann, eds., Lecture Notes in Computer Science, vol 65,
Springer Verlag, Berlin, 536 - 547, 1979.
N.-F. Chen and C.L. Liu, ((On a class of scheduling algorithms for multiprocessors computing
systems)), in T.-Y. Feng, ed., Parallel Processing.Lecture Notes in Computer Science 24, Springer
Verlag, Berlin, 1-16, 1975.
Y. Cho and S. Sahni ((Preemptive scheduling of independent jobs with release and due times on
open, flow and job shops)), OperationsResearch 29, 511 - 522,1981.
E.G. Coffman, Jr., ed., Computer & JobJShop Scheduling, J. Wiley, New York, 1976.
E.G. Coffman, Jr., P.J. Denning, Operating Systems Theory, Prentice-Hall, Englewood Cliffs,
N.J., 1973.
E.G. Coffman, Jr., G.N. Grederickson and G.S. Lueker, ((A note on expected makespans for largest-
-fust sequences of independent tasks on two processors,, Mathematics of Operations Research 9,

155 - 178, 1976.

297 - 320,1976.

260 - 266,1984.

Selected topics in scheduling theory 55

1431

1441

[611

1621

I631

1641

1671

1681

E.G. Coffman, Jr., G.N. Frederickson and G.S. Lueker, ((Probabilistic analysis of the LFT processor
scheduling heuristic), (unpublished paper), 1983.
E.G. Coffman, Jr. and R.L. Graham, <Optimal scheduling for two processor systemsB,Acta Infor-
matica 1,200 - 213,1972.
E.G. Coffman, Jr., M.R. Garey and D.S. Johnson, ((An application of bin-packing to multiprocessor
scheduling,, SIAMJournal on Computing 7, 1 - 17, 1978.
E.G. Coffman, Jr., M.R. Garey and D.S. Johnson, ((Approximation algorithms for bin-packing,
an updated survey)), in G. Ausiello, M. Luccertini, P. Serafini, eds., Algorithm Design for Computer
System Design, Springer Verlag, Wien, 49 - 106, 1984.
E.G. Coffman, Jr. and R. Sethi, ((A generalized bound on LFT sequencing), RAIRO-Informatque

R.W. Conway, W.L. Maxwell and L.W. Miller, Theory of Scheduling, Addison-Wesley, Reading,
Mass., 1967.
S.A. Cook, ((The complexity of theorem proving procedures)), Proceedings ACM Symposium on
Theory of Computing, 151 - 158,1971.
M. Dal Cin and E. Dilger, <On the diagnosability of self-testing multimicroprocessor systems),
Microprocessingand micmprog7ammfng 7,177 - 184,1981.
A. Federgruen and H. Groenevelt (to appear).
S. French, Sequencing and Scheduling: an Introduction to the Mathematics of the Job -Shop, Hor-
wood, Chichester, 1982.
J.B.G. Frenk and A.H.G. Rinnooy Kan, ((The asymptotic optimality of the LPT scheduling heuri-
stic)), Report Erasmus University, Rotterdam, 1984.
J.B.G. Frenk and A.H.G. Rinnooy Kan, <The rate of convergence to optimality of the LPT heuri-
stic), Report Erasmus University, Rotterdam, 1984.
M. Fujii, T. Kasami and K. Ninomiya, ((Optimal sequencing of two equivalent processors)), SIAM
Journalon Appliededathematics 17,784 - 789,1969, Err: 20,141,1971.
H.N. Gabow, ((An almost-linear algorithm for two-processor schedulingn, Journal of the ACM 29,

M.R. Garey, Unpublished result.
M.R. Garey and R.L. Graham, ((Bounds for multiprocessor scheduling with resource constraints),
SIAMJournalon Computing4,187 - 200,1975.
M.R. Garey and D.S. Johnson, ((Complexity results for multiprocessor scheduling under resource
constraints),SIAMJournalonComputing4,397 -411,1975.
M.R. Garey and D.S. Johnson, ((Scheduling tasks with nonuniform deadlines on two processors,,
Journal of the ACM 23,461 -467, 1976.
M.R. Garey and D.S. Johnson, ((Two-processor scheduling with start-times and deadlines,, SIAM
Jownal on Computing 6,416 - 426,1977.
M.R. Garey and D.S. Johnson, Computers and Intmctability: A Guide to the Theory ofNP-Com-
pleteness, W.H. Freeman, San Francisco, 1979.
M.R. Garey, D.S. Johnson, B.B. Simons and R.E. Tarjan, (Schedulingunit timetasks with arbitrary
release times and deadlines,. SIAMJownaI on Computing 10,256 - 269, 1981.
M.R. Garey, D.S. Johnson, R.E. Tarjan and M. Yannakakis, ((Scheduling opposing forests)), SIAM
Journal on Algebraic and Discrete Mathematics 4, 72 - 93, 1983.
T. Gonzalez, ((Optimal mean finish time preemptive schedules), Technical Report 220, Computer
Science Departement, Pennsylvania State Univ. 1977.
T. Gonzalez, O.H. Ibarra and S. Sahni, ((Bounds for LFT schedules on uniform processors,, SAM
Jownal on Computing 6,155 - 166,1971.
T. Gonzales and S . Sahni, ((Open shop scheduling to minimize finish time)), Journal of the ACM 23,

T. Gonzalez and S. Sahni, ((Flowshop and jobshop schedules: complexity and approximation,,
OpmtionsResearch 20,36 -52, 1978.
T. Gonzales and S . Sahni, ((Preemptive scheduling for uniform processor systems, Journal of the

J.A. Gosden, ((Explicit parallel processing description and control in programs for multi- and uni-
-processor computers,, AFIPS Conference Proceedings, vol. 29, Fall Joint Computer Conference

R.L. Grahami <Bounds for certain multiprocessing anomalies,, Bell Sysfem Technical Journal

R.L. Graham, ((Bounds on multiprocessing timing anomaliesw, SIAM Journal on Applied Mathe-

10,17 - 25,1976.

766 - 780,1982.

665 - 679,1976.

ACM 25,81 - 101, 1978.

651 - 660’ 1966.

25,1563 - 1581,1966.

m ~ t i c ~ 17,263 - 269,1969.

56 J. BIaiewicz

1691
1701

1741

I75 1

I941

R.L. Graham, ((Bounds on performance of scheduling algorithms,, Chapter 5 in (361.
R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, <Optimization and approxima-
tion in deterministic sequencing and scheduling theory: a survey), Annals of Discrete Mathematics

A.N. Habermann, ((Prevention of system deadlocks)), CommunicutionsoftheACM 12,373-377,1969.
D.S. Hochbaum and D.B. Shmoys, ((Using dual approximation algorithms in scheduling,, Journal
of the ACM (to appear).
W.A. Horn, ((Single -machine job sequencing with treelike precedence ordering and linear delay
penalties), SlAMJournalon Applied Murhemutics 23, 189 - 202,1972.
W.A. Horn, ((Some simple scheduling algorithms,, Naval Research Logistics Q u a r f d y 21, 177 - 185,
1974.
E. Horowitz and S . Sahni, (Exact and approximate algorithms for scheduling non-identical proces-
sorsx, Journalof theACM 23,317 - 327, 1976.
E.G. Horvath, S . Lam and R. Sethi, ((A level algorithm for preemptive scheduling)), Journal of
the ACM24, 32 - 43, 1977.
T.C. Hu, ((Parallel sequencing and assembly line problems)), Operations Research 9,841 - 848,1961.
K. Huckert, R. Rhode and R. Weber, ((On the interactive solution to a multicriteria scheduling
problemr,Zeitschnfi fib Operations Resemch 24,47 - 60, 1980.
O.H. I b m a and C.E. Kim, ((Heuristic algorithms for scheduling independent tasks on nonidentical
processors,, Journal of the ACM 24, 280 - 289, 1977.
J.R. Jackson, ((Scheduling a production line to minimize maximum tardiness), Research Reporr
43, Management Resemch Project, Univ. of California, Los Angeles, 1955.
S.M. Johnson , ((Optimal two-and-three-stage production schedules)), Naval Research Logistics
Quurterly 1, 61 - 68, 1954.
D.S. Johnson, ((The NP-completeness column: an ongoing guide), Journal of Algorithms 4, 189 -

0. Kariv and S. Even, ((An O(n2.5) algorithm; for maximum matching in general graphs), 1 6 . th
Annual Symposium on Foundations of Computer Science IEEE, 100 - 112,1975.
N. Karmarkar and R.M. Karp, ({The differencing method of set partitioning,. Mathematics o f
Operations Reseurch (to appear).
R.M. Karp, ((Reducibility among combinatorial problemsr, in R.E. Miller and J.W. Thatcher, eds.,
Complexity ofComputer Computation, Plenum Press, New York, 85 - 101, 1972.
R.M. Karp, J.K. Lenstra, C.J.H. McDiarmid and A.H.G. Rinnooy Kan, ((Probabilistic analysis of
combinatorial algorithms: an annotated bibliography,, in M.O'h Eigearthaigh, J.K. Lenstra and
A.H.G. Rinnoy Kan, eds., Combinatorial Optimization: Annotated Bibliographies, J . Wiley, Chi-
Chester, 1984.
A.W. Karzanov, ((Determining the maximal flow in a network by the method of preflowsr, Soviet

S.K. Kedia, A job scheduling problem with parallel machines, Unpublished report, Dept. of Ind. Eng
University o f Michigan, Ann Arbor, 1970.
L.G. Khachiyan, {(A polynomial algorithm for linear programming, (in Russian), Dokhdy Akadernii
Nauk USSR, 244,1093 - 1096,1979.
K.L. Krause, V.Y. Shen and H.D. Schwetman, ((Analysis of several task-scheduling algorithms
for a model of multiprogramming computer systems)), Journal of fheACM 22, 522 - 550, 1975: Err.
24, 527, 1977.
H. Krawczyk and M. Kubale, ((An approximation algorithm for diagnostic test scheduling in multi-
computer systems)), IEEE Dansactions on Computers (to appear).
M. Kunde, ((Bests Schranke beim LP-Scheduling)), Bericht 7630, Insritut f i r Informatik and Prak-
tische Mathematik, Universitat Kiel, 1976.
J. Labetoulle, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, <Preemptive scheduling of
uniform processors subject to release dates)), Report BW99, Mathemutisch Centrum Amsterdam
1979.
B.J. Lageweg, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, <Computer-aided complexity
classification of deterministic scheduling problems)) Report BW 138, Centre for Muthematics and
Computer Science, Amsterdam, 198 1.
B.J. Lageweg, J.K. Lenstra, E.L. Lawler and A.H.G. Rinnooy Kan, ((Computer aided complexity
classification of combinatorial problems,, Communicarions of rhe ACM 2 5 , 817 ~ 822, 1982.
S . Lam and R. Sethi, ((Worst case analysis of two scheduling algorithms,, SIAMJournal Computing,

E. L. Lawler, ((Optimal sequencing of a single machine subject to precedence constraintsr, Munage-
ment Science 19,544 - 546, 1973.

5,287 - 326,1979.

- 203,1983.

Math. Dokl. 15,434 - 437, 1974.

518 - 536, 1977.

Selected topics in scheduling theory 57

1981

1991

11001

11151

11231

11241

E.L. Lawler, tsequencing jobs to minimize total weighted completion time subject to precedence
constraints)), Annals of Discrere Mathematics 2, 75 - 90, 1978.
E.L. Lawler, ((Recent results in the theory of machine scheduling)), in A. Bachem, M. Grotschel and
B. Korte, eds., Mathematical Programming: The State o f Art-Bonn 1982, Springer Verlag, Berlin,

E. L. Lawler, ((Preemptive scheduling of precedence-constrained jobs on parallel machines)), in
M.A.H. Dempster, J.K. Lenstra and A.H.G. Rinnooy Kan, eds., Deterministic and Stochastic
Scheduling, Reidel, Dovdrecht, 101 - 123, 1982.
E. L. Lawler and J . LabetouUe, ((Preemptive scheduling of unrelated parallel processors by linear
programming,, Journal of the ACM 25,612.619, 1978.
E. L. Lawler. J.K. Lenstra and A.H.G. Rinnooy Kan, ((Recent deveiupmnts in deterministic se-
quencing and Scheduling: a survey)) , in M.A.H. Dempster, J.K. Lenstra and A.H.G. Rinnooy Kan,
eds., Deterministic and Stochastic Scheduling, Reidel, Dordrecht, 35 - 73, 1982.
E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, ((Minimizing maximum lateness in two machine
open shopn,Mathematics o f Opemtions Research 6 ,153 - 158, 1981.
E.L. Lawler, J.M. Moore, ((A functional equation and its application to resource allocation and
scheduling problemsn, Management Science 16,77 ~ 84, 1969.
H.W. Lenstra, Jr., ((Integer programming with a fixed number of variables,, Report. University o f
Amsterdam, 1981.
J.K. Lenstra, ((Sequencing by Enumerative Methods,, Mathematical Centre Tracte 69, Mathematisch
Centrum, Amsterdam, 1981.
J.K. Lenstra and A.H.G. Rinnooy Kan, ((Complexity of scheduling under precedence constraintsr,
OperationsResemch 26 ,22 - 35, 1978.
J.K. Lenstra and A.H.G. Rinnooy Kan, ((Complexity of vehicle routing and scheduling problem)),
Report BW 111, Mathematisch Centrum. Amsterdam, 1979.
J.K. Lenstra and A.H.G. Rinnooy Kan, ((An introduction to multiprocessor scheduling,, Report
BW 121, Mathematisch Centrum, Amsterdam, 1980.
J.K. Lenstra and A.H.G. Rinnooy Kan, ((Scheduling Theory since 1981: an annotated bibliogra-
phyn, in M.O. hEigeartaigh, J.K. Lenstra and A.H.G. Rinnooy Kan, eds., Combinutorid Optimiza-
tion:Annotated Bibliographies, J. Wiley, Chichester, 1984.
J .K. Lenstra and A.H.G. Rinnooy Kan, ((New directions in scheduling theory)), Operations Research
Letters 2, 255 - 259, 1984.
J.K. Lenstra, A.H.G. Rinnooy Kan and P. Brucker, ((Complexity of machine scheduling problems,,
AnnalsofDiscreteMathematics 1 , 3 4 3 - 362, 1977.
J.W.S. Liu and C.L. Liu, ((Bounds on scheduling algorithms for heterogeneous computing systems,,
ProceedingsIFIPS 74, North Holland, Amsterdam 349 - 353, 1974.
J. W.S. Liu and C.L. Liu, ((Performance analysis of heterogeneous multiprocessor computing
systems,, in E. Gelenbe and R. Mahl, eds., Computer Architecture and Networks, North Holland,
Amsterdam, 331 ~ 343, 1974.
J.W.S. Liu and C.L. Liu, tBounds on scheduling algorithms for heterogeneous computing systems,,
Technical Report UIUCDC-R. 74-632, Dept of Computer Science, University of Illinois at Urbana
Champaign, 1974.
R. McNaughton, ((Scheduling with deadlines and loss functions)), Management Science 12, 1 - 12,
1959.
R.H. Mohring, F.J. Radermacher and G. Weiss, ((Stochastic scheduling problems I : general strate-
giesn, Zeitschriftjiir OperatwnsResemch 28, 193 - 260, 1984.
R.H. Mohring, F.J. Radermacher and G . Weiss, ((Stochastic scheduling problems 11: set strategiesn,
Zeitschriftfir Opemtions Research (to appear).
C. L. Monma, ((A scheduling problem with simultaneous machine requirement,, TlMS XXVI,
Copenhagen I 1 984.
R.R. Muntz and E.G. Coffman, Jr., ((Optimal preemptive scheduling on two-processor systems,,
IEEE Transactions on Computers. C-18, 1014 - 1029, 1969.
R.R. Muntz and E.G. Coffman, Jr., ((Preemptive scheduling of real time tasks on multiprocessor
systems,, Journal o f the ACM 17, 324 - 338, 1970.
C.V. Ramamoorthy and M.J. Gonzales, t A survey of techniques for recognizing parallel processable
streams in computer programsr, AFIPS Conference Proceedings, Fall Joint Computer Conference,

A.H.G. Rinnooy Kan, Machine Scheduling Problems: Clussification. Complexity und Computations,
Nijhoff, The Hague, 1978.
A.H.G. Rinnooy Kan, ((Probabilistic analysis of algorithms,, this volume.

202 - 234,1982.

1 - 15, 1969.

58 J. BIaiewicz

H. Rock, uSome new results in no-wait flow shop scheduling,, Zeitschrift filr Operations Research

H. Rock, <The three-machine nowait flow shop problem is NP-complete)), Journal o f the ACM5 1,

H. Rock and G. Schmidt, ((Machine aggregation heuristics in shop scheduling,, Bericht 82 - 11,
Fachbereich 20 Informatik, Technische Universitat Berlin, 1982.
L. Rosenfeld, unpublished result.
M.H. Rothkopf, ((Scheduling independent tasks on parallel processors,, Management Science 12,

E.C. Russel, tAutomatic program analysis,, Ph. D. Thesis, Dept. of Eng. University of California,
Los Angeles, 1969.
R. Sethi, ((Algorithms for minimal-length schedules,, Chapter 2 in 1361.
R. Sethi, ((On the complexity of mean flow time scheduling,, Mathematics of Operations Research,

J.B. Sidney, ((Decomposition algorithms for single-machine sequencing with precedence relations
and deferral costs,, OperationrResearch 23,283 - 298, 1975.
E.A. Silver, R.V. Vidal and D. de Werra, ((A tutorial on heuristic methods), European Journal of
OperationalResemch 5,153 - 162, 1980.
L. Slominski, (<Probabilistic analysis of combinatorial algorithms: a bibliography with selected
annotation,, Computing 28, 257 - 267,1982.
R. Slowinski, (Scheduling preemptible tasks on unrelated processors with additional resources to
minimize schedule length,, in G. Bracchi and R.C. Lockemann, eds., Lecture Notes in Computer
Science, vol. 65, Springer Verlag, Berlin, 536 - 547, 1978.
R. Slowinski, ((Two approaches to problems of resource allocation among project activities - a
comparative study), Journal of the Operational Research Society 31,711 - 723, 1980.
R. Slowinski, ((L’ordonnancernent des tiches prbemptives sur les processeurs indbpendants en
prbsence de ressources supplbmentairesi,RAIRO Infomrique 15, 155 - 166,1981.
R. Slowinski, xMultiobjective network scheduling with efficient use of renewable and nonrenewable
resourcesr, Eum.pean Journal of Operational Research 7, 265 - 273, 1981.
R. Slowinski, (Modelling and solving multicriteria project scheduling problems,, in A. Straszak, ed.,
Lmge Sa le Systems Theov and Applications, Pergamon Press, Oxford, 469 - 574, 1984.
R. Slowinski and J . Weglarz, ((Minimalno-czasowy modelsieciowy z roznymi sposobami wykony-
wania czynnoscin, Przeglad Statystyczny 24,409 -416, 1977.
W.E. Smith, (Various optimizers for single-stage production,, Naval Research Logistics Quarterly

J.D. Ullman ((Complexity of Sequencing Problems,, Chapter 4 in 1361.
L.N. Van Wassenhove and K.R. Baker, ((A bicriterion approach to timelcost trade offs in sequenc-
ing)), European Journal of Operational Research 11,48 - 54, 1982.
L.N. Van Wassenhove, and L.F. Gelders, ((Solving a bicriterion scheduling problem)), European
Journal of OperationalResearch 4, 42 - 48, 1980.
S. Volansky, ((Graph model analysis and implementation of computational sequences*, Ph.D.
thesis, Report No UCLA-ENG-7048, School Engineering and Applied Sciences, University of
California, Los Angeles, 1970.
J. Weglarz, ((Project scheduling with discrete and continuous resources)), IEEE Truns. on Syst. Man
and obernet , SMC-9,644 - 650, 1979.
J. Weglarz, uMultiprocessor scheduling with memory allocation - a deterministic approach,, IEEE
Transactions on Computers C-29,703 - 1053,1981.
J. Weglarz, xhoject scheduling with continuously-divisible doubly constrained resources,, Manage-
ment Science 27,1040 - 1053, 1980.
J. Weglarz, ((Modelling and control of dynamic resource allocation project scheduling systems,, in
S.G. Tzafestas, ed., Optimization and Control of Dynamic Operational Research Models, North
Holland, Amsterdam, 1982.
J. Weglarz, ((Deadline scheduling of independent jobs under continuous processing speed-resources
amount functions,, Report, Techniml University o f Poznan, June 1984.
J. Weglarz, J. Blazewicz, W. Cellary and R. Slowinski, uAn automatic revised simplex method for
constrained resource network scheduling,, ACM Transactions on Mathematical Software 3, 295 -
300,1977.
D. de Werra, <Preemptive scheduling linear programming and network flows,, SIAM Journal Alge-
braic and Discrete Mathematics 5 , 11,- 20, 1984.

28, 1 - 16, 1984.

336 - 345,1984.

347 -447,1966.

320 - 330,1977.

3,59 - 66,1956.

Selected topics in scheduling theory 5 9

Jacek Blazewicz
Instytut Automatyki
Politechnika Poznanska
Poznan
Poland

This Page Intentionally Left Blank

Annals of Discrete Mathematics 31 (1987) 61 - 82
@ Elsevier Science Publishers B.V. (North-Holland)

QUADRATIC ASSIGNMENT PROBLEMS

Gerd FINKE". Rainer E. BURKARD** and Franz RENDL**

1 . Introduction

In general, the benefit or cost resulting from an economic activity at some
location is also depending on the locations of the other facilities. In order t o
model such location problems, Koopmans and Beckmann [28] introduced
((Quadratic Assignment Problems)) (QAP). Mathematically, QAPs can be described
as follows.

Given a set N = (1, 2, . . . , n } and three (n x n) matrices A = (utk) , B = (hip),
C = (c i j) , find a permutation 1~ of the set N which minimizes

In the framework of location problems the set N describes the set of sites on
which plants are t o be built. The (n x n) matrix A = (a i k) is the distance matrix
between the sites, whereas the connection matrix B = (b ig) describes the inter-
dependance o r the flow between the plants j and Q. The linear term, described
by C = (c i j) , can be interpreted as building and running cost for a plant j that
is situated in location i. Thus the objective (1) tries t o assign the plants t o the
possible sites such that the total cost of building and operating the plants becomes
minimal. For a discussion of QAPs within the framework of locational decisions
see Francis and White [171. There are many other application areas which can
be modelled by QAPs. We shall summerize them in the next section.

It is the aim of this article t o survey the theory and the solution procedures
for QAPs. Formulations equivalent t o (1) will be given. Most of them are integer
programming formulations. There is, however, a further interesting way of
expressing (1) which uses the trace of the underlying matrices. This formulation
has basically been suggested by Lawler [31] who has expressed (1) as a dot

*This research was supported in part under NSERC grant A4117.
**This work was supported by the Austrian KFonds zur Forderung der wissenschaftlichen Forschung,

Projekt S 32/01>).

61

62 G. Flnke, R.E. Burkard, F. Rend1

product. The final trace form was then introduced by Edwards [131.
Subsequently, the various exact and approximate solution methods for QAPs

will be outlined. Presently, there is only one successful exact solution technique
available which is based on matrix reductions and on the Gilmore-Lawler bounds.
It will be demonstrated that the trace form is providing a very convenient tool
to derive the theory of this method.

There is also a second use of the trace formulation. This approach will yield
completely new competitive bounds for the symmetric case based on the eigen-
values of the underlying matrices. The eigenvalue related bounds give access to
an optimal reduction procedure and also help to characterize QAPs which are
almost linear. Some preliminary numerical comparisons with the classical lower
bounds are reported.

2. Applications

In the last twenty-five years this model turned out to be of great importance
for quite a variety of situations. Steinberg [47] used QAPs for minimizing back-
board wiring on electronical circuits. QAPs are a basic ingredient for placement
algorithms, for example in VLSI design. Another application concerns the design
of typewriter keyboards and control panels (Burkard and Offerman [7];
McCormick [35]). QAPs have extensively been used in facility lay-out problems,
in particular in hospital planning (Krarup and Pruzan [29]; Elshafei [151). Dickey
and Hopkins [121 modelled the location of new buildings on a campus as a QAP.
Heffley [24] points out that assigning runners to a relay team leads to QAPs.
These problems occur moreover in information retrieval, where an optimal order-
ing of interrelated data on a disk is planned, as well as in scheduling theory,
for example if parallel production lines with changeover costs are to be scheduled
(Geoffrion and Graves [2 1 I). Further applications involve the ranking of archaelo-
gical data (Krarup and Pruzan [29]), and the analysis of chemical reactions (Ugi
et al. [48]).

3. Problem Formulations

3.1. Integer Programs

We get formulations of QAPs as 0 - 1 integer programs by introducing an
(n x n) matrix X = (x i j) of Boolean variables. A permutation 71 can be expressed
as a permutation matrix X = (x i j) which satisfies

n

xi, = 1 i = 1 , 2 , . . . , n
j = 1

Quadratic assignment problems 63

n E X i j = 1
i = 1

j = 1,2, . . . , n

xij E {o, 1) i , j = 1 , . . . , n.

Therefore, we can write (1) in the form

n n n n n n

subject to (2). The objective function (3) contains quadratic terms in the un-
knowns xij and usual assignment contraints (2). This motivates the name ((Qua-
dratic Assignment Problems)). Lawler [3 1] generalized QAPs by introducing
n coefficients d i jkQ and considering the objective

n n n n

Problem (3) can be transformed to (4) by

d : = c . . + a . . b . .
l l l l 11 11 I I

d i jka : = aik bj (i , i) f (k , Q).

Throughout this paper we shall treat however QAPs in ((Koopmans-Beckmann
form)) as formulated in (1) or (3).

There have been many attempts to get rid of the quadratic terms in the objec-
tive function (3). h w l e r [31], for instance, introduces n4 new variables YijkQ by
setting

Y i j k Q = ' i j * x k Q

and shows that the minimization of (4) subject to (2) is equivalent to the follow-
ing integer program in 0 - 1 variables:

n n n n

s.t. (2) and

n n n n

x . . 11 + x k Q - 2 y i j k n > 0 (i , j , k , R = 1 , 2 , . . . ,n)
(i , j , k , R = 1 , 2 , . . . , n). Y i j k Q '{O, '1

64 G. Mnke, R. E. Burkani, F. Rendl

This Boolean integer program has O(n4) variables and constraints. Further lineari-
zations are due to Bazaraa and Sherali [2], who showed the equivalence of a QAP
with a mixed integer program in n 2 binary and n 2 (n - 1)2/2 real variables and
2n2 linear constraints. The smallest linearization known (with respect to addition-
ally introduced variables and constraints) is due to Kaufman and Broeckx [261
who used Glover's linearization technique in order to transform a QAP into
a mixed integer program of the form

s.t.(2) and

wii 2 0 for i , j = 1 , 2 , . . . , n

where

n n

cl. : = a ikb ie .
11

k = 1 !2= 1

Further linearizations of QAPs have been given by Balas and Mazzola [11, Christo-
fides, Mingozzi and Toth [lo] , Burkard and BiSnniger [S], and Frieze and Yadegar
P I .
3.2. Trace Form

Another formulation of QAPs is its trace form which was used for the first
time by Edwards [I31 and [14]. Since we shall make extensive use of it in the
subsequent sections, we describe it here in more detail. Let M by any real (n x n)
matrix. We denote by M' the transpose and by t r M the trace of the matrix
M . Let us recall the properties

t r (M + N) = t r M + t r N , t r M ' = t r M , t r M N = t r N M . (5)

Moreover, we define for any permutation ?I the matrix nM, which is obtained
by rearranging the columns of M according to IT, i.e. the column j o f M becomes
the column n(j) of nM for all j = 1, 2, . . . , N. Writing n as permutation matrix
X yields the identities sM = M X and n-'M = M X ' . One may verify the equa-
tions Z i c i n g) = t r n - l C = tr C X ' .

Hence the classical linear assignment problem AP with matrix C possesses
the following equivalent forms

min t r IT-' C and min tr CX'
n x E n

Quadratic assignment problems 65

denoting by n the set of all (n x n) permutation matrices.

Theorem 1 . Equivalent formulations for the pure quadratic assignment problem
are given b y

min t r nAn-'B' and min t r A X B'X'
n x E n (7)

Proof. Consider the diagonal element dii of the matrix n A n - l B' . By definition,
one has dii = Z i a i n - l (j) b n (i) j = E:kaikbn(i)n(k) setting k = n - ' (j) . Hence

0 tr n A n - l B f = Zi dii = X i C k a i k b n (i) n (k) .

Combining (6) and (7) yields the equivalent trace form of the general QAP

(8)

In most practical applications, at least one of the two matrices, the distance
matrix A or the flow matrix B is symmetric. In addition, the matrices have
usually zero diagonal elements. It should be noted that problems with one sym-
metric matrix are equivalent to symmetric QAPs with both matrices symmetric.
Suppose that A = A ' and B is arbitrary. Then, for any permutation matrix X E II,

in (1):

min tr (C + A X B ') X ' .
X E I l

1

2
tr AXB'X' = tr AXD'X' with D = - (B + B') .

This transformation is well-known and follows by means of the trace properties
(5) from the identities

tr AXB'X' = t r XBX'A' = t r A'XBX' = tr A X B X ' .

For a square matrix M of order n with eigenvalues A , , h,, . . . , A, one has the
identities

n n

t r M = hi and det M = n hi.
i = 1 i = 1

(9)

Consequently, the QAP seeks to minimize the sum of the eigenvalues of the
matrices (C + AXB')X' . The connection between QAPs and eigenvalues will
be explored later on in detail and will lead to completely new families of lower
bounds.

4. Solution Methods

4.1. Complexity and Exact Algorithms

QAPs are known to be NP-hard. Even the problem of finding an E-approxima-

66 G. Finke, R.E. Burkani, F. Rend1

tion of the solution for all problem instances is NP-hard (Sahni and Gonzalez
[46]). This explains why only implicit enumeration algorithms are known to
solve QAPs exactly. There are basically three different types of enumeration
procedures applied to QAPs:

- single assignment algorithms
- pair assignment algorithms and
- cutting plane methods.
Single assignment algorithms are branch and bound methods of the following

type: In every step just one index is assigned to another or such a ((single assign-
ment)) is revoked. One of the first single assignment algorithms is due to Gilmore
[22]. Refinements were made by Lawler [31], Burkard [4] and many others.
The computationally most successful exact algorithms belong to this class. QAPs
up to a problem size of about n = 15 can be solved by such approaches.

Pair assignment algorithms are branch and bound methods in which always
pairs of facilities are assigned to pairs of sites or this ((pair assignment)) is disallow-
ed. Pair assignment algorithms were developed among others by Land [30],
Gavett and Plyter [20], Nugent et al. [40] and others. Though investigated by
quite a number of researchers, this approach did not prove to be very successful
in computational tests.

For surveys on branch and bound algorithms for QAPs see Pierce and Crowston
[41], Hanan and Kurtzberg [23] as well as Mirchandani and Obata [36].

Integer programming formulations suggest cutting plane methods for solving
QAPs. Such methods were developed e.g. by Kaufman and Broeckx [26], Balas
and Mazzola [11, and Bazaraa and Sherali [2]. This approach is intriguing from
a mathematical point of view, but was not very successful in computational
tests. The largest problem solved exactly by a cutting plane method had a size
of n = 8. Cutting plane methods may however yield good heuristics, see e.g.
Bazaraa and Sherali [2] or Burkard and Bonniger [5].

4.2. Heuristics

Because of the difficulty to find exact solutions to QAPs of even small problem
sizes, there is obviously a need for good heuristics. Four main classes of heuristic
approaches are in use, namely

- limited enumeration methods
- construction methods
- improvement methods and
- simulation approaches.
Limited enumeration methods rely on the experience that in a branch and

bound method an optimal or good suboptimal solution is often found at an
early stage in the branching process. Several techniques can be used to reduce
the size of the enumeration tree, such as time limits, modified upper bounds
subject to decreasing demands and others. The suboptimal cutting plane methods
mentioned above belong also to this class of heuristics.

Quadruiic assignment pmblems 67

Construction methods build up a suboptimal solution step by step, e.g. by
enlarging the set of assigned indices systematically by one further assignment
at a time. Gilmore’s heuristic and the method of increasing degree of freedom
(Muller-Merbach [38]) belong, for instance, to this category. Usually, construc-
tion methods are easy to implement. They have a short running time and can
be used even on small (micro-)computers. The quality of their solutions is,
however, often very unsatisfactory.

Improvement methods start with a feasible solution and try to improve it by
interchanges of single assignments. Such ((pair exchanges)) have been proposed
among others by Buffa, Armour and Vollmann [3] as well as by Heider [25].

Recently a simulation approach with a motivation from thermodynamics
has been introduced by Kirkpatrick, Gellati and Vecchi [27]. They called their
method ((Simulated Annealing)). The same principle has been applied to QAPs
by Burkard and Rend1 [8] with very promising results. The main idea is to accept
a solution not only if it has an improved value, but also if the value of the objecti-
ve function is not improved. These inferior solutions are accepted with probabili-
ties depending on the change of the objective function and a parameter that
decreases during the simulation procedure. This enables the algorithm to move
out of local minima.

5 . Single Assignment Algorithm

5.1. Reduction

We would like to focus on the most successful exact solution method in the
present state-of-the art. As mentioned earlier, this is a single assignment algo-
rithm which, more exactly, is based on a reduction mechanism and the Gilmore-
-Lawler bound.

The reduction of a square matrix M = (mij) is simply a transformation to a
matrix of the form M = (f i i j) = (mij - ui - uj) .

The Hungarian method to solve assignment problems is a systematic procedure
to generate reduced matrices. Reductions have also been applied to other combin-
atorial problems, for instance to the traveling salesman problem by Little et al.
[32]. The aim for QAPs is obvious: one would like to reduce the magnitude of
the quadratic term and augment the influence of the linear term. Such an
approach to QAPs has first been used by Conrad [1 I] and then extended by
Burkard [4],Roucairol [43,44], Edwards [13, 141, and Frieze and Yadegar [181.

The trace form seems to be the appropriate framework to establish the two
reduction rules (Rd 1) and (Rd 2).

(Rd 1) Set A = A + E + F a n d B = j + G + Hwhere E, G are matrices with
constant rows and F , H are matrices with constant columns. Then,
for every x E n,

-

t r (AXW + C) X ~ = tr(IrXBi + 6xj

60 G. Finke, R.E. Burkonl, F. Rend1

with c = I G t + Z t H + EB' + F'B + C.

Proof. t r A X g t X t = t r (A - E - F) X (B t - G' - H t) X t . We use the identities
XG' = G t , H'X' - = H' , EX = E, X'F = F to simplify. One also has tr (A - E -
- F) X H t X t = t r A X H t = t rXHtA = t r A t H X t and tr FXBtX' = t r X B t X t F =
= tr X B t F = tr F'BX'. A straightforward computation will now yield the given
identity.

The second reduction rule allows to eliminate the non-zero diagonal elements

Set A = 2 + R and B = B' + S with diagonal matrices R = diag (r l ,
r z , . . . , rn) and S = diag (sl, sz, . . . , sn).
Then, for every X E XI,

from the matrices of the quadratic term.

(R d 2)

- -
t r (AXB' + O X t = tr (A X B t + s X t

- - - -
with C = (c i j) = (ci, + aiisj + ri b,j + ris j) .

Proof. tr A X B ~ X ~ = tr A X B t X t + tr R X B ~ X ~ + tr Axsxt + t r R X S X ~ . QAPS
with a - diagonal - matrix can be solved as assignment problems: tr R X B t X t =
= tr (r i b j ,) X t , t r AXSX' = I: i i i~n(i) = tr (i i i s j) X t , and t r RXSX' = tr (r , s j) X t . O

Usually, both matrices are reduced by the same scheme. The main choices for
the entries of the reduction matrices are listed below. We may skip the diagonal
elements altogether because of (R d 2) .

(a) Burkard [4]
Subtract from each column the minimal element.

Roucairol [43]

the minimum, then do the same for the columns.

(c) Decrease, at each step, as much as possible the maximal entry of the current
(partially reduced) matrix.

(b) Use the full opening phase of the Hungarian method. Subtract from each row

(d) Edwards [131
Without giving the details, it is reduced with the mean values of the rows and
columns. The target is to obtain a final reduced matrix with zero main
diagonal and row and column sums equal to zero.

Edwards seems to be the only author who uses reduced matrices that are not
restricted in sign. We shall establish a similar reduction procedure which ori-
ginates, however, from a different viewpoint.

One further possible reduction method should be mentioned. One may apply

Quadratic assignment problems 69

the complete Hungarian method and use the final reduced matrix. This matrix
has the following intriguing theoretical property in the set of all reduced matrices:
all entries are nonnegative and their total sum is minimal. However, some (limit-
ed) empirical experimentations with this scheme did not indicate an improve-
ment which made the additional computation time worthwhile.

The effectiveness of the procedures (a) - (d) can only be judged in connection
with an appropriate lower bounding method. As pointed out by Frieze and Yade-
gar [181, probably none of these reductions is the best possible one. This can also
be illustrated by the following simple calculation. Consider an arbitrary symme-
tric 3 x 3 matrix A . One may verify that in general A cannot be reduced to the
zero matrix 2 = 0 by the methods described above. Now let us write A in the
form

3

A = D + aiMi with a diagonal matrix D and
i = 1

0 1 0 0 0 0

The generating matrices M i can be brought into diagonal form

- 1 - 1 - 1 - 1 - 1 1

M , + - - 1 - 1 - 1 + - - 1 - 1 1 = 0 - 1 0
2 I 1 1 j Il - 1) i: I I

[1 l) ; [l I: I:)=[: - 1 0 'i. M , + 2 - 1 - 1 - 1 + - 1

- 1 - 1 - 1 1 - 1 - 1 0 - 1

Hence A can be reduced to diagonal form with (Rd 1). Then (Rd2) may be used
t o eliminate the quadratic term altogether.

5.2. The Gilmore-Lawler Bound

Let (x, y) denote the scalar product of the vectors x and y . Having arranged
(and renumbered for simplicity) the components so that x1 < x2 G . . . < x,
and y 1 >, yz >, . . . > y,, yields the minimal scalar product

70 G. Nnke, R. E. Burkani, F. Rend1

n

(x, Y) - = min (x, X Y) = xi y,
i = l

X E n

and the maximal scalar product

n

(x, Y) + = max (x, XY) = xi yn + - i.
i = l

XEII

(1 Oa)

The Gilmore-Lawler bound GLB is based on minimal scalar products. Consider
a QAP in the form (8). Let a, be row i of A and a; be the vector with the diagonal
element a,, omitted.

Define similarly bj for the 1-th column bj of B ' . Introduce a kind of matrix
product for A and B' as follows:

A * B t = (y i j) with yi j = aiibjj + (a,!, b,:)-.

The inequality

tr (A * B')X' < t r AXB'X'

is valid for all permutation matrices X E II. In fact, the inequality holds for each
diagonal element. The matching of a,, with b,, is thereby implied by the fact
that the mapping XB'X' preserves the elements of the main diagonal. Thus we
obtain the lower bound

GLB = min tr (C + A * B')X' (12)
x E n

which is according to (6) an assignment problem with respect to the matrix
C + A * B' .

The matrices A and B are first reduced to A and a with suitable matrices
E , F, G, H and then the bound GLB = GLB (E , F , G, H) is determined. Frieze
and Yadegar [181 proved the following redundancy.

Theorem 2 . The row reductions with matrices E and G are redundant for the
Gilmore-Lawler bounds, i.e.

GLB (E , F , G, H) = GLB (0, F, 0, H).

Proof. Let A =
cording to (Rd 11, we have

+ E and B = + G where E and G have constant rows. Ac-

t r (A X B ~ + OX' = t r (2x5' + A G ~ + E B ~ + c) x ~ .
Consider the operation (1 1) for the products A' * i f and A * B' = (2 + E) *
* (i + G)'. Since E and G have constant rows, the minimal scalar products for
both cases are formed with respect to the same orderings. Therefore, one obtains

Quadratic assignment problems 71

the matrix identity A * B' = 2 * j t + AG' + EB' which implies the given
redundancy. 0

For the reduction method (a), this redundancy is already implemented. In
procedure (b), first the row minima are subtracted (which is redundant). Howev-
er, then the column minima of the row-reduced matrix are taken. Therefore,
this reduction lies ((somewhere)) between no reduction and the full column reduc-
tion (a). Even with Theorem 2, methods of the type (c) and (d) cannot be aban-
doned. It may well be that the best column reductions F and H can only be
found by means of some simultaneous row and column reduction scheme.

The comparisons of the Gilmore-Lawler bounds with different reductions by
Frieze and Yadegar [18] fail to establish a clear trend. Only the procedure (c)
was practically always dominated. We carried out a computer run on the data
given by Nugent et al. [40]. Also, some random data were tested with elements of
A being uniform in [0, 1001 and those of B uniform in [0, lo]. The results are
summarized in Table 1 (the bounds in the last three columns are explained later).
GLB, refers to the unreduced data, GLB, uses reduction (a), and GLB, uses (d)
in the version of Frieze and Yadegar [18]. Our results are similar to the ones by
Frieze. However, really surprising in the small effect of the reduction step altoge-
ther.

5.3. Enumeration Schemes and Computer Codes

Computer codes for some of the suboptimal algorithms can be found in Bur-
kard and Derigs [6] , Burkard and Bonniger 15], and West [49] [here the complete
code is available from the ACM Algorithms Distribution Service].

Complete listings of FORTRAN routines for the single assignment algorithm
are given in the book of Burkard and Derigs [6] and by Mautor and Savoye [34]
using the method of Roucairol [43]. The computation times to solve optimally
QAPs by this method grow exponentially. The limit of solvable problems is prac-
tically reached at y1 = 15. A CPU time of almost 50 min. on a CDC CYBER 76
has been reported in Burkard and Derigs [6] to solve an example by Nugent et al.
[40] of this size.

The single assignment algorithm is a branch and bound method which requires
the computation of a Gilmore-Lawler bound at each node of the enumeration
tree. Suppose that, at some intermediate node, the indices of a subset N , of N
are already fixed and those of N , are still unassigned. Thus we are looking for
the best extension of a partial permutation n(i) , i E N , . The objective function
(1) may be written as follows:

12 G. Finke, R . E . Burkani, F. Rend1

+ ‘ i k b n (i) n (k) ‘
i E N , k E N Z

Setting

‘ k Q ‘ = (‘ ikbn(i)Q + ‘ k i b Q n (i))
i E N l

for all k E N , , II @ n (N 1) , one obtains a QAP of the form

const. + tr (C + AXB‘)X‘

with matrices reduced to the order I N , 1 . Hence the Gilmore-Lawler bounding
technique applies t o each node of the branching tree.

At each branching step, a certain element i is assigned to j or i is not assigned
to j . Since the bound produces the final matrix of an assignment problem, the
selection of the branching pair (i, j) is based on the principle of ((alternative
costs)) by Little et al. [32]. Branching procedures with k > 2 successors have
recently been investigated by Roucairol [45]. This approach could lead to a
parallel enumeration scheme which may accelerate the search.

There is, however, the following main difficulty with QAPs. Take from Table
1 , for instance, the best bound GLB that has been discussed so far, i.e. GLB =
= max {GLB,, GLB,, GLB,}. Table I1 is listing the relative error of GLB with
respect to the optimal solution SOL, which is given by (SOL-GLB)/SOL.
Unfortunately one can observe a deterioration of the bounds with increasing n.
As well known from branch and bound methods for other combinatorial
problems, the quality of the lower bounds is by far more decisive for the per-
formance of the algorithm than any branching scheme or strategy.

This deterioration of the bounds with n seems to be the main source for the
computational difficulties. A significant extension of the sizes of solvable QAPs
will probably require an advancement of the lower bound computations. We
will show that the trace formulation gives access to completely new families
of bounds which, without claiming any breakthrough, are advantageous for
certain categories of problems.

6. Eigenvalue Approach to Symmetric QAPs

6.1 . Eigenvalue Related Bounds

We concentrate on symmetric QAPs which form the most important class
for applications. With A = A f and B = B f , all eigenvalues are real. Let
A,, A,, . . . , A, and kl, pZ, . . . , p, be the eigenvalues of A and B , respectively.

Quadratic assignment problems 7 3

We can assume the ordering A, Q A, < . . . < A, and p1 2 p, 2 . . . > p,, and set
A' = (A,, A,, . . . , A,) and p' = (pl, p,, . . . , pn). The matrices A and B possess
diagonalizations of the form A = Pl A, Pi and B = P, A, Pi with orthogonal
matrices P,, P, and diagonal matrices A1 = diag (A,, A,, . . . , A,,), A2 = diag (p,,
p,, . . . , pn). Let x 1 , x 2 , . . . , x , denote the columns of 4 and y , , y,, . . . , y,
the columns of P,.

Lemma 1

(i) t r A B = A'Sp with the doubly stochastic matrix

s = u x i , Y i Y) ;

(ii) (A, < t r A B < (A, p),

Proof. See Gaffke and Krafft [191. Their proof is stated for positive semidefinite
matrices but is, in fact, valid for all symmetric matrices. One may verify the
presentation

where S is doubly stochastic since x,, . . . , x, and y , , . . . , y , are orthonormal
bases. Using Birkhoffs theorem (e.g. in Marcus and Minc [33]), there exists a
convex linear combination of the form

Thus, we obtain

which implies (ii).

Theorem 3 . Let A and B be symmetric. Then, for all X E n,
1) t r AXBX' = A f S (X) p

where S (X) = ((x i , X y i) ,) is a doubly stochastic matrix;

(A, p)- Q t r AXBX' Q (A, p), . 2)

Proof. The mapping X B X t is a similarity transformation. Hence B and XBX'
have the same eigenvalues p. Thus 2) is implied by (ii). We have the diagonaliza-

14 C. Finke, R.E. Burkani, F. Rend1

tion XBX' = (XP,) A2(XP2)t with the orthogonal matrix XP, = (X y j) . Therefore
1) follows from (i). 0

As illustration, consider the following matrices and their diagonalizations

17 -1 5 0 1

A=[-; 1; and B=[Y y)

1 6 1 6 0 6 0 0 l f i 0 lhh
B = G A 2 q t = [0 0 l)[O 4 O) (l y -1y).

l f i - 1 f i 0 0 0 2

One obtains the optimal permutation n = (i
orx*(! 9

The corresponding eigenvalue representation of Theorem 3 is as follows:

t rAXBP=htS(X)p=(12 , 18,24) 0 3({)=208.
Theorem 3 yields the eigenvalue bound

EVB = hipi = (A , p)-
i

which works out to EVB = 12(6) + 18(4) + 24(2) = 192 for the example.
The eigenvalue bound EVB is optimal for certain pairs of matrices which

one may characterize as follows. Let A = 4 A , P , ' be given. Consider the set
M(A, X,) of matrices B = pZ A 2 q with arbitrary diagonal matrix A, =
= diag (p l , p,, . . . , pn), p1 > p, 2 . . . > pn, and orthogonal matrix P, satisfying
X,P, = 4 for some permutation matrix X , E II.

Theorem 4. The QAP for symmetric matrices A and B with BEM(A,X,) is
solved by the permutation X , and has optimal value (A, p)- = X i hi pi.

Proof. It is X,P, = PI, i.e. X,y, = x i . One has, therefore,

Quadratic assignment problems 15

which is minimal (Theorem 3). 0

Suppose A is positive definite. Define AP = Pl AfP: with A! = diag (A:, A:,
. . . , A:) for any real p . Since by definition 0 < A, < A, < . . . Q A,, we get A Y p 2
2 A ; P > . . . > A;?' > 0 for all p > 0. Hence A-P E M (A , r) for p > 0 and the
identical permutation I solves the QAP for the pair A and A-p. In particular,
the case p = 1 yields the following peculiar characterization of a determinant.

Corollary 1. Let A be positive definite. Consider the mapping

aij + A k Q ; k = n(i) , !2 = n(j) ,

where A , , is the cofactor and 71 a permutation. Then

1 1
det A = - aij Ai j = - min aijAn(i)n(j).

n i j n n i j

Proof. The identity solves the QAP for the matrices A and A - l . The assertion
0 follows since A- l = (Aij/det A) .

In the case of positive definite matrices, a different lower bound, based on
determinants, can be given.

Theorem 5. Let A and B be positive definite matrices. Then

min tr AXBX' > n(det A det @ ' I n .
XEn

Proof. A B is in general not symmetric. However, one obtains a symmetric matrix
with equal trace as follows: AllZ is defined and A 1 / 2 A 1 / 2 = A . Hence t r AB =
= tr A112A11ZB = tr A 1 / Z B A 1 / Z . The matrix A 1 / 2 B A 1 / 2 is symmetric and also
positive definite since x r A 1 / 2 B A 1 ~ 2 x = y r B y > 0 for all x, setting y = A112x.
Let A,, A,, . . . , A, be the positive eigenvalues of All2 BA112. Using the arithmetic-
-geometric mean inequality, we obtain

Therefore tr AB > n (det A det B)l/" and the Theorem follows since det XBX' =
= det B . 0

16 G. Finke. R.E. Burkoni, F. Rend1

The numerical value of the lower bound in Theorem 5 for the example is

n(det A det B)"" = 188.69 < EVB.

This bound applies also to general symmetric matrices A and B since we can add
a multiple of the unit matrix according to reduction rule (R d 2) . Our numerical
tests showed, however, that this bound is usually dominated by the eigenvalue
bound, as in our example.

6.2. Optimal Reduction

According to the reduction rules (Rd 1) and (Rd 2), we may reduce a symmetric
matrix A in the form A = 2 + E + E' + R in order to maintain the symmetry for
2. Theorem 3 shows that the reduced quadratic term tr AXBX' has values ranging
from (h, ;)- to (i, L),, denoting by x and the eigenvalues of A and B. The
best way to minimize the length of this interval seems to be to reduce the eigen-
value fluctuation of both matrices as much as possible. This suggests the following
approach. Let A be a symmetric matrix with eigenvalues A,, A,, , A,, (n > 3).
Define the spread

(14)

Since there are no simple formula for the spread, Finke et al. [161 use the follow-
ing upper bound m (A) for s (A) by Mirsky [371:

s (A) = maxl hi -hi I.
i-1

112 2 L i i n
s(A) < m(A) = 2 F, a ,~ , - - (tr A)'] . (1 5)

The minimal value of s(2) may now be approximated by minimizing m (A) or
equivalently

The conditions a f /a ek = 0 and a f /a rk = 0 yield the following system of equa-
tions:

(n -2)ek+ Ce, = x u k i -akk
i i

n (a k k - 2 e k - r k) = ~ a i i - 2 C e i - ~ r i
i i 1

for all k . These equations can be solved explicitly. Note that one value rk may be
assigned arbitrarily since shifting the diagonal elements to rk + r for all k leaves

Quadratic assignment problems 77

the spread unchanged. Setting r, = ann - 2e, gives a zero diagonal. Defining z =

= X i e i , results in the following computational scheme:

1
1

z : = 2(n - 1) (z F a i j

rk : = akk - 2ek fork = 1, . . . , n.

One may verify that the reduced matrices have row and column sum equal to
zero. Our 3 x 3 example is reduced optimally, i.e. it is completely linearized to
the assignment problem

84 34

X E n min tr [84 34 ::)X t .

109 40 109

The approximation s (A) < m (A) is usually very good. For highly structured
problems, however, both values might be completely different. The traveling
salesman problem (TSP) illustrates such a case. Let X , denote the cyclic permuta-
tion

0 1 0 . . . 0

X c = [1 0 0 ; 0 0 0 ;)
The symmetric TSP based on the matrix A = A t is described by the QAP with
matrices A and X,. Consider the equivalent symmetric QAP with A and B =
= (X, + X 3 / 2 . The spread of B is bounded by s(B) < m(B) =A. The reduction
entries are rk = 1 (n - l)-' and ek = 2-'(n - l) - I which gives the insignificant
reduction to m(B) = (n Z - 3 r ~) l / ~ (n - l) - l I 2 . The eigenvalues of X , are the roots
of unity A, = exp (2 7 r k G l n) for k = 0, 1, . . . , n - 1. One obtains for B the
eigenvalues

hk(B) = (A, + A,*)/2 = cos (2 n k / n)

where denotes the conjugate complex number. Consequently, we have s (B) <
< 2 for all n, which characterizes symmetric TSPs as an easy class of symmetric

I8 G. Finke, R.E. Burkard, F. Rendl

QAPs. We were curious to find out the performance of the reduction (16) in
connection with the Gilmore-Lawler bound (12). The results are given in Table
1 under GLB,. It is interesting to note that this bound usually gives the overall
best values for random QAPs, as demonstrated in Table 1 (ii) and in other similar
test runs.

The eigenvalue bound EVB, is obtained as follows. Again, we reduce A , B , C
to A , B , C b y means of (16). Let 2 and have the eigenvalues % and i. Then
define

(17)

- - _

EVB, = 6, cl>- + min tr ext .
X E l l

As shown in Table 1, this bound does not provide an improvement for QAPs of
small sizes. But for the larger QAPs of size n = 20 and, in particular, n = 30,
the bound turned out to be significantly better.

6.3. Almost Linear QAPs

Consider the purely quadratic assignment problem with symmetric matrices
A and B that have zero main diagonals, as is the case for applications. The eigen-
value form is simplified to

(18) t r AXBX' = tr (Z X E + O X t = X ' S (X) i + (c , X d)

where ci = 2e, and d, = X j b,.

Consequently, we obtain instead of (1 7)

Rendl [42] introduced the following measure for the degree of linearity

A ((small)) ratio indicates a small influence of the quadratic term compared to
the magnitude of the linear term. If this is the case, it is suggested to rank the
scalar products (c , X d) in increasing order and scan the corresponding permuta-
tions. In this way, a QAP with very small L may be solved completely or at least
the eigenvalue bound (19) may be improved.

The ranking could be done by ordering the solutions of an assignment problem
with costs (c id j) . Murty [39] proposes a procedure that has a time complexity
O(kn3)i to obtain the k-best solutions. Ranking directly the scalar products yields
in Rendl [4 2] a complexity O(n log n + (n + log k) k) which is a considerable
improvement over the classical bound.

The special form (1 8) also shows that ranking the scalar products (c , X d) is not
advisable if the row sums of the matrices A and B take on only few different
values. The classical test examples by Nugent et al. [40] are of this type. This
may be one of the reasons why this class of problems cannot be reduced and
linearized with great success.

Quadratic ass&nment problems I9

A large value L , on the other hand, indicates a negligible linear term. An
improvement of the - eigenvalue - bound (1, i)- for the quadratic term is obtained
as follows. One has htS(X)p = Z i Zi hi& (x i , Xyi)* where xi and yi represent
the eigenvectors of the reduced matrices. The entries of S(X) may be bounded
by Qii < (x i , Xyi) , < uii with

uii = max { (x i , yi)l , (x i , yi>:}

II.. =

and

0 if (x i , yi)- and (x i , yi)+ have different signs (21) I min { (x i , yi)’ , (x i , yi): } otherwise 11

Consider the capacitated transportation problem

s.t. X S i i = 1
i

Sii = 1
i

Qii < sii < uii.

Replacing (1, i)- in (1 9) by the optimal value of (22) yields the improved eigen-
value bound EVB, in Table 1.

A complete new branch and bound algorithm to solve QAPs may be based on
the capacitated transportation problem (22). For this problem, the costs &ii)
are highly structured and remain unchanged throughout the enumeration. How-
ever, if more indices are assigned at the nodes of the enumeration tree, the length
of the flow interval [Q, , uii] is more and more reduced. A computer code for this
approach will be implemented in the near future.

7 . Concluding Remark

Evaluating the quality of the various reduction and bounding methods seems
difficult. There is no apparent common trend for the different types and sizes
of problems. Perhaps this is characteristic for a combinatorial problem of such
extreme difficulty. Apart from providing an elegant theoretical frame, the trace
form also supplies eigenvalue related bounds which are competitive with the
Gilmore-Lawler bounding technique. There is, in particular, some hope to obtain
a better asymptotic behavior with increasing problem sizes.

80 G. Finke. R. E. Burkani, F. Rendl

Table 1. Lower Bounds for QAPs.

(1) Test Data by Nugent et al. (ii) Random Data.

Best Known Gilmore-Lawler Bounds Eigenvalue Bounds
Sizen Value GLB, GLB, GLB, GLB, EVB, EVB,

5
6
7
8

12
15
20
30

8

15
(ii) 12

50
86

148
214
578

1150
2570*
6124*

7706
18180
37408*

50
82

137
186
493
963

2057
4539

49
82

137
186
493
963

2057
4558

48
77

131
175
464
919

1963
4324

49
76

130
174
463
918

1960
4320

47
70

123
160
446
927

2075
4982

6479
14698
3 1833

5880
14461
31127

6359
14499
31968

6551
14973
3 1969

6495
14423
31413

48
73

1 24
164
448
934

2085
5005

6507
14479
31477

* Values not known to be optimal.

Table 11. Deterioration of Gilmore -Lawler Bounds.

Size n 5 6 7 8 12 15 20 30

Relative Error(%) 0.0 4.6 7.4 13.1 14.7 17.1 G20.0 G25.6

References

E. Balas and J.B. Mazzola, ((Quadratic 0 - 1 Programming by a New Linearization)), Presented at the
TIMSIORSA Meeting, Washington, D. C., 1980.
M.S. Bazaraa and M.D. Sherali, ((Benders' Partitioning Scheme Applied to a New Formulation of the
Quadratic Assignment Problem)), Now1 Research Logistics Quurterly 27, 29 - 41, 1980.
E.S. Buffa, G.C. Armour and T.E. Vollmann, ((Allocating Facilities with CRAFT), H o r v d Business
Review 42, 136 - 158,1962.
R.E. Burkard, ((Die Storungsmethode zur Losung quadratischer Zuordnungsprobleme), Operations
Research Verfahren 16,84 - 108, 1973.
R.E. Burkardand T. Bonniger, ((A Heuristic for Quadratic Boolean Programs With Applications to
Quadratic Assignment Problems)), European Journal of Operational Research 13, 374 - 386, 1983.
R.E. Burkard and U. Derigs, Assignment andMatchingProblems: Solution Methods with FORTRAN-
-prOgmms, Springer, Berlin, 1980.
R.E. Burkard and J . Offermann, (Entwurf von Schreibmaschinentastaturen mittels quadratischer
Zuordnungsprobleme,, Zeitschriftfilr Operotions Research 21, B121 - B132, 1977.
R.E. Burkard and F. Rendl, ((A Thermodynamically Motivated Simulation Procedure for Combinato-
rial Optimization Problems)), European Journal of Operatioml Research 17, 169 - 174,1984.
R.E. Burkard and L.H. Stratmann, ((Numerical Investigation on Quadratic Assignment Problems)),
Naval Research Logistics Q w t e r l y 25,129 - 148,1978.
N. Christofides, A. Mingozzi and P. Toth, ((Contributions to the Quadratic Assignment Problem),
European Jourml of Operatioml Reserach 4,243 - 247, 1980.
K. Conrad, Das quudratische Zuweisungsproblem und zwei seiner Spezklfalle, Mohr-Siebeck, Tiibin-
gen, 1971.

Quadratic assignment problems 81

J.W. Dickey and J.W. Hopkins, ((Campus Building Arrangement Using TOPAZ,, Dunsportation
Research 6,59 - 68, 1972.
C.S. Edwards, ((The Derivation of a Greedy Approximator for the Koopmans-Beckmann Quadratic
Assignment Problem,, Proc. CP77 Combinatorial B o g . Con&, Liverpool, 55 - 86, 1977.
C.S. Edwards, ((A Branch and Bound Algorithm for the Koopmans-Beckmann Quadratic Assignment
Problem,, Mathematical Programming Study 13, 35 - 52, 1980.
A.N. Elshafei, ((Hospital Lay-out as a Quadratic Assignment Problem,, Operational Research
Quarterly 28, 167 - 179, 1977.
G. Finke, R.E. Burkard and F. Rendl, ((Eigenvalue Approach to Quadratic Assignment Problems)),
Presented at 5 th Symposium on Operations Research, Osnabriick, West Germany, 1984.
R.L. Francis and J.A. White, Facility Layout and Location, Prentice-Hall, Englewood Cliffs, N.J.,
1974.
A.M. Frieze and J. Yadegar, ((On the Quadratic Assignment Problem,, Discrete Applied Mathematics

N. Gafke and 0. Krafft, <Matrix Inequalities in the Lowner Ordering,. in B. Korte (ed.) ,Modern
Applied Mathematics -Optimization and Operations Research, North-Holland, 576 - 622, 1982.
J.W. Gavett and N.V. Plyter, ((The Optimal Assignment of Facilities to Locations by Branch and
Bound,, Operations Research 14, 210 - 232, 1966.
A.M. Geoffrion and G.W. Graves, ((Scheduling Parallel Production Lines With Changeover Costs:
Practical Applications of a Quadratic Assignment/LP Approach), Operations Research 24, 595 -
610, 1976.
P.C. Gilmore, ((Optimal and Suboptimal Algorithms for the Quadratic Assignment Problem,, SZAM
Joumalon AppliedMathematics 10,305 - 313,1962.
M. Hanan and J.M. Kurtzberg, ((A Review of the Placement and Quadratic Assignment Problems)),
SZAMReview 14, 324 - 342, 1912.
D.R. Heffley, ((Assigning Runners to a Relay Team)), in S.P. Ladany and R.E. Machol, eds., Optimal
Strategies in Sports, North Holland, Amsterdam, 169 - 171, 1977.
C.H. Heider, ((A Computationally Simplified Pair Exchange Algorithm for the Quadratic Assignment
Problem,, Paper No. 101, Center for Naval Analyses, Arlington Va., 1972.
L. Kaufman and F. Broeckx, ((An Algorithm for the Quadratic Assignment Problem Using Benders'
Decomposition)). European Journal o f Operational Research 2,204 - 211, 1978.
S. Kirkpatrick, C.D. Gelatti, Jr. and M.P. Vecchi, ((Optimization by Simulated Annealing,, Science

T.C. Koopmans and M.J. Beckmann, ((Assignment Problems and the Location of Economic Activi-
ties,, Econometrica 25, 53 - 76, 1957.
J. Krarup and P.M. Pruzan, ((Computer-aided Layout Design,, Mathematical Programming Study 9,
75 - 94, 1978.
A.M. Land, ((A Problem of Assignment with Interrelated Costs,, Operational Research Quarterly 14,

E.L. Lawler, ((The Quadratic Assignment Problem)), Management Science 9,586 - 599, 1963.
J.D.C. Little, K.G. Murty, D.W. Sweeney and C. Karel, ((An Algorithm for the Travelling Salesman
Problem)), OperationsResearch 11, 912 - 989, 1963.
M . Markus and H. Minc, A Survey ofMatrix Theory and Matrix Inequalities, Allyn and Bacon, Boston,
1964.
T. Mautor and D. Savoye, Etudes d 'heuristques pour le problPme d 'affectation quadratique, Mimoire,
d i p h e d' Inginieur I.I.E.. 1983.
E.J. McCormick, Human Factors Engineering, McCraw-Hill, New York, 1970.
P.B. Mirchandani and T . Obata, ((Locational Decisions with Interactions Between Facilities: the
Quadratic Assignment Problem - a Reviews, Working Paper PS-79- 1, Rensselaer Polytechnic Insti-
tute, Troy, N.Y., 1979.
L. Mirsky, ((The Spread of a Matrix,, Mathematika 3, 127 - 130, 1956.
H. Miiller-Merbach, Optimale Reihenfolgen, Springer, Berlin, 158 - 171, 1970.
K.G. Murty, ((An Algorithm for Ranking All the Assignments in Order of Increasing Cost)), Operations
Research 16,682 - 687, 1968.
C.E. Nugent, T.E. Vollmann and J . Ruml, ((An Experimental Comparison of Techniques for the
Assignment of Facilities to Locationsr, Operations Research 16, 150 - 173, 1968.
J.F. Pierce and W.B. Crowston, ((Tree Search Algorithms for Quadratic Assignment Problems,, Naval
Research Logistics Quarterly 18, 1 - 36, 1971.
F. Rendl, ((Ranking Scalar Products to Improve Bounds for the Quadratic Assignment Problem),
European Journal of Operational Research 20, 363 - 372, 1985.

5,89 - 98, 1983.

220,671 - 680,1983.

185 - 198, 1963.

82 G. Nnke, R . E. Burkatd. F. Rendl

1431

I441

1451

1461

1471
1481

1491

C. Roucairol, ((A Reduction Method for Quadratic Assignment Problems,, Operations Research
Verfahren 32, 183 - 187,1979.
C. Roucairol, (tun nouvel algorithme pour le problhme d’affectation quadratique,, R.A.I.R.O. 13,

C. Roucairol, ((An Efficient Branching Scheme in Branch and Bound Procedures,, TIMS X X V , Co-
penhagen, 1984.
S. Sahni and T. Gonzdez, ctP-complete Approximation Problems,, Journul o f ACM 23, 555 - 565,
1976.
L. Steinberg, ((The Backboard Wiring Problem: a Placement Algorithm,,SIAMReview 3,37 - 50,1961.
I. Ugi, J. Bauer, J. Brandt, J. Friedrich, J . Gasteiger, C. Jochum and W. Schubert, <New Anwendun-
gsgebiete fur Computer in der Chemie)), Angewandte Chemie 91,99 - 111, 1979.
D.H. West, ((Algorithm 608: Approximate Solution of the Quadratic Assignment Problem,, ACM
Transactionson Mathematical Software 9,461 - 466,1983.

275 - 301,1979.

Chssifcation by Subjects

Problem formulations:
1,2,5,10,13,14, 18,26,28,31.

Applications :
7, 12,15, 17,21,24,28,29,35,47,48.

Complexity and exact algorithms:
2,4,20,22,23,26,30,31,36,40,41,46.

Heuristics:
2,3,5,8,9,22,25,27,38.

Reductions:
4,11,13,14,18,22,31,32,43,44.

Computer Codes:
5,6,34,45,49.

Eigenvalue approach:
16, 19,33,37,39,42.

Gerd Finke
Technical University of Nova Scotia
P.O. Box 1000
B3J 2x4 - Halifax, N.S.
Canada

Rainer E. Burkard
Franz Rendl
Institut fur Mathematik
Technische Universitat Graz
A - 8010 Graz
Austria

Annals of Discrete Mathematics 31 (1987) 83 - 112
0 Elsevier Science Publishers B.V. (North-Holland)

ORDER RELATIONS OF VARIABLES IN 0- 1 PROGRAMMING

Peter L. HAMMER and Bruno SIMEONE

1. Introduction

In this paper we present old and new results concerning two important
preorders (i.e. reflexive and transitive relations) in the set of variables of a 0-1
(linear or nonlinear) programming problem :

a) the ordinary order relation xi < x i , which means

“xi is 1 when xi is 1 ”

b) the preorder xi < x i defined by the property

“every feasible vector x such that xi = 0 and xi = 1, remains feasible when
x i is replaced by 1, and xi is replaced by 0”.

Accordingly, the paper is divided into two parts. Part I deals with the relation
<. In Section 2, we recall some basic facts about 0-1 programs. In Section 3 we
discuss the generation and the use of order constraints x i < x i in linear and
nonlinear 0-1 programming. In Section 4 we consider, the problem of maximizing
a linear function of n binary variables subject to order constraints (only). It is well
known (Picard [20]) that this problem is equivalent to finding a maximum weight
closure of a directed graph. We exhibit a direct reduction of the maximum weight
closure problem to a minimum cut one (an indirect reduction was given in Picard
[20]); moreover, we give a linear-time algorithm for the special case when the
graph is a rooted tree. In Section 5 we determine the minimum number of order
constraints which, due to the fact that xi < x i implies xrxi = x i , cause a quadratic
function f of n binary variables to become linear. We prove that such number is
always n - 1, independent of the number of terms appearing in f. We introduce a
class of directed (but not necessarily rooted) spanning trees of a graph - the palm
trees - which generalize depth-first-search trees, and show that there is a natural
one-to-one correspondence between palm trees and minimum cardinality sets
of order constraints linearizing f. We also give two different characterizations of
palm trees. Finally, we extend these results to arbitrary pseudo-boolean functions.

Part I1 deals with the preorder 4 and with the related regularity property.
In Section 6 the concepts of regular sets and regular boolean functions are re-
called. In Section 7 we present the results of Chvhal and Hammer [3] showing

8 3

84 P . L . Hammer, B. Simeone

the close connection between regular set packing problems and threshold graphs.
On this basis, efficient graph-theoretic algorithms can be obtained for recognizing
and for solving regular set packing probles.

The case of regular set covering problems is harder, but they can still be
recognized and solved in polynomial time, as shown by Peled and Simeone [191.
Their results are presented in Section 8, where we also propose an improved
algorithm for solving regular set covering problems.

The theoretical importance of regular set covering problems is enhanced by the
result of Hammer, Johnson and Peled [1 I] according to which every (linearly
or nonlinearly constrained) 0-1 program with linear objective function can be
formulated as a regular set covering problem, under a mild assumption on the
objective function. Their result is presented in Section 9.

Order relations of variables in 0-1 programming

PART I

85

2. Generalities on 0-1 programming

Throughout this paper, we assume that the reader has some familiarity with
boolean functions (see e.g. Rudeanu [24], Hammer [8]) and with graphs (see
e.g. Berge [2] , Lovisz [171).

n t ims -
Let B denote the set { 0, 1 }, and let B" = B x . . . x B be the binary n-cube .

A pseudo-boolean function is any mapping h : Bn -+ R (= the reals). Any pseudo-
-boolean function can be represented as a multilinear function of the n binary
variables x,. x 2 , . . . , x,,:

h (x , , . . . , x") h (x) = aT n x i ,
T E F iE?

where 6 is a collection of distinct subsets of N = { 1 , . . , , n } and a , # 0 for all
T E 6. Moreover, the representation is unique.

The general 0-1 programming problem is

maximize f (x)

subject to g , (x) < b, (i = 1, . . . , m) (1)

X E B "

where f , g , , . . . , g , are pseudo-boolean functions of n variables and b , , . . . , b,
are real numbers. In particular, when f , g , , . . . , g m are linear, one has a linear
0-1 programming problem, which in matrix form is usually written as

1
I

maximize cx

subject to A x < b

x E B "

I (2)

where c is a row n-vector, A an m x n matrix and b a column m-vector.
be the feasible set of (I) , let

px be the characteristic function of X and let px be the complement of px (i.e.
px(x) = 0 iff x E X) . Then (1) can be formulated as

Let X - { x E B n : g i (x) < b i , i = 1 , . . . , m)

i maximize f (x)

subject to p J x) = 0

X E B "

(3)

06 P. L. Hammer, B. Simeone

The function px is called the resolvent of X . In the linear case, i.e. when X =
5 { x E B n : A x < b) , the resolvent has the following expression (see Granot and
Hammer [7])

m

where
(i) M, is the set of all minimal covers of the inequality

n

aij xi < b i (i = 1 , . . . , m)
j = l

i.e. the collection of all the minimal C C N = { 1, . . . , n) with the property

Surprisingly, the 0-1 program (11, under the only assumption that the objective
function f is linear, can always be represented in the form (21, where in addition
the elements of A belong to the set {O , - 1, 1). Such a representation can be
easily obtained once the resolvent of the feasible set of (1) is available.

3. Generation and use of order constraints

In the present Section, for a given 0-1 programming problem, we consider

1) How to detect pairs (x i , x j) of variables, such that the relation xi < x i

2) How to detect pairs (x , , x j) of variables, such that the relation x i Q x j

Once any such relation xi < x i has been discovered, it can be exploited in

the folloiKing questions:

holds for all feasible points x ? (Section 3.1)

holds for all optimal points x ? (Section 3.2)

several ways:

(i) fixing or eliminating variables

If, for example, it is known by some other means that, beside the relation
xi < x j , the inequality x , + xi G 1 must also hold, then the variable xi is forced
to have the value 0. Similarly, if one has x i Q xi and x i + xi > 1, then the variable

Order relations of wriables in 0.1 programming a i

xi is forced to 1 ; if xi < x i , and x i 2 xi also holds, then one has xi = xi and one
of the variables x i , xi can be eliminated, etc.

(ii) adding cutting planes

The constraint x i < x i can be added as a cutting plane in enumerative methods
for solving the given 0-1 program. See, for example, Hammer and Nguyen [121
and Spielberg [25].

(iii) lowering the degree of the polynomials appearing in the constraints andlor
in the objective function

Suppose that one such polynomial has a monomial containing the product
xixi as a factor. If the constraint xi < x i holds, then one can replace xix i by
x i (see also Section 5).

3.1. Generation of order constraints in APOSS

Given a linear 0-1 program (2), the APOSS method of Hammer and Nguyen
[121 makes use of boolean manipulations to produce order constraints x i < x i
(and also Xi < xi or xi Q q). Before outlining that procedure, we briefly recall
the classical consensus method of Quine [23]. Given a boolean function cp in
disjunctive normal form

c p = T, V . . . V Tm

where each term q is the product of a finite number of literals (i.e. uncomple-
mented or complemented variables), an implicant of cp is any monomial I such
that I Q cp; the implicant I is said to be prime if there is no proper factor J of I
such that I < J < cp. One can obtain all the prime implicants of cp by the following
consensus method:

Starting from the list of all terms q in (5), repeat the following two steps as
many times as possible:
Consensus: if in the current list there exist two terms of the form x C and TD,

where x is a variable and there is no variable which is complemented in C
and uncomplemented in D or viceversa, then add to the list the term CD
(after eliminating repeated literals from CD);

Absorption: if in the current list there are two terms C and D such that C is a
(proper or improper) factor of D, then delete D from the list.

The terms appearing in the final list are precisely the prime implicants of
cp.

Let k be an integer 2 1 . The k-truncated consensus method is similar to the
consensus method described above, the only difference being that a consensus
step is performed only when the number of literals in both xC and TD is < k .
While the consensus method requires in general an exponential number of opera-

88 P. L. Hammer, B. Simeone

tions, the k-truncated consensus method has a O(n(m + n k) 2) complexity and
hence is polynomial for any fixed k.

APOSS essentially applies a 3 -truncated consensus method to the resolvent
(4) of the feasible set of (2) in order to obtain a set of (not necessarily prime)
implicants of length < 3 . If, in particular, one obtains in this way the implicant
xi?, then the constraint xi < x i must be satisfied by every feasible solution x,
since 0 < xixi < p x (x) < 0. More generally, the method detects also constraints
of the form xi + xi < 1 or xi + x i > 1 - although not necessarily all of them.
The study of systems of inequalities of the form xi <xi , , x i + xi < 1 and xi +
+ xi 2 1 is undertaken in Johnson and Padberg [141.

3.2. Generation of order constraints via second derivatives

Given the unconstrained quadratic 0-1 optimization problem

where Q is a symmetric n x n matrix, we describe a simple procedure, due to
Hammer and Hansen [9], for detecting order constraints xi < x i which must
necessarily be satisfied by every binary point maximizing the pseudo -boolean
function f (x) = x T Q x .

The second (boolean) derivative o f f with respect to xi and xi (i <]) is defined
as

f i i i
A , i (X) = f (~ l , . . . , 1,. . . ,o , . . . , x n) - f (X 1 , . . . , O , . . . , 1, . . . , X n)

For all x E B", one has

where

and

Then, the following result holds:

Proposition 1. (Hammer and Hansen [9]):

Order relations of variables in 0-1 programming 89

a) i f Kii < 0, then one must have x i <x i for all optimal solutions to (6) ;
b) if Aii > 0, then one must have xi > xi for all optimal solutions to (6) .

4. Maximization of a linear function subject to order constraints

In the present Section we consider the problem of maximizing a linear function
of n binary variables subject to order contraints on these variables:

I maximize p w i x i
i = 1

subject to xi G x . , (i, i) € A (I

(7)

X E B ” , I

where A G N x N , with N = { 1 , . . . , n } . Let D be the digraph (N , A) . A subsetX
of N is said to be a closure if i E X =+ j E X for every successor j of i .

Let us assign a weight wi to each vertex i of D. For all Y C N , let W(Y) =
= C i E Y w i . As remarked in Picard [20], problem (7) is equivalent t o finding
a maximum weight closure of N . Picard also pointed out that problem (7) is
reducible to the maximization of a quadratic supermodular function, which in
its turn is reducible to a minimum cut problem (Balinski [1 I, Picard and Ratliff
[21]) and hence can be solved by a max-flow algorithm.

A direct reduction of (7) to a minimum cut problem can be obtained as follows.
Without loss of generality, we may assume that the property

(P) “wi > 0 for every source i and wi < 0 for every sink j ”

holds. If one had w,, < 0 for some source h, then there would be an optimal solu-
tion x* to(7) such that x$ = 0 and hence variable x,, could be eliminated from
(7) . The case of sinks is similar.

Now, let N + = { i E N : w i > O } , N - = { j E N : w , < O } and let us augment
D by introducing two dummy vertices s and t and dummy edges (s , i) for all
i E N + and (j , t) for all j E N - . The augmented digraph obtained in this way
will be denoted D*. Notice that, because of (P), s is the only source and t the
only sink of D*. Next, we assign a capacity wi to each edge (s , i) (i E N +) , a
capacity - wi to each edge (j , t) (j E N -) , and a capacity + 00 to all remaining
edges ofD*, i.e. those in A .

A cut in D * is any bipartition 7 = { S , 3) of the vertex-set of D * such that
S 3 s, F3 t . The capacity c(7) of 7 is the sum of the capacities of all edges
(i , j) such that i E S and j E

Theorem 2 . There is a one-to-one correspondence between thefinite capacity cuts

90 P. L . Hammer, E. Simeone

r o f D* and the closures X of D. For any such cut r and for the corresponding
closure X , one has

(8) c(7) + w (X) = w (N +) = constant.

Proof. Clearly the mapping which associates with each cut r = { S , 3) the set
X = S -{ s} is a bijection. If the capacity of r is finite one has

'

i E X , (i , j) E A *] E X ,

otherwise the edge (i , j) would have capacity + m. Hence X is a closure. Conver-
sely, if X is a closure there is no edge (i , j) E A such that i E S and j E s. Hence
the cut 7 corresponding to X has finite capacity. Moreover,

w (X) = c w j + wi.
I E X n N j € X n N -

Adding up the above two identities, one obtains (8). 0

The above theorem immediately implies the reducibility of (7) to a minimum
cut problem. It follows that problem (7) can be solved in O(n3) time via, say, the
max-flow algorithm of Karzanov [16].

We shall now describe an O(n) time algorithm for solving problem (7) in the
special case when D is a rooted tree T . For convenience, in this case we denote
problem (7) by Y (T ; w) .

Lemma 3. Let k be a leaf of T such that wk 2 0. Then there exists an optimal
solution x * to 9 (T ; w) such that x: = 1.

Proof. Obvious.

Definition. A vertex h of T is called a pedicle if all its sons are leaves.

Lemma 4. Let h be a pedicle and let L be the set of sons of h. If wi < 0 for all
j E L, then for all optimal solutions x * to 9 (T ; w) one has xf = xi* for all
j E L.

Proof. Let x * be an arbitrary optimal solution to ~ (T ; w) . If xf = 1 then
also xi* = 1 for all j E L because of the order constraints in (7). If x z = 0 and
xi* = 1 for some j € L , then y * = x * -u, (where ui is j - th unit vector) is a
feasible solution such that Xi"=, wiy: < X/= wix:, contradicting the optimality
o fx* . 0

Order relations of variables in 0.1 programmmg 91

Given the tree T with vertex-weights wi, one of the following two cases must

1) There exists a leaf k such that wk 2 0;
2) There exists a pedicle h such that wi < 0 for all j in the set L of sons of h .
In case 1) 9 (T ; w) is reducible, in view of Lemma 3, to ~ (T ' ; w ') , where

In case 2) 9 (T ; w) is reducible, in view of Lemma 4, to ,!??(T";w"), where

occur:

T ' = T - k and w' is the restriction of w to T'. (REDUCTION 1)

wi if i f h
(REDUCTION 2) I w,,+XIELwj if i = h

T" = T-L andw('=

In both cases ,!??(T; w) can be reduced to a problem on a tree with less vertices.
Thus, starting from T and applying each time either REDUCTION 1 or REDUC-
TION 2, one can recursively solve 9 (T ; w) by reducing it to problems on smaller
and smaller trees, until the trivial tree with one vertex is obtained.

The resulting algorithm can be implemented so as to run in O(n) time. Here
are the details (we follow the terminology of Tarjan [2 6]) .

Definition. A breadth-first order in N is a linear order (3 in N such that
a) if the depth of i is smaller than the depth of j , then i u j ;
b) if i and j are brothers and i u k (I j , then k is a brother of i and j .

Algorithm

Let T be given by its successor list.
Step 1. For k = 1 , . . . ,n, let q (k) be the k-th vertex in a breadth-first order

Comment: w(.) is the vector of vertex weights in the current tree; x will eventual-
in N . Set s(i) : = wi, xi : = 0 for all i E N ;

ly contain the optimal solution t o S (T ; w).

Step 2.
For k : = n down to 1 do

begin
i : = q (k) ;
Let Si be the set of all sons j of i such that s (j) < 0;
If Si # r#~ thenS(i) : = s(i) + CiEsi s (j) ;
Ifs(i)>Othenxi := 1;

end

Step 3 :
F o r k : = 1 t o n d o

i : = q(k);
If xi = 1 then xi : = 1 for all successors j of i;

begin

end;

92 P. L . Hammer, B. Stmeone

Comment: At the end of STEP 2, the vector x might not be feasible. The purpose
of STEP 3 is to ensure that the order contraints in (7) are satisfied.

Example. Consider the vertex-weighted tree T of Fig. 1 (recall that an edge
@+@corresponds to the order constraint x i < x i) .

Fig. 1

Step I . In this case the linear order defined by q (k) = k for all k is already a
breadth-first -order.

Step 2 .

k = q (k) s (k) 'k

15 - 3 0
14 1 1
13 - 5 0
12 2 1
11 - 2 0
10 6 1
9 - 1 0
8 - 2 0
7 - 1 0
6 - 4 0
5 - 6 0
4 5 1
3 - 2 0
2 2 1
1 - 4 0

Order relations of variables in 0 - I programming 93

Step 3 .
x 2 = 1 =$ x , = 1;
x s = 1 * x g = x g = 1;
x g = 1 * X l 3 = 1 ;
x l Z = 1* X l 5 = 1.

Thus, anoptimalsolutionis(0, 1, 0, 1, 1 , 0, 0, 1, 1 , I , 0, 1 , 1 , 1, 1).

of the algorithm is also O(n).
Clearly each Step 1 ,2 , and 3 requires O(n) time. Hence the overall complexity

5 . Linearization of a pseudo-boolean function via order constraints

As we have already mentioned in Section 3, if t and r) are binary variables,
one has

tG77 * t o = t . (9)

The equivalence (9) suggests the following question : given a quadratic function
f (x) = xTQx of n binary variables (where Q is asymmetricmatrix), what is the
smallest number of order contraints t S r) which make f linear?

I f f has m terms, clearly m order constraints - one for each term - are always
enough. However, by exploiting the transitivity of <, one can usually do better.
For example, let

f (x) = 2x ,x2 + 3x , x 3 + x 2 x 4 + 7 x 3 x , + x 3 x , + 6x4x6 + 4 x , x 6 . (10)

Every point x satisfying the 5 constraints

x , < x 3 , x 3 < x 4 , x4 <x*, x 4 <X6 , X 6 < x s

x , < x 2 , x 3 < x , .

(1 1)

satisfies also, by transitivity, the constraints

For any such x , one has

f (x) = 2 x , + 3 x , + x 4 + 7 x 3 + x 3 + 6 x 4 + 4 x 6

= 5 x , + 8 x 3 + 7 x , + 4 x 6 .
Thus, 5 order constraints are enough in order to linearizef.

We shall require that the constraint xi <x i can be selected only if qii # 0,
i.e. if the term q i j x i xi is actually present in f. As we shall see, such requirement
will cause no loss of optimality.

Given f, let us introduce the undirected graph G = (N, E) , where N = { 1 ,..., n}
and E = { (i , j) : qi, # 0). Without loss of generality, we may assume that G is
connected. Our problem can then be formulated as follows.

Problem (9). Find a minimum cardinality subset F C E and an orientation

94 P.L. Hamnier. 8. Simeone

of all edges in F such that, whenever two vertices i and j are adjacent in G, in the
digraph D = (N, 8 there is either a directed path from i to j or a directed path
from j to i .

Then, clearly,

x i <x, for all (i , j) E F’
is a minimum cardinality set of order constraints linarizing f. The digraph D
will be called an optimal solution to problem (9).

Lemmas. IFl>n - 1 .

The proof follows immediately from the fact that the partial graph (N , F)
must be connected.

The above Lemma suggests that perhaps D is a directed spanning tree of G.
In our example, the graph G corresponding to the function f given by (10) is
shown in Fig. 2(a) and one can take as D the rooted tree of Fig. 2(b).

Fig. 2

In fact, the order constraints corresponding to D are precisely those given by
(1 11, and we have already seen that they linearize f. Moreover D is optimal by
Lemma 5 .

However, not every directed spanning tree works, even if we require that it
is a rooted tree. For example, the one shown in Fig. 2(c) does not (there is no
directed path from 2 to 4 or from 4 to 2).

A class of optimal solutions to (2’) is given by the following theorem (for the
terminology, the reader is referred to Tarjan [261).

Theorem 6. All depth-first-search trees of G are optimal solutions to (2’).
Moreover, a spanning rooted tree of G is an optimal solution to (9) only if
it is a depth -first-search tree.

Proof. Tarjan [26] proved that a spanning rooted tree T of G is a depth-first-
search tree if and only if has the property that whenever two vertices i and j
of G are adjacent then there is in T either a directed path from i to j or one

Order relations of variables in 0-1 programming 95

from j to i . In view of the fact that, by Lemma 5, every optimal solution to (9)
must have at least n - 1 edges, Tarjan’s result immediately implies the theorem. 0

Definition. A directed spanning tree T of G is a palm tree of G if, whenever
two vertices i and j are adjacent in G, there is in T a directed path either from
i to j or from j to i .

The term of ((palm tree)) was introduced by Tajan, who in addition required
T to be rooted. According to our definition,though, a palm tree does not have
to be rooted. For example if G itself is a tree, every orientation of G is a palm
tree. A less trivial example is shown in Fig. 3.

Fig. 3

An immediate consequence of Theorem 6 is that the equality I F I = n - 1 must
hold in Lemma 5. Hence,

Corollary 7 . The optimal solutions to (9) are prechely the palm trees of G.

A closer look at Fig. 3 reveals that, if we remove the source 5, then T - { 5 } is
a palm tree of G - { 5 } . Moreover,the only successor of vertex 5 in T , namely
vertex 1, is an ancestor of 4 and 6, the other two vertices adjacent to 5 in G.
More generally, palm trees admit the following recursive characterization.

Theorem 8. A directed spanning tree T of G is a palm tree o f G if and only if
there exists in T a source s such that

(a) if the outdegree of s in T is > 1, then s is an articulation point of G;
(b) if the connected components of T -s are T,, . . . , T, then is a palm

tree of the subgraph Gi of G induced by the vertex-set o f q;

96 P, L. Hammer, B. Simeone

(c) let uh be the (only) vertex o f T which is a successor of s in T. Then every
vertex u + v, o f %which is adjacent to s in G must be a descendant of v,, in T.

Proof. The ((if)) part is straightforward. Let us prove the ((only if)) part. Let
s be any source of T (s exists because T has no circuits). If i is a vertex of G,
and j is a vertex of G, (h # k) , then i and j cannot be adjacent in G, for otherwise
there would be in T a directed path either from i to j or from j to i . Such path
would necessarily include s: but this is impossible, since s is a source. Hence (a)
holds and G,, . . . , G, are precisely the connected components of G - s.

If p and q are adjacent in G, then there is a directed path in T either from p
to q or from q to p . Such path cannot include the sources: hence it must be
within G, and thus (b) holds.

Finally, if u # uh is a vertex of G, adjacent to s, then there must be a directed
path from s to u in T (no path from u to s can exist). Since s is a source and
an articulation point, the vertex following s along the path is necessarily u,,
the only successor of s in q. Moreover the path must be within q, and thus
(c) follows. 0

Another characterization of palm trees in given below.

Theorem 9. A directed spanning tree T of G is a palm tree o f G if and only i f ,
for every cycle C of G containing exactly one unoriented edge, all the oriented
edges of C have the same direction (i.e. no two of them have the same head or
the same tail).

Proof. If). Let (i, j) be any unoriented edge of G. Since T is spanning, there is a
path P in T connecting i and j . The path P together with the edge (i, j) forms a
cycle whose only unoriented edge is (i , j) . It follows that P is a directed path
either from i to j or from j to i .

Only if). Suppose that T is a palm tree and let C be any cycle containing only
one unoriented edge (i , j) . In the tree T there must be a directed path Q , say,
from i to j (the other case is similar). Let qk (k = 0, 1, . . . , I where 1 is the length
of Q) be the k-th vertex along Q ; in particular qo = i and ql = j .

Let P be the path formed by the oriented edges of C. Then P must be simple,
i.e. cannot have repeated vertices, otherwise T would have a cycle. Suppose that
P were not directed. Then there would be some vertex of P which does not belong
to Q .

Let

r = max{k : q O , q l , . . . , qk lie on P}, (r < I)

s = m i n { h : r < h < l , qh liesonP}.

Then the two subpaths Q (r , s) and P (r , s) together would form a cycle of T

Order relaiions of wariables in 0-1 programming

(see Fig. 4), a contradiction. Hence P is directed and T is a palm tree.

L

Edges in Q

- - - - _ _ - - _ +

Edges in P
but not in Q

I Y
I

97

Fig. 4

Theorem 6 and Corollary 7 imply that the smallest number of order constraints
which linearize a quadratic function f of n binary variables is n - 1 and hence
is independent of the number of terms in f.

So far, we have insisted in selecting only constraints x i < x i such that qii # 0.
If we allow for the presence of arbitrary order constraints xi < x i (even when
qii = 0) then the smallest number of order constraints linearizing f is still n - 1,
and a class of optimal solutions is given by the palm trees of the complete graph
K,. Notice that T is a palm tree of K , iff T is a depth-first-search tree of K , and
also iff T is a directed hamiltonian path of K,.

More generally, one sees that n - 1 is the smallest number of order constraints
linearizing an arbitrary pseudo- boolean function in n variables

(where 5 is a collection of subsets of N = { 1, . . . , n } and a,# 0 for all T E F),
subject to the requirement that the order constraint x i <x i may be selected only
if xixi is a factor of some monomial IIjG,x, , with T E 5. In this case, the optimal
solutions correspond to the palm trees of the graph

G = { (i , j > :i, j E N , 3 T E 5such that{i, j } E T } .

98 P. L. Hammer, B. Simeone

PART I1

6. The preorder x < y and the concept of regularity

Let X be a given subset of B". One can define in the set of variables{ xl , . . . ,
x, } a preorder (= reflexive and transitive relation) by ((x, 4 xi)) if and only if
e i t h e r i = j or VxEBf l such t h a t x , = O a n d x j = l o n e h a s x + u , - u j E X ,
where, as usual, uk is the k-th unit vector (0, 0,. . . , 1, . . . , 0). When the set
X is understood from the context, we simply write ",*xi. We write x, -x j
when x, xi and xj < x,. If + happens to be a total (or linear) preorder then the
set X is said to be regular. A prime example of regular set is the feasible set
X ~ { x E B n : a l x l + . . . + u,x ,<b}of a knapsack problem: in this case, one
hasxi<xj iffai <aj .

Similar concepts can be defined for boolean functions cp. One writes x i <xi
iff V x E B" such that xi = 0, xi = 1 one has g(x) < p(x + ui - uj) . The boolean
function cp is said to be regular if all pairs of variables are comparable in + (1).
Clearly a set X is regular if and only if its characteristic function cpx is regular.

X

k

X

Lp

9

7. Threshold functions, threshold graphs and regular set packing problems

The concept of regularity was first introduced by Winder [27] in connection
with the study of threshold boolean functions. A boolean function cp : Bfl + B is
said to be threshold if there exist n ((weights)) wl, . . . , w, and a ((threshold)) t
such that

cp(x) = 1 iff w l x l + . . . + w n x n > t
(the weights and the threshold can be arbitrary real numbers). The n + 1 -vector
(wl, . . . , w,; t) is then called aseparutor of cp.

All threshold functions are regular, but the converse does not have to hold.
However, Chvhtal and Hammer [3] proved that quadratic positive boolean func-
tions are threshold if and only if they are regular. Note that quadratic positive
boolean functions are just the incidence functions p(x) = VI,DEExixj of undirec-
ted graphs G = (V , E)

Those graphs whose incidence function is threshold were called threshold
graphs by Chvhtal and Hammer [3], who gave several characterizations of them.

(1) In the usual definition of regularity, it is customary to require also the monotonicity of 9.

Order relations of wriables in 0-1 programming 99

Given a graph G = (V , E) and a vertex i of G, we denote by N (i) the neighbor-
hood { j E V : (i , j) E E}of i.

Theorem 10. (Chvital and Hammer [3]). For a graph G= (V , E) the following
statements are equivalent:

1) G is threshold.
2) There is a hyperplane separating the characteristic vectors of the stable

3) For every pair (i , j) of distinct vertices o f G, either
sets of G from the remaining vectors of Bn.

N (i) - { j } C N (j) - { i } or N (j) - { i } C N (i) - { j } .

4) There are no 4 vertices a , b, c, d such that

(a , b) E E , (c , d) E E , (a , c) G E , (b , d) G E .

5) V can be partitioned into a clique K and a stable set I ={ i l , . . . , is} where

N(i ,) a N (i 2) 2 . . . z N (i s) .

6) There exists in G a vertex u which is either universal (i.e. its degree is n - 1)
or isolated, and every induced subgraph of G has the same property.

Further characterizations of threshold graphs in terms of their degree sequence
were provided by Golumbic[6] and Hammer, Ibaraki and Simeone [lo] . Many
generalizations of threshold graphs have been investigated in the literature.

The interest of threshold graphs in 0-1 programming stems from their close
connection with regular set-packing problems.

A set-packing problem

maximize cx

subject to A x <e

x E B "

(where A is a m x n 0-1 matrix, c is a positive row n-vector and e = (1, . . . , 1))
is called regular if its feasible set X = { x E B" : A x 4 e } is regular.

Theorem 1 1
(i) (Chvital and Hammer [3]). A set-packing problem is regular iff its feas-

ibleset C is the feasible set o f some knapsack problem, i.e. X ={ x E B n : a x < b }
f o r s o m e a E R ; , b ER, .

(ii) (Chva'tal and Hammer [3], Orlin [181). There is a polynomial-time algo-
rithm for finding the above knapsack problem or proving that none exists.

(iii) A regular set packing problem can be solved in polynomial time.

Proof. Given the matrix A in (1 2), let G be the graph with vertex set N = { 1 ,..., n }

100 P. L. Hammer. B. Simeone

and edge set

m

(i) j) : i , j € N , a , a y > l
k = 1

It is well-known, and easy to see, that x E X if and only if x is the characteristic
vector of some stable set of G. It follows that the resolvent of X is given by

P&) = v x p j .
(I, j) E E

Since the complement = 1 - cp of a boolean function v is regular iff cp is regular,
the above result of Chvhal and Hammer implies that the set packing problem
(1 2) is regular if and only if G is threshold. Hence (i) follows.

In their paper, Chvatal and Hammer described a polynomial-time algorithm
for bulding a separator (w l , . . . , w,,; t) of the incidence function of G or proving
that none exists. An efficient algorithm for computing an integral separator
with smallest threshold t was subsequently given by Orlin [181.

From the above discussion it follows that (1 2) is equivalent to finding a maxi-
mum weight stable set of the threshold graph G. But G has very few maximal
stable sets. Actually, by Theorem 10, the only maximal stable sets of G are I
itself and all sets

{ k } U (I - N (k)) , k E K .

Therefore, G has at most n maximal stable sets and hence the maximum weight
stable set problem in G can be solved in polynomial time.

8. Regular set covering problems

We have seen in the previous section that there are efficient graph-theoretic
algorithms for recognizing and for solving regular set packing problems. The
key property which allows one to use graph-theoretic tools is the fact that the
feasible set of such a problem has a quadratic resolvent.

Unfortunately, this property is lost for regular set covering problems (i.e.
set covering problems whose feasible set is regular). Moreover, in the regular
set covering case i t is no longer true that the feasible set is always the feasible
set { x E B n : a l x l + . . . + a,xn > b } of some knapsack problem. Thus, the set
covering case is much more complex than the set packing case. Nevertheless, it
turns out that there are polynomial-time algorithms

a) for recognizing when a given set covering problem is regular;
b) for solving regular set covering problems;
c) for recognizing those set covering problems whose feasible set is also the

Order relations of wriables in 0-1 programming 101

feasible set of some knapsack problem.

8.1. Recognition of regular set covering problems

Let

minimize cy

subject tD A y >e

y € B n I , (13)

be a regular set covering problem, where A is a m x n binary matrix, c is a positive
row n-vector and e is the column m-vector whose components are all ones.

For convenience, we prefer to work on the equivalent problem

1 maximize cx

subject to A x < b

x E B "

where b = Ae' - e and e' is the column n-vector (1, . . . , 1). As usual, we denote
by X the feasible set of (14).

We shall say that x ' lies above x if x < x'.
Let us denote by A (i ; j) the minor of A obtained by dropping all rows having

a 1 in the j - th column and then suppressing both the i- th and the j - th column.

Theorem 12. One has xi+ xi if and only if every row of A (i ; j) lies above some
row o f A (j ; i) .

The proof is based on a well-known result of Quine (see Theorem 4 in Peled
and Simeone [191).

In order to find out whether X is regular one does not have to check the condi-
tion of Theorem 12 for all pairs (i , j) . The following theorem, essentially due to
Winder [27], gives a necessary condition for the relation x,*xi to hold.

Theorem 13. Let C be the n x n matrix whose element cki is equal to the number
of rows of A having exactly k 1's and having a 1 in column j .

If x i - xi, then the i-th column and the j-th column of Care equal. I f x,< xi,
but x , + x i , then the i-th column of C is lexicographically smaller than the j-th
column.

To use this theorem, we sort the columns of C lexicographically in O(n2 log n)
time so that the ~ (1) - t h column is largest, the ~ (2) - t h is second largest, and so
on. Then, using Theorem 12, we check the conditions X ~ (, + ~) < X ~ (~) for all
i = 1 , . . . , n - 1 ; the feasible set X is regular if and only if all such conditions
hold. It follows that there is a polynomial-time algorithm for recognizing regular

102 P. L. Hammer, B. Stmeone

set covering problems (notice that the feasible set of (13) is regular if and only if
X is such).

8.2. Solution of regular set covering problems

We now turn our attention to the solution of regular set covering problems.
We shall assume that the feasible set X of (14) is regular and that the column of
A are renumbered so that x1 Z x2 +. . . + x,. Moreover, without loss of generali-
ty, we shall assume that no row of A lies above another row, and that A contains
both 0's and 1 's.

A maximal feasible point (MFP) of (14) is any x E X such that X' E X , x < x' *
* x ='x'. A minimal infeasible point (MIP) is any x @ X such that x ' @ X , x ' <
< x =* x = x'. It is well known, and easy to see, that the MIPS are precisely the
rows of A .

Let us introduce a linear order in Bn as follows. For any x EB", the support
of x is the set supp (x) ={ j : x, = l}. The positional representation of x is the
n-vector whose components are the elements of supp (x) followed by 0's. Let
x, x ' EB". We shall say that x' follows x (x -< x') if the positional representa-
tion of x' is lexicographically greater than the positional representation of x.
We denote by succ (x) the immediate successor of x in the above defined linear
order. We need some additional notations (as usual, uk denotes the k-th unit
vector):

0 if x = O

b (x) =

max{j : x i = 1) if x f O

0 if x = O or X ~ = . . . = X ~ (~) =]

d(x) =

r n a x { j : ~ ~ - ~ = O , x ~ = l}, else

fill (x) = x + ub(x)+ (undefined if b (x) = n)

brs (x) = x - u , (~) + u * (~) + (undefined if b (x) is 0 or n)

trunc (x) = x - Z { ui : d(x) < j < b (x) } , where u,, = 0.

For example, if x = (1 0 1 0 0 0 1 1 0 01, one has b (x) = 8, d(x) = 7, fill (x) =
= (1 0 1 0 0 0 1 1101, b r s (x) = (l 0 1 0 0 0 1 0 1 0) , t r u n c (x) = (l 0 1 0 0 0 0
0 0 0).

It is easy to see that

fill (x), if x, = 0

succ (x) =

brs (x - u,), if x, = 1

Order relations of wriables in 0-1 programming 103

A shelters is a MIP such that brs (s) is feasible or undefined.
We are now ready to describe an algorithm, due to Peled and Simeone [191,

which generates in polynomial time a1 MFPs, starting from the list of all MIPs.
The algorithm is a modification of an earlier algorithm of Hammer, Peled and
Pollatschek [131, who did not analyze the running time, but empirically observed
its linear dependence on m.

From the list of MIPs (i.e. the rows of A) one preliminarly produces the shel-
ters. The list of shelters, sorted according to the linear order --< and followed
by a dummy shelter, constitutes the input of Peled and Simeone’s algorithm.
The idea behind the algorithm is to scan all the points of Bn according to the
linear order 4, ((jumping)) over large intervals that cannot contain MFPs.

Hop-Skip-and- Jump Algorithm

s : = first shelter on the list;
START : X : = 0
while true do

begin {outer while}

i f x n = O
while x # s - Ub($ do {inner while}

then FILL-UP : x : = fill (x)
else SKIP : begin {skip}

output x ;
y : = trunc (x);
if y = 0 then stop else x : = brs (y)

end; {skip}
{end inner while}
LEAP : begin {leap}

ifs, = 0 then HOP : x : = brs (s)
else JUMP:

begin { jump}
output x;
if s = u, then stop else x : = succ (s)

end;{ jump}
s : = next shelter on the list

end {leap}
end {outer while}

Remark. I f s is the dummy shelter, then x f s is considered to be true.

Example. Let

104

- -
1 1 1 0 0 0

1 1 0 1 1 0

A = 1 0 1 1 1 0 ;

1 1 0 1 0 1

0 1 1 1 1 1 -

P.L. Hammer, B. Slmeone

Theorem 14. (Peled and Simeone [191). The HOP-SKIP-and-JUMP algorithm
runs in O(n3m) time and outputs precisely the MFPs of (14). The number of
MFPs is at most mn + m + n = O(nm>.

Given the matrix A , the sorted list of shelters can be generated, in O(nm log, m)
time, as shown in Hammer, Peled and Pollatschek [131. (Note that log,m = O (n)) .

An immediate consequence of Theorem 14 is that one can solve (141, and
hence also the regular set covering problem (13),in O(n3m) time simply by
generating all the MFPs of (14) via the above algorithm and evaluating the objec-
tive function in each of them.

We shall now describe an improved algorithm for solving (14). The algorithm

Order relations of variables in 0 - 1 programming 105

relies on a characterization of the MFPs between any two consecutive shelters
(see Lemma 15 below) and on an efficient way to find the best among such
MFPs (see Lemma 16).

Consider the points x and s obtained immediately after START (in this case
x = 0 and s is the first shelter) or after each execution of LEAP in the HOP-
-SKIP-and-JUMP algorithm. As shown by Peled and Simeone [191 , x is feasible
and s is the first shelter following x in <.

Lemma 15 (2). Define:

0 , if s is the dummy shelter

P =

min { j : xi # s j } ,

S = { j : p < j and xi = 1);

X (') = X + Z { U ~ : j > j l }

x (&) = x - u + Z { u j : j > & and x j = O } ,

else;

(a) If S f Q and S = { jl, . . . , j,,}, where jl > j2 > . . . > j,,, then the points

and

(2 G k G h) ik
are MFPs;

(b) If sn = 1, then z = s - un is a MFP (note: i f s is the dummy shelter, then
sn = 1 is considered to be false) ;

(c) The points x('), . . . , x (~) in (a) (if any) and the point z in (b) (i f any)
are the only MFPs preceding s and following the previous shelter r (i f any) in
the linear order -<.

The proof follows from an analysis of the HOP-SKIP-and-JUMP algorithm.

Example. With reference to the previous example, let s = (0 1 1 1 1 1).
Then one has

1 0 1 1 1 0

1 0 1 1 0 1

1 0 1 0 1 1

1 0 0 1 1 1 fl
0 1 1 1 1 0

0 1 1 1 1 1 n
shelter

MFPs

shelter

(1) Here and in the sequel we make the convention that the result of the summation over the empty set is
zero and that the integer integral lo, b] is empty when a > b .

106 P.L. Hammer, E . Simeone

(p = l ; j 1 = 6 , j 2 = 4 , j , = 3) .

Lemma 16. Let S, j , and dk) be defined as in Lemma 15 and assume that h =

=IS1>2. Let 6 ,=Z{cj : j k < j < j k - l , x j = O } , 2 < k < h . Let A , = O , A,=
= 6,-c, . and Ak = Ak-l + 6, + c. - c . 2 < k < h. Then

2 l k - 1 lk’

C X (~) - - X (~) = A
k ‘

In view of Lemmas 15 and 16, one can compute

max{ c, y, + . . . + cnyn : r --< y <s and y is a MFP)

in O(n) time. It follows that one can solve (13) in O(n m) time, provided that
the sorted list of shelters is available.

In conclusion, the solution of the regular set covering problem (13) can be
computed in O(n m log, m) time - - the time required in order to obtain the
sorted list of shelters.

An elegant algorithm for generating all the MFPs of a regular set covering
problem has been recently proposed by Crama [4].

8.3. Regular set covering problems and knapsack problems
Given a set covering problem (13), we consider the following question: are

there a non-negative row n-vector a and a non-negative ‘threshold’ b such that,
for every y E B n ,

A y > e 0 a y > b ? (15)
(Equivalently: is the feasible set Y of (13) also the feasible set of a knapsack
problem?) On the basis of the results of last Section, one can answer this ques-
tion is polynomial time, as pointed out by Peled and Simeone [191.

A necessary condition for the existence of such a and b is that (1 3) is regular.
As shown in Sec. 8.1. one can check the regularity of (13) in polynomial time.
Assume then, that (13) is regular. It is not difficult to see that there exist a and
b satisfying (15) if and only if there exist w > 0, t > 0 such that

w y > l + t for ally E Y

w y < t for ally 4 Y .

Such w and t exist if and only if the linear program in the n + 1 variables
w1, * * * , w,, t

minimize

subject to

w, + . . . + wn

wy - t > 1

w y - t < O for all the maximal

w 2 0, t 2 0

for all the minimal
feasible points y

infeasible points y

(16)

Order relations of variables In 0 - 1 programming 107

has a feasible solution.
The key observation is that the maximal infeasible points of (13) are the

complements of the rows of A , and hence their number is m ; on the other hand,
the minimal feasible points are the complements of the MFPs of (14), and hence
they are at most m n + m + n by Theorem 14. Thus, using the linear program-
ming algorithm of Karmarkar [151, one can solve (16) in polynomial time. Taking
into account the fact that all the coefficients of (16) are 0, 1 or - 1 and thus
the input size L of (16) is O(m n2) bits, it follows that one can recognize those
set covering problems (13) such that (15) holds for some a , b in O(m2 n7.9 time.

9. Equivalence between regular set covering problems and 0-1 programs with
linear objective function

From a theoretical point of view, one important reason for studying regular
set covering problems ensues from the following result of Hammer, Johnson and
Peled [1 I] , which asserts the equivalence between arbitrary (linearly or nonlinear-
ly constrained) 0-1 programs with linear objective function and regular set co-
vering problems, provided that a mild condition on the objective function is
met.

Consider the 0-1 program with linear objective function

minimize

subject t o gi (x) < bi, i = 1,. . . , m (17)

c1 x1 + . . . + cn xn

XEB",

where g,, . . . , gm are arbitrary pseudo-boolean functions. Upon possible comple-
mentation and re-indexing of some variables, one may always assume that c1 >
2 c2 > . . . > c, > 0. Suppose however that the stronger condition

c , > c , > . . . > c n > o (18)

is met. Then, Hammer, Johnson and Peled [1 11 have shown that

Theorem 17. There exists a regular set covering problem

minimize

subject to A x > e

x EB"

c l x l + . . . + c,x,

with the same objective function as (1 7) and having the same optimal solutions
as (1 7).

The fact that, according to Theorem 14, one can solve (19) in polynomial

108 P.L. Hammer, B. Simeone

time is not in conflict with the well-known fact (see e.g. Carey and Johnson [5])
that (1 7) is NP-complete. In fact, there is in general a size blow-up effect, which
may cause the number of rows in A to be exponential in the input size of (1 7).

The matrix A can be constructed by the following procedure.

Step 1. Determine the resolvent PAX) of the feasible set X of (1 9).
If all g, are linear, then px is given by the expression (4). In general px can be
computed by the method described in Granot and Hammer [7].

Step 2 . Let $ (y) be the boolean function defined by $ (y) = jTx(y).
That is, $ (y) = 0 iff (e - y) E X .

Step 3 . Find (e.g. by the consensus method) all prime implicants of $.

Step 4. Let $,,, be the union of all those prime implicants of 11, which
do not involve complemented variables. It is easy to see that the boolean
function $mm is monotone nondecreasing, i.e. y < y ' implies $mon(y) <

$mon(Y')*

Step 5 . Starting from $man, construct a new boolean function $re according to
the following procedure

. _
+reg . - $,on

while there are two indexes i , j such that i < j and yi +yj with respect t o $reg

write reg(^) as a y, yi V f l y i V y yi V 6 , where a, P , y, and 6 do not
depend on y j and yi

begin

$reg(Y) : = (a V 7) V! Yj V (I v ~ V (Pr>yj V 6;
end

The function $,, output by the above procedure can be shown to be regular
(actually i < j implies y l Z ,y j with respect to and nondecreasing.

Step 6 . Write $reg in disjunctive normal form

Step 7 . Let G= { T,, . . . , Tp} . Define the p x n binary matrix A = [aii 1 by

Order relations of variables in 0-1 programming 109

a , . =

i o if j 4 7

Then A is the desired matrix.

The correctness of this procedure rests on the following key result, due to
Hammer, Johnson and Peled [1 I] .

Theorem 18. Under the assumption that (18) holds,

9) y * = e - x * is an optimal solution to max { c y : $ J y) = 0)
o y * is an optimal solution to max {cy : $,,,o,,(y) = 0)
o y * is an optimal solution to max { cy : $ (y) = O }
o x* is an optimal solution to (1 7).

x* is an optimal solution to min {cx : A x 2 e , x E B " }

Example. Consider the 0- 1 linear programming problem

minimize

subject to

20x, + 16x, + l o x , + 7 x 4 + 5x5 + 2x6

- 7 x , + 6 x , - 9 x , + 4x4 + 3x5 -x6 < - 3

- 3 x , - 4 ~ , - 6 x , -x4 - S X , - 2x6< - 11

(20)

(21)

(2 2)

x E B 6 .

Step 1. The resolvent of (21) is

P , = K,F, v xzK, v z,x4x5 v F1xzx4 v F,x2x5 v 7 , X 4 X F 6 .

P2 =T3Z5 v K1T2X3 v K,X,Z5 v X,%,X6 v X2F3jZ4 v X2Z3X6 v XZXF6 v x 1 7 4 8 6 -

The resolvent of (22) is

The resolvent of the system (21), (22) is p = p 1 V p,.

110 P. L. Hammer, B. Simeone

where y3, . . . , y2ySy6 are the prime implicants of $.

At this point, before going on with the procedure, we notice that some simplifi-
cations are possible, and we shall indeed implement them. As a matter of fact
by Theorem 18 the given linear 0-1 program is equivalent to the maximization
of 20y1 + 16y2 + 10 y3 + 7y4 + 5y5 + 2y6 subject to $ (y) = 0, where $ is given
by (23) . But one must have y3 = 0 for all feasible solutions and y4 = 1 for all
optimal solutions to the latter problem. Hence we shall set y3 = 0 and y4 = 1
(implying x3 = 1 and x4 = 0) and $ simplifies t o

Step 5 and 6 .

Since y2#y5,

Y , Y2Ys Yl Ys Y6 Y2YsY6 + Yl Y2Ys v Y2YsY6 '

Since y l #=y2 in the new functioi,,

YlY2YS vv2YsY6 'YlY2YS '

The last function, being symmetric, is regular.
Hence $res = y1 Y 2 y s ., From the absence of y6 we conclude that y6 = 1 in all
optimal solutions.

Step 7 . The required set covering problem is

minimize 20x1 + 16x2 + 5x,

subject to x1 + x2 + xs 2 1

xl, x2, x5 = 0 or 1 I
The only optimal solution to (2 4) is given by x1 = x2 = 0, xs = 1 . It follows

that the only optimal solution to the initial problem is (0, 0, 1, 0, 1, 0).

Acknowledgements

Our research was supported by the Air Force Office of Scientific Research
Grant AFOSR 027 1 to Rutgers University and by the NSF Grant ECS 85 0321 2 .
We are indebted to Prof. Nicola Santoro for having pointed out to us the connec-
tion between depth-first -search and the linearization of pseudoboolean functions
by order constraints, and to Dr. Susan Bubeck for the term ccpedicle)).

Order relations of variables in 0-1 progmmming 111

References

111
121
[31

141

I S 1

M.L. Balinski, (On a Selection Problemr,MonagementScience 17, 230 - 231, 1970.
C. Berge, Grophs and Hypergrophs, North-Holland, Amsterdam, 1973.
V. Chvital and P.L. Hammer, ((Aggregation of Inequalities in Integer Programming,, Annals o f Dis-
crete Mathematics 1, 145 - 162, 1977.
Y. Crama, ((Dualization of a Regular Boolean Functionr, TechniculReport, Rutgers Univem’ty, May
1986.
M.R. Gamy and D.S. Johnson, ComputersondIntroctobility:o Gukle to the Theory ofNP-Complete-
ness, Freeman, S. Francisco, 1979.
H.C. Golumbic, threshold Graphs and Synchronizing Parallel Processes,, Colloqukr Mothemotico
Societotis Jonos Bolyoi (Combinatorics), 18, 331 - 352, 1978.
F. Granot and P.L. Hammer, ((On the Role of Generalized Covering Problems,, Cohiers d u Centre
d’Etudesde Recerche Opdrotionnelle 16, 277 - 289, 1974.
P.L. Hammer, ((Boolean Elements in Combinatorial Optimization,, Annals ofDiscrete Mothemotics 4 ,

P.L. Hammer and P. Hansen, ((Logical Relations in Quadratic 0-1 Programmingr, Revue Roumoine
deMathimotques Fureset Applkpdes 26, 421 - 429, 1981.
P. L. Hammer, T . Ibaraki and B. Simeone, uThreshold Sequences,, SIAM Journol on Algebraic ond
DiscreteMethods 2, 39 - 49, 1981.
P.L. Hammer, E.L. Johnson and U.N. Peled, ((Regular 0-1 Programs,, Cohiersdu Centred’Etudesde
Recherche Opirotionnelle 16, 267 - 276, 1974.
P.L. Hammer and S . Nguyen, ((APOSS-A Partial Order in the Solution Space of Bivalent Programs,,
in N. Christofides, ed., Combinaforial Optimizution, Wiley, New York, 1979.
P.L. Hammer, U.N. Peled and M . A . Pollatschek, t A n Algorithm to Dualize a Regular Switching
Function), IEEE Transactions on Computers C - 28,238 - 243,1979.
E.L. Johnson and M . Padberg, ((Degree-Two Inequalities and Biperfect Graphs,, Technical Report,
Universitot Bonn, Institut f i r Okonometrie und Operotions Research, 1981.
N. Karmarkar, uA New Polynomial Algorithm for Linear Programming,, Combinotorico 4 , 373 - 396,
1984.
A.V. Karzanov, ((Determining the Maximal Flow in a Network by the Method of Preflowsr, Soviet
MothemoticsDoklody 15,434 - 437, 1974.
L. Lovisz, Combinotoriol Problemsand Exercises, North-Holland, Amsterdam, 1979.
J. Orlin, ((The Minimal Integral Separator of a Threshold Graph,, Annuls of Discrete Mothematics

U.N. Peled and B. Simeone, ((Polynomial-Time Algorithms for Regular Set-Covering and Threshold
Synthesis,, Discrete AppliedMothemotics 12,57 - 69, 1985.
J.C. Picard, ((Maximal Closure of Graph and Applications to Combinatorial Problems,, Management
Science 22, 1268 - 1270,1976.
J.C. Picard and H. Ratliff, ((Minimum Cuts and Related Problesr, Networks 5 , 357 - 370, 1975.
W.V. Quine, ((Two Theorems about Truth Functionsr, Boletin d e la Sociedod Motemotica Mexicana

W.V. Quine, ((A Way of Simplifying Truth Functionsr, Americon Mathematical Monthly 52, 627 ~

631, 1955.
S. Rudeanu, Boolean Functions and Equations, North-Holland, Amsterdam, 1974.
K. Spielberg, ((Minimal Preferred Variable Reduction Methods in Zero-One Programming,, IBM
Philadelphio Scientific Center Report n. 320.3013, July 1972.
R.E. Ta jan , ((Depth-First Search and Linear Graph Algorithms,, SIAM Journal on Computing 1,

R.O. Winder, ((Threshold Logic,, Ph.D. Disserfofion, Deportment o f Mathematics, Princeton Univer-
sity, 1962.

5 1 - 71,1979.

1,415 -419,1977.

1,64 - 70,1953.

146 - 160,1972.

112 P. L . Hammer, B. Simeone

Peter L. Hammer
RUTCOR
Rutgers University
New Brunswick, NJ 08903
USA

Bruno Simeone
RUTCOR
Rutgers University
New Brunswick, NJ 08903
USA
on leave from
Department of Statistics
University of Rome ((La Sapienza))
Rome
Italy

Annalsof Discrete Mathematics 31 (1987) 113 - 146
0 Elsevier Science Publishers B.V. (North-Holland)

SINGLE FACILITY LOCATION ON NETWORKS*

Pierre HANSEN, Martine LABBE, Dominique PEETERS
and Jacques- Franqois THISSE

1. Introduction

We consider the problem of selecting one point of a network in order to
optimize one or several functions which are distance-dependent with respect
to given points of the network. The problem is motived by a number of potential
applications. For example: a plant is set up at some point of a transportation
system to minimize production and shipment costs; an emergency service unit
is located in a rural area to minimize the maximal intervention time to popula-
tion centers; a switching center is located in a communication network to mini-
mize transmission costs from and toward peripheral units.

Network location theory can be traced back to Jordan [62] who obtained
a characterization of the median set of a tree (see 3.2 below). However, this
was only a side-result of a study devoted to automorphisms of quadratic forms.
Much more recently, Ore [83] provided some properties of the median of a graph
in his book Theory of Graphs. But it is the seminal paper by Hakimi [35] on
((Optimal location of switching centers and the absolute centers and medians
of a graph)) which gave its real start to network location theory. [Notice that
results similar to those of Hakimi have been obtained independently by Guelicher
[34]]. Since then the theory has undergone a phasis of rapid development. A book
by Handler and Mirchandani [50], called Location on Networks, presents the
state of the art in the late 70’s. In a clear and well-documented survey published
in 1983, Tansel, Francis and Lowe [94, 951 cite 117 references. Many more
entries can be found in the recent bibliography ofDomschke and Drexl [2 11.

This survey has two purposes. First, we present concisely the main models,
theorems and algorithms for the location of a single facility on a network. Thus
our paper is narrower is scope than Tansel, Francis and Lowe who are also con-
cerned with the multi-facility case, but attempts to be more technical in that

* The research o f the first author was supported by the Air Force Office of Scientific Research Grant
No. AFOSR0271 to Rutgers University, that o f the second author by the Action de Recherche Concerthe
of the Belgian Government under contract 84/8965 and that o f the fourth author by the National Science
Foundation grant SES 85-02886 to the University of Pennsylvania. The authors thank J . Krarup for his
comments on a first draft of the paper.

113

114 P. Hansen. et al.

many theorems and algorithms are explicitely stated. We also provide an extensive
bibliography on single facility location on networks. Second, a substantial part of
the survey is devoted to results recently found and approaches that have emerged
during the last five years. This includes various extensions of the median and
center problems (see 3.4 and 4.4 below), as well as the location of a facility
by voting and competitive processes (see 5.3 and 5.4 below).

Proofs are omitted, due to the abundance of material. The interested reader
is referred to Handler and Mirchandani [50] and LabbC [6 5] where a large number
of them can be found. Again for brevity, algorithms are described in a somewhat
informal way. Their computational complexity (all those considered are polyno-
mial) as well as the data structures necessary for their implementation are men-
tioned. [Background material on these topics is given in Aho, Hopcroft and
Ullman [1 I , and Garey and Johnson [2811.

The remainder of the paper is organized as follows. In the next section, we give
the definition of a network and of some related concepts; we also state basic
properties of the distance function associated with a network, that are useful
for the subsequent analysis. The two main classes of location problem, i.e.,
median (or minisum) and center (or minimax) problems, are studied in sections
3 and 4 respectively. In the former case, the objective in locating the facility is
to minimize the (weighted) sum of distances between the facility and a given set
of clients located along the network. In the latter one, the objective is t o minimi-
ze the largest of these distances. Both cases subdivide into several subcases accord-
ing to the fact that locations of the facility and/or the clients are restricted to
vertices or may be anywhere on the network (i.e., also at inner points of arcs).
Various extensions of the median and center problems are considered in 3.4 and
4.4. respectively. In the foregoing two sections, the location decision is assumed
to be made by a single agent (the decision-maker) having o n e well-defined objec-
tive. In section 5, we consider different extensions of this problem in which either
the decision-maker is still single but has several conflicting criteria or the location
decision is the outcome of a collective action in which different agents pursue
their own interest. Bicriterion and multicriteria problems are taken up in 5.1 and
5.2 respectively. The concepts of cent-dian and of k-centrum, which correspond
to different combinations of the median and center, play a prominent role. Sub-
-sections 5.3 and 5.4 are devoted to problems studied very recently: (i) the voting
location problem, in which it is asked to find a location such that no other one is
preferred to it by a strict majority of clients (5.3); (ii) the competitive location
problem, in which it is required to find a locational configuration for a given set
of facilities such that no facility would attract more clients at an alternate loca-
tion (5.4). Miscellaneous further problems are mentioned and some conclusions
are drawn in section 6 .

Single facility location on networks 115

2. Themodel

2.1. Description of the model

The model can be viewed as consisting of two ((sides)), a transportation side
and a demand side. We first consider the transportation side. The following
definitions are useful (Berge [8]): a topological arc is the image of [0, 11 by
a continuous mapping f from [0, I] to R n such that f (0) # f (0 ') for any 0 # 0 '
in [0, 11; a rectifiable arc is a topological arc of a well-defined length. A network
is then defined as a subset N of Rn which satisfies the following conditions:
(i) N is the union of a finite number of rectifiable arcs; (ii) any two arcs intersect
at most at their extemities; (iii) N is connected. The set of vertices of the network
is made of the extremities of the arcs defining N ; it is denoted by Y = { u l , . . . u n } .
Points ui correspond to transportation nodes (crossroads, railway junctions, . . .)
and tips (demand points uniquely connected to the network) of the real space
we intend to model. The set of arcs defining the network is denoted by A ; an
arc [u, , ui] E A iff in the real space there is a transportation line (road,railway,
. . .) linking the sites corresponding to ui and ui and passing through no other
sites corresponding to points of N . The length of the arc [u i , uj] E A is given
and denoted by 1, (see Berge [8] for the definition of the length of an arc).
Each point x E N belongs to some arc of A but x may not be a vertex. For any
two points x l , x2 E [u , , uil the subset of points of N between and including xl
and x2 is a subarc [x,, x2]. Let Ai be the mapping defining [u i , uj] and Oii the
inverse of f i i ; to each point x E [u , , ui] corresponds one and only one value
eij(x> in [0, 11. Then the length of [x,, x2] is I Oii(x1) -Bij(xZ) [l i j . A path
P(xl, x2) joining x1 E N and x2 E N is a minimal connected subset of N con-
taining x1 and x2. The length of a path is equal to the sum of the lengths of all
its constituent arcs and subarcs. The distance d(x,, x2) between x1 E N and
x2 E N is equal to the length of a shortest path joining x, and x2. Clearly d is
a metric on N . We say that x E N is between x1 E N and x2 E N iff d(xl, x) +
d(x, x2) = d(x,, x2); let B(xl, x2) be the set of points in N between x1 and x2.
Without loss of generality, we assume that there is no redundant arc, that is,
B (q , u j) = [u i , ui] for all pairs of vertices such that [u i , uj] € A .

The demand side of the model is as follows. There is a set U of clients and
client u E U is described by his/her location in N and hidher demand per unit
of time which is a given positive number. Two cases are considered. In the first
one U is a finite set; for any subset 0 of U , I I stands for the number of elements
of u. Without loss of generality, we assume that client u E U is located at u(u) E
V and has a unit demand. It is possible that u(u) = u(@ for u Z U is which case
clients u and fi are at the same vertex. To simplify notation, we then set

w , = l { u E U ; u (u) = u i } I , for i = I , . . . , n ;
n

I = 1
of course, ,Z wi = I U I. In the second case, U is a continuum. More specifically,

116 P. Hansen, et al.

we assume that clients are uniformly distributed along the network N and have
a unit demand density.

2.2. Basic properties o f the distance on N

A obeys the following properties:
The distance between a given point in N and a variable point along an arc of

Theorem 2.1. Let F be any given point o f N and x = & , (O) E [u i , u,] E A . Then
d[T,f;l(O)] is a function of0

(i) continuous and concave on [0, 11;
(ii) linearly increasing with slope l,, on [0 , lj] and linearly decreasing with

slope - 1, on [Fdj, 11, where

- lij + d(Y, 9) - d(T, Ui)
O i j =

2 lii

More specific properties of the distance are obtained when the network is
a tree T , i.e., a network such that for any two distinct points in N there is a
single path joining them.

Theorem 2.2. (Dearing, Francis and Lowe [20]). Let T, x1 and x 2 be any three
points o f a tree T. l fx , EP(x,, x2), then, alongP(x,, x2), d(B, x,) is

(i) piecewise linear in d(x,, x,) with at most two pieces, the slopes of which
are + 1 and - 1;

(ii) convex in xj, i.e., d(F, XJ < a d(Z, xl) + (1 - a) d(Z, x2) where d(x,,
XJ = ad(X,, x2).

Given that the objective functions considered in location theory are often
convex in distances, Theorem 2.2 allows one to obtain stronger properties and
algorithms with lower complexity for trees than for general networks.

Let uk be any vertex of N . The point

of [u, , u i] E A (when it exists) is called a bottleneck point. The distance between
u k and x i j (u k) via ui is equal to that via u j : there are two shortest paths linking
uk and xij(uk). Let B denote the set of bottleneck points associated with N ; since
any vertex generates at most one bottleneck point on each arc, I B I = O(I V1
I A I). Clearly, if N is a tree then' I B 1 = 0. A subarc [x , , x2] delimitated by two
successive vertices or bottleneck points of an arc [u, , u,] is called a segment.
Along a segment the distance from any vertex uk is either linearly increasing or
linearly decreasing. A direct consequence of this observation is as follows:

Single facility location on networks 117

Theorem 2.3. Let X I and XI’ be any two points in the interior of a segment. Then
the trees of shortest paths from X I and XI’ to the vertices of N are identical except
for the roots x’ and X I ‘ .

Let Q be the set of points equidistant from any two vertices u,, u, via ui and uj
in V (or uj and u i) respectively: Q = { x E N ; [u i , u j] E A with x E [ui, uj] and u,,
u, E Vexist such that either d(uk, u i) + d(ui, x) = d(u,, u j) + d(uj, x) or d(u,, ui) +
d(ui, x) = d(u,, u j) + d(ui, x)} . Requiring u, = u, yields the set of bottleneck
points which is therefore a subset of Q. In a general network I Q I = O(I VI2(A I),
while in a tree I Q I = O(I VI*). A subarc [x , , x2] delimitated by two successive
vertices or equidistant points of an arc [u i , uj] is called a subsegment.

Theorem 2.4. Let X I and x” be any two points in the interior of a subsegment.
Then the rankings of vertices by order of increasing distances from x’ and X I ’ are
identical.

We now consider the distance between a given arc of A and a variable point
along an arc of A . The remoteness of x E [ui, u j] E A relative to [u,, u,] E A is
defined by d (x , [u,, u,]) = Max d(x , y) . Obviously, a (x , [u,, u ,]) = [l,, +
d(x, u,) + d(x, u,)1/2 if x & [u,, ~ , l and %x, [u,, u r l > = Max { d(x , u,), d(x , u,))
if x E [u,, u,]. Theorem 2.1 is to be replaced by the following one:

Y E [uk su l l

Theorem 2.5. (Frank [26]). Let [uk, u,] be a given arc o f A and x = J j (0) E

[ui, uj] E A . Zf [u,, u,] # [ui, uj] then z($j(0), [u,, u ,]) is:
(i) continuous and concave on [0, 11;

(ii) piecewise linear with at most three pieces having slopes I,, 0 and - l i j .
If [u,, q l = [q, ujl then d(Jj(0), [u,, q l) is
(i) continuous on [O , 11;

(ii) concave on [0, 1/21 and [1/2, 11.

Typical examples of remoteness functions are given in Figures 2.1 and 2.2 for
[u,, u,] # [ui, uj] and [u,, u,] = [u i , uj] respectively. In the former case, the func-

Fig. 2.1

118 P. Hansen, et a1

Fig. 2.2

tion is called a hat function; in the latter case, the function can be viewed as
the upper envelope of two degenerate hat functions.

3. Median problems

3.1. Notation

Handler and Mirchandani [50] have proposed a four-symbol notation for
the designation of problems, specifying: (i) the subset of N in which facilities
may be located (N of V); (ii) the subset of N containing clients’ locations (N
or v>; (iii) the number of facilities to be located(1 orm);(iv) the type of network
considered (N for a general network or T for a tree). As we consider only single
facility location, the third element will always be 1 . We add to this notation a
fifth symbol to denote the objective function: Z for the sum of distances to the
clients and p for the maximum of these distances. For example, when the facility
can be located everywhere in the network and when clients are located at the
vertices of the network, the corresponding median problem is denoted by
(N/V/l/N/X); when clients are distributed along the network, it becomes
(N/N/ 1 /NIX).

3.2. The median and absolute median problems: (V/V/l/N/Z) and (N/V/l/N/X)
A point m E N is an absolute median iff

n

F(m) = wid(Ui, m) < F (x) = 2 wid(ui, x) , V X E N .
i = I i = 1

An absolute median is also called a Weber point, by reference to Weber [98]’s
use of the weighted sum of distances in continuous location theory, or a centroid.
The set of absolute medians, called the absolute median set, is denoted by M .
The set of vertices of N belonging to M , called the vertex absolute median set,

Single facility location on networks 119

is denoted Mu = M n V . Restricting m and x to belong to V , we similarly define
a median and the median set.

A direct consequence of the concavity of d(u,, fk , (0)) for each arc [u,, uI] E A
[Theorem 2.1] and of the theorem of minimization of a concave function [Berge
[8]] is as follows:

Theorem 3.1. (Hakimi [35]). The set V of vertices contains an absolute,median.
Furthermore, when I U I is odd, any absolute median is a vertex.

The vertex absolute median set M u is thus equal to the median set. Finding
Mu, and hence solving the median problem, is done in O(l VI2) operations by
the algorithm described below.

Algorithm 3.1.
(i) Set F (m) = ZF= wid(ui, ul) andM,={ u l } .

(ii) Compute F(u,) = C?= w,d(u,, u,) for k = 2 , . . . , n . If F(u,) > F (m) ,
leave F(m) and Mu unchanged; if F(q) = F (m) , set Mu = M u U { u,}; if F (q) <
F (m) , set F (m) = F(u,) and M u = { u,).

It follows from the concavity of d[ui,fkl(0)] that if m is an absolute median
interior to an arc [u,, u,] then F (x) is constant on [u,, u,]; hence any point of this
arc is an absolute median. This allows us to determine M in O(I 1'1 1 A I) opera-
tions when I U I is even (as stated above M = M u when I U 1 is odd) :

Algorithm 3.2.
(i) Compute Mu by Algorithm 3.1 and set M = M u .

(ii) Consider in turn each arc [u,, u,] € A such that both uk and u, belong to
M u ; compute F (x k () where x,, is the middle point of [u,, u,]; if F(x,,) = F (m) ,
add the arc [u,, uI] to M.

The median set has been studied by Slater [90] and BarthClemy [6] in the
special case of graphs whose arcs have a unit length and vertices a unit weight.
The main result obtained is as follows:

Theorem 3.2. (Slater [90]). For any graph G there exists a graph H such that
the subgraph of H induced by its median set is isomorphic to G.

Though this result deals with graphs only, it is important for our purpose
because it implies that nothing can be said about the structure of the set Mu
in general networks.

Theorem 3.1 has been extended in a variety of directions. Levy [68] considers
the case of concave functions of distance, which allows for scale economies in
transportation. Capacity constraints on arcs, and thus congestion in transporta-

120 P. Hansen, el al.

tion, are taken up by Wendell and Hurter [99]. Mirchandani [80] deals with
directed arcs and, therefore, asymmetries in transportation. Louveaux, Thisse
and Beguin [70] work with a multi-modal transportation system, and study
the impact of fixed transportation costs on the absolute median. Finally, different
formulations of the multi-facility location problem for which the optimality
property of the vertices holds, have been examined by Hakimi [36], Levy [68],
Goldman [29], Hakimi and Maheshwari [38], and Wendell and Hurter [99].

Properties more specific than Theorem 3.1 can be obtained for particular
weight distributions and/or particular network configurations.

Theorem 3.3. (Witzgall [1011). I f wk 2 I Ul/2, then uk EM,. Furthermore, when
W k > I UI 12, M = M u ={ U k } .

Thus uk is an absolute median when a majority of clients are established at u k .

Conditions for a connected subset of N to contain an absolute median have
been investigated by Goldman and Witzgall [33] and Goldman [30]. The best
existing result is as follows:

Theorem 3.4. (Goldman and Witzgall [33]). Let S C N. If

x E N - S and each s E S we have d(x, s) = d(x, g (x)) t d (g (x) , s); and
(i) S is gated, i.e., there exists a function g f rom N-S to S such that f o r each

(ii) C { k ; u k E S) wk > I U (/2?
then S contains an absolute median. Furthermore, when the inequality is strict in
condition (ii), any absolute median belongs to S.

Condition (i) means that a shortest path linking x E N-S and s G S passes
througH a ((gate)) g (x) E A which depends on x but not on s ; condition (ii) states
that a majority of clients are located in S. Condition (i) is satisfied when there
exists an isthmus connecting two disjoint subsets of the network. Goldman [31]
has found an upper bound on ,M,'JI F(s) when conditions (i) and/or (ii) are relaxed
within some given tolerances. Furthermore, as condition (i) is always satisfied
when S is a singleton, Theorem 3.3 turns out to be a special case of Theorem
3.4.

A kind of converse proposition is now given.

Theorem 3.5. (Hansen, Thisse and Wendell [57]). Let u be a permutation defined
on the set U of clients. If x E N is between u(u) and u (u (u)) for all u E U, then
X E M .

The above theorem is applicable when x is such that N - { x } is disconnected
and none of the connected components of N - { x } contains a majority of clients.
Notice that this result also follows from Theorem 3.4 since x is the gate of the
connected components of N - { x } . Finally, Theorem 3.3 can be obtained from
Theorem 3.5 for a permutation (I such that u(u(u)) = uk whenever u (u) # u k .

Single facility location on networks 121

The special case of a tree has attracted the attention of several authors, includ-
ing Jordan [6 2] , Witzgall [l o l l , Zelinka [102], Slater [87] and Mitchell [82].
Assuming that there is no vertex with at most two adjacent arcs and a zero weight,
we can summarize their results as follows:

Theorem 3.6. Let T be a tree. If I U I is odd, then M = M u = { uk} for some vertex
uk o f T; if I UI is even, then either M = M u = { u k } for some vertex uk of T o r M =
[u,, uI] and M u = { uk, uI} for some pair uk, ul of adjacent vertices of T.

Conversely, BarthClemy [7] has shown that if for all vectors of nonnegative
weights of the vertices of a graph G, the subgraph of G induced by its median
set is a tree, then G is a tree. Goldman [30] has shown how to solve (V/V/l/T/C.)
and (T/V/l/T/E) in O(I VI) operations. The algorithm is based on the following
observation which can be derived from Theorem 3.4: given any partitioning of
T into two connected subsets TI and T2, contains an absolute median iff

Algorithm 3.3. (Goldman [30]).
(i) If T ={ u , } , then M = M u = { u , } and stop.

(ii) Select a pending vertex uk of T, i.e., a vertex
UI '

with a single adjacent vertex

(iii) If wk > 1 U1/2, then M = M u = { uk} and stop; if wk = I UI /2, then M =
[uk, u,], M u = { u k , uI } and stop; otherwise delete u k , set wl = w, + wk and return
to (i).

Observe that the arc lengths play no role in the above algorithm.

3.3. The continuous median problem: (N/N/l/N/X)

A point m, E N is a continuous median iff

= Z(X, [U i , uj]), VX E N.
[ui. "/I € A

The set of continuous medians, called the continuous median set, is denoted by
M,. Let Q, denote the set of middle points of the arcs defining N: Q, = {xij E
[ui,ui]EA;d(vi,xij) =d(xij ,uj)};ofcourseQ,C Q.

The counterpart of Theorem 3.1 for the continuous median problem, obtained
from Theorem 2.5, is as follow:

Theorem 3.7. (Hansen and LabbC [53]). The set Vu Q, contains a continuous

122 P. Hansen, et al.

median .

Mnieka [74] has provided a necessary condition for the middle point x i j of
[u,, u j] to be a continuous median:/ F(ui) -F(uj) I Q d(u,, u j) .

The following algorithm, based on the above results, allows us to determine
M, n (V U Q,) in O(I A Iz) operations.

Algorithm 3.4.
(i) Compute F(u,) for i = 1, . . . , n.
(ii) For each arc [u, , u j] E A , check if I F(ui) -F(uj) I Q d(u,, u j) . If so, com-

pute F(xij);otherwise, proceed to the next arc.
(iii) Let Fmin be the smallest of the values F(u,) and F(X,~) computed - in steps

(i) and (ii). Set M, n (V U Q,) = { u, E V and xij E Q e ; F(ui) = Fmin and F(xij) =

Fmin}*

As in 3.2, the case of a tree is easier to deal with.

Theorem 3.8. (Hansen and LabbC [53]). The continuous median set o f a tree
consists in either

(i) the middle point of a single arc, or
(ii) a vertex and, possibly, one or two subarcs delimitate by this vertex and the

middle point o f one or two adjacent arcs.

The four possible types of solutions are depicted in Figure 3.1.

v1 x 1 2 "2 - v2yv3 v 4

Single facility location on networks 123

The continuous median set of a tree can be determined in O(I V I) operations by
the following algorithm.

Algorithm 3.5.
(i) SetM,= @and wi = 1 f o r i = 1 , . . . , n .

(ii) If T = { Uk}, then add u, to M, and stop.
(iii) Select a pending vertex uk and let u1 be its adjacent vertex.
(iv) If wk > I A I /2 + 1 , add uk to M, and stop; if wk = I A I / 2 + 1 , add the half-

-arc [u,, x k l] and stop; if w, F (1'1 I + 1)/2, add the middle point xk[of [uk, u,]
and stop;if w, = I A I /2, add the half-arc [x k r , u l] .

(v) Delete u, and [u,, u,] , set w1 = w1 + w, and return to (ii).

3.4. Extensions of median problems
(i) In the real world transportation costs are often nonlinear functions of the

distance covered, whence the need to investigate the median problem with such
functions. As mentioned above, the optimality property of the vertices remains
valid for concave functions. However, this is no longer true for convex functions.
Shierand Dearing [8 5] have studied the special case of distances raised to the
power p with 1 < p < 00, i.e., F,(x) = Z,!= wi[d(ui, x)] p . Using the directional
derivatives of F,(x) along arcs, these authors have been able to get the following
necessary and sufficient condition for local optima.

Theorem 3.9. (Shier and Dearing [8 5] > . A point x* E N is a local minimizer o f
F,(x) iff for every vertex u, adjacent to x we have

iEIk i € I k

where I, = { i = 1, . . , , n; u, is between ui and x*}.

Goldman (personal communication) has oqtained an O(I VI) algorithm to
find the point minimizing the sum of squared distances to the vertices of a tree.
No algorithm seems to have been proposed as yet for general networks. The
more general case of increasing functions of distance (neither concave nor convex)
could be solved by adapting the Big-Square-Small-Square algorithm of Hansen,
Peeters, Richard and Thisse [55] designed for the solution of a similar problem
in continuous location theory.

(ii) The conditional median problem arises when, given that some facilities
are already established along the network, an additional facility is to be located
with the aim of minimizing the weighted sum of distances in the facility system.
Let L C N be the set of location of the incumbant facilities. A point x* E N i s a
conditional absolute median iff

124 P. Hansen, et al.

This problem reduces to the absolute median problem after an adequate transfor-
mation of the vertex-to-vertex distances has been done. Hence

Theorem 3.10. (Minieka [75]). The set V of vertices contains a conditional
absolute median.

Hansen and LabbB [53] have similarly extended Theorem 3.7 to the case of
the conditional continuous median.

(iii) Another variant of the median problem obtains when the summation in
the objective function is taken on the nearest points of the elements of a family
of subsets of N . Let 9 = { S , , . . . , S,} be a family of subsets of N and let Vk =
V n Sk. A point x * E N is an absolute Y-median iff

Theorem 3.11. (Slater [91]). The set V of vertices contains an absolute Y -
-median .

Additional results are given in Slater [92] for the case of trees.
(iv) When clients situated along the path to more distant clients can be served

without extra cost, the problem becomes one of determining a point of N mini-
mizing the sum of the distances to the pendant vertices of the shortest path
spanning tree in N , i.e., a pendant-median (Minieka [77]). If follows from
Theorem 2.3 that the set of vertices and of bottleneck points contains a pendant-
-median. In the case of a tree, this problem is equivalent to the absolute median
problem in which the pendant vertices of T have weights equal to one and all
other vertices have weights equal to zero. Solving the pendant -median problem
for a general network is still an open problem.

(v) Stochastic median problems have been studied by several authors. Frank
[25] has considered the case where the weights wi are replaced by nonnegative
random variables W,. A first solution-concept is a point x * EN, called an absolu-
te expected median, such that

n n

E[F(x*)] =x E(W,)d(v,,x*)GE[F(x)] = x E (W,)d(ui,x), VX E N .
i = l i = l

Single facility location on networks 125

Obviously, V contains an absolute expected median. Another solution concept
proposed by Frank is a point of the network which, given some positive number
q , minimizes the probability that the weighted sum of the distances is larger than
or equal to q . The optimality property of the vertices does not hold for such a
point and a good algorithm to determine it is still to be found. The special case
of correlated normal demands is studied in Frank [26]. Mirchandani and Odoni
[81] have taken up a more general problem in which both the weights and the
network are random. More specifically, the weight distribution (W l , . . . , Wn) and
the network undergo probabilistic transitions among a finite number H of states.
Each state h = 1, . . . , H corresponds to a particular realization of the vertex
weights and arc lengths, and has a probability ph which is independent of the
previous state. Denoting by d h (x , y) the distance between x and y and by w? the
weight of vertex ui in state h , a point x* of N is an absolute expected median iff

H

E[F(x*)I = ph w: dh(ui, x*) <
h = l i = l

H n

Q E [F (x)] = ph w,! dh(ui, x) , Wx E N .
h = l i = l

The above authors then show the set of vertices contains an absolute expected
median.

Berman and Odoni [121 consider an even more general case: they allow the
facility to be reposited on the network in order t o respond to major changes
in the network and/or the weights. A relocation has an associated cost which
is assumed to be an increasing and concave function of the distance separating
the initial and the new locations. Furthermore, Berman and Odoni suppose that
the transition probabilities are described by a Markovian process. Again, the
set of vertices is shown to contain a sequence of locations minimizing total
costs.

Berman and Larson [101 attack the problem from a different perspective: the
availability of the facility t o the clients is a random variable. A further extension
is considered by Berman, Larson and Chiu [1 11 who deal with queueing aspects
when the service units are busy at the moment a demand occurs. A detailed
discussion of these questions is contained in Berman, Chiu, Larson and Odoni
[91.

(vi) When clients' demand depends on the distance to the facility, the problem
is to locate the facility in order t o maximize the total demand. Let D,[d(u,, s)] be
the demand issued at vertex u i . A point x* E N is a maximum demand point iff

n n

D (x *) = Di [d (u i , x *)] 2 D (x) = xq. [d(ui, x)], Vx E N .
i = l i = l

126 P. Hansen. et aI.

When functions D, are decreasing and convex in distance, the set V of vertices
contains a maximum demand point. On the other hand, when the Di are not
convex, no maximum demand point may belong to V. However, in the special
case where the demand from ui is constant within some specified range Ri and
zero beyond R,, a maximum demand point can be found in the finite set defined
by the vertices of N and the points x belonging to the arcs of A such that d(u,,
x) = Ri (Church and Meadows [161). This result has been generalized by Minieka
[78] to the case of a continuum of clients, when the facility is to be located with
the aim of maximizing the total length of the arcs and subarcs convered within
some given range R .

In the same vein, notice that various economic models dealing with the location
and price policy of a profit -maximizing firm are discussed in Hanjoul and Thisse
[5 1 3, Hurter and Martinich [6 1 1, and Louveaux and Thisse [7 1 1.

(vii) Finally, the problem of locating an ((obnoxious)) facility with the aim of
maximizing the weighted sum of distances - the maxisum problem - has been
considered by Zelinka [102], Church and Garfinkel [15], Minieka [79] and Ting
[96]. In the case of a tree, Zelinka [lo21 shows that the set of pendant vertices
contains an optimal location whle Ting [96] provides a linear algorithm to find
it. For general networks, Church and Garfinkel [15] show that the set B U V of
bottleneck points and vertices contains an optimal solution; Minieka [791 gives
an upper bound on F (x) when x is an interior point of an arc.

4. Center problems

4.2. The center and absolute center problems: (V/V/l/N/p) and (N/V/l/N/p)
A point c E N is an absolute center iff

G (c) = Max d(u,, c) < G (x) = Max d(u,, x) , Wx E N.
i = 1 , ..., n i = 1, ... ,n

The set of absolute centers, called the absolute center set , is denoted by C. The
value of the objective function G at any point of C is called the absolute radius
ra of the network N. Restricting c and x to belong to V, we similarly define a
center, the center set and the radius r of the network.

The absolute centers are contained in a finite subset of N.

Theorem 4.1. (Minieka [73]). Any absolute center belongs to the union of the
set V of vertices and of the set Q - B of equidistant points which are not bot-
tleneck points.

This property follows directly from the fact that along each arc [u,, uj] E A the
objective function G (x) is the upper envelope of a finite family of piecewise
linear and continuous functions of Oij (x) (Theorem 2.1) and hence is itself
piecewise linear and continuous. The break points of G (x) interior to [u,, u j] that

Single facility location on networks 127

are local maxima correspond to bottleneck points, and those that are local mini-
ma correspond to equidistant points which are not bottleneck points. A typical
plot of G(x) along an arc is shown in Figure 4.1.

Fig. 4.1

The next result gives an upper bound on the number of local minima which
is useful for establishing complexity properties.

Theorem 4.2. (Kariv and Hakimi [63]). The function G(x) has at most I V1+ 2
local minima on each arc of A .

This suggests the following which is at the basis of most existing ones.

Algorithm 4.1. (Hakimi [35]).
(i) For each arc of A , plot G(x) and determine the local minima of G.

(ii) Select the smallest of the so-obtained values and let C be equal to the
set of corresponding points.

Hakimi, Schmeichel and Pierce [39] show that t h s algorithm requires O(1 A I
I V (log IYI) operations when the data are stored in a stack during the search for
the local minima of G(x) on an arc. Using a 2 - 3 tree for the same purpose, Kariv
and Hakimi I631 have obtained a complexity of O(/ A) I Vl + 1 VI2 log1 V 1) .
Other procedures of complexity O(l VI3) are due to Minieka [76] and Cunin-
ghame-Green [171.

The derivation of tight lower bounds of G(x) is of practical importance for
speeding up the algorithms. An example is provided by Halpern [431. Let us
consider the arc [u i , ui] and denote by uk (resp. u,) the vertex such that G(ui) =
d(u,, u k) (resp. G(ui) = d(uj, q)). In case of ties, uk (resp. uI) is the farthest vertex
from ui (resp. u i) . Halpern then shows that mii = [lii + d(ui, u,) + d(uj, u k)] / 2 is a

128 P. Hansen, et al.

lower bound of C(x) on [u i , u,]. Consequently, if < is the best known upper
bound on ro and if mi, >< then the arc [u , , u,] contains no absolute centers.

The center set is readily obtained from the matrix of distances between vertices:
the radius r is the minimum of the maxima in all columns and the center set is
composed of those vertices associated with no entry larger than r . Thus O(l VI2)
operations are required. Notice that, unlike the median problem, the solutions
of the center problem may not be solutions to the absolute center problem.

Specialized algorithms have been proposed for (N/ V/ 1 /T/p) by Goldman
[32], Dearing and Francis [191, Halfin [40], Handler [48] and Hedetniemi, Coc-
kayne and Hedetniemi [60]. Handler’s is as follows:

Algorithm 4.2. (Handler [48]).
(i) Select a vertex ui of T and determine the vertex u, farthest from u i .

(ii) Determine the vertex ul farthest from u, and note P(u,, u,) the path

(iii) The middle point of P(u,, u,) is an absolute center of T.
joining u, and u,.

As only two traversals of T are required, the complexity of this algorithm is
O(I V I). Because of the convexity of the distance on a tree (Theorem 2.2), the
center of a tree is an endpoint of the arc containing an absolute center. Thus,
Algorithm 4.2 also solves (V/V/l/T/p).

4.2. The continuous and general center problems: (N/NllIN/p) and (V/N/l/N/p)
A point c, € N is a continuous center iff

The set of continuous centers, called the continuous center set, is represented by
C,. The value of c at any point of C, is called the continuous radius r, of the
network. When c, and x are restricted to be in V, one defines a general center,
the general center set and the general radius rg of the network.

Frank [27] and Minieka [74] have sketched algorithms for the continuous
center. The principle is the same as for Algorithm 4.1: it consists of, first deter-
mining the upper envelope of the family of hat functions d(x, [u,, u,]) for each
arc [u i , u,] € A relative to all other [u,, u,] € A , second finding the local minima
of these envelope functions for each arc [u, , u,] and, third selecting the best
among the local minima. It immediately follows from Theorem 2.5 that a (x ,
[u,, u,]) is continuous along [u , , u,] with at most 2 I A I + 2 break points. Further-
more, the set of local minima may contain subarcs. Hansen, LabbC and Nicolas
[54] have proposed an algorithm similar to Kariv and Hakimi’s one for the weight-
ed version of the absolute center problem (see 4.4.1). The principle is as follows.
For each arc, one ranks the hat functions in order of increasing values of their
highest points and builds their upper envelope by adding one hat function at a

Single facility location on networks 129

time: at each stage at most two new break points are created which can be located
with respect to existing ones in O(1og I A I) time when a 2-3 tree is used. The
overall complexity of the algorithm is O(I A I 2 log I A I). Finally, different rules
allowing for the elimination of arcs are presented in Labbe [6 6] .

Solving (V/N/ l/N/p) is straightforward. First, one computes the remoteness
of each vertex relative to all arcs, which can be easily done from the matrix of
distances between vertices. Then, for each vertex we retain the largest value
and the vertices for which the latter value is smallest. This can be achieved in
O(I A I I V I) time, as noted by Minieka [76] .

Finally, let us notice that because of the absence of cycles in a tree, the pro-
blems (N/N/I/T/p) and (V/N/l/T/p) have the same solutions as (N/V/l/T/p)
and (V/V/ l/T/p) respectively.

4.3. Comparison o f radii and diameters

the diameter of the network
Let us now define various maximum distances between pairs of points in N:

6 = Max d(u,, u i) ;
u. U.EV

I ’ I

the absolute diameter

6 = Max d(u,,y);
a v i E V , y E N

and the continuous diameter

6,= Max d(x,y).

To determine 6,, all pairs made

X , Y E N

of one vertex ui E V and one arc [u,, IJ,] E A are .. .
considered in turn and the remoteness z(x, [uk, u l l) is computed. The maximum
of these values is equal to 6, and is obtained in O(1 A 1 1 V () operations. Chen and
Garfinkel [131 describe an algorithm for computing 6, in O(I A Iz) time. It relies
on the property that there always exists a pair of points among the vertices and
the bottleneck points which determine 6,. Finally, 6 can be obtained by comparing
distances between vertices in O(I VI2) operations.

The ratios of the radii and diameters of a network can be used in various
tests for accelerating the algorithms presented above. Upper bounds are given
in Table 4.1 (Hansen, LabbC and Nicolas [5 4]) and the examples of Figure 4.2
show that they are best possible.

130 P. Hansen, et al.

Table 4.1. Bounds on the ratios of radii and diameters.

r 1 2 1 2 1 1 1
'll 1 1 1 1 1 1 1

m m 1 2 m 1 1 'g
rc m m 1 1 m 1 1
s 2 2 2 2 1 1 1
all m m 2 2 m 2 1
6, m m 2 2 00 2 1

Whenthenumbernofvertl. When k lends to infinity:
ces tends to infinity:

r = r = r = r = 6 - 6 =

Whan h tends to Inlinlty:

r = r = I . ' = ra = 1.

D 2

k k

I
r = r - 6 - 6 = - t r = r c = - t 1 - m .

a g z

D F - a - F

= 6 = -
c 2 + I - + - , 6 = 2 ,

where I is the length o f the
cycle 6 = - t 2 ~ + - .

6 = k

" 2

6,= h t 2 --
Fig. 4.2. Networks for which the bounds in Table 4.1 are the best possible.

4.4. Extensions

(i> When distances are weighted by positive constants wi , the problem is to
minimize the maximum weighted distance to the vertices of the network. A point
x * E N is an absolute weighted center iff

Gw(x*) = Max w,d(ui,x*)<Gw(x)= Max wid(ui ,x) , V x EN.

The minimal value of C,(x) is called the absolute weighted radius and is denoted

Algorithm 4.1 can be applied for solving the above problem since C,(x) is
still continuous and piecewise linear along each arc [u i , ui] € A . However, the
local minima of C,(x) now correspond to the points of [ui, ui] which are

i = l, n i = l , ..., n

by rw.

Single facility location on networks 131

equidistant from two vertices for the weighted distance. Furthermore, the slopes
of G,(x) are no longer given by I , and - I i , but depend on the value of the
weights. This complicates the search for the local minima and increases the
complexity of the procedure. Hakimi, Schmeichel and Pierce [39] have imple-
mented Algorithm 4.1 in O(I A 1 I V I 2 log I V I) time with stacks as data structure,
while Kariv and Hakimi [63] have obtained a complexity of O(I A I I VI log I V ()
using a 2-3 tree.

An entirely different approach has been proposed by Christofides [14]. Let
N(ui , R) be the set of points of N whose weighted distance to ui does not exceed
some given number R . The weighted absolute radius is the smallest R such that
ni",l N(ui , R) is not empty. Chirstofides then suggests an iterative method which
starts with R equal to a lower bound on r,, computes the intersection ny=, N(ui ,
R), increases R by a small amount if the intersection is empty and stops other-
wise. A lower bound on r , has been given by Dearing and Francis [191:

Max [wiw,/(wi + will d(u,, uj> .
i , j = 1, ..., n

Specific results for trees are due to Goldman [32], Dearing and Francis [19],
Hakimi, Schmeichel and Pierce [39], and Kariv and Hakimi [63].

A second modification of the absolute center problem deals with the addition
of positive constants ai (addends) to the distance to ui E V. A point x* E N
is then said to be an absolute center with addends iff

Gu(x*) = Max [ai + d(ui, x*)] < Gu(x) =
i = 1, ... , n

= Max [ai + d(ui, XI], t/x E N .
i = 1 , ..., n

This new problem can be solved by straightforward modifications of the proce-
dures described in 4.1. In particular, the absolute centers with addends of the
network N are equal to the absolute centers of the expanded network N' obtained
from N by adding I V1 vertices ul and I VI arcs [u, , u;] whose length is equal to a i .

In the case of a tree, Halfin [40] and Lin [69] have adapted Goldman [32] and
Handler [48] procedures to solve the absolute center problem with addends
in O(I V1) operations. Mitchell [82] and Hedetniemi, Cockayne and Hedetniemi
[601 have devised specific linear algorithms.

Finally, the case of nonlinear functions of distance has been studied by Dearing
[181 and Francis [24]. Given n strictly increasing and continuous functionsf, . . . f , ,
a point x* E N is called a nonlinear absolute center iff

Gn(x*) = Max 4 [d(ui, x*) l< Gn(x) =
i = 1, ..., n

VXEN

Christofides' iterative method can be easily adapted to find a good approximate

132 P. Hansen, et al.

solution (see also Hansen, Peeters, Richard and Thisse [5 5] for a similar approach
in continuous location theory).

(ii) The counterpart of the conditional median is the conditional center. Let
L C N be the locations of the existing facilities. A point x* E N is a conditional
absolute center iff

G (L W { x * }) = Max Min d(u , , j)
i = 1, ... , n 1’E L u{ x ’}

<G(L U (x }) = Max Min d(u,,y), V x E N .
I = I , . . . , n y E L U { x }

Again, as G (L U { x }) is continuous and piecewise linear on each arc, the proce-
dures described in 4.1 are readily adapted for finding the conditional absolute
center (Minieka [75]). The same observation applies to the conditional continuous
center.

(iii) A partial counterpart of the absolute ,Y -median is the Y -center. Let
Y”={ S,, . . . , Sm } be a family of subsets of N and let V, = V n S,. A point

x* E V is called a Y -center i f f

C(x*) = Max Min d(u,, x*) G G(x) =
k = 1, ..., m u,E Vk

= Max Min d (u , , x) , V X € V.
k = l , ..., m u i € V k

This problem is easily solved by inspection of the matrix of distances between
vertices. Furthermore, the following characterization of the Y -center holds
for a tree.

Theorem 4.3. (Slater [911). Let T be a tree and Y={ S,, . . . , S m } a family o f
subtrees of T.

(1) I f nkm, Vk # 4, then nkm, Vk is the set of -centers and is the vertex
set o f a subtree of T.

(2) If nkm, Vk = 4, then the set of Y-centers of T is equal to the center set
o f a subtree o f Tand, hence, consists of either one or two adjacent vertices.

(iv) We now consider two stochastic extensions of the absolute center
problem. Let W, be a nonnegative random variable associated with ui E V . Frank
[2 5] has proposed the solution-concept of absolute expected center, defined as a
point x* E N such that

Max E(WJ d(u,, x *) < Max E (W J d(u,, x) , V x E N .
i = l , ..., n i = l , ..., n

Obviously, any method that solves the weighted absolute center, solves the
absolute expected center as well. A second solution-concept, also considered
by Frank, is a point of the network which, given some positive number q , mini-
mizes the probability that the maximum weighted distance is larger than or

Single facility location on networks 133

equal to q . Finding such a point is usually hard, but when the variables w. are
discrete and independent, there exists an interval of local solutions on each arc
and the problem can be solved by an Hakimi-like method. Frank [26] also discus-
ses the case of joint multivariate normal distributions.

(v) Lastly, the case of an obnoxious facility has been addressed by Minieka
[79]. The objective is to maximize the distance to the nearest vertex - the maxi-
min problem. It is then easy to see that an optimal solution must be an equi-
distant point of the network.

5. Multi-criteria and multi-agents problems

5.1. Median -center problems

Comparing median and center problems, we can see that the former take into
account the whole set of clients served by the facility, while the later deal only
with the worst-off client. For this reason, median problems are generally seen
as maximizing efficiency, and center problems as maximizing a criterion of
distributional justice in the sense of Rawls [84]. Medians and centers do not
generally coincide, hence efficiency and justice are often antagonistic goals, and
it may be desirable to choose a solution which is a compromise between them.
There exist a number of ways to express this compromise, reviewed in the rest of
the subsection.

As noticed in Section 2 , weights can be given to the vertices in both the median
and center problems. It is easier to consider here the set U of clients instead.
Let F J x) = EUE , d(u(u), x) and G J x) = Max d(u(u), x) be the corresponding
median and center functions; m and c denote respectively an absolute median and
absolute center.

(i) Handler [49] has considered a set of points including the efficient points
for the bicriterion problem defined by the simultaneous minimization of F, and
G,. An a-constrained medi-center of N , denoted m*(a) , is defined as any solu-
tion of the problem

U E U

F,* = Min {F, (x) ; G J x) < (Y and x E N } .

Obviously, the problem is feasible and non-trivial iff (y < (Y < (Y, where g = G,(c)
and ti = C,(m). We may formulate and associated problem, whose solution is
deno_ted by c * (P) , by reversing the role of the median and center objectives, i.e.,

G; = Min { C,(x) ; F,(x) < p and x E N } .

A duality relationship between the two problems is as follows
The relevant range for P is the interval [p , m , where fi = F J m) and p= F,(c).

Theorem 5.1. (Halpern [44]).
(a) I f a E [a, (v] and F,* = 0, then FJ - P; i f p E [p , f l and Gf = a, then G;, = a. - B - -

134 P. Hansen. et al.

(b) When N is a tree, F,* is a one-one mapping from [a, - Z] into [P , - $1, C t is a
one-one mapping from [P , - F] into [(y, Z], and F,* = (G,*)- l .

Notice that the second part of the theorem does not hold for a general network
and that the set of a-constrained medi-centers is equal to the set of efficient
points for Min{ FU(x), G J x) } when the network is a tree.

(ii) Halpern [41,42,44] has studied extensively the convex combination of
the median and center functions. A point x E N is a A-cent-dim (0 < X < 1) iff

F&*)
H,(x*) = A GU(x*) + (1 - X) - < H,(x) =

I UI

F,W

I UI
= X C"(X) + (1 -X) - , t l x E N .

Hence H,(x) is a weighted mean between the maximum distance and the average
distance to the clients. The set of h-cent-dians is a subset of the set of efficient
points for Mn { F,(x), C,(x)}.

The main properties of H,(x) are as follows.

Theorem 5.2. (Halpern [42]). For x =$,(8) E [u, , uj] E A and a given value of
X E [0, 1 1 , H,($i(8)) is continuous and piecewise linear with a finite number o f
break points corresponding to the bottleneck points and the local minima of
G J x) on [u,, ui 1 .

This result suggests an algorithm to determine all A-cent-dians, which is simpler
than that proposed by Halpern [42], although both could be implemented with
the same complexity.

Algorithm 5.1,
(i) For each arc [u i , uil E A , determine the image Ii, of [u,, ui] in the plane

with coordinates F,(x)/ I UI and G J x) . T o this effect, (ia) find the set of bot-
tleneck points on [u,, u,],. (ib) determine with Kariv and Hakimi's algorithm the
set of local minima of G,(x); (ic) sort together the two lists so-obtained by
increasing values of 8; (id) compute the values of F,(x)/ I UI and G J x) at all
points in the list of (ic) and joint successive points by straight line segments.

(ii) Find the convex hull % of U Iii, e.g. with Eddy [22]'s algorithm. The
set of all h-cent-dians is given by the extreme points and sides of the south-
-west boundary of % which coincide with extreme points and sides of some
Iii '

This algorithm has a complexity of O(I A I I VI log I A I I VI). It can be modified
to determine all efficient points for Min (F,(x), G J x)) . Step (i) is unchanged;

Single facility locaiwn on nerworks 135

step (ii) is replaced by a pairwise comparison of the linear segments of all lii to
eliminate dominated points. This requires O(I A I* I V12) operations.

In the case of a tree the X-cent-dian problem is easier to solve.

Theorem 5 .3 . (Halpern [41]). The X-cent-dians of a tree are all points on the
path joining the absolute center and the closest median.

Thus the cent-dian set can be found in O(I VI) time. In addition, it is equal to
the efficient point set for the bicriterion problem Min (FLr(x), GJx)).

(iii) Slater [88] introduces another concept that generalizes the median and
center criteria. The k-centrum of a network, denoted by C (N ; k) , is the subset
of vertices such that the sum of the distances to the k farthest vertices is mini-
mum; i.e., the set of solutions to the problem:

d(ui, x); S c V , I SI = k and d(ui, x) > d(u,, y) ,

V x E S a n d V y E V - S .

Of course, C(N;I VI) is the median set, and C(N, 1) is the center set. Slater [88,
891 investigates the structure of the k-centrum of a tree with unit arc length;
in particular, he proves that C(T; k) consists of either one or two adjacent vertices
and that C(T; k) n C(T, k + 1) # 4. Andreatta and Mason [2] consider a general
tree and show that C(T; k) is a path, with I C(T; k) I < 2 if k is odd. They obtain
some relationship between k-centrum and (k + 1)-centrum:

1

(i) if C (T ; k) n C (T ; k + l) = $, then C(T;k) and C (T ; k + 1) containadja-

(ii) C(T; k) n C(T ; k + 1) induces an elementary path in T .

The same authors address the absolute k-centrum problem on a tree, and prove
that it is connected and contained in a path (Andreatta and Mason [3]).

(iv) For completeness, let us also mention that another way of generalizing
the concepts of center and median has been proposed by Slater [91]: the k -
-nucleus Kk is the set of vertices for which the sum of the distances to the balls
of radius k around each other vertex is minimum; KO is the median set and K , the
center set.

cent vertices;

5.2. Multi-criteria problems

A few papers only deal with location problems involving more than two criteria.
(i) The problem of finding the set of efficient points on a tree with regard to

several objectives has been tackled by Lowe [72]. Let fi, . . . ,L be n convex
functions defined on T and let Qi C T be the feasible domain for $. It is assumed
that Q = fl;= Qi is nonempty, compact and connected. The sets of optimal

136 P. Hansen, et al.

solutions to the problems Min &(x) and Min J,’(x) are denoted by RT and ST
respectively. The convexity of J,’ implies that either ST = Q n RT or Sr is the
unique closest point in Q to R I when Q n RT = @. Finally, let T* = n;=, S?
when this intersection is nonempty, and otherwise let T* be the unique subset
S of Q such that (a) S n S,? # @ for all i and (b) each extreme point s of S satisfies
{s} = S n 8: for at least one i .

x E T X E Q

Theorem 5.4. (Lowe [72]). The set of efficient points for the multiobjective
problem Min { & (X I , . . . ,&(XI ; x E Q } is equal to T*.

Notice that since FJx) and G,(x) are convex, Theorem 5.3 is a special case of
Theorem 5.4. Lowe also provides an algorithm to find T*.

(ii) Hansen, Thisse and Wendell [58] determine the efficient points for the
simultaneous minimization of the distances to the clients. For a general network,
the algorithm involves a comparison of the distance functions along pairs of
segments to eliminate dominated points. Its complexity is 0 (I U [I A [max

(iii) Halpern and Maimon [46] compare four objectives on a tree: the median
function, the center function, the variance measure and the Lorenz measure. The
variance measure at x E T is

(1 U (, log1 UII VI 1).

The lowest possible value of V (x) is zero and is obtained when all clients are
equally, distant to x . Any point where V (x) is minimized is called a variance
point. Halpern and Maimon [47] provide a linear algorithm to determine such
a point on a tree. Let now f (p l x) be the fraction of the total distance of x
corresponding to the p nearest c k n t s . The Lorenz measure is defined by

Clearly, L (x) belongs to [0, I] , the upper bound being reached when all clients are
equidistant from x. The point I which maximizes L (x) is called a Lorenz point.
Halpern and Maimon [45] give a polynomial algorithm to find I on a tree. Both
the variance and Lorenz points aim at minimizing dispersion in distances between
clients and the facility.

Halpern and Maimon [46] define a certain number of divergence measures and
perform a series of simulations for trees. Their major findings are as follows: (a)
I is generally quite separated from m , c and s;(b) selecting 1 for locating the facility
entails relatively high losses in all other three criteria, and selecting m , c or s

Single facility location on networks 137

causes high losses in terms of the Lorenz measure; (c) relatively low losses in the
median function occurs when c or s is chosen; (d) but, when m is chosen, modera-
te losses in the center function and variance measure are observed.

(iv) Finally, a general discussion of the multi-criteria approach in network
location theory is given by Vincke [97].

5.3. Voting location problems

The set of efficient points for the simultaneous minimization of the distances
to the clients contains, in general, more than one point. Hence there is no way
to meet the wishes of all clients simultaneously by choosing a single location
point. Consequently, the facility location must result from a compromise among
clients. One possible institutional mechanism is to choose it by means of a voting
rule. This motivates a new class of location problems, i.e., voting location
problems. A natural solution-concept to such problems is a point x* E N , called
a Condorcet point, for which no other point of the network is closer to a strict
majority of clients:

I UI I { u € U ; d (u (u) , ~) < d (u (u) , ~ *) } I < - , V X E N .

The following questions then suggest themselves: (i) does a Condorcet point
exist and belong to the set of vertices? (ii) when do a planning solution (e.g., an
absolute median) and a Condorcet point coincide? (iii) how much does the plan-
ning criterion (e.g., minimizing the weighted sum of distances) deteriorate when a
Condorcet point is adopted and how many clients are dissatisfied by a location
optimizing the planning criterion?

First, a Condorcet point may not exist. To see this, consider the network
depicted in Figure 5.1. It is easy to check that any interior point of an arc is
defeated by its nearest vertex and any vertex is beaten by an interior point of
its opposite arc. Different conditions on clients’ locations to guarantee the
existence of a Condorcet point are discussed in Wendell and McKelvey [1001,
and Hansen, Thisse and Wendell [57, 591. They include the assumption of
Theorems 3.3 and 3.5. However, the question of what such conditions are

2

Fig.5.l.

138 P. Hansen, et al.

necessary for a Condorcet point to exist remains open. On the other hand, the
class of networks on which there exists a Condorcet point for any distribution
of clients has been characterized by Bandelt [4].

Furthermore, even if it exists, a Condorcet point does not necessarily belong
to V as shown by the example of Figure 5.2 due to Wendell and McKelvey [1001,
and Hakimi [37]: Condorcet points exist and correspond to the subarc [x,, x2]
of [v,, us]. However, when I UI is odd, all the Condorcet points (if any) belong
to V (Hansen and Thisse [5 61).

Fig. 5.2.

Second, Hansen and Thisse [56] have shown that the sets of Condorcet points
and of absolute medians are equivalent on trees. A characterization of the net-
works for which this property holds has been obtained recently by Bandelt :

Theorem 5.5. (Bandelt [4]). The sets of Condorcet points and o f absolute
medians on a network coincide iff

(i) for any three vertices vi, vj and v, there exists a unique v, E V (with possibly
v, E { v i , vi, v,)) which is simultaneously between v, and vi, vi and v,, v, and vi;

(ii) for any vertex v and any set v o f vertices, n {B(v , 9 ; 5 E v}={ v } implies
that B(v, El) n B (v , E2) = { v } for some D1 E Band 5, E 8.

Third, and last, if the facility is established at a Condorcet point x* the ratio
F(x*)/F(m) cannot exceed 3 . This result of Hansen and Thisse [56] has been
refined by LabbC ([[U1/2] denotes the smallest integer not less that 1 UI / 2) .

Theorem 5.6. (LabbC [66]). Let x* be a Condorcet point and m an absolute
median. Then

Single facility location on networks 139

Furthermore, the upper bound is the best possible.

Thus, locating the facility at a Condorcet point may lead to an important
increase in total distance. Conversely, choosing an absolute median may dissatisfy
almost all the clients. To see it, consider the example in Figure 5.3 due to Bandelt
and Labbe [5] . Assuming that one client is located at u , and m 2 2 clients at u,
and u3 respectively, we easily see that u1 is the unique absolute median when
e < l /m. But then, 2m = I Ul - 1 clients are closer to xZ3, the middle point of
[u,, u,], than to u,.

V (m 1) V f2m 1)

Fig. 5.3.

Additional results on the comparison between alternative voting and planning
solutions (including the absolute center) can be found in Bandelt and Labbe
[5] , Hansen and Thisse [5 6] , and Hansen, Thisse and Wendell [5 9] .

Polynomial algorithms to find a Condorcet point, when I UI is odd or even,
are proposed in Hansen and Labbe [5 2] . The former case is easier to solve as
all Condorcet points (if any) are at vertices. The algorithm involves, first, pairwise
comparisons of vertices to eliminate those for which a majority of clients prefers
another of them and, then, comparisons of vertices and points on arcs; the com-
plexity is O(1 A I I V (I UI log 1 UI). The latter case requires, in addition, pairwise
comparisons of points on arcs and the complexity is O(I A 1, I UI3 log I A 1 1 U ().

Finally, related solution-concepts applicable to the location of an obnoxious
facility are studied by Labbe [64]. In particular, it is shown that, for a tree, a
Condorcet point exists and belongs to the set of pendant vertices.

140 P. Hansen. et al.

5.4. Competitive location problems
A competitive location problem arises when the number of clients of a facility

depends not only upon its own location decision but also upon the locations
chosen by competing facilities. This corresponds to a family of problems which
are formulated within the framework of noncooperative game theory. Assuming
that clients patronize the nearest, facility, a natural solution to these problems
is a locational pattern for the facilities such that given the locations of the others,
no facility can be closer to more clients at an alternate location. To illustrate,
consider the case of two facilities. A pair of locations x : , xz E N is called a

It is then easy to see that there exists a Nash equilibrium for the 2-competing
facility location problem iff there exists a Condorcet point for the corresponding
voting location problem. Furthermore, when a Nash equilibrium exists, there is
such an equilibrium where the two facilities are located at the same point and
this point is also a Condorcet point (Hansen, Thisse, and Wendell [59]). Thus,
the results discussed in 5.2 still hold for the Nash equilibrium with two competing
facilities.

Introducing the arrow of time, we now assume that facilities are located
sequentially (and no longer simultaneously). In the 2-facility case, the problem
for the first facility is to find a location which retains the maximum number of
clients after the second facility has been established with the aim of maximizing
its own clientele (Slater [8 6] and Hakimi [37]). Such a point is called a Simpson
point or a (1 1 1)-centroid. It can be shown to exist for all networks and to be
a Condorcet point when such a point exists (Hansen, Thisse and Wendell [59]).
Consequently, the set of vertices may not contain a Simpson point. The set of
Simpson points can be obtained by embedding the algorithm for Condorcet
points with I UI even in a Fibonacci search on the number of clients closer to
another point than to a Simpson point; the complexity of the corresponding algo-
rithm is O(1 UI4) A) * log 1 U J \ A 1 log 1 U J) (Hansen and Labbe [52]) .

Finally, notice that the problem of the second facility is merely one of finding
a point of maximum demand, as discussed in 3.4, in which the range R, for
clients at ui is equal to the distance to the first facility.

Single facility location on networks 141

6 . Miscellaneous problems and conclusions

Three new families of network location problems have recently attracted the
attention of researchers. They have not been considered in the main body of the
survey because they are only partially connected with mainstream location theory
and they rely upon other chapters of Operations Research. They are:

(i) Locution-routing problems, in which locating one or several facilities and
routing of vehicles from these facilities to the clients are to be simultaneously
decided on. The interested reader is referred to the survey of Laporte, Nobert and
Arpin [6 7] ;

(ii) Balanced-flow location problems, in which a facility must be set up in
order to minimize the maximum flow in any arc of the network when satisfying
clients’ demand (Eiselt and Pederzoli [23]);

(iii) Path-Zocation problems, in which the purpose is to determine a simple
path such as to minimize the sum of distances (or the maximum) distance from
the clients to this path (Slater [93]).

Let us conclude with some general remarks. First, in most problems, one can
identify a finite subset of N containing a solution. This subset is often the set
of vertices for median-type problems; the set of vertices and equidistant points
for center-type problems. Second, for all problems, polynomial algorithms can
be derived to find a solution or the set of all solutions. When the finiteness
property holds for the problems considered, complexity is usually low. For
trees linear algorithms are frequent. Third, and last, whereas the basic median and
center problems are well-studied, there remains much work to be done to unify
and streamline the theory, and to obtain lower complexity algorithms than those
known as yet.

References

111

121

131

141

1s 1

I61

17 1

181
191

A. Aho, A. Hopcroft and J . Ullman, The Design and Analysis of Computer Algorithms, Addison-
-Wesley, Reading, Mass., 1974
G. Andreatta and F. Mason, tk-Eccentricity and Absolute k-Centrum for a Probabilistic Tree)),
European JournalofOperationalResearch 19, 114 - 117, 1985.
G. Andreatta and F. Mason, ((Properties of the k-Centra in a Tree Network)), Networkr 15, 21 -
29,1985.
H.J. Bandelt, ((Networks with Condorcet Solutions)), European Journal of Operational Research

H.J. Bandelt and M. Labbb, ((How Bad Can a Voting Location Be?)), Social Choice ond Wevare
(to appear).
J . P . Barthblemy, uMbdiane bans les graphes et local is at ion^, Cahiers du Centred Etudesde Recher-
che Opdrationnelle 2 5 , 163 - 182, 1983.
J.P. Barthblemy, ((Caractbrisation mbdiane des arbresa, Annals ofDiscrete Mathematics 17, 39 - 46,
1983.
C. Berge, Espaces topologiques. Fonctions multivoques, Dunod, Paris, 1966.
0. Berman, S . Chiu, R.C. Larson and A.R. Odoni, ((Location on Congested Networks)), in R.L.
Francis and P.B. Mirchandani, eds., Discrete Location Theory, Wiley, New York (to appear).

20,314 - 326,1985.

142 P. Hansen, et al.

0. Berman and R.C. Larson, ((The Median Problem with Congestions, Computers and Operations
Research 9, 119 - 126, 1982.
0. Berman, R.C. Larson and S. Chiu, ((Optimal Server Location on a Network Operating as an
MIGI1 Queue)), OperationsResearch 33, 746 -111, 1985.
0. Berman and A.R. Odoni, ((Locating Mobile Servers on a Network with Markovian Properties)),
Networks 12 ,73 - 86, 1982.
C.E. Chen and R.S. Garfinkel, ((The Generalized Diameter of a Graph,, Networks 12, 335 - 340,
1982.
N. Christofides, Graph Theory:An Algorithmic Approach, Academic Press, New York, 1915.
R.L. Church and R.S. Garfinkel, ((Locating an Obnoxious Facility on a Networks, Dansporfation
Science 12,107 - 118,1978.
R.L. Church and M.E. Meadows, <Location Modelling Utilizing Maximum Service Distance Crite-
ria)), GeographicalAnalysis 11, 358 - 313, 1979.
R.A. Cunninghame-Green, ((The Absolute Center of a Graph)), Discrete Applied Mathematics I ,

P.M. Dearing, ((Minimax Location Problems with Nonlinear Costs)), Journal o f Research of the
National Bureau of Standards B 82 ,65 - 72, 1917.
P.M. Dearing and R.L. Francis, ((A Minimax Location Problem on a Network)), Dansportation
Science 8 ,333 - 343,1974.
P.M. Dearing, R.L. Francis and T.J. Lowe, ((Convex Location Problems on Tree Networks)), Opera-
tions Research 24,628 - 642, 1976.
W. Domschke and A. Drexl, Location and Layout Planning: An International Biblwgraphy, Springer -
-Vexlag, Berlin, 1985.
W.F. Eddy, t A New Convex Hull Algorithm for Planar Sets)), ACM Dansactions on Mathematical
Sofivare 3,398 - 403, 1977.
H.A. Eiselt and G. Pederzoli, ((A Location Problem in Graphs)), New Zealand Journal of Operationuf
Research 1 2 , 4 9 - 5 3 , 1984.
R.L. Francis, ((A Note on a Nonlinear Minimax Location Problem in Tree Networks)), Journal o f
Research o f the National Bureau o f Standards B 82 .73 - 80, 1971.
H. Frank, ((Optimum Locations on a Graph with Probabilistic Demands)), Operations Research 14,

H. Frank, ((Optimum Locations on a Graph with Correlated Normal Demands)), Operations Reseach

H. Frank, ((A Note on a Graph Theoretic Game of Hakimi's)), Operations Research 15, 567 - 570,
1967.
M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory o f NP-Complete-
ness, Freeman, San Francisco, 1979.
A.J. Goldman, ((Optimum Locations for Centers in a Network)), Dansportation Science 3, 352 -
360,1969.
A.1. Goldman, toptima1 Center Location in Simple Networks)), Transportation Science 5 , 212 -
221,1971.
A.J. Goldman, ((Approximate Localization Theorems for Optimal Facility Placement)), Dansporta-
tion Science 6,195 - 201, 1972.
A.J. Goldman, ((Minimax Location of a Facility in a Network)), Dansportation Science 6 , 407 -
418,1972.
A.J. Goldman and C.J. Witzgall, ((A Localization Theorem for Optimal Facility Placement)), Dan-
sportation Science 4 ,406 - 409, 1970.
H. Guelicher, ((Einige Eigenschaften optimaler Standorte in Verkehrsnetzen)). Schrifien des Vereins
f i rSozhlpol f t ik , Neue Folge 42, 111 - 137,1965.
S.L. Hakimi, ((Optimum Locations of Switching Centers and the Absolute Centers and Medians of
a Graph)), Operations Research 12,450 - 459, 1964.
S.L. Hakimi, ((Optimum Distribution of Switching Centers in a Communication Network and Some
Related Graph Theoretic Problems)), Operations Research 13,462 - 475,1965.
S.L. Hakimi, ((On Locating New Facilities in a Competitive Environment)), European Journal of
OperationalResearch 12, 29 - 35, 1983.
S.L. Hakimi and S.N. Maheshwari, ((Optimum Locations of Centers in Networks,, Operations
Research 20,967 - 973, 1972.
S.L. Hakimi, E.F. Schmeichel and J.G. Pierce, ((On p-Centers in Networks)), Tkansportation Science

S. Halfin, ton Finding the Absolute and Vertex Center of a Tree with Distances)), Dansportation

275 - 283,1984.

409 - 421,1966.

15,552 - 557,1961.

1 2 , l - 15,1978.

Single facility location on networks 143

Science 8.75 - 77, 1974.
J . Halpern, ((The Location of a Cent-Dian Convex Combination on an Undirected Tree)), Journal
ofRegionalScience 16, 237 - 245, 1976.
J . Halpern, ((Finding Minimal Center-Median Convex Combinations (Cent-Dian) of a Graph)),
Management Science 24,534 - 544, 1978.
J . Halpern, ((A Simple Edge Elimination Criterion in a Search for the Center of a Graph)), Mana-
gement Science 25, 105 - 107, 1979.
J . Halpern, ((Duality in the Cent-Dian of a Graph)), OperationsResearch 28,722 - 735,1980.
J . Halpern and 0. Maimon, ((Equity Measures in Locational Decisions on Trees)), Mimeograph
Series in Operations Research, Statistics and Economics 254, Technion, Haifa, 1980.
J . Halpern and 0. Maimon, ((Accord and Conflict, Among Several Objectives in Locational Deci-
sions on Tree Networks)), in J.-F. Thisse and H.G. Zoller, eds., Locational Analysis of Public Facili-
ties, North-Holland, Amsterdam, 301 - 314, 1983.
J . Halpern and 0. Maimon, ((Equity Measures in Locational Decision Problems on Trees)), Operations
Research, (to appear).
G.Y. Handler, ((Minimax Location of a Facility in an Undirected Tree Graph)), Transportation
Science 7, 287 - 293, 1973.
G.Y. Handler, ((Mediscenters of a Tree)), Working Paper No. 278176, Faculty of Management,
Tel-A viv University, 1 97 6.
G.Y. Handler and P. Mirchandani, Locution on Networks: Theory and Applications, MIT Press,
Campbridge, Mass., 1979.
P. Hanjoul and J.-F. Thisse, ((The Location of a Firm on a Network)), in A.J. Hughes Hallet, ed.,
Applied Decision Analysis and Economic Behavior, Martinus Nijhoff, Dordrecht, 289 - 326, 1984.
P. Hansen and M. LabbC, ((Algorithms for Condorcet and Simpson Points on a Network)), submitted
for publication, 1984.
P. Hansen and M. LabbB, ((The Continuous p-Median of a Network,, submitted for publication,
1985.
P. Hansen, M. Labb6 and B. Nicolas, ((The Continuous Center Set of a Network)), submitted for
publication, 1985.
P. Hansen, D. Peeters, D. Richard and J:F. Thisse, ((The Minisum and Minimax Location Problems
Revisited)), Operations Research 33,1251 - 1265, 1985.
P. Hansen and J.-F. Thisse, ((Outcomes of Voting and Planning: Condorcet, Weber and Rawls Loca-
tions)), JournalofPublic Economics 16, l - 15, 1981.
P. Hansen, J .-F. Thisse and R.E. Wendell, ((Equivalence of Solutions to Network Location Prob-
lemsx, Mathematics of Operations Research (to appear).
P. Hansen, J.-F. Thisse and R.E. Wendell, ((Efficient Points on a Network,,Networks, (to appear).
P. Hansen, J.-F. Thisse and R.E. Wendell, ((Location by Competitive and Voting Processes)), in R.L.
Francis and P.B. Mirchandani, eds., Discrete Location Theory, Wiley, New York, (to appear).
S.M. Hedetniemi, E.J. Cockayne and S.T. Hedetniemi, ((Linear Algorithms for Finding the Jordan
Center and Path Center of aTreen, Transportation Science 15,98 - 114, 1981.
A.P. Hurter and J.S. Martinich, ((Networks Production-Location Problems under Price Uncertainty)),
European Journalof Operational Research 16, 183 - 197, 1984.
C. Jordan, ((Sur les assemblages de lignes)), Zeitschrift fur die Reine und Angewandbte Mathemo-
tik 70, 185 - 190, 1869. Reprinted in English translation in N. Biggs, E.K. Lloyd and R . Wilson,
Graph theory 1736.1936, Oxford University Press, Oxford, 1976.
0. Kariv and S.L. Hakimi, ((An Algorithmic Approach to Network Location Problems 1: The p -
-Centers,,SIAMJoumalon Applied Mathematics 37, 513 -538, 1979.
M. Labb6, ((Equilibre de Condorcet pour le p r o b l h e de localisation d'une installation polluante)),
Cnhiers du Centred Etudes de Recherche Op&ationnelle 24, 305 - 31 2, 1982.
M. LabbB, Essays in Network Location Theory, Doctoral Dissertation, Universite Libre de Bruxelles.
Published in Cnhiers d u Centre d 'Etudes d e Recherche Op&ationnelle 27,s - 130,1985.
M. LabbC, ((Outcomes of Voting and Planning in Single Facility Location Problems)), European
Journalof Operational Research 20, 299 - 313, 1985.
C. Laporte, Y. Nobert and D. Arpin, ((An Exact Algorithm for Solving a Capacitated Location-
-Routing Problem)), in Location Theory: Methodology and Applications, J.C. Baltzer AG, Scientific
Publishing Co., Basel, Switzerland, 1986 (to appear).
J . Levy, ((An Extended Theorem for Location on a Networks, Operational Research Quarterly

C.C.Lin, ((On Vertex Addends in Minimax Location Problems)), Transportation Science 9, 165 -
168, 1975.

18,433 - 442,1967.

144 P. Hansen, et al.

1701

1711

F. Louveaux, J.-F. Thisse and H. Beguin, ((Location Theory and Transportation Costs)), Regional
Scienceand Urban Economics 12, 529 - 545, 1982.
F. Louveaux and J . -F. Thisse, ((Production and Location on a Network under Demand Uncertainty)),
OperationsResearch Letters 4, 145 - 151, 1985.
T.J. Lowe, ((Efficient Solutions in Multiobjective Tree Network Location Problems)), Transporta-
tion Science 12, 298 - 316, 1978.
E. Minieka, ((The m-Center Problems, SIAMReview 12, 138 - 139, 1970.
E. Minieka, ((The Centers and Medians of a Graph)), Operations Research 25, 641 -650, 1977.
E. Minieka, ((Conditional Centers and Medians of a Graph)), Networks 10,265 - 272, 1980.
E. Minieka, ((A Polynomial Time Algorithm for Finding the Absolute Center of a Network)), Net-
works 11,351 - 355, 1981.
E. Minieka, ((Pendant-Medians)), Operations Research Letters 2, 104 - 106, 1983.
E. Minieka, ((Radial Location Theory*,Networks 13, 233 - 239, 1983.
E. Minieka, ((Anti-Centers and Anti-Medians of a Networkr,Nefworks 13, 359 - 365, 1983.
P.B. Mirchandani, ((Locational Decisions on Stochastic Networks)), Geographical Analysis 12, 172 -
183,1980.
P.B. Mirchandani and A.R. Odoni, ((Locations of Medians on Stochastic Networks)), Transporta-
tion Science 13, 85 - 95, 1979.
S.L. Mitchell, ((Another Characterization of the Centroid of a Tree)), Discrete Mathematics 24,

0. Ore, Theory of graphs, American Mathematical Society Colloquium Publications, Vol. XXXVIII,
Providence, 1962.
J . Rawls, A Theory of Justice, Harvard University Press, Cambhdge, Mass., 1971.
D.R. Shier and P.D. Dearing, ((Optimal Locations for a Class of Nonlinear Single Facility Location
Problems on a Network)), OperationsResearch 31, 292 - 303, 1983.
P.J. Slater, uMaximim Facility Location)), Journal of Research of the National Bureau of Standards

P.J. Slater, ((Central Vertices in a Graph)), in Proceedings of the 7th Southeastern Conference on
Combinarorics, Graph Theory and Computing, 487 - 489, 1976.
P.J. Slater, ((Centers t o Centroids in Graphs)),Journal of Groph Theory 2, 209 - 222, 1978.
P.J. Slater, ((Structure of the k-Centra in a Tree)), in Proceedings of the 9th Southeastern Confe-
rence on Combinatorics. Graph Theory and Computing, 1978.
P.J. Slater, ((Medians of Arbitrary Graphs)), Journal of Graph Theory 4, 389 - 392, 1980.
P.J. Slater, ((On Locating a Facility to Service Areas Within a Networks, Operations Research 29,

P.J. Slater, ((The k-Nucleus of a Graph)),Networks 11, 233 - 242, 1981.
P.J. Slater, ((Locating Central Paths inaGraph)), Transportation Science 16, 1 - 18, 1982.
B.C. Tansel, R.L. Francis and T.J. Lowe, ((Location on Networks: A Survey-Part I : The p-Center
and p-Median Problemsr,Management Science 29,482 - 497, 1983.
B.C. Tansel, R.L. Francis and T.J. Lowe, ((Location on Networks:A Survey-Part 11:Exploiting the
Tree Network Sturcture*,Management Science 29,498 - 511, 1983.
S.S. Ting, ((A Linear-Time Algorithm for Maxisum Facility Location on Tree Networks)), Trans-
portation Science 18,76 - 84, 1984.
P. Vincke, ((Probl6mes de localisation multicritbes,, Cahiers du Centre d Etudes d e Recherche
Opdrationnelle 24, 333 - 341, 1983.
A. Weber, Ueber den Standon der Industrien, J.C.B. Mohr, Tubingen, 1909.
R.E. Wendell and A.P. Hurter, ((Optimal Locations on a Network)), Transportation Science 7, 18 -
33, 1973.
R.E. Wendell and R.D. McKelvey, ((New Perspectives in Competitive Location Theory)), European
JoumalofOperatwnalResearch 6, 174 - 182, 1981.
C. Witzgall, ((Optimal Location of a Central Facility: Mathematical Models and Concepts)), Report
8388, National Bureau of Standards, 1964.
B. Zelinka, ((Medians and Peripherians of Trees)), ArchivumMathematicum 4,87 - 95, 1968.

277 - 280,1978.

B 79,107 - 115, 1975.

523-531, 1981.

SingIe facility location on networks 145

Pierre Hansen
Ructor
Rutgers Center for Operations Research
Hill Center for Mathematical Sciences
Busch Campus
Rutgers University
New Brunswick, New Jersey 08903
U.S.A.

Dominique Peeters
Department of Geography
Catholic University of Louvain
1348 Louvain-la-Neuve
Belgium

Martine Labbe
C.E.M.E.
University of Brussels
50 Av. F.D. Roosevelt CP139
1050 Brussels
Belgium

Jacques- FranGois Thisse
C.0 .R.E.
Catholic University of Louvain
34 Voie du Roman Pays
1348 Louvain -la-Neuve
Belgium

This Page Intentionally Left Blank

Annals of Discrete Mathematics 31 (1987) 147 - 184
0 Elsevier Science Publishers B.V. (NorthHolland)

EXACT ALGORITHMS FOR THE VEHICLE ROUTING PROBLEM*

Gilbert LAPORTE and Yves NOBERT

1. Introduction

In the broadest sense, the vehicle routing problem (VRP) can be described as
the problem of designing optimal delivery routes from one or more depots to a
set of geographically scatterred points, cities or customers. As noted elsewhere
[111, the term delivery can sometimes be replaced by collection and there exist
situations not involving the actual transportation of goods. Practical applica-
tions of the VRP are numerous and encompass many spheres of activity. Their
economic importance cannot be overstated. Bodin et al. [5] quote a study which
approximates annual distribution costs at $ 400 billion in the United States and
,f 15 billion in the United Kingdom. Thus, any savings generated by improvements
in route design methodology may be significant.

The VRP has received the attention of many Operations researchers over the
last three decades. This interest is due in part to the practical importance of the
problem, but also to its intrinsic difficulty. Only recently, the largest problems
of any complexity which had been solved by exact algorithms contained approxi-
mately 30 points [5]. This figure has since been improved, but only in particular
instances of the problem [9, 14 ,21 ,25 ,31 , 54-56, 58,621. The VRP constitutes
a generalization of the travelling salesman problem (TSP) which consists of
determining the shortest circuit or cycle passing through each of n points once
and only once [181. The TSP and the VRP are both NP-hard [65]. However, from
a practical point of view, VRPs are in general much more difficult t o solve than
TSPs of the same size. This renders their study all the more challenging. Also,
while much effort has been devoted to the solution of the TSP by exact methods,
most algorithms for the VRP are heuristics, reflecting the relative difficulty of the
problem. Promising avenues of research have been opened but many are still
unexplored [67].

*The authors are grateful to the Canadian Natural Sciences and Engineering Research Council
(grants A4747 and A5486) and to the Quebec Government (FCAC grant 80EQ04228) for their
financial support.

147

148 G. Laporre, Y. Nobert

The object of this paper is t o present a survey of exact algorithms for the
VRP, while emphasizing recent results and avoiding as far as possible, duplication
of previous work. Several surveys and bibliographies have indeed been published
on the VRP (see for example 14, 5 , 8, 11, 28 ,42 , 59 ,65 , 67 ,75 ,78 ,83 ,86]) ,
most of which have tended to concentrate on heuristic methods. The state-of-
-the-art paper of Bodin et al. [5] is fairly exhaustive in this respect. Also of major
interest are the typology proposed by Bodin and Golden [4] and the analysis of
research perspectives and prospects presented by Magnanti [67]. We adopt,
whenever possible, the definitions and classifications of these authors.

1.1. Notation and definitions

Some notation and a more formal definition of the VRP are required at this
point. Let G = (N , E , C) be a graph where N = { 1, . . . , n } is a set of nodes
representing cities or customers, E is a set of arm or edges (undirected arcs) and
C = (c i j) is a distance matrix associated with E . C is symmetrical if and only if
cij = cji for all i, j E N . It satisfies the triangle inequality if and only if cii + cjk 2
2 c j k for all i , j , k E N . Problems fall into two broad categories: symmetrical
problems (those for which C is symmetrical) and asymmetrical problems. Al-
gorithms which exploit this distinction generally require that E be defined as
a set of edges in the symmetrical case and as a set of arcs in the asymmetrical
case. Also, depending on the type of algorithm, cii may be equal to 0, to infinity
or simply left undefined. Let R ={ 1, . , . , r } (r < n) be a set of depots. It is
assumed that a fleet of m vehicles are based at the depots. The value of m is
sometimes fixed a priori (it is then set equal to a) or may constitute a decision
variable. In general, one can impose bounds on m :

m d m d E (1)

Similarly, there may be bounds on the number of vehicles assigned to each
depot. Fixed costs may be imposed on the use of a depot or of a vehicle.

The VRP consists of establishing minimum cost vehicle routes in such a way
that

(i) each city in N-R is visited exactly once by exactly one vehicle;
(ii) each vehicle starts and ends its journey at the same depot;

(iii) some side constraints on the number of routes and on their configu-
rations are satisfied.

Before describing these constraints, it seems appropriate to bring some preci-
sion on the first condition. This condition is irrelevant when C satisfies the
triangle inequality: in this case, it is never advantageous for a vehicle to deviate
from the shortest route between any two cities and thus to visit any city more
than once. However, most road networks are incomplete and multiple passages
through the same city are more often than not necessary. This difficulty can be
circumvented as follows. First replace each cii by the length of the shortest path
from i to j and then establish the following distinction: each city must be serviced

Exact algorithms for the vehicle routing problem 149

exactly once but may be crossed as many times as necessary if it lies on many
shortest paths. However, it is sometimes inefficient to proceed this way: in
some algorithms (see for example [3 1, 32, 73]), it is preferable to take advantage
of the sparsity of the graph and t o use the original cij 's while requiring that each
city be visited at Eeast once. Some examples of this approach will be presented.

(i) Capacity restrictions: a non-negative weight di is attached to each city i
of N-R. (For i E R , assume that di = 0) . The sum of weights of any vehicle
route may not exceed the vehicle capacity (see for example [1 , 10, 1 3 , 3 1 , 3 2 ,
3 7 , 4 6 , 55, 58,621). (Capacitated VRPs will be referred to as CVRPs).

(ii) The number of cities on a route may be bounded above (this constitutes
a particular case of (i)).

(iii) Total time restrictions: the length of the route of any vehicle may not
exceed a prescribed bound L ; this length is made up of intercity travel times and
of stopping times (S i) at each city i included o n the route [56 ,62] . (Time or
distance constrained VRPs will be referred to as DVRPs).

(iv) Time windows: city i may have to be visited within the time interval
[a,, bi] (This includes the two cases a, = --w and bi = -w) [20-23 ,49 , 77, 79, 801.

(v) Precedence relations between pair of cities: city i may have to be visited
before city] [21,79-811.

This list is by no means exhaustive and it is beyond the scope and purpose of
this paper to describe every possible ramification of the VRP. This survey concen-
trates on formulations and methods for the more basic models, mentioning,
where appropriate, important extensions for which exact algorithms have been
developed. The following restrictions will be made.

(i) Fixed costs on depots and vehicles are not generally considered: their
eventual inclusion in the models is in most cases straigthforward.

(ii) Unless otherwise specified (see section 4), there is only one depot located
at city 1.

(iii) In most cases, all vehicles are identical and have the same capacity D.
(iv) All vehicles are assumed to drive at the same constant speed; in such a

context, the ci j 's may be interpreted as travel times whenever appropriate. The
cij's sometimes represent travel costs.

1.2. Classification o f methods

one of the following categories:

The most common side conditions include:

It appears that all known exact algorithms for the VRP can be classified into

(i) direct tree search methods,
(ii) dynamic programming (DP),

(iii) integer linear programming (ILP).
The latter category is very broad and accounts for most of the research effort

of recent years. It will be subdivided into three sections, according to the classifi-
cation suggested by Magnanti [671:

150 G. Laporre, Y. Noberr

iiia) set partitioning formulations,
iiib) vehicle flow formulations (by far the most widely used),
iiic) commodity flow formulations.
Several interesting relationships between these three LP formulations have

been outlined by Magnanti. Readers are referred to [67] for full details.

2. Direct tree search algorithms

2.1. Branching on arcs

Direct tree search methods consist of sequentially building vehicle routes by
means of a branch and bound tree. The paper by Christofides and Eilon [101
published in 1969 contains one of the earliest descriptions of such a method.
It is based on the Little et al. algorithm [66] for the TSP and applies to CVRPs
and DVRPs.

It will be useful to first present an ILP formulation of the TSP. Let xii (i # j)
be a 0-1 variable indicating whether arc (i, j) appears (xi / = 1) or not (xii = 0) in
the optimal solution and let s= N - S. Then the TSP can be formulated as
follows:

(TSP) minimize cii xii
i , j E N

subject to

c Xii = 1
i E N

1 Xii = 1

Xii > 1
i ES, j ES

(4)

x. = 0, 1 (i # i , i , j E W . (5)

This formulation was first proposed by Dantzig et al. [181. Constraints (21,
(3) and (5) describe an assignment problem while constraints (4) ensure that
the graph associated with the optimal solution is connected. When constraints
(2) and (3) are satisfied, constraints (4) are equivalent to

Exact algorithms for the vehicle routing problem 151

This equivalence can be extended to more general situations (see [76]).
Two well known relaxations of the TSP are
(i) the assignment problem (AP) characterized by constraints (2), (3), (5) ;

(ii) the shorthest spanning tree problem (SSTP) characterized by constraints
(4) and (5) ; a valid lower bound for the TSP is provided by the value of the
shortest spanning 1-tree, i.e. the shortest spanning tree to which is added the
shortest remaining arc.

Efficient algorithms exist for solving the AP [69] and the SSTP [26,50].
Thus, a valid bound on the TSP can be derived by solving either of these two

problems or by computing a lower bound on their solution. Comparisons of
these two bounds are given in [28].

In order to apply a TSP algorithm to the VRP, it is convenient to first trans-
form the distance matrix C. This can be done by adjoining E - 1 artificial depots
to the set N of cities, where fR is an upper bound on m satisfying

Here and elsewhere, rtl denotes the smallest integer greater than or equal to t

C..
11

‘i 1
c.. =

c .
11

h

i f t > O ; (i t i s e q u a l t o l i f t < O) .
Let N* be the set including the original depot and its copies:

N* ={1,n + 1 , . . . , n + m - 1)

The extended cost matrix C’ = (cg) is then defined by
and let N’ = N U N * .

(i , i EN)

(i E N , j E N *)

(i E N * , j EN)

(i, j E N‘ -N).

(9)

In [lo] , A is set equa to infinity in order to prohibit interLdpot arcs from
entering the solution. Lenstra and Rinnooy Kan [64] have later observed that
- h can be interpreted as the cost of using a vehicle. Therefore,

h = 00

h = 0

yields the minimum distance for f i vehicles;

yields the minimum distance for at most 6i vehicles;

152 G. hporte , Y. Nobert

A = - w yields the minimum distance for the minimum number of
vehicles.

Any sequential algoritms for the TSP, i.e. an algorithm which successively fixes
arcs (variables) at 0 o r 1 in a branch and bound tree (cf. Little et al. [66]) can be
used for the CVRP o r for the DVPR with the following modifications. Christofi-
des and Eilon [101 fathom a branch in one of these cases :

(i) The total load for a vehicle exceeds its capacity D .
(ii) The total distance accumulated for a vehicle exceeds L .

(iii) The total weight of cities not already included in the tour exceeds the
total capacity of the yet unused vehicles.

Instead of computing the assignment bound at every node of the search tree
(as in [66]), Christofides and Eilon suggest using the shortest spanning I-tree
bound.

The algorithm was tested on two VRPs involving capacity restrictions only:
a 6-city problem taken from [46] and the Dantzig and Ramser 13-city example
[191 were solved in 1.5 and 5 minutes respectively on an IBM 7090.

2.2. Branching on routes

In the previous method, branches of the tree were created by including an
arc in the solution or by excluding it from consideration. In [7], Christofides
describes a depth first branch and bound algorithm based on a different philoso-
phy. The class of VRPs to which the algorithm applies is very wide: problems
can include capacity or distance restrictions, time windows, precedence condi-
tions, stopping times, etc. In fact, the method performs better on tight problems
as less branches need be explored.

Each level of the search tree corresponds t o the definition of a new vehicle
route. Thus the tree will have at most Zi levels. To each node of the tree, cor-
responds a set of vehicle routes. Tree construction can be summarized as follows.
Let g represent a node of the search tree and define

F (g) : the set of unrouted (free) cities beyond node g ;

F (g) = N - F (g) : the set of routed cities at node g.

Forward branching from g is done by considering a city i of F (g) and by generat-
ing the list of all feasible routes including i. Each of these routes corresponds t o
an immediate descendant node g’. It is apparent that it is advantageous to choose
i in such a way that as few routes as possible are generated. The following criteria
are used to eliminate from consideration potential routes passing through i:

(i) The route containing i violates at least one side constraint.
(ii) The unused vehicles cannot feasibly supply cities in F(g’) (the total

(iii) Define z * : the cost of the best known feasible solution;
c (9 : the optimal cost of supplying cities of S (S C N);

weight of these cities exceeds the total unused vehicle capacity).

Exact algon'rhms for the vehicle routing problem 153

- c(S) : a lower bound on c(S);
c(S) : an upper bound on c(S).
-

Then node g ' need not be created if

c (F (g)) + c(&') -m) + c (F (g ')) 2 z " .

(iv) g ' is dominated by another immediate descendant g" t o node g , i.e.

c (F (g ") - F (g)) + F (F (g ")) ~ c (F (g ') - F (g)) + c (F (g ')) . (1 1)

Note that c can be replaced by c in the left-hand side of (10) and in the
right-hand side of (1 l) , and by F in the left-hand side of (1 1).

If the VRP involves capacity or total distance constraints only, c(S) may be
computed by solving a TSP on S . Similarly, C(S) can be determined by using
or adapting a TSP heuristic [4 1,431 and the value of c(S) can be obtained from
one of the known TSP bounds 1281. However, it is harder t o determine these
values in problems with time windows.

The largest problem reported solved to optimality with the algorithm contains
3 1 cities. No details are provided on the type of constraints or computing times.

2.3. k-degree centre trees and q-routes

The efficiency of any branch and bound algorithm (for a minimization prob-
lem) rests on the computation, at every node of the search tree, of sharp lower
bounds on the value of the optimum. In [12], Christofides et al. derived such
bounds for the V W . The problem they consider is a VRP with exactly r% vehicles
and with capacity and time restrictions. In addition t o travel times cij between
cities, the authors also consider an unloading time 6i at each city i. The problem
is formulated as a ((tree-index vehicle flow program)) (see section 5) but no direct
use is made of this model either in the computation of the bounds or in the
algorithm which is a direct tree search procedure.

The first of these bounds is based on the fact that the value of the optimal VRP
solution is bounded below by the total length of a k-degree centre free (k-DCT),
i.e. a tree where the degreeofnode 1 is k . Consider E , the set of all arcs. At the
optimum, the set of arcs belonging to the solution can be partitioned into 3 sets:

(i) E , :arcs forming a k-DCT (where k = 2E - y andy GFi);
(ii) E, : y arcs incident t o node 1

(iii) E, : f i - y arcs not incident t o node 1.
Let x i (f = 1, 2, 3 ; 1 E E) be 0-1 variables taking the value 1 if and only if

arc 1 belongs to E, in the optimal solution, let cl be the cost of arc 1, Ei the set
of all arcs incident to node i and (S, s), the set of all arcs with one vertex in S
and the other vertex in its complement $. The authors then consider the multiple
TSP [64] relaxation of the CVRP:

(MTSP) minimize r, c, (XI' + x; + x;)
I t E

154

subject to

E x , ' = 2 i i i - y
I E E '

E x , ' = n - l
I E E

x ; = y
IEE'

x : = i i i - y

C . Laporte, Y. Nobert

(S C N , s f $1

E (XI' + x; + x:) = 2 (i = 2 , . . . , n) (1 7)
I E E i

x;= 0, 1 (t = 1 , 2 , 3 ; l € E) (1 8)

y 2 0 and integer. (19)

Three problems are extracted from (MTSP) by only considering variables
x i (t = 1, 2 , 3) . In each case, constraints (1 7) are incorporated into the objective
function in a Lagrangean fashion to yield

where a(l), P (r) are the two terminal vertices of arc 1, h = (A,) is the vector of
non-negative penalties associated with constraints (1 7) and A, = 0. A lower
bound for the solution of the VRP is therefore

where m1 represents a lower bound on the number of single customer tours in
the optimal VRP solution. Taking into account capacity and maximum time
constraints, m , can be chosen so as to satisfy the following conditions:

(i) Suppose the cities are ordered in decreasing order of the 4's. Then we

Exact algorithms for the vehicle muting pmblem 155

we must have

(ii) Similarly, every city i contributes an amount of at least u, = S i +
+ 1/2 (ciil + qi2) to the length of a route, where i , and i , are the two cities
nearest to i . Then, if the cities are ordered in decreasing order of the ui's, m,
must satisfy

i = m , t 1

Christofides et al. describe an efficient procedure to compute the Vr(h , y)'s.
The second bound developed in [121 is based on q-routes, used by Houck

et al. [48] in the case of the TSP. The bound, which applies to CVRPs. is derived
as follows. Let W be the set of all possible weights that could exist on any vehicle
route. Let the elements of W be ordered in ascendingorder and let q(1) be the
value of the Z t h element of W. Define Jlr(i) as the value of the least cost route

(i) passing through i ;
(ii) starting and ending at the depot;

(iii) having no loop of the form (i,, i,, ill;
(iv) having a total weight q(0.

Such a route is called a q-route. Then, Christofides et al. prove that LB2 is a
valid lower bound for the CVPR:

IL,(i) d,
LB2= min -

I = 1 , ..., IWI (q(1)) *
i = 1

The authors show that Jl,(i) can be computed through a relatively simple
recursion procedure. It is obvious that the effort involved in the computation of
LB2 is directly related to I W I.

These two bounds (based on k-DCTs and on q-routes) were embedded in
branch and bound algorithms and applied to CVRPs ranging from 10 to 25
cities. In the case of the first bound, two branching strategies were used: branch-
ing on arcs and branching on routes; with the second bound, only the first
strategy was used. The results indicate that LB2 is generally superior to LB 1 :
it certainly produces much sharper bounds at the root of the search tree.
However, the best algorithm overall used LB1 in conjunction with a ((branching
on routes3 strategy. All test problems were solved within 250 seconds on a
CDC 7600 computer, using an FTN compiler.

Kolen et d. (491 later used the concept of q-routes to derive an exact branch
and bound algorithm for the CVRP with time windows. Nine test problems

156 G. Lnporte, Y. Nobert

involving from 6 to 15 cities were solved to optimality.

3. Dynamic programming

Dynamic programming (DP) has been applied to several types of VRPs. First,
consider the general formulation provided by Eilon et al. [28].

3.1. General dynamic programming formulation for the VRP

Consider a VRP with a fixed number f i of vehicles. Let c(S) denote the cost
of the optimal single route through the depot (city 1) and all the customers of
a subset S of N -{ 1). We wish to minimize

-
m

2 = C(Sj)
i = 1

(2.5)

over all feasible partitions {S,, . . . , S E } of N - { 1) . Let &(v) be the minimum
cost achievable using k vehicles and delivering to a subset U of N - { l}. Then
the minimum can be determined through the following recursion formula:

(c (v) (k = 1)

min
U * (u I N - { I }

[f k ~ ,(U - U*) + c(U*)] (k > 1) (26)

The solution cost is equal to JZ(N - { 1)) and the optimal partition will cor-
respond to the optimizing subsets U* in (26).

It is apparent that if &(U) has to be computed for all values of k and for all
subsets U of N - {I}, the number of computations required by the method is
likely to be formidable in all but very small size problems. Efficient methods
based on dynamic programming require a substantial reduction of the number
of states by means of a mapping function o r by using feasibility or dominance
criteria. Consider for example the CVRP. In this problem, U and U* must satisfy

d , - (f i - k) D < x d i < k D (k = l , ...,%)
i E N - { l } i E U

and

E d i - (k - l) D < C d , < D (k = l , ...,fi)
i E U i E U *

(28)

3.2. State-space relaxation

State-space relaxation provides an efficient means of reducing the number of
states. The method was introduced by Christofides et al. [131. It provides a lower

Exact algorithms for the vehicle routing problem 157

bound z * on the cost z * of the optimal solution. The optimum can then be
reached by embedding the method in a branch and bound procedure.

Consider the general DP recursion

f o , i (O , j) is the least cost of changing the system from state 0 at
stage 0 to state j at stage i

A-'(j) is the set of all possible states from which state j can be
reached directly

is the cost of changing the system from state k at stage
i - 1 to state j at stage i .

c i (k , j)

Let g(.) be a mapping from the state space S associated with (29) to a state
space G with smaller cardinality and let F - I (g (j)) be a set satisfying

k E A- g (k) E F - '(di)) (3 0)

Recursion (2 9) then becomes

fO,;(g(O), g (i)) = min [f , , i _ , (g (0) , t) + <.(t ,g(i>)l (3 1)
t tF-l(g(j))

where

(3 2)
-
c ; (t , g (i >) = min [ci (k , 0 : g (k) = t , g (i) = g (0 l .

It results that

This relaxation is useful only if
(i) F- l (.) can be easily determined : this will be so if g(') is separable so that

given g(v) and r , g(U - { u }) can be computed;
(ii) g(.) must be such that the optimization of (3 2) is over a small domain

or that a good lower bound onq. (t , g (j)) can be computed.
Using various formulations and several choices of g(.), Chistofides at al.

have applied state-space relaxation to the TSP and to a variety of VRPs. Some
of the results they have obtained are reported in sections 3.3 a) and b).

3.3. Application of dynamic programming to some VRPs

DP has been used successfully to solve some VRPs to optimality or to obtain
very sharp bounds on the value of their optimal solutions. Here are some examples.

a) Capacifated VRP (CVRP) - Chistofides et al. [131 present three formula-
tions for this problem. The first one is provided by (26) , subject to (27) and (28).
Of the other two, one has been used to obtain a good lower bound on the

158 G. Luporte, Y. Nobert

optimum. It can be described as follows. Let &(U, r) be the least cost of supplying
a set U of customers, using only k vehicles, with the last customers of the
corresponding k routes being among the customers 2, . . . , r (k < r < n) . Let
c (U , r) be the cost of the TSP solution through U U { 1) where the last customer
(before the depot) is r. The recursion is then

min [f , (U , r - 11, min { fk J U - U* , r - 1) + c (U * , r) }]
u* c u

(k, r > 1) (34)

C(U, r) (k = 1)

f,W, r) =

subject t o (27).
For this problem, the mapping function is based on q-routes, i.e.

Recursion (3 1) then becomes

subject t o

g(N) - (R - 1) D < p < min (g(U), 0) (3 7)

Using this relaxation, lower bounds on the optimal CVRP solutions were
obtained for 10 problems containing from 1 0 to 25 cities. For the 10-city pro-
blem, the bound was in fact equal to the optimum. Otherwise the ratio dower
bound f optimum)) varied between 93.1% and 99.6%. More recently, Christofi-
des [9] reported that CVRPs involving up to 50 nodes could be solved systemati-
cally by this approach (the largest size attained was 73). Problems containing
up to 125 nodes were solved within 2% of the optimum in less than 15 minutes
on a CYBER 855.

b) TSP with time windows (Christofides et al. [131). Consider a TSP in which
ri time windows [a:, b f] (k = 1, . . . , r ,) are associated with each city i. Without
loss of generality, it is assumed that the time windows are disjoint and ordered
so that

b,"-' <a," (k = 1, . . . , r i) (38)

bp = 0.

Also assume that there is a processing time Si at city i and that cij represents
a travel time from i t o j . Let ti be the time of arrival at city i in the optimal
solution. Then we seek the shortest Hamiltonian circuit through the n cities

Exact algorithms for the vehicle routing problem 159

under the constraint

a: G ti < b,!' for some k E { 1, . . . , r,}. (39)

In this problem, the efficiency of the DP approach is largely dependent on the
number of states which can be eliminated through feasibility considerations:
tighter time windows will lead to the generation of fewer states. Here again
the authors use state-space relaxation; the particular mapping g(.) which is
used is not mentioned. The authors report results for 40 ((moderately tight))
problems ranging from 15 to 50 cities. The method only provides a lower bound
on the optimum. For one particular 30city problem, this bound attains 99.8% of
the optimum.

c) Dial-a-ride problem - This class of problems can be described as follows.
Consider n groups of customers requesting to be picked up at a given location
and to be delivered to another location. In many -to-many problems, origins
as well as destinations are all distinct points. In many-to-one problems, all
delivery points coincide. What follows is valid for many-to-many problems.
Let { 1, . . . , n } be theset of origins and { n + 1, . . . , 2 n } , the set of destinations.
There is a depot located at node 0. Travel times tij and distances cii between
pairs of cities are given. In addition, there is a processing time 6, at each node i.
The problem consists of establishing optimal vehicle routes subject to some
operating rules and constraints.

There are two main classes of operating rules. In the static case, customers
request service and these requests are registered in a list. At a certain point To
in time, a vehicle becomes available and the task is to provide service to all
customers in the list at the time; no new customers may be added to a route
during its execution. In the dynamic case new customers become eligible for
immediate inclusion in a route as they make their request.

The most common constraints are

up (if d, > 0) or delivered (if d, < 0).
(i) Vehicle capacities: at node i are associated d, customers to be picked

Assume that

di > 0

d, = -dt-n

(i = 1, . . . , n)

(i = n + 1, . . . , 2 n) .

(40)

At most iii vehicles of capacity D are used for the operation. At no time can
vehicle capacity be exceeded.

(ii) Time windows: with each node i is associated a unique time window
[ai , b i] . Vehicles may not leave i after b,; they are however allowed to stay idle
at the node if they arrive before ai.

(iii) Maximum position shifts: these were described by Psaraftis [791 in the
following terms:

160 G. Laporte, Y. Nobert

((In any particular vehicle route we can identify the sequence of pickups and the
sequence of deliveries, sequences which, in general, will be merged with one another.
The position (lst , 2nd, etc.) that a particular customer holds in the sequence of
pickups will not in general be the same as his First-Come-First-Served (FCFS)
position in the initial list of customer requests, the difference of these two positions
constituting the pickup position shift of that customer. For instance, a customer
holding the 5th position in the initial list and being pickep up 3rd has a pickup
position shift of + 2 while this shift becomes - 1 if the customer is picked up
6th. A delivery position shift can be similarly defined as the difference between
the position of a customer in the sequence of deliveries and the FCFS position
of that customer in the initial list of requests)).

Then, for any customer, neither of these two position shifts many exceed a
prescribed maximum position shift.

Several variants of the problem can then be defined. In 1791, Psaraftis considers
the static and the dynamic cases with capacity and maximum position shift
constraints. The objective function is a linear combination of

(i) route durations;
(ii) customers waiting times (between To and pick up times);

(iii) customers riding times.
He proposes an O(n23") exact algorithm, an extension of the classical Held

and Karp [471 DP algorithm for the TSP. Taking advantage of the fact that
many infeasible states need not be defined, Psaraftis succeeds in solving optimally
problems involving up to 9 customers in the static case. No computational results
are reported in the dynamic case.

Psaraftis later described a similar algorigithm 1801 for problems in which
maximum position shift constraints are replaced by time windows. No computa-
tional results were reported, but the author stated that he did not expect the CPU
times to be significantly different from those obtained in [791.

Desrosiers et al. [21] consider the static problem where the objective is to
minimize the total distance travelled while respecting vehicle capacities and time
windows. The method is based upon an earlier algorithm by the same authors for
the shortest path problem with time windows [22 - 241. As in the above methods,
infeasible states are not defined and dominated states are discarded. Also, feasible
states which, due to the presence of time windows, could not possibly be part of
the solution, are eliminated. This explains, to a large extent, why this algorithm
produces better results than reported in [79]: problems involving in to 40 requests
(80 nodes) are solved in less than 6 seconds on the University of Montreal CYBER
173.

In a different paper [20], the same authors consider the multivehicle dial-a-ride
problem. They use a decomposition approach which provides a suboptimal solu-
tion. Real-life problems involving up to 880 requests are solved.

Exact algorithms for the vehicIe routing problem 161

4. Set partitioning formulations

Over the years, several integer linear programming formulations have been
suggested for the VRP. Among these, set partitioning formulations cover a wide
range of problems. Unfortunately, due to the large number of variables they
contain, it will rarely be practicable to use them to derive optimal solutions.
Two interesting exceptions are Agarwal’s algorithm for the CVPR [1] and the
algorithm developed by Desrosiers et al. [25] for school bus routing.

Balinski and Quandt [2] were among the first to suggest such a formulation.
Consider all feasible routes j and let aii be a 0-1 coefficient taking the value 1 if
and only if city i appears on route j . Let c: be the optimal cost of route j and
xi be a 0-1 variable equal to 1 if and only if route j is used in the optimal solu-
tion. Then the problem is to

(VRPl) minimize x c: xi
i

subject to

x . = 0, 1 (for all j) . (42) 1

This formulation can easily be transformed to include the case where multiple
passages through city i are allowed: it suffices to replace the equality sign of
constraint i by a ((3) sign. Similarly, the number of passages through city i may
be set equal to a number greater than 1.

There are two major difficulties associated with this approach.
(i) The large number of binary variables which can run into the millions

in most real-life cases. Only in extremely constrained problems (i.e. in problems
with very few feasible solutions) will the number of variables be small enough to
enable the problem to be solved directly.

(ii) The difficulty in computing the c: values. For example, in the CVRP,
each route j corresponds to a set of cities Sj satisfying

x d i < D . (43)
i € S j

The value of c; is then obtained by solving a TSP on S j . As such, this formula-
tion offers no obvious advantage over the general DP formulation.

However, if the number of variables is relatively small and if the objective is

162 G. Laporte, Y. Noberl

to minimize the number of vehicles, i.e. c y = 1 for all j , the linear relaxation of
(VRP1) often provides an integer solution [84]. If the solution (x*) is fractional
and gives a non-integral objective function, then the following cutting plane can
be introduced

xi ex;]* (44)

Very few cuts are generally required to reach integrality [77].
Various authors have proposed column generation schemes to solve VRPs by

the set partitioning approach. Rao and Zionts [82] consider the problem of
establishing i% vessel routes between ports. At each iteration, 6 shortest complete
cycles (one for each vessel) are generated by means of the out-of-kilter algorithm
[33] and the corresponding set partitioning problem is solved. New columns are
introduced into the problem to replace old ones as long as they can reduce the
value of the objective function. Unfortunately, no computational results are
reported for this method.

Foster and Ryan [34] also suggest a column generation approach in which
the routes are obtained by dynamic programming. These authors report that
the method, although not run to optimlity, provides good routes when compared
to those obtained by previous researchers [10,36,40,88].

Agarwal [l l proposes an exact algorithm for the CVRP, based on the set
partitioning formulation. Initially, only a limited number of columns are included
in the master problem and the LP relaxation of (VRP1) is solved optimally.
New columns j are gradually introduced into the problem as follows. Let y =
(y2, . . . ,yfl) be the 0-1 vector of coefficients of the new column and let (u2,
. . . , ufl) be the vector of dual values associated with the current optimal solution
of the master problem. Also, let c * (y) be the value of the optimal TSP solution
associated with y . We seek the column of least reduced cost :

n

(CC) minimize c * (y) - ui yi
i = 2

subject to

i = 2

Y, = 0, 1 (l = 2 , . . . , n) (46)

A lower bound on the optimal value of (CG) can be obtained by first considering
a linear lower bound c * (y) = Z,?= piyi on c * (y) and by then solving the follow-
ing knapsack problem:

Exact algorithms for the vehicle muting problem 163

subject to (45) and (46).
The solution to (KP) is then embedded in a branch and bound scheme to

solve (CG).
Agarwal employs various devices to estimate the dual values and to eliminate

from consideration several candidate columns. At the end of the algorithm,
the set covering problem (including the integrality conditions) need only be
solved over a limited number of columns.

Using this approach, optimal results were obtained for 7 CVRPs (taken from
[121) involving between 15 and 25 cities, in times ranging from 6 to I56 seconds
on an IBM 370/4381.

Orloff [77] discussed the use of column generation in the context of school
bus scheduling and suggested some solution approaches. Desrosiers et al. [2 5]
developed an efficient column generation algorithm for the same problem. In
order to summarize their work, some definitions and notation will be required.

Consider a set of trips to be covered by buses and a set of intertrips correspond-
ing to unproductive bus journeys between the trips. Every trip i is characterized
by a place of origin, a destination, a duration, a cost and a time interval [ai , b,]
during which the trip must begin. The intertrip arc (i , j) goes from the end of
trip i to the beginning of trip j . Its duration tii and its cost cij include respectively
the duration and cost of trip i . A route is a sequence of trips and intertrips carried
out by the same vehicle. The problem is to determine routes and schedules for
all the trips so as to minimize the number of vehicles and travel costs for that
number of vehicles, while respecting network and scheduling constraints.

The problem is formulated as (VRP1) where i represents a trip and j , a route.
A column generation scheme is used and columns are provided by the solution
of the following shortest path problem with time windows. First define the
following notation.

P is the set of trips;

I is the set of intertrips arcs;

s is a source and t is a sink;

P’ = P u { s , t };

A = P 2 u ({s } x P) u (P x { t }) ;

xii = 1 if and only if (i , j) is used by a vehicle;

t i is the starting time of trip i ;

ui is the ith dual variable of the linear relaxation of (VRp1).

Then the subproblem associated with the generation of a column is a shortest
path problem with time windows:

164 G. Laporte, Y. Nobert

(SPTW) minimize (c i j
(iiE.4

subject to

t X i j = 1 xj i
j EP' j € P t

E X s j = E X i f = 1
j € P j € P

(i E P) (47)

(48)

Xii > 0 =3 ti + tii Q ti (i , 1) E I (49)

a, < ti Q b, (i E P) (50)

x.. = 0,l (0, i) E A) (51)

In this formulation, constraints (47) are flow conservation equations and
constraint (48) expresses the fact that one vehicle leaves and enters the depot.
Constraints (49) ensure that trip j can only be made immediately after trip i if
this succession does not violate a time window constraint. It can be shown [251
that (SFTW) possesses an integer optimum even if constraints (5 1) are relaxed (i.e.
the bounds on the variables are relaxed as well as the integrality conditions).
Desrosiers et al. solve (SPTW) by means of a dynamic programming algorithm
[2 2] . The authors suggest introducing several routes (columns) simultaneously
into the master problem (VRPl), as opposed to only one at a time. The effect
of this strategy is to reduce overall computation times by a factor of 2. The
master problem is also solved by relaxing the integrality requirements and by
introducing two cuts in order to eliminate solutions with a fractional cost or a
fractional number of vehicles.

Desrosiers et al. report exact solutions for problems involving up to 151 trips.
The running time for the largest problems vanes between 94 seconds and 376
seconds on the University of Montreal CYBER 173 computer, in the case where
time windows are relatively narrow. As expected, computation times increase as
time windows widen.

I!

5 . Vehicle flow formulations

Most ILP algorithms for vehicle routing problems are based on vehicle flow
formulations. These formulations use binary variables to indicate whether a
vehicle travels between two given cities in the optimal solution. We distinguish
two families of vehicle flow formulations: three-index formulations and two-
index formulations. In the first case, three indices are attached to each flow

Exact algorithms for the vehicle muting problem 165

variable: the origin, the destination and the vehicle making the trip; in the second
case, the vehicle is not identified.

5.1. Three-index formulations

The following formulation is adapted from the work of Golden et al. [42]
for asymmetrical VRPs involving at most f i vehicles and r depots. In addition
to the standard notation, define

Dk

tk.

6;

Lk

C k

: the capacity of vehicle k

: the time taken by vehicle k to travel from i t o j (t i i = W)

: the time required for vehicle k to service city i (6: = 0 ,

: the maximum allowed length of route k

: the cost of using vehicle k from i to j

if vehicle k travels directly from i to j

11

i E R)

I I

(1
X k =

‘ I 10 otherwise.

The VRP can be formulated as follows.
-

(VRP2) minimize c~ x~

subject to
- prx;=1 (j = r + 1,. . . , n) (52)

i = l k = l

c d i f x$ <Dk

(i = r + 1,. . . , n) (53)

-

(54)
(k = l , . . . , m ;
I = 1, . . . , n)

(k = 1 , . . . ,E) (5 5)

166 G. Lamrte, Y. Nobert

i = l j = r + 1

j = 1 i = r + 1

(k = 1,. . . , G)

(k = 1 , . . . , E)

The solution may not contain subtours which
do not include a depot.

(57)

(59)

X k = 0, I (i , j = 1 ,..., n ; k = 1 ,..., f i) (60) ii

In this formulation, constraints (52) and (53) specify that each city must
be served exactly once by one and only one vehicle; constraints (54) ensure that
every city is entered and left by the same vehicle; constraints (55) guarantee that
vehicle capacities are never exceeded while constraints (56) are imposed in order
to ensure that no vehicle route exceeds its time limit. Constraints (57) and (58)
ensure that no more than iii vehicles leave the deposts and there is at most one
vehicle per depot.

Subtour elimination constraints specified by (59) may be one of the following:

(I s p 1 ; R G S C N ;
k = 1, . . . , f i) (5 9a)

(k = 1, . . . , E;
r + I < i # j < n ;
for some yi, yi E IR)

yi -yi + n x; Q n - 1 (5 9c)

Contraints (59a) and (59b) were first suggested by Dantzig et al. [18] for the
TSP while constraints (59c) are those of Miller et al. [74].

It is relatively easy to include fixed vehicle costs fk into the objective function
by adding the term ZF= f,(C;, , C:=,, + x;). It is also possible to impose the
restriction that city i be visited within the time interval [a i , b,] (i = r + 1, . . ., n).
For this, define a variable ti equal to the arrival time at city i and impose

ti = 0 (61)

a, Q ti < bi (i = r + 1, . . . , nj (62)

(i = 1, . . . , r)

Exact algorithms for the vehicle routing problem 167

where T is an arbitrarily large number.
Fisher and Jaikumar [29] present a different three-index vehicle flow formula-

tion for the single depot VRP with capacity restrictions, time windows and a
fixed number E of vehicles. The authors have then developed an efficient algo-
rithm based on this formulation. Although the algorithm seems to have been used
to only provide a heuristic solution to the problem, as do some other approximate
methods, it guarantees an optimal solution in a finite number of steps, if run
to completion. The approach developed by Fisher and Jaikumar also possesses
many other desirable features.

The notation is partly borrowed from (VRP2). Extra variables are introduced:

\ 1 if city i is served by vehicle k

otherwise

but travel costs and times are vehicle independent (although vehicle dependent
parameters could easily be taken into account by the model and algorithm).
There are no service times at the nodes. The formulation is

subject to

2 di y i k < Dk
i = I

2 x; = y j k
i = 1

i J E S

(k = 1, . . . , Z) (64)

(i = 13
(i = 2 , . . . , n)

(] = l , . . . , n ;
k = 1, . . . , E)

(i = 1, . . . , n ;
k = 1, . . . , Z)

168 G. Laporte, Y. Nobert

ti > ti + tii - (1 - x:) T

(69)
(i , j = 1 , . . . , n ;
k = 1, . . . , E)

ti < t i + tii -t (1 - x;) T

ai < ti < bi (i = l , . . . , n) (70)

y j k = O, (71)

X k I 1 = 0 , l (72)

All constraints included in this formulation are self-explanatory or have been

Essentially, two well known problems are contained in (VRP3):
(i) the generalized assignment problem (GAP) (constraints (64), (651, 7 l)) ,

(ii) the TSP: when the Yik'S are fixed to satisfy the GAP constraints, then
for a given k , constraints (66) - (68) and (72) define a TSP for vehicle k .

The authors propose an algorithm based on Benders' decomposition [3]. The
method iterates between solving a GAP master problem to assign cities to vehicles
and solving a TSP with time windows (TSPTW) to determine the best route for
each vehicle. The method has the advantage of producing a feasible solution,
even when not run to completion. Also, since it repeatedly solves a GAP and
TSPTW, it can benefit directly from any improvement in algorithms for these
two problems. Moreover, the method has an intuitive appeal in that its two
phases correspond to the two steps naturally followed by vehicle dispatchers.

In [30], Fisher and Jaikumar use their algorithm to derive approximate solu-
tions to a number of problems involving capacity restrictions only and ranging
from 50 to 199 cities. The results indicate that their method compares favoura-
bly with those of Christofides et al. [l l] , Clarke and Wright [16] and Gillet
and Miller [40]. It is worth mentioning that Toth [85] lately improved the two-
phase method described in [111 to produce a method which outperforms in most
instances that of Fisher and Jaikumar [30].

(i = 1 ,..., n ; k = 1 ,..., 3)

(i,]= 1 , . . . , n ; k = 1,. . . ,%)

described previously.

5.2. Two-index formulations

Two-index formulations can be derived from three-index formulations by
aggregating all xfi variables into a single variable xii indicating whether or not
a vehicle travels directly from i to j in the optimal solution. In symmetrical
problems, xli indicates the number of times (0, 1 or 2) edge (i, j) (i < j) is used
in the optimal solution. More formally, xii is defined as

In two-index formulations, all vehicles are assumed to have the same costs and
characteristics. These formulations were used for the exact solution of several

Exacr algorithms for the vehicle mutingpmblem 169

types of VRPs by Laporte et al. [52 - 63,761 and Fleischmann [31,32]. The con-
straint relaxation algorithms developed by these authors belong to the same
family as those used by several authors for the TSP and some of its extensions.

5.2.1. Symmetrical VRPs under capacity and distance restrictions

Two-index formulations have been mainly used for problems having a sym-
metrical distance matrix C. Consider first the single depot VRP under capacity
and distance restrictions and assume C satisfies the triangle inequality. The
following formulation is taken from [62]:

(VRp4) minimize C cii xij
i , j E N

subject to

C x l i = 2 m
j E N - { I }

E X i k + E Xki = 2 (k EN- { 1))
i < k j > k

(74)

(75)

(i = l , j ~ N - { l } ,
C l i < 1/2 L)

(77)

(0 , l (i , j E N - \ 11)

m 2 1 and integer. (78)

In this formulation, L represents the maximum length of any route, m is the
number of vehicles (a constant if it is fixed a priori or a variable) and V (S) repre-
sents a lower bound on the number of vehicles required to visit the deport and all
cities of S in the optimal solution. Its computation is developed later. Variables
are only defined if each of the following three conditions holds:

(i) i < i (x i j must be interpreted as xii whenever i > j) ;
(ii) d , + d j < D ;

(iii) cii + P (i) + P (j) < L where P(i) is the length of the shortest path from
1 to i . (When C satisfies the triangle inequality, P(i) is simply cli).

Constraints (74) and (75) specify the degree of each node while constraints
(76) prohibit the formation of illegal subtours, i.e. subtours which are either

(i) disconnected from the depot, or
(ii) connected to the depot and having a total weight exceeding D, or

170 G. Laporte, Y. Noberr

(iii) connected to the depot and having a total length exceeding L .
In [6 2] , (VRP4) is solved by a constraint relaxation algorithm: integrality

and subtour elimination constraints are first relaxed ; integrality is obtained by
branching on the variables while illegal subtours are eliminated as they are found
to be violated (constraints (76) can be generated at non-integer solution). The
algorithm can be summarized by the flow-chart depicted in Figure 1 (Z represents
the objective value of the current subproblem while z* is the value of the incum-
bent). Most steps of the algorithm require no explanation in so far as they cor-
respond to a standard branch and bound procedure. Howere, it is worth examin-
ing two steps in some detail.

(i) Subtour prevention constraints

Consider the solution at a given node h of the search tree: the solution contains
(i) sets of nodes { i,, . . . , i,} (u > 1) corresponding to chains (i , , . . . , i,) such

that 1 $ { i,, . . . , i,- , } if u > 2 and for which all variables xi l i z , x i z i3 , . . . , xi,_ l i u

have been fixed at 1 and
(ii) nodes not belonging to such chains (we define for each such node i a

singleton { i}).

[INITIALIZATION 1
no .)

.L
-4 CHOOSE NEXT SUBPROBLEM 1

.
USING SIMPLEX

I
t

<11 z * ?)
no

SEARCH TREE

1 I PURGE INEFFECTIVE CONSTRAINTS 1
A

DISTANCE CONSTRAINTS

APPLY

PROCEDURE
BRANCHING SOLUTION INTEGER ?

UPDATE z* AND
STORE SOLUTION

Fig. 1 . Flow chart of the algorithm used for the solution fo (VRP4).

Eract algorithms for the vehicle routing problem 171

We refer to these sets of nodes S, (corresponding to chains or single nodes)
as components. Each Sk has an associated weight w(&) defined as

and a length lh (Sk) defined as

in the case of a chain
(i l , * * , iu) Cit‘t + 1

in the case of a node.

Consider a component S,. If it corresponds to a chain, let p, and 4,. be the end
nodes of that chain; if it corresponds to a node i, let p, = qr = i. In the first
case, variable xprq , can be forced to zero if

(i) p , ,q ,EN-{l}or
(ii) p,. = 1 and lh(S,) + clqr > L .

Now consider to components S, and S, and let i ~ { p , , 4r} , {7}={ p, , 4,) - { i},
j E{p , , q , } , { j }= { p,, q s } - { j } . Variable xi j can be forced to zero if

(iii) i , j E N - { l } a n d w (S ,) + w(S,)>D,or
(iv) i, j E N - { 1 }and P6) + P(7) + lh (Sr) + lh(S ,) + cij > L , or
(v) i = l , j ~ N - { l } a n d P (3 + P (S ,) + clj > L .

At node h of the search tree, consider the graph G’ = (N - { l}, E’, 0 where
E ‘ is the set of all (undirected) edges (i, j) for which i, j E N - { 1) and xi j > 0.
N - { 1) can be partitioned into K connected components S,, S,, . . . , S, i.e.
sets of nodes linked by ((positive edges)). Let S z = S, U {I}. Each S; has a weight

w (S ~) = w(S,) = di
i € S k

and a length

It can be shown that the minimum number of vehicles required to visit all nodes
of S z in the optimal solution is bounded below by

vh(sk) = max { r w (S k) / D 1 , ph(S,’)/L1 1. (83)

Therefore, for each k , the following subtour elimination constraint can be impos-
ed, whenever it is violated:

172 G. Laporte, Y. Nobert

Recently, Gavish [37] suggested the use of a sharper bound V:(S,) obtained by
replacing in (83) rw(Sk)/D1 by the number of bins in the optimal solution of the
bin packing problem [27] associated with S,. Alternatively, one could use one
of the known lower bounds for the bin packing problem [68].

In addition to imposing one type (84) constraint for each S,, the authors also
introduce a similar constraint for S* = S, U S, U . . . U S,, whenever K > 1 ;
this constraint is obtained by replacing S k by S* in (83) and (84). Computational
experiments show that the presence of such a constraint helps to reduce the
growth of the search tree.

Since constraints (84) are sometimes imposed when the current solution is
fractional (see Figure 11, they may be satisfied at the time of their generation.
In such cases, a violated constraint can sometimes be derived by means of a
simple heuristic search [6 2] .

It can be shown that if C does not satisfy the triangle inequality, r l h (S , +) / q
does not constitute a valid lower bound on the number of vehicles required to
visit all nodes of S t in the optimal solution of subproblem h . In such cases,
a valid constraint can be derived to eliminate subtours connected to the depot
and which do not satisfy distance constraints. This constraint, which is derived
in [62], can be expressed as

In (8 9 , S is a subset of Nsatisfying
(i) 1 E S;

(ii) 1 S[2 3 ;
(iii) the value of the TSP solution on S exceeds L . (This information is availa-

ble when the constraint is generated).
Using the algorithm summarized by Figure 1 (or a slightly modified version

for problems in which C did not satisfy the triangle inequality), Laporte et al.
[62] have obtained exact solutions to problems involving up to 50 cities for
problems in which C satisfied the triangle inequality and up to 60 cities for
problems in which C did not possess this property.

(VRP4) can be stengthened by the inclusion of extra constraints such as
comb inequalities. These constraints were first developed by Chvital [151 for the
TSP and later generalized by Grotschel and Padberg [44]. They constitute facets
of the integer polytope associated with the TSP [45] and include subtour elimina-
tion constraints (6) as a special case. Their inclusion in a constraint relaxation
algorithm for the TSP enabled Crowder and Padberg to solve exactly a 318-city

Exact algorithms for the vehicle routing problem 173

problem [1 71.
Comb inequalities for the TSP were generalized for the VRP by Laporte and

Nobert [60] and later modified by Laporte and Bourjolly [53]. In the case of the
CVRP, they can be stated as follows. Let W,(I = 0, . . . , k) be subsets o f N - { 1)
satisfying

p - W o p l (I = 1 , . . . , k) (86)

1 W,n Wol>- 1 (I = 1, . . . , k) (87)

I Wln W,,l = 1 (1 < Z < l ’ < k) . (88)

Then the following condition (comb inequality) holds for every feasible solution
fo the CVRP :

I = 0 i , j € W , I = 0

(89)

1 - - [v,(w,) + v,cy - WJ + vtw, n wO)l 1’ 2 1 = 1

where V,(S) is a lower bound on the optimal value of the bin packing solution
associated with S .

It can be shown [53] that in general, comb inequalities defined by (89) do not
constitute facets of the integer polytope associated with the CVRP.

5.2.2. Capacitated symmetrical road-TSP

Fleischmann [3 1, 321 uses the expression ccroad -TSP)) t o designate routing
problems derived from a real-life (sparse) road network and in which multiple
passages through the same city are allowed whenever they are economical. Such
problems have also been referred t o as complete cycle problems by other authors
[73]. The two-index formulation used by Fleischmann belongs to the same family
as those of Dantzig et al. [18], Miliotis [70-721, Land [51] and Crowder and
Padberg [171. It includes degree constraints, integrality constraints, connectivity
constraints (preventing the occurence of disconnected components) and a new
class of constraints called 3-star constraints, generalizing comb inequalities.
Fleischmann uses a pure cutting planes method and obtains exact solutions for
road-TSPs involving up to 292 cities [32]. He applies a similar approach to the
capacitated road-TSP (CRTSP) [3 1] by first considering the following relaxation
of the problem:

(VRPS) minimize cij xij
i . j E N

subject t o

174 G. Loporte, Y. Noberi

E x i k + E x k j > 2 a n d e v e n (k ~ N - { l }) (91)
i < k 1 > k

xij 2 0 and integer (i <i) (93)

m 2 1 and integer. (94)

Here, V(S) is defined as rZiEsdi /D1, but could easily be replaced by the bin
packing bound. (VRPS) is solved by means of a constraint relaxation algorithm
of the type used for the road-TSP. 3-star constraints generalizing those used for
the road-TSP (in the same way as comb inequalities used for the CVRP [60]
generalize those of Grotschel and Padberg [44,45]), are generated to eliminate
fractional solutions not violating connectivity constraints (92). If the solution
to (VRPS) is feasible for the CRTSP, it is then optimal; otherwise, it constitutes
a valid lower bound on the value of the CRTSP solution. Fleischmann [31]
gives an example of a solution satisfying (90) - (94), but infeasible for the CRTSP.
Laporte [52] describes a procedure for generating constraints in order to eliminate
such solutions.

Using this approach, Fleischmann succeeded in solving to optimality some
CRTSPs ranging from 28 to 68 cities [31].

5.2.3. Capacitated location-routing symmetrical problems

Laporte et al. [61] used a two-index formulation to treat a family of CVRPs
involving simultaneous depot location and routing. Consider R C N , a set of
potential depots. The number P of such nodes used as depots in the optimal
solution must lie between two prespecified bounds f 2 1 and F< I R I. The cost
of using node r as a depot is equal to g,. There are m, identical vehicles based at
depot r , each with the same capacity D and a fixed cost f , . To each node i of
N - R , is associated a nonnegative requirement d, (< D) .

The problem consists of selecting depot sites (when _P < I R I), of determining
how many vehicles are based at each selected depot and of establishing vehicle
routes in such a way that

(i) each route starts and ends at the same depot;
(ii) all requirements are met exactly once by a vehicle (the same city i may be

visited more than once if this saves distance but then, the requirement d , of that
city is satisfied only once by one vehicle);

Exact algorithms for the vehicle muring problem 175

(iii) the sum of all requirements satisfied by any vehicle does not exceed D;
(iv) f < P < P ;
(v) for each node r used as a depot, the number of vehicles lies between two

(vi) the total cost is minimized.
In addition to the notation already introduced, define

T : an arbitrarily large number

prespecified bounds _mr and f i r : 1 < _mr < rn, < Er ;

xi j : a variable indicating the number of times edge (i , j) is used in the
optimal solution. xii is not defined if i > j , if i , j E R or if
di + dj > D . xii must be interpreted as xji whenever i > j

y, : a binary variable indicating whether node r is used as a depot
(Y , = 1 j or not (y , = 0).

The problem can be formulated as follows:

(VRP6) minimize cij xii + (g r yr + f*rnr)
i , j E N r E R

subject to

1 X i k + 1 X k j = 2
i<k k < j

x i , + xrj = 2mr
i < r r < j

(k E N - R) (95)

(96)

xi,i* + 3 x g i , + x . . I3 I4 Q 4 (i l , i4 E R ; i z , i 3 E N - R) (98)

x. . + xih-lih +
'1'2

(h > 5 ; i l , i h E R ;
i2 , , , . , ih - E N - R ; (99)

116 C. LPporte, Y. Nobert

l’ I 0 ’ l 0, 1 , 2
x.. =

(i, j E N - R)

(i o r j E R).

In this formulation, constraints (95) specify that each city not used as a depot
must be serviced exactly once by a vehicle. Similarly, constraints (96) express the
fact that m, vehicles must leave and enter each city in R . Constraints (97) ensure
that the solution does not contain illegal subtours, i.e. subtours disjoint from R
or subtours having a total weight exceeding D . As previously, the bin packing
bound could be substituted in the right hand side of (97). Constraints (98) and
(99) are chain barring constraints. They ensure that each route starts and ends
at the same depot. Their development is fairly lengthy and is fully provided in

Using a constraint relaxation approach in which integrality constraints, subtour
elimination constraints and chain barring constraints are first relaxed, the authors
succeeded in solving to optimality

[611.

(i) problems without capacity restrictions involving up to 25 cities;
(ii) problems with capacity restrictions containing up to 20 cities.
It was observed that imposing large depot costs tended to produce easier

problems (the locational aspect of the problem becoming less predominent);
on the other hand, the size of vehicle costs did not seem to affect the behaviour
of the algorithm one way or the other.

Other types of less sophisticated location-routing problems are also treated
in [57,63].

5.6.4. Asymmetrical VRPs under capacity or distance restrictions
Many of the concepts developed for symmetrical VRPs are also usable in the

asymmetrical case. Two types of asymmetrical VRPs (the CVRP and the DVRP)
are studied in [55] and [56]. It is assumed in each case that an upper bound Ei
on the number of vehicles in known. Then the graph G = (N , E , C) associated
with the VRP is extended into a graph G ‘ = (N ’ , E ‘ , C’) as suggested by Lenstra
and Rmnooy Kan [64] for example. First, F i i - 1 artificial depots are introduced;let
N * = { 1, n t 1, n + 2, . . . , n + iE - 1 } be the set of depots and let N’ = N U N * .
C‘ = (ch) is defined as in (9) except that cii = 00 for all i E N ‘ . As explained in
section 2, the nature of the problem varies according to X.

The problem is formulated as (TSP) (see section 2.1) where N is replaced by
N’. The solution of the TSP on G ’ can easily be transformed into the solution
of a multiple TSP on G where m < 6 :

(i) i f i E N - { l}andjEN’-N,replace(i , j) by(i , 1);

Exact algorithms for the vehicle routing problem 111

(ii) if i E N ' - N a n d] E N - {I}, replace (i, j) by (1 , j) ;
(iii) if i, i EN' - N, remove (i, j) .
The transformed solution consists of a t most E Hamiltonian circuits covering

all nodes of G and having a unique common node at 1. This solution is feasible
for the VRP if and only if

(i) the weight of each Hamiltonian circuit is less than o r equal .to D (in the
CVRP);

(ii) the length of each Hamiltonian circuit is less than or equal to L (in the
DVRP).

These two types of infeasibilities can be eliminated at the source, during the
solution of the TSP of G'. This is done by extending or otherwise modifying the
Carpaneto and Toth algorithm [6] for asymmetrical TSPs. Using this approach,
exact solutions were obtained for problems containing up to 260 cities in the
case of the CVRP and up to 100 cities in the case of the DVRP.

6 . Commodity flow formulations

In addition to the XQ (or xi i) variables used in the CVRP formulations of the
previous section, commodity flow formulations associate flow variables y $
(or yii) with the arcs. These variables indicate how much of the demand destined
for city 1 travels on arc (i, j) . Such formulations were first proposed by Garvin
et al. [35] in an oil delivery problem. Many variants were later developed and
analyzed by Gavish and Graves [38 ,39] for various TSP extensions. As far as
the authors are aware, no exact VRP algorithm based on a commodity flow
formulation has ever been constructed and tested. This section presents some
of the commodity flow formulations set up for the CVRP. They are adapted
from [37 - 391.

First consider CVRPs in which di represents the demand of city i and where
the number E of vehicles is fixed. The following formulation is adapted from
the the work of Gavish and Graves [38] (these authors also consider time limit
constraints on the routes).

(VRp7) minimize f- cij x i j

subject to

n

Xii = 1
i = 1

n

X i j = 1

(j = 2 , . . . , n)

(i = 2 , . . . , n)
j = 1

178 G. Laporte, Y. Nobert

n n

i = 1 i = 1

n

vij < D xij

(1 08)
(j = 1 ; j = 2 , . . . ,n)
(j # l ; j , 1 = 2 , . . ., n)

(i # j ; i , j = , . . . ,n) (109)
I = 1

Yij 2 0 (i , j , l = 1 , . . . ,n) (1 10)

X i j = 0, 1 (i , j = 1 , . . . , n) (1 11)

In this formulation, constraints (1 OS), (1 06) and (1 1 1) ensure that every
city, except the depot is visited exactly once; constraints (1 07) and (1 1 1) specify
that there must be @i vehicles; contraints (108) are flow balancing constraints
which guarantee that the demand of each node is satisfied; constraints (108) and
(109) ensure that the solution will contain no illegal subtour; constraints (109)
are imposed in order to ensure that vehicle capacities are never exceeded and that
goods can only be moved through an arc if a vehicle uses this arc.

In the case where the number of vehicles is bounded by E, constraints (107)
can be replaced by

(107')

Similarly, if the number of vehicles is unspecified, constraints (107) become

n n

X i l = 1 Xlj

i = 2 i = 2

(107")

As suggested by Magnanti [67], such a model can easily be transformed to
deal with the case of heterogeneous fleets. This is done by defining variables
x$ indicating whether or not vehicle k travels directly from i to j . Constraints
involving xij variables in (VRP7) must of course be modified accordingly.

In Gavish and Graves [38], the index 1 is removed and the problem becomes:

n n

(VRP8) minimize cr, xi,
i = 1 / = 1

subject t o (l05) - (107) , (l l l) and

Exact algorithms for the vehicle muting problem 179

n n

y ; j - x y; i=4

i = 1 i = 1

n n

I

d/ (j = 1 ; 1 = 2 , ..., n)

0 (j # I ; j , 1 = 2, . . . , n)

(j = l ; Z = 2 , . . . , n) , -4

yij - C yii = d j
i = I i = 1

(j = 2 , . . . , n) (1 12)

yij < D xij (i , j = 1, . . . , n) (1 13)

Yij > 0 (i , j = 1, . . . , n) (1 14)

In (VRP8), yij represents the quantity of goods travelling on arc (i , j) .
Using different arguments, Magnanti [67] and Nobert 1761 have proved that

by applying Benders’ decomposition to (VRP7) or (VRP8), one obtains the
subtour elimination constraints vehicle flow model (VRP4) specialized to the
CVRP.

In [37], Gavish presents some more constrained formulations.

(V RP9) minimize cij xi j

subject t o (105) - (107), (1 lo) , (1 11) and

Y : ~ <dl xi,
(i, 1 = 2 , . . . , n ;
i = 1 , . . . , n)

n n

/r y f i < D - d j (j = 1 , . . . , n ; d l = O)
i = Z l = Z

The elimination of index 1 yields a simpler model:

(VRPlO) minimize F, cij x i j

subject to (105) - (107), (1 1 l) , (1 12), (1 14) and

d j X i j < yij < (D - d i) xi j (i , j = , . . . , n

In order to establish comparisons between these formulations, consider LPi, the

(This is a generalization of a similar result for the TSP

(when V (S) = C i E s d , / D in (76))

value of the LP relaxation of (VRPi). Gavish [37] shows that
(i) L€’!J>LPlO

(ii) LP4 = LPl 0
proved in [87])

180 G . Laporre, Y . Nobert

(iii) LP4 2 LP9 2 LPlO (when V (S) = bin packing bound in (7 6)) .
These relationships and the equivalence between (VRP7) and (VRP4) suggest

that it many be relatively efficient to use (VRP4) with the bin packing bound to
solve the CVRP.

In [38], Gavish and Graves report some computational results relative to the
bound associated with various relaxations of (VRPlO) for CVRPs ranging from
10 to 30 cities. These results show the presence of fairly large gaps between
the VRP optimum and the LP optimum when n 2 15. Finally, we mention the
existence of various commodity flow formulations for other types of VRPs.
These were developed by Gavish and Graves [38, 391 for multi-depot VRPs,
dial-a-ride problems and school bus problems.

7 . Conclusion

Many person-years of research time have been spent on the development of
solution methods for the VRP. Yet, despite all these efforts, most types of
VRPs remain virtually unsolved: exact methods can only handle problems of
relatively modest dimensions.

Of all methods considered in this survey, direct tree search algorithms offer,
in our opinion, the least potential for growth. Dynamic programming algorithms,
on the other hand do not appear t o have reached their maximum potential; the
state-space relaxation approach developed in [13] does not seem to have been
exploited fully. Similarly, several ILP formulations have been provided, but
few have led to the construction of exact algorithms. The rare cases that have
been published would indicate that ILP works quite efficiently on some types
of problems.

The most successful algorithms presented in this survey take the greatest
possible advantage of the problem on hand. Tight problems cannot be handled
in the same manner as loose problems and, in general, symmetrical and asymme-
trical problems require different types of algorithms. One obvious tendency
has been to move from general to particularized algorithms.

h o k i n g ahead, it is safe to say that the study and development of exact algo-
rithms for the vehicle routing problem will remain a major research topic in years
to come and should yield new theoretical developments.

References

111

[2]

[31

Y.K. Agarwal, ((Set Partitioning Approach to Vehicle Routing,, presented at the TIMS/ORSA Confe-
rence, Boston, 1985.
M . Balin’ski and R . Quandt, ((On an Integer Program for a Delivery Problem#, Operutions Reseurch,

J.F. Benders, ((Partitioning Procedures for Solving Mixed-Variables Programming Problems,, Nume-
rische Muthematik 4, 238 - 252, 1962.

12, 300- 304, 1964.

Exact algorithms for the vehicle routing problem 181

L.D. Bodin and B.L. Golden, ((Classification in Vehicle Routing and Scheduling)), Networks 11,

L.D. Bodin, B.L. Golden, A. Assad and M . Ball, ((Routing and Scheduling of Vehicles and Crews,
The StateoftheArt*,Computers& OperationsResearch 10, 69 -211, 1983.
G. Carpaneto and P. Toth, ((Some New Branching and Bounding Criteria for the Asymmetric Travell-
ing Salesman Problem*,Management Science 26,736 - 743, 1980.
N. Christofides, ((The Vehicle Routing Problem,, RAIRO (recherche opdrationnelle) 10, 55 - 70,
1976.
N. Christofides, ((Vehicle Routing,, in E.L. Lawler, J .K. Lenstra, A.H.G. Rinnooy K i n and D.B.
Shmoys, eds., The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization,
Wiley, 1985.
N. Christofides, ((Vehicle Scheduling and Routing,, presented at the 12th International Symposium
of Mathematical Programming. Cambridge, Massachusetts, 1985.
N. Christofides and S. Eilon, ((An Algorithm for the Vehicle Dispatching Problem,, Opemtional
Research Quarterly 20, 309 - 318, 1969.
N. Christofides, A. Mingozzi and P. Toth, <The Vehicle Routing Problemr, in N. Christofides, A.
Mingozzi, P. Toth and C. Sandi, eds., Combinatorial Optimization, Wiley, 1979.
N. Christofides, A. Mingozzi and P. Toth, ((Exact Algorithms for the Vehicle Routing Problem, Based
on Spanning Tree Shortest Path Relaxations,, Mathematical Programming 20, 255 - 282, 1981.
N. Christofides, A. Mingozzi and P. Toth, ((Space State Relaxation Procedures for the Computation
ofBounds to Routing Problems,, Networks 11, 145 - 164, 1981.
N. Christofides and M . Thornton, ((A Shortest Path Algorithm for Generalized Weighted Matchings,,
Report IC-OR-8212, Imperial College o f Science and Technology, London, 1982.
V. Chviltal, ((Edmonds Polytopes and Weakly Hamiltonian Graphs)), Mathematical Bogramming

97 - 108, 1981.

5 , 2 9 - 40, 1973.
G. Clarke and J.W. Wright, ((Scheduling of Vehicles from a Central Depot to a Number of Delivery
Points,, Operations Research 12, 568 - 581, 1964.
H. Crowder and M.W. Padberg, <(Solving Large-Scale Symmetric Travelling Salesman Problems to
Optimalityr,Management Science 26 ,495 - 509, 1980.
G.B. Dantzig, D.R. Fulkerson and S.M. Johnson, ((Solution of a Large Scale Travelling Salesman
Problem), Operations Research 2, 393 - 410, 1954.
G.B. Dantzig and J . Ramser, ((The Truck Dispatching Problems, Management Science 6, 81 - 91,
1959.
J. Desrosiers, Y. Dumas and F. Soumis, ((The Multiple Vehicles Many to Many Routing Problem
with Time Windowsr, Cahiersdu GERAD, G-84-13 , Ecole des Hautes Commerciales de Montrdal,
1984.
J. Desrosiers, Y. Dumas and F. Soumis, ((A Dynamic Programming Method for the Large Scale Single
Vehicle Dial-a-Ride with Time Windows,, American Journal of Mathematical and Management
Sciences (to appear).
J. Desrosiers, P. Pelletier and F. Soumis, ((Plus court chemin avec contraintes d’horaires)), RAIRO
(recherche opdrationnelle) 17, 357 - 377, 1983.
J . Desrosiers, M . Sauve and F. Soumis, ((Shortest Path with Time Windows Problem), Publication
389, Centre de Recherche sur les Transports, Universitd de Montrdal, 1985.
M. Desrochers and F. Soumis, ((A Generalized Permanent Labelling Algorithms for the Shortest
Path Problem with Time Windowsx, Publication 394A, Centre de Recherche sue les Transports,
Universitd de Montrhl, 1985.
J . Desrosiers, F . Soumis and M. Desrochers, ((Routing with Time Windows by Column Generation,,
Networks 14, 545 - 565, 1984.
E .W. Dijkstra, ((A Note on Two Problems in Connexion with Graphs,, Nurnerische Mafhematik 1,

S. Eilon and N. Christofides, ((The Loading Problem)), Munagement Science 17. 259 - 267, 1971.
S. Eilon, C.D.T. Watson-Candy and N. Christofides, Distribution Management; Mathematical
Modelling and Practical Analysis, Griffin, 197 1.
M . Fisher and R. Jaikumar, ((A Decomposition Algorithm for Large-Scale Vehicle Routing,, Work-
ing paper 78-11 -0.5, Department ofDecision Sciences, Universityof Pennsylvania, 1978.
M . Fischer and R. Jaikumar, ((A Generalized Assignment Heuristic for Vehicle Routings, Neiworks

B. Fleischniann, ((Linear Programming Approaches to Travelling Salesman and Vehicle Scheduling
Problenisx, presented at the XI. International Symposium on Mathematical Programming, Bonn,
1982.

269 - 271, 1959.

11, 109 - 124, 1981.

G. Laporte, Y. Nobert

B. Fleischmann, ((A Cutting Planes Procedure for the Travelling Salesman Problem on Road Net-
worksr, Research Report QM-02-83 , University ofHamburg, 1983.
L.R. Ford and D.R. Fulkerson, Flows in Neworks, Princeton University Press, 1962.
B.A. Foster and D.M. Ryan, ((An Integer Programming Approach to the Vehicle Scheduling Problem,,
Operational Research Quarterly 27, 367 - 384,1976.
W.M. Garvin, H.W. Crandall, J.B. John and R.A. Spellman, ((Applications of Linear Programming in
the Oil Industry,, Management Science 3,407 - 430, 1957.
T.J. GaskeU, ((Bases for Vehicle Fleet Scheduling,, Operational Research Quarterly 19, 281 - 295,
1967.
B. Gavish, ((The Delivery Problem: New Cutting Planes Procedures), presented at the TIMS XXVI
Conference, Copenhagen, 1984.
B. Gavish and S.C. Graves, ((The Travelling Salesman Problem and Related Problems,, Working
Paper no. 7905, Graduate School of Management, University o f Rochester, 1979.
B. Gavish and S.C. Graves, ((Scheduling and Routing in Transportation and Distribution Systems:
Formulations and New Relaxationsb, Working Paper, Graduate School o f Management, University
ofaochester, 1982.
B.E. Gillet and L. R. Miller, ((A Heuristic Algorithm for the Vehicle-Dispatch Problem,, Operations
Research 22, 341 - 349, 1914.
B. Golden, L. Bodin, T. Doyle and W. Stewart, ((Approximate Travelling Salesman Algorithms#,
Operations Research 28, 694 - 711, 1980.
B. Golden, T.L. Magnanti and H.Q. Nguyen, ((Implementing Vehicle Routing Algorithmsn, Networks

B. Golden and W. Stewart, ((Empirical Analysisof Heuristics)),in E.L. Lawler, J.K. Lenstra, A.H.G.
Rinnooy Kanand D.B., Shmoys, eds., The Thawling Salesman Problem: A Guided Tour o f Combina-
torial Optimization, Wiley, 1985.
M. Grotschel and M.W. Padberg, ((On the Symmetric Travelling Salesman Problem I : Inequalities,,
MathematicalProgramming 16, 265 - 280, 1979.
M. Grotschel and M.W. Padberg, ((On the Symmetric Travelling Salesman Problem 11: Lifting Theo-
rems and Facetsn,MathematicalProgramming 16, 281 - 302, 1979.
R. Hays, ((The Delivery Problem,, Management Science Research Report no. 106, Camegie Institute
of Technology, 1967.
M. Held and R.M. Karp, t A Dynamic Programming Approach to Sequencing Problems)), SIAM 10,

D. Houck, J . Picard, M. Queyranne and R. Vemuganti, ((The Travelling Salesman Problem as a Con-
strained Shortest Path Problem: Theory and Computational Experience)), Opsearch 17, 93 - 109,
1980.
A. Kolen, A.H.G. Rinnooy Kan and H. Trienekens, ((Vehicle Routing with Time Windows,, Report
843310, Emsmus University, Rotterdam, 1984.
J.B. Kruskal, ((On the Shortest Spanning Subtree of a Graph and the Travelling Salesman Problemw,
Proceedings o f the American Mathematical Society, 2,48 - 50, 1956.
A.H. Land, ((The Solution of Some 100-City Travelling Salesman Problems,, presented at the Tenth
International Symposium on Mathematical Programming, Montreal, 1979.
G . Laporte, ((An Integer Programming Approach to the Vehicle Scheduling Problem), Cahiers du
GERAD, G-82-10? Ecole des Hautes Etudes Commerciales de Montreal, 1982.
C . Laporte and J.-M. BoujoUy, ((Some Further Results on k-Star Constraints and Comb Inequali-
tiesr, Cahiers d u GERAD, C - 8 4 - 1 7 , Ecole des Hautes Etudes Commerciales de Montreal, 1984.
G. Laporte, M. Desrochers and Y. Nobert, ((Two Exact Algorithms for the Distance Constrained
Vehicle Routing Problem,, Networks 14, 161 - 172, 1984.
G. Laporte, H. Mercure and Y. Nobert, ((An Exact Algorithm for the Asymmetrical Capacitated
Vehicle Routing Problem#, Networks (to appear).
G. Laporte,T.Nguyen and Y. Nobert, ((A Branch and Bound Algorithm for the Asymmetrical Distance
Constrained Vehicle Routing Problem)), Muthematical Modelling (to appear).
G. Laporte and Y. Nobert, ((An Exact Algorithm for Pilinimizing Routing and Operating Costs in
Depot Locatione, European Journal o f Operational Research 6,224 - 226, 1981.
C. Laporte and Y. Nobert, ((A Branch and Bound Algorithm for the Capacitated Vehicle Routing
Problem)), Operations Research Spektrum, 5 , 77 ~ 85, 1983.
G. Laporte, Y. Nobert, tAlgorithmes de relaxation de contraintes pour Ie problbme du voyageur de
commerce symitrique et ses extensions)), Annales des Sciences mathematiques du Quebec, VII, 109 -
137. 1983.

7 ,113 - 148, 1977.

196 - 210,1962.

Exact algorithms for the vehicle routing problem 183

I601

I611

G. Laporte and Y. Nobert, ((Comb Inequalities for the Vehicle Routing Problem,, Methods of Opera-
tionsResearch 51, 271 - 216, 1984.
G. Laporte, Y. Nobert and D. Arpin, ((An Exact Algorithm for Solving a Capacitated Location-Rout-
ing Problem,, in Location Decisions: Methodology and Applications, J.C. Baltzer AG, Scientific
Publishing Co. (to appear).
G. Laporte, Y. Nobert and M. Desrochers, ((Optimal Routing Under Capacity and Distance Restric-
tions,, Operations Research 33, 1050 - 1073, 1985.
G. Laporte, Y. Nobert and P. Pelletier, ((Hamiltonian Location Problems,. European Journal of
Operational Research 12, 82 - 89, 1983.
J.K. Lenstra and A.H.G. Rinnooy Kan, ((Some Simple Applications of the Travelling Salesman Pro-
blem,, Operational Research Quarterly 26, 717 - 734, 1975.
J.K. Lenstra and A.H.G. Rinnooy Kan, ((Complexity of Vehicle Routing and Scheduling Problems,,
Networks 11, 221 - 228, 1981.
J.D.C. Little, K.G. Murty, D.W. Sweeney and C. Karel, ((An Algorithm for the Travelling Salesman
Problem,, Operationsdesearch 11, 972 - 989, 1963.
T.L. Magnanti, ((Combinatorial Optimization and Vehicle Fleet Planning: Perspectives and Prospects*,
Nefworks 11, 179 - 214, 1981.
S. MarteUo and P. Toth, ((Lower Bounds and Reduction Procedures for the Bin Packing Problem,,
Working Paper 1-84, Progretto e Annlisi di Algoritmi, University of Bologna, 1984.
S . Martello and P. Toth, ((Linear Assignment Problemsr, this volume.
P. Miliotis, ((Combining Cutting Planes and Branch-and-Bound Methods to Solve Integer Programming
Problems: Applications to the Travelling Salesman Problem and the 1 -Matching Problem,, Ph.D.
Thesis, University ofLondon, 1975.
P. Miliotis, ((Integer Programming Approaches to the Travelling Salesman Problem,, Muthematical
Pmgmmming 10,367 - 378, 1976.
P. Miliotis, ((Using Cutting Planes to Solve the Symmetric Travelling Salesman Problem,, Mathematical
Programming 15, 177 - 188, 1978.
P. Miliotis, G. Laporte and Y. Nobert, ((Computational Comparison of Two Methods for Finding the
Shortest Complete Cycle or Circuit in a Graph,, RAIRO (recherche opdrationnelle) 15, 233 - 239,
1981.
C.E. Miller, A.W. Tucker and R.A. Zemlin, ((Integer Programming Formulation of Travelling Salesman
Problems,, Journal o fACM7, 326 - 329, 1969.
R. Mole, ((A Survey of Local Delivery Vehicle Routing Methodology,, Journal of the Operational
Research Society 30, 245 - 252, 1979.
Y. Nobert, ((Construction d’algorithrnes optimaux pour des extensions au problcme du voyageur de
commercen, Thbe de doctorat, Ddpartement d ’mformatique et de Recherche Opdrationnelle. Uni-
versitC de MontrBal, 1982.
C. Orloff, ((Route Constrained Fleet Scheduling,, Tramportation Science 10, 149 - 168, 1976.
J.F. Pierce, ((Direct Search Algorithms for the Truck-Dispatching Problem,, Transportation Research

H.N. Psaraftis, ((A Dynamic Programming Solution to the Single Vehicle Many-to-Many Immediate
Request Dial-a-Ride Problem,, Transportation Science 14, 130 - 154, 1980.
H.N. Psaraftis, ((An Exact Algorithm for the Single Vehicle Many-to-Many Dial-a-Ride Problem
with Time Windows,, Transportation Science 17, 351 - 360, 1983.
H.N. Psaraftis, ((k-Interchange Procedures for Local Search in a Precedence Constrained Routing
Problem,, European Journal of Operational Research 13, 391 - 402, 1983.
M.R. Rao and S . Zionts, ((Allocation of Transportation Units to Alternative Trips - A Column Cenera-
tion Scheme with Out-of-Kilter Subproblems#, Operations Research 16,52 - 63, 1968.
R.W. Simpson and P. Kivestu, ((Network Models in Transportation: a Bibliography,, Report 76-11,
Center for Tmnsportation Studies. Massachusetts Institute of Technology, 1976.
C . Toregas and C. ReVelle, ((Location Under Time or Distance Constraints,, Papers of the Regional
Science Association, 28,133 - 143, 1972.
P. Toth, ((Heuristic Algorithms for the Vehicle Routing Problem,, presented at the Workshop on
Routing Problems, Hamburg, 1984.
C.D.T. Watson-Candy and L.R. Foulds, ((The Vehicle Scheduling Problem: a Survey,, New Zealand
Operational Research 9, 73 - 92, 1981.
R.T. Wong, (Integer Programming Formulations of the Travelling Salesman Problem,, Proceedings
of the IEEE International Conference on Circuitsand Computers, 149 - 152,1980.
A. Wren and A. Holliday, ((Computer Scheduling of Vehicles from One or More Depots to a Number
of Delivery Points,, Operational Research Quarterly 23, 333 - 344, 1972.

3, 1 - 42, 1969.

184 G. Laporte, Y. Nobert

Gilbert Laporte Yves Nobert
Ecole des Hautes Etudes Commerciales Department des Sciences administratives
5255 avenue Decelles Universite du Quebec A Montreal
Montreal H3T 1V6 1495 rue St. Denis
Canada Montreal H3C 3P8

Canada

Annals of Discrete Mathematics 31 (1987) 185 - 212
0 Elsevier Science Publishers B.V. (North-Holland)

THE STEINER PROBLEM IN GRAPHS*

Nelson MACULAN

1. Introduction

The purpose of this paper is to review some formulations and some procedures
that have been suggested for the solution of the Steiner Problem in graphs.

In section 1 we present the definition and some results associated with the
classical Steiner Problem also known as the Euclidean Steiner Problem (ESP).
The Steiner Problem in graphs is considered in section 2, where the Steiner
Problem in an undirected graph (SPUG) and the Steiner Problem in a directed
graph (SPDG) are defined. In this same section we show the transformation of
a SPUG in a SPDG. The Lawler algorithm for the SPUG is presented in section
4. In section 5, we present four integer programming formulations of the Steiner
Problem in graphs, compare the linear relaxations of three of these formulations
and consider an application of Benders method t o solve one of these formulations
illustrated by an example. In section 6 solution methods based on these formula-
tions are presented and some computational results are described. The last section
discusses applications and conclusions.

2. Euclidean Steiner Problem

Our historical sketch about the Euclidean Steiner Problem (ESP) is based on
the works written by Courant and Robbins [101 and Kuhn 1281.

The problem posed by Fermat early in the 17th century was stated as follows:
given three points in the plane, find a fourth point such that the sum of its
distances to the three given points is a minimum. This problem may have travalled
to Italy with Mersenne, see Hiriart-Urruty [25]; it is known that before 1640
Torricelli had solved the problem.

He asserted that the circles circumscribing the equilateral triangles constructed
on the sides of and outside the given triangle intersect in the point (Torricelli
point) that is sought. In Cavalieri’s ((Exercitationes Geometricae)) of 1647, it is

*This work was partially supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico,
CNPq 300195-83 and by FINEP.

185

186 N. Maculan

shown that the sides of the given triangle subtend angles of 120" from the Torri-
celli point. F. Heinen, apparently, is the first t o prove in 1834 that, for a triangle
in which one angle is greater or equal t o 1 20°, the vertex of this angle is the mini-
mizing point.

The General Fermat Problem refers t o the problem of minimizing the weighted
sum of distances from n given points in the plane. Let there be given n distinct
points 4 = (xi, y,) in the plane and n possible weights li, where i = 1, 2, . . . , n .
For P= (X , y) let d,(P) = d(x - x i) 2 + (y -Y,)~, the General Fermat Problem
asks for a point P that minimizes f (P) =

Jacob Steiner, the famous representative of Geometry at the University of
Berlin in the early 19th century wrote on the subject. The Fermat Problem has
been popularized in [l o] under the name of the Steiner Problem. But the Eucli-
dean Steiner Problem considered here is to find a tree which spans n given points
in the Euclidean plane with minimum length. A minimum tree which spans these
n points, called Steiner Tree, may contain nodes other (Steiner points) than the
points which are spanned.

Other related problems with the Euclidean Steiner Problem are considered
in Melzak [35].

We will depict some examples of the Euclidean Steiner Problem for n = 3,
n = 4, n = 5 and n = 6 in figure 2.1.

For the regular polygons when n 2 6, there is no Steiner point and the total
length of the Steiner Tree is equal t o (n - 1)Z, where 1 is the lenght of the side.

We have presented some easy examples; in Cockayne [9] it is presented an
algorithm for the Steiner Problem in the Euclidean plane (ESP) and some exten-
sions for any metric space and in Gilbert and Pollak [191 it is presented the condi-
tions which simplify the task of constructing a Steiner minimal tree.

I , d,(P), see [28].

3. The Steiner Problem in graphs

In this section we will consider the Steiner Problem in an undirected graph
(SPUG) and the Steiner Problem in a directed graphs (SPDG).

3.1. The Steiner Problem in an undirected graph (SPUG)

The Steiner Problem in an undirected graph is the problem of connecting
together at minimum length a set of vertices (nodes) in an undirected graph.
This problem is derived from the Euclidean Steiner Problem, Hakimi [23] and
Dreyfus and Wagner [131 were the first to study it.

Let G, = (S, E) be a connected undirected graph, where S is the set of vertices
(nodes), I S I < m, and E the set of edges. With each edge a = [i, j] E E (i =# j , i E S
and j ES) is associated a positive number Za 1, (length of a) . Let X , Y be a
partition of S, i.e., X U Y = S a n d X n Y = $.

The problem we are considering is that of computing a subset 2 of E such that:

The Steiner problem in graphs

P

187

n = 4
(square)

/y-q n = 5

n = 6
(hexagon)

n

P > 1204

Fig. 2.1.

188 N. Maculan

(i) all nodes of X are connected by chains composed only of edges in Z,
(ii) ZaEzl, = minimum { Z a E Z s C E l a I Z' satisfies (9) .
Y is the set of optional vertices (Steiner points).
It is very easy to verify that the subset Z forms a tree because 1, > 0, a E E.
When I XI = 2, the Steiner problem in a graph is reduced to the ((shortest path

problem)), for which we know very efficient algorithms, see Dijkstra [121. When
Y = 4, i.e., X = S, we have the ((minimum-cost spanning tree problem)), see
Kruskal [27] and Prim [40]. For both cases we have polynomial time algorithms
in I S I for solving the problem. But when 2 < I XI <I S 1 , no polynomial time
algorithm to solve the Steiner problem in an undirected graph is likely to exist,
since Karp [26] showed that this problem is NP-complete. We must say that the
Steiner problem in an undirected graph is NP-hard under the optimization formu-
lation.

3.2. The Steiner Problem in a directed graph (SPDG)

We suppose that Nastansky, Selkow and Stewart [37] is the first reference to
consider the directed form of the Steiner problem in graphs. This problem has
been considered lately by Arpin, Maculan and Nguyen [3], Beasley [4], Claus and
Maculan [7], Maculan [30] and Wong [47].

Let G, = (S, A) be a strong by connected directed graph, where S is the set of
vertices (nodes). A is the set of arcs: A C S x S, with each arc a = (i , j) E A is asso-
ciated a positive number 1, = lij (length of a) .

Let {s}, So, Sf be a partition of S, where s is called the root. The Steiner Prob-
lem in a directed graph is to find directed paths from this root t o all the vertices
of So of minimum total cost. Sf is the set of optional vertices (Steiner
points).

When I So I = 1, i.e., the solution of the SPDG is the ((Shortest path problem))
from s to the only vertex of So, we have very good polynomial time algorithms
t o solve this case, see [12] and Gondran and Minoux [20]. When Sf = 0, i.e., we
wish to find the shortest s-directed spanning tree of G,, in this case we have the
intersection of two matroids, and then polynomial time algorithms to solve this
problem, see [20]. When 1 <I So I < I S I - 1 , we have a ((difficult)) problem,
NP-hard, see [47]. We can observe that the solution of the SPDG will be a mini-
mum cost directed subtree whose root is s.

A SPUG can be transformed in a SPDG as follows. Let G, = (S, E) be an
undirected graph, X and Y a partition of S, where X is the set of points to be
spanned and Y the set of Steiner points; 1, = lii > 0 associated with the edge
a = [i , j] E E. We construct a directed graph G, = (S, A) where (i , j) and (j , i) E A
if [i, j] E E, then take any vertex belonging to X, for example s E X , and form the
new partition of S : {s} , So = X - { s} and Sf = Y. With the arcs (i , j) and (1, i) we
associate the length lij = 1,. Then the solution of SPDG in G, gives the solution of
SPUG in G,, see [71 and [471.

The Steiner problem in graphs 189

4. Lawler algorithm for the SPUG

We wish to solve the SPUG in G, = (S, E) . The first algorithm for this problem
was presented in [131 and requires time proportional to

(s13/2 + 1 ~ (~ (2 ~ ~ I - l - 1 x I - I) + 1 s ((3Ix1-l - 2Ixl + 3)/2,

although no computational results were given, it is clear that this algorithm
is only computationally effective if I XI is small.

In this section we will present an algorithm proposed by Lawler ([29], pp.
291 - 294) which requires time proportional to I X I 2 2lY1. It is based the idea
that we can solve a minimum spanning tree problem for each of several possible
choice of Steiner points.

Theorem ([29], pp. 291 and [19]). Suppose the edge lengths l i j of a graph,
satisfy the metric requirement, i.e., they are nonegative and I, < lik + Iki for all
i, j v k E S . Then for any I XI points t o be spanned, there exists a Steiner tree
in the graph which contains no more than 1 X 1 - 2 Steiner points.

Proof. Let p , OGp GI Y I , denote the number of Steiner points in a minimal
tree. Let 4 denote the mean number of tree edges incident to a Steiner point,
and r denote the mean number of tree edges incident to the (X I points to be
spanned. The number of edges in the tree is I XI + p - 1 = (4p + r 1 XI)/2 but
because of the metric condition, 4 2 3 and r 2 1. It follows that

Lawler algorithm ([29], pp. 292 - 294)
Step 1 (shortest path computation). If the edges lengths do not satisfy the
metric condition, compute shortest paths between all pairs of vertices, see Floyd
[151 and replace the edge lengths with shortest path lengths, adding edges to the
graph where necessary.

Step 2 (minimum spanning tree computation). For each possible subset K c Y ,
such that 0 Q I K I < I X I - 2, solve a minimum spanning tree of a graph Gi =

= (S' , E ') where S' = X U K and E' E.

Step 3 (construction of Steiner tree). Select the least lengthly spanning tree
from those computed in step 2, and transform it into a tree of the original graph,
i.e., replace each edge of the spanning tree with the edges of the shortest path
between the vertices in question.

The algorithm requires the solution of a minimal spanning tree problem on
no more that I X I + I X I - 2 = 2 I XI - 2 vertices for each of u choices of Steiner

190 N. Maculon

points, where

It follows that the overall computational complexity isno more than O(I XIz 2Iy1).
This does not include the shortest path computation of step 1 which is O(I , ! ? I 3) .

It is clear that the Lawler algorithm is computationally effective if I Y I is small.

5 . Integer programming formulations for the SPUG and SPDG

As we have seen in section 3 a SPUG can be transformed in a SPDG. In this
section we will present three formulations for the SPDG in G, = (S, A) as zero-
-one integer programming and one for the SPUG in G, = (S, E).

We consider that I (i) is the set of all vertices j E S such that (j , i) € A and
O(i) the set of all vertices j E S such that (i , j) E A . Let C, = (X,, x,) C A be
a cutset in G, such that X, U ze = S, X, n xe = 4, s EX, and So n F, # 4 where
(i ,]) E C, if and only if i EX, and j E x,. If we consider all the possible cuts:
C,, C,, . . . , Cp, where p = O(2"- l) .

Let yij = 1 if arc (i , j) E A is in the solution and yij = 0 otherwise. We will
consider for all the formumations Z(s) = 4.

5.1. First formulation

We consider a network flow problem in which the root s offers I Sol units
of flow and each k € S o demands one unit of flow. Let xi/ be the amount of
flow on arc (i , j) . This kind of formulation is presented in location problems
and in the traveling salesman problem see Gavish and Graves [171 and Nobert
[38], and for the SPDG was presented in [3]:

subject t o

The Steiner pmblem in graphs 191

5.2. Second formulation

This formulation was presented in [47] and in [7] for the SPDG and in [4] for
the SPUG. We consider a network synthesis problem with nonsimultaneous
single-commodity flow requirements. Let XQ be the amount of commodity
k between s and k E So on arc (i , 1). The root s offers one unit of each commodity
k E So:

($1 minimize (5.1)

subject to

x;- x ;=o] E S - - (S , k } , k E S , (5.2)
j E O (i) jEI(i)

(5.4)

(5.5)

5.3. Third formulation

and in [47] and in [3] for the SPDG:
This integer programming formulation was given by Aneja [2] for the SPDG

subject to

4 = 1 , 2 , . . . , p (5.7)

Yi jEIO, 1) (i , J l € A . (5.8)

When we replace yij E (0, 1) by 0 < y i j < 1 in 4, pZ and p3 we will have three
linear programming relaxations for the SPDG, LP,, LP, and LP3. Let u(.) denote
the optimal solution value for problem (.). We are interested in obtaining lower
bounds for the SPDG optimal solution value. Using the results stated in [471
and in [3] we have the following proposition.

Proposition 5.1. u(LP,) =G u(LP,) = u(LP3).

192 N. Maculan

Proof. First we show that u(LP,)<u(LP,) . For the LP, formulation we can
write

and

Then

define xii = Z k E S , x$ then LP, can be stated as a linear aggregation of the LP?,
then u(LP,) < u(LP2).

We show now that u(LP,) = u(LP,).
(i) We prove that u(LP,) Q u(LP3). Let j$ be a feasible solution of LP,, i.e.,

x(i,i)E~d Vii 2 1, 4 = 1, 2, . . . ,p and 0 -<&. < 1 , (i, j) E A . If we consider Ri
the capacity of arc (i , j) in LP2 then it must be possible to flow one unit of com-
modity k from s t o k E So: by the max flow-min cut theorem, see [20] the total
capacity of any cut separating nodes s and k must be at least one; J$ will be a
feasible solution of LP,, then u(LP,) -< u(LP,) .

(ii) We will prove that u(LP2) 2 u(LP,). Let (Z h , x i) be a feasible solution of
LP,, then for all k E So the flow problem associated gives Z (i , i) E c q yij 2 1 , 4 =

-

-

= 1 , 2 , . . . , p , Y , must be a feasible solution of LP, then u(LP,) 2 u(LPJ. 0

Let u(P) be the optimal solution value for the SPDG, then u(P) = u(<> =
= u(PJ = u(Q. Using this notation we can observe that u(LP,) Q u(LP2) =
= u(LP,) < u(P), that is u(LP,) or u(LP,) are a better lower bound for u(P) than
u (LP,).

5.4. Application of Benders Decompostion Method to Problem P,
We will apply Benders [6] decomposition method t o the formulation given by

The Steiner problem in graphs 1Y3

problem P, as it was suggested by Guyard [21] and in [3]. Given yii =xi E {O, I},
(i, 1) E A , the dual program of L.p2 is stated as follows:

subject t o

u,!- u,!- w: < 0 (i, j) E A , i # s , j # s , k E So

- u ~ ~ - w $ < O j E O (s) , k E S ,

w; 2 0 (i , j) E A , k E So

where u/ are the dual variables associated with the flow constraints (5.2) and
(5.3), and wi';. associated with - xi';. 2 -x i .

We consider the following problem:

(Dplk) maximize - 4,"- E yii w;
(i 9 J) E A

subject t o

u,!-u,!- w; < 0 (i , j) E A , i Z s , j # s

-uF - wfj < o j E ~ (s)

w f > O (i , j) E A .

The solution of DP, can be obtained by solving separetely all the DP,k problems
for k € S o . If u(DP$)<oo for k E S , then u(DP,) = X k E S , u (D P , ~) . If DGk is
unbounded for at least one k E So, then DP, is also unbounded.

The Dpik constraints define a polyhedral convex cone, then the master problem
of the Benders decomposition will be:

minimize Z

subject t o z 2 E lii Y i j

where ek = (0 0 . . . 010.. . O)T
t

associated with node k

Y = (YOIY,* . . . Yam' u , E A , m = I A l

194 N. Maculan

and rf is an extreme ray of the polyhedral cone we are considering, t is the
total number of these extreme rays.

If DP,k is unbounded for one k E So then the capacities 5, of arcs (i , j) define
a network where it is not possible to flow one unit of the commodity k from s
to k.

Let S,, S, be a partition of S, such that s E S, and g E S , if the node g can
receive one unit of flow from s when we consider hi as the capacity of arc (i , j) .
If k E S , and k € S , and then D e is unbounded, if not LJ(DP,~) = 0. When DpZk
is unbounded, i.e., k E S,, we can generate an extreme ray of the polyhedreal
convex cone defined by the constraints of DP,k, see [171, as follows:

0 if i E S , - { s)

u; =

- 1 if i E S ,

w k ii =Iu; -u , ! l , (i , j) E A , i+s, j ~ s

wk. = - uk, 1 E O(s) then the Benders constraint will be
Jl I

- u ; - y , w ; < o ,
(i , i) E A

if we replace in this last inequality u t and w s by their values then

(5 .9)
(i9 i)E (S, 9 S,)

where (S,, S,) is a cut set in C,.
If we introduce all these constraints (5.9) in the master program of the Benders

decomposition method we have the same formulation given by 4.
We observe that (5.9) is the subtour-breaking constraint proposed in Dantzig,

Fulkerson and Johnson [1 11 for the traveling salesman problem.
If we applied Benders decomposition method to the formulation given by

problem 4 we would obtain the same master problem, i.e., P,. We must observe
that if we apply Benders decompostion method to LP,, we will have LP, as the
master problem of this decomposition method, but if we apply the method to
LP, we will not obtain LP, as the master problem, see [171.

If we wish to solve pZ using Benders decomposition method, we do not have
to solve the DP,k problem (k E So) for generating the Benders constraints; we
propose the following procedure: given gi E { 0, I} solution of a relaxation of the

The Steiner problem in graphs 195

master problem, we solve the maximum flow problem from s t o each k E So. If
for all k E So this flow value is greater or equal t o one, then z.i will be an optimal
solution, otherwise we will have a minimum cut value equal t o zero for at least
one k. This cut (S , , S ,) will generate a new Benders constraint which is intro-
duced in the master problem. Our procedure is close to that proposed in [2] in
solving P,.

Example

G, = (S, A) , s E 1, S = { 1 } U So U S,, So = { 4, 5, 8 } and S, = { 2 , 3 , 6 , 7}. This
graph is depicted in figure 5.1, where the values of lii are on the arcs (i, 1).

We start the master problem introducing the constraints associated with the
vertices belonging to { 1) U So, see figure 5 . 2 : the cut sets (I l}, S - { l}), (S -
-{4}, (411, (S - {5}, {5}), (S - (81, (8)):

(a) y12 + Y, , 2 1, (b) ~ 2 4 + ~ 3 4 2 1,
(C) Y2s +Y45> 1 and (d) Y 3 8 + Y 6 8 2 1.
The solution of the master problem, see figure 5.6, associated with (a), (b),

(c) and (d) is V , , =Y2, =Y45 =L68 = 1 and the other x7 = 0. We will consider
this solution (x i) as the capacities of the arcs (i , j) , see figure 5.3 where xi is
written on arc (i, 1).

For the network depicted in figure 5.3 we will compute the maximum flow
from 1 to 4, from 1 to 5 and from 1 t o 8. From 1 t o 4 the maximum flow is
equal t o zero and the min-cut is (Sl, S,) ={ (1, 2) , (3 ,2) , (3 ,4) , (3.61, (3.8)},
which generate the constraint (e) y,, f y,, + y,, + ys6 + y38 > 1. We have this
same solution for the other two cases (k = 5 and k = 8) we introduce (e) in the
master program, see figure 5.6, then the new solution will be:
Y1, =F2, = 7 3 , = T4s =F68 = 1 and the other qj = 0, the new network is

depicted in figure 5.4.
From 1 t o 4 and from 1 t o 5 the maximum flow is equal t o one, i.e., DP,,

Fig. 5.1

196 N. Maculan

Fig. 5.2 .

Fig. 5.3.

and Dp2" have finite optimum solution. From 1 to 8 the maximum flow is equal
to zero and the min cut (Sl, S,) = {(3,6) , (3,8), (4 ,6) , (5 ,6) , (5 ,7) } which
generate the constraint (f) y36 + y3, + ye6 + y56 + y5, 2 1. We introduce (f)
in the master program, see figure 5.6, then the new solution will be TI3 = Tz4 =

This last solution gives a new network for which the maximum flows from
1 to 4, from 1 to 5 and from 1 to 8 are equal to 1: then we find the optimal
solution for the example we are considering. The Steiner deirected tree or Steiner
arborescence will be depicted in figure 5.5, whre the vertices 2,3 and 6 are the

= 732 = 745 = 7 6 8 = 746 = 1, the other = 0.

The Steiner problem in graphs 197

/
/

Fig. 5.4

Fig. 5.5.

Steiner points.

Remark 1. In section 3 we have seen that G, = (S , A) when Sf = 4 the SPUG is
the shortest s-directed spanning tree problem. For this case the LP, formulation
has all the vertices of the polyhedron formed by (5.7) and 0 < yi, < 1, (i, j) E A ,
are integer, see Edmonds [14] and Schrijver [44]. For LP, we can have noninteger
vertices of the polyhedron formed by its constraints, We have showed, see Mac-
ulan [32], that all the vertices of the polyedron formed by the constraints of LP, :
(5 . 2) , (5.3), (5.4) and 0 < yii < 1, (i , j) E A , are also integer, when Sf = 9. A

198 N. Maculan

Fig. 5.6.

different proof has been given by Minoux and Guyard [3 6] .
This remark gives us a good motivation for solving LP, o r LP, when Sf # 4

getting either an optimal integer solution or a good lower bound of u(P,).
We will present an example of G, = (S, A) when Sf # 4 for which we have

a non integer vertex.
Let G d = (S , A) where S = { 1 , 2 , 3 , 4 , 5 , 6 , 7 } a n d s r l , S , = { 5 , 6 , 7 } , S f =

={ 2 , 3,4} , and lij = 1 , (i, 1) E A , where the set of arcs A can be seen in the
figure 5.7 below.

-
L 2 r 5

1 3 6

4 7

Fig. 5.7.

The Steiner problem ,in graphs 199

It is easy to verify that yi, = 1/2, for all (i ,]) € A is a vertex of LP, and LP,. In
LP, and L< we have not the total unimodularity property.

5.5. Fourth Formulation

This formulation was presented by Beasley [5] and is based on an algorithm

Let G, = (S, E) be a connected undirected graph as we have defined in section

- one adds an artificial vertex (vertex 0) to the graph G,,
- for each vertex i E Y add an edge [0, i] of cost zero,
- for one vertex belonging to X , say 1 , i.e., 1 E X , add an edge [0, 11 of cost

zero.
We will find in the resulting graph the shortest spanning tree subject to the

additional restriction: any vertex i E Y connected by edge [0, i] to vertex 0 must
have degree one.

If we define this resulting graph as G,O = (So, Eo) , where So = S U { 0 } , E , =

= E u { [0, i] I i E Y or i = I}, we can write this formulation as follows:

for the shortest spanning tree problem.

3. Given this graph we will introduce one vertex and some edges as follows:

subject to

(y i j) forms a spanning tree on (So, Eo) ,

yOi + ypP Q 1
yij ~ { o , b,il E E , ,

[P , 41 E q, i E Y

where ={ [p ,4] E E [p = i o r q = i } .
The solution of 4 will be of the form shown in figure 5.8.

6 . Solving the integer programming formulations Pz and P4

We will consider the solution of P, and 4. The solution of p3 has been consider-
ed in the example of section 5, Aneja has proposed in [2] a solution of p3 associat-
ed with SPUG. We do not consider the solution of 4 because the lower bound
presented by its linear programming relaxation is not very good, but Palma-
-Pacheco [39] has considered this formulation for developing a heuristic method
to solve the SPDG.

6.1. Solving the pZ formulation

As pZ is an integer programming formulation of SPDG an enumerative method
(branch and bound) can be used; in [47], [3] and [4] one has proposed branch and

200 N. Maculan

/ -

/
/

/
/

/
/

/
I

I
I
I
I
I
\
\
\
\
\
\
\
\
\
\

Fig. 5.8.

bound algorithms to solve this integer programming problem.

lems.
For each node of a branch and bound procedure we can consider two prob-

(i) the solution of LP, associated with this node,
(ii) problem reduction.
We will consider now the solution of LP,.

6.1.1. A dualascentalgorithm for solving LP,

of LP, be as follows:
A dual ascent approach for SPDG was presented by Wong [471. Let the dual

(DLP,) maximize

subject to

kES,

ui” - u; - Wk Q 0 (i , j) € A , i + s , k E S ,

Ui” --$GO i E O(s), k E So

ii

WE Q lij
L E S ,

(i , i) E A

The Steiner problem in graphs 201

w ; > o (i , i) E A , ~ E S , ,

where the dual variable u/ is associated with the conservation of flow equation
for commodity k at vertex i.

An auxiliary directed graph GI; = (S, A ’) is defined, where A’ E A .
If vertex i is connected to vertex j (there is a directed path from i t o j in GI;)

but not vice-versa, Wong (1 984) says that vertex i dangles from node j . A strong
connected component T is also a root component if T contains a member of So
but no member of So U{ s } dangles from a member of T. Let C (k) be the set
of vertices that are connected t o vertex k . The cut set of k , CS(R), is a set of arcs
whose members (i , j) satisfy: (i , j) E A , (i , j) 6 A’ , j E C (k) and i E c (k) .

We present now an ascent procedure for computing a (hopefully) near optimal
solution of DLP, proposed by Wong [47].

Step 0. (Initialize)

u f : = O , ~ES,, i E S
ws : = O , ~ E S , , (i , j) E A
R(i , j) : = lii - Z k E S , wd,

From the auxiliary graph GI, = (S, A’) with A’ = 4 (initially all vertices are
strongly connected components and all members of So are root components).

(i , j) E A .

Step 1 . Select a root component T. If there are no root components then stop.

Step 2

Select a vertex k E So n T
Let R(i* , j *) = minimum{ R(i , j) I (i , j) E CS(k)} ;
For each node h E C(k) ,

u t : = uk + R(i* , j *)

For each (i , j) E CS(k) ,
w$: = wc + R(i* , j *)

and
R(i , j) : = R(i, j) - R(i* , j*) .

Step 3

Update the auxiliary graph by setting
A ’ : = A’ u {(i*, j *) }
Go back t o Step 1.

As we have seen in section 5 this ascent algorithm wields lower bounds for the
SPDG and we can use it t o help find feasible solutions (and upper bounds) for
the SPDG.

202 N. Maculan

On the auxiliary graph G i obtained when the ascent algorithm terminates
we compute the shortest s-directed spanning tree. For that, Wong suggests in
[47] to use this ascent algorithm and a procedure for recovering the optimal
tree from this auxiliary graph Gi . This optimal directed tree is a upper bound
solution to the SPDG. When this upper bound is equal t o u(DLP,), we have
found an optimal solution of the SPDG.

6.1.2. A V. U.B. (Variable upper bounds) simplex method for solving LP,

A V.U.B. simplex method for solving LP, has been presented in [3]. In the
constraints x,$ < y,, (i , j) E A and k E So, the variables y, will be considered
as V.U.B. For developing this V.U.B. simplex method we have considered the
works written by Schrage in [42] and [43] and Todd [46]. We start with a fea-
sible basic solution for LP, (we introduce the slack variables) associated with
a s-directed spanning tree of G d . We have used a s-directed spanning tree of
Gd as the union of (S o USf [shortests paths from the vertex s to each vertex
in Sou Sf.

6.1.3. Lagrangean relaxations for 4
Two Lagrangean relaxations have been presented in [4] for 4, these relaxations

have the integrality property, see Geoffrion [181, then we are considering LP,.
Beasley has presented in [4] the P, formulation for the SPUG as follows:

subject t o

d,< c Y r i < d 2 (6.6)

where s is a vertex in X and So = X - {s} as we have stated in section 3, d , = I Sol
and d , = I S 1 - 1. We observe that (6.6) is redundant. In hispaper[4], Beasley has
proposed t o choose the root vertex s corresponding to

I i,i 1 E E

1 dist (s, k) 2 dist (i , k) for all i E So, where dist (i , j)
k E S k E S

The Steiner problem in graphs 203

is the length of the shortest path connecting i to j .

Lower bound I

The first Lagrangean relaxation considered by Beasley [4] can be stated as

For 4 2 0, i.e., 4 = (46) where qfi 2 0,
follow.

L ,(q) = minimum
k E S , kES, [i , i] € E

subject to (6.3), (6.4), (6.5) and (6.6).
This Lagrangean relaxation problem can be easily solved because this optimiza-

tion problem can be decomposed into a number of separate problems. The solu-
tion consists of:

(i) the d , yij with the smallest Lagrangean objective function coefficients
l i j - CkES, and at most d , - d , of the remaining yij providing their Lagran-
gean coefficients are nonpositive will be equal to one:

(ii) I So I shortest elementary path calculations-finding the shortest path from
vertex s to vertex k E So.

We wish to compute the best lower bound then

Lower bound 2

The p? formulation for the SPUG has been written by Beasley in [4] as follows:

minimize lii yij
[i , i l E E

subject to

x3 + x i < yij k E So, [i, j] E E

(6.8)

(6.9)

(6.10)

(6.1 1)

c Xik,>1 k E S ,
(i , k) E A

(6.12)

204 N. Maculan

(6.13)

(6.14)

(6.15)

This formulation can be stated using the ideas we developed in section 3.
The second relaxation considered in [4] can be stated as follows:

For t 2 0, i.e., t = (t k) , ti” 2 0,

subject to (6.9), (6.10), (6.14) and (6.15),

where C k = tk - t k i # k , j = k i j I j

=-t:+t,!’ i # k , j # s , k

= 0 otherwise.

To compute L , (t) , for t 2 0, we can consider

bii = 1, + 1 minimum { o , c;, c i } ;
k E S ,

then

~ , (t) = minimum 1 bij yij + (t,“ +
~~

I i , i l E E k E S ,

subject t o (6.10) and (6.15).
The solution of this last optimization problem consists of d , yij with the

smallest b , values and then at most d, - d , of the remaining yij provided their
Lagrangean coefficients b,, are nonpositive.

We compute the best lower bound

L,(t*) = maximum L , (t) (6.16)
r > o

Proposition 6.1. u(LP,) = L , (q *) = L 2 (t *) .

Proof. Both Lagrangean relaxations have the integrality property, see [181 and
0 Maculan, Campello and Lopes [3 1 1.

The Steiner problem in graphs 205

Solving (6.7) and (6.1 6)
The lower bound 1 requires 1 E [1 So 1 Lagrange multipliers and the lower bound

2 requires I S I I So I Lagrange multipliers, but I S 1 < I E I. Hence lower bound 2
geives a tight bound as lower bound 1 but with fewer Lagrange multipliers.

Subgradient procedure to solve the dual problems (6.7) and (6.1 6) .

Step 0. Set initial values of the multipliers of

q$: = 0
t ? : = O i E S , k E S , .

[i , j] E E, k E So

Step 1 : solve L 1(4) and L,(t) and let the solutions be Vi j , ?$.

Step 2. If the Lagrangean solution Ri is a feasible solution to 4, then update the
upper bound (Z,). Update the maximum lower bound found (Z,,,=) : Z , : =
= max {Zmaw, L , (q) } for the lower bound 1, or Z,, : = max {Z,,, L,(q)} for the
lower bound 2.

Step 3 . Stop if Z , = 2- since then Z , is the optimal solution, else go to
step 4.

Step 4. Calculate the subgradients
For the lower bound 1

g.. k - - k - x . . - y . . , - [i , j] ~ E , k E S ,
11 11

For the lower bound 2

h [= 1 - F;k, k E S ,
i E I (k)

/I:= Zi.- FG, ~ E S , , i E S - { s , k } .
j E I (i) j E O (i)

Step 5. Define a step size d by

206 N. Maculan

where 0 < A S 2 and update the Lagrange multipliers by

4; : = maximum { 0,qG + d g i } , [i, I] E E , k E So,

f: : = maximum { 0, ti" + d h:}, i E S , k E S o .

Step6. Go to step 1 to solve the Lagrangean problems, L,(q) or L,(t), with
this new set of multipliers unless sufficient subgradient interations have been
performed, in which case stop.

In calculating a value of A, Beasley [4] followed the approach of Held, Wolfe
and Crowder [24] in letting h = 2 for (S I iterations, then successively halving
both A and the number of iterations until the number of iteration reached a
threshold value of 5, h was then halved every 5 iterations. The subgradient proce-
dure was stopped when h fell bellow 0.05.

Now we consider the problem reduction.
When we are solving pZ by an enumerative method it is very important to

reduce the size of the problem (in terms of vertices and/or edges). Beasley [4]
proposed some tests to reduce the size of the problem: least cost, degree tests,
nearest vertex, reachability , penalties on number of edges, edge penalties and
components.

In our branch and bound procedure, see [30] we have used the classical ideals
developed in Forrest, Hirst and Tomlin [161.

6.2. Solving the 4 formulation

The integer programming formulation 4 of SPUD can also be solved by enume-
rative methods solving in each tree node of a branch and bound methods a La-
grangean relaxation of 4. Beasley [5] proposed a Lagrangean relaxation to p4
as follows:

For t 2 0, i.e., t = (tip,), ti,, 2 0 we have

subject to

where

The Steiner problem in graphs 207

= Zii + tiii if [i, j] E E and i E Y and j E X

= lii + tjii if [i , j] E E and i E Y and j E Y

= lii + t i i j + tjii if [i, j] E E and i E Y and j E Y

= l i j otherwise.

We note here that ci, > 0, for all (i , j) E E,.
To compute L,(t) we have to solve a shortest spanning tree problem. T h s

problem can be easily solved by the Kruskal [27] algorithm or Prim [40] algo-
rithm.

The best lower bound for this relaxation is

L3(t*) = maximum L3(t) . (6.17)

We can verify that u(LP,) = L,(t*). Beasley proposed in [5] a subgradient proce-
dure to solve (6.1 7). As upper bound Beasley [5] has used the solution of .a
heuristic algorithm to get a ((good)) initial feasible solution proposed by Taka-
hashi and Matsuyama [451.

6.3. Computational Results

Using the dual ascent approach for STDG, Wong [47] has reported his compu-
tational experience for IS(= 40 and 1 S(= 60; (A 1 = 120, (A I = 160, (A 1 = 180,
I A I = 240; 1 So I = 1 S 1/2, the graphs considered were symetric, 24 test problems
were solved and for only two of them at the end of the dual ascent approach an
optimal solution could not be found. An IBM 3033 computer was used and the
average CPU time (sec) has been observed in the [0.3783, 0.58751 interval.
Guyard [22] reports similar results.

We have solved 80 test problems using the V.U.B. simplex algorithm, see
[3] to solve LP, for l O < I S I < 4 0 , 2 0 B (A I B 5 0 , 5<1S0)<8 using a CDC-
-CYBER 835 computer, the average CPU time (sec) has been observed in the
[0.857, 8.9101 interval. For all these problems we have got integer optimal
solutions for LP,.

In [4] it has been reported computational results for the SPUG when 18
test problems are solved for 50 BI S 1 B 100, 63 < I E 1 < 200, 9 BI X I B 50.
Most of these test problems have positive duality gap, that is, LP, does not
solve in these cases the SPUG. Using a CDC-7600 computer the CPU time (sec)
has been observed in the [1 .O, 124.41 interval. Three test problems did not finish
after 250 seconds.

In [5] it has been reported computational results for the p4 formulation of
SPUG, 12 test problems are treated I S I = 500,625 < I E I < 2500, 5 <I X I < 250

fa 0

208 N. Maculan

using a CRAY-IS computer, the CPU time (sec) has been observed in the [16.55,
101 6,221 interval. One test problem did not finish after 1200 seconds.

7 . Applications and conclusions

The uncapacitated plant location problem can be formulate as an SPDG, see
[47]. Let J be the set of customers and I be the set of potential plant sites. The
transportation cost of servicing customer j E J at plant site i E I is cij and the
fixed cost of locating a plant at site i isJ. The plant location problem is to locate
the plants and assign the customers to these plants so that the total fixed cost
plus total customer transportation cost is minimized. This problem can be stated
as follows:

minimize)-: cij x i j + x4 yi
i E I j € J i E I

subject to

x i j , < y i , (i , j) E Z x J

xii and yi E { 0, l}, (i, j) E I x J .

If we define a directed graph G, = (S, A) where S = {s} u So u Sf, So = J ,
Sf = I and A ={ (s, i) I i E I } U { (i , j) I (i , j) E I x J } we associate the cost Zgh with
each (g , h) E A as follows

(f ; if g = s and h = i E I

If we solve the SPDG in Gd we will obtain the solution of the plant location
problem considered. A variety of problems associated with the network design
problem can be viewed as generalizations of the SPDG, see Magnanti and Wong
1331.

The SPUG can be used to solve a problem in molecular evolution, see Shore,
Foulds and Gibbons [4 1 1.

As conclusions we can propose a research area associated with heuristic approa-
ches for solving the SPDG when we have very large systems associated with the
SPDG to be solved, for example I S 12 500 and I A I >, 3000. For this size of
problems Palma-Pacheco [39] has developed a heuristic method using two phases:

The Steiner problem in graphs 209

phase 1 : we apply the dual ascent approach, see Wong [47], and we get a lower
bound and an upper bound solution.

phase 2: we try to imporve the upper bound solution obtained in phase 1 using
the P, formulation.

Computational results about this method are shown in [39], where some
Steiner Problems in directed graph with 1 S 1 = 900, I A 1 = 4500, 90 < 1 So 1 < 800
are treated in an IBM 4341 computer, the CPU time (sec) has been observed in
the [3.463,66.616] interval.

This approach can be used to get ((good)) solutions when we have t o solve very
large SPDG.

We did not consider in this paper the Rectilinear Steiner Tree Problem, where
a minimal rectilinear Steiner tree for a set S of points in the plane is a tree which
interconnects S using horizontal and vertical lines, see Aho, Garey and Hwang
[11 and Matos [34].

The idea of the pZ formulation can be used to treat the Travelling Salesman
Problem, see Claus [8], no computation results are reported. We proposed to
solve the Travelling Salesman Problem using this integer programming formula-
tion described in [8] and in [30].

A kno wlodgement

and Michel Minoux for their helpful advice and suggestions.
The author wishes to thank Jacques Desrosiers, Pierre Hansen, Silvano Martello

References

A.V. Aho, M.R. Garey and F.K. Hwang, ((Rectilinear Steiner Trees: Efficient Special-Case Algori-
thms)), Networks 7, 37 - 58, 1977.
Y.P. Aneja, ((An Integer Linear Programming Approach to the Steiner Problem in Graphs)), Networks

D. Arpin, N. Macuhn and S . Nguyen, ((Le Problitme de Steiner sur un Graphe Orient&: Formulations
et Relaxations)), Publication 315. Centre d e Recherche sur les Transports, Universitd de Montrdal,
1983.
J.E. Beasley, ((An Algorithm for the Steiner Problem in Graphs)), Networks 14, 147 - 159, 1984.
J.E. Beasley, ((An SST-Based Algorithm for the Steiner Problem in Graphs)), Department of Mana-
gement Science, Imperial College, London, 1985.
J.F. Benders, ((Partitioning Procedures for Solving Mixed Variables Programming Problems)), Nume-
rische Mathematik 4 , 238 - 252, 1962.
A. Claus and N. Maculan, (t h e Nouvelle Formulation du Problkme de Steiner sur un Graphe)),
publication 280, Centre de Recerche sur les Transports, Universitd de Montrdal, 1983.
A. Claus, ((A New Formulation for the Travelling Salesman Problem)), SIAM Journal Algebraic and
DiscreteMethods 5 , 21 - 25, 1984.
E.J. Cockayne, ((On the Steiner Problem)), Canadian Mathematical Bulletin 10, 431 -450 , 1967.
R. Courant and H. Robbins, WhatisMathematics?,Oxford University Press, NY, 1941.
G.C. Dantzig, D.R. Fulkerson and S.M. Johnson, ((Solution of a Large Scale Traveling Salesman
Problem)), OperationsResearch 2, 393 - 410, 1954.
E.W. Dijkstra, ((A Note on Two Problems in Connection with Graphs)), Numerische Mathematik 1 ,

S.E. Dreyfus and R.A. Wagner, ((The Steiner Problem in Graphs)), Networks 1 , 195 - 207, 1972.

10,167 - 178, 1980.

269 - 271, 1959.

210 N. Maculan

I221

(391

1401

1411

1421

J. Edmonds, ((Optimum Branchingsr, Journal ofResearch of the National Burreau of Standards, 718,

R.W. Floyd, ((Algorithm 97: Shortest Path)), Communication o f A C M 5 , 345,1962.
J.J.H. Forrest, J.P.H. Hirst and J.A. Tomlin, ((Practical Solution of Large Mixed Integer Programming
Problem with UMPIREr,Management Science 20,736 - 773,1974.
R. Gavish and S.C. Graves, t Scheduling and Routing in Transportation Systems: Formulations and
New Relaxations)), Graduate School of Management, University of Rochester,N.Y., 1982.
A.M. Geoffrion, ((Lagrangean Relaxation for Integer Programming)), Mathematical Programming

E.N. Gilbert and Pollak, ((Steiner Minimal Trees)), SIAM Journal on Applied Muthematics 16, 1 - 29,
1968.
M. Gondran and M. Minoux, Graphs and Algorithms, John Wiley, N.Y., 1984.
L. Guyard, ((Applications de la Programmation Lintaire aux Problbmes de Flots Non SimultanCs dans
un Graphe)), mkmoire de fin d Ytudes, CNAM, Paris, 1983.
L. Guyard, aLe P r o b l h e de 1’Arbre de Steiner: ModClisation par Programmation LinCaire et RCsolu-
tion par des Techniques de DCcomposition (Application A un Modkle de Bases de Donnhes Relation-
nelles))), Docteur-Ingknieur dissertation, Ecole Nationale Supkrieure des Tklkcommunications, Paris,
1985.
S.L. Hakimi, ((Steiner’s Problem in Graphs and its Implicationsr,Networks 1, 113 - 133, 1971.
M. Held, P. Wolfe and H.P. Crowder, ((Validation of Subgradient Optimization)), Mathematical Pro-
gramming, 6 , 6 2 - 88, 1974.
J.B. Hiriart-Urruty, tFllneries MathCmatiques)). presented at the Symposium of Convexity and
Duality in Optimization, Rijksuniversiteit, Groningen, 1984.
R.M. Karp, ((Reducibility among Combinatorial Problems)), in R.E. Miller and J.W. Thatcher, eds.,
Complexity of Computer Computations, Plenun Press, N.Y., 1972.
J.B. Kruskal Jr., ton the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem)),
Proceedings of the American Mathematical Society 7 , 4 8 - 50, 1956.
H.W. Kuhn, ((On a Pair of Dual Nonlinear Programs)), in J . Abadie, ed., Nonlinear Programming,
North-Holland, Amsterdam, 1967.
E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rihehart and Winston,
N.Y., 1976.
N. Maculan, ((0 Problema de Steiner em Grafos Orientadom,. Proceedings of the Latin American
Conference on Operations Research and Systems Engineering, Buenos Aires, 1984.
N. Maculan, R.E. Campello and L. Lopes, ((Relaxaqao Lagrangeana em Programapo Inteirar, Mini
Curxos, VIIBrazilian Symposium ofApplied Mathematics, Campinas, 293 - 316, 1984.
N. Maculan, ((A New Linear Programming Formulation for the Shortest s-Directed Spanning Tree
Problem)), Technical report ES 54 -85, Systems Engineering and Computer Science, COPPE, Federal
University o f Rio de Janeiro, presented at the 12th Symposium on Mathematical Programming.
Boston, 1985.
T.L. Magnanti and R.T. Wong, ((Network Design and Transportation Planning: Models and Algo-
rithms)), Transportation Science 18, l - 5 5 , 1984.
R.R.L. Matos, ((Rectilinear Arborescence and Rectilinear Steiner Tree Problems)), Ph.D. dissertation,
Faculty of Science and Engineering, University of Birmingham, 1980.
Z.A. Melzak, ((On the Problem of Steinem, Canadian Mathematical Bulletin 4, 143 - 148, 1961.
M. Minoux and L. Guyard, ((A Nonsimultaneous Network Flow Polytope having Arborescences as
Extreme Points)), (to appear).
L. Nastansky, S.M. Selkow and N.F. Stewart, aCost-Minimal Trees in Directed Acyclic Graphs,,
Zeitschrift filr Operations Research 18 ,59 - 67, 1914.
Y. Nobert, t Construction d’Algorithmes Optimaux pour des Extensions du Problbme de Voyageur
de Commerce)), Ph.D. Dissertation, publication 297, Centre de Recherche sur les Transports. Universi-
tkdeMontrkal, 1982.
0.1. Palma-Pacheco, NContribuiqo para a Resoluqao d o Problema de Steiner num Grafo Direcionado:
un MCtodo Heuristicon, Ph.D. Dissertation, Systems Engineering and Computer Sciences, COPPE,
Federal University o f Rio de Janeiro, 1985.
R.C. Prim, dhortest Connection Networks and Some Ceneralizationsr, Bell System Technical Jour-
nal 36, 1389 - 1401,1957.
M.L. Shore, L.R. Foulds and P.B. Gibbons, <An Algorithm for the Steiner Problem in Graphs)),
Networks 12, 323 - 333, 1982.
L. Schrage, dmplicit Representation of Variable Upper Bounds in Linear Programming)),Mathemati-
calProgrammingStudy 4 ,118 - 132, 1975.

4 ,233 - 240, 1967.

Study 2 , 8 2 - 114, 1974.

The Steiner problem in graphs 211

[431

(441

I451

I461

1471

L. Scharge, dmplicit Representation of Generalized Variable Upper Bounds in Linear Programming)),
MathematicalProgramming 14, 11 - 20, 1978.
A. Schrijver, ccMin-Max Results in Combinatorial Optimization)), in A. Bachem, M. Grotschel and
B. Korte, eds., Mathematical Programming, the Srate of the Art, Springer Verlag, 1983.
H. Takahashi and A. Matsuyama, ((An Approximate Solution for the Steiner Problem in Graphs)),
Mathematica Japonica 24,573 - 577, 1980.
M.J. Tood, ((An Implementation of the Simplex Method for Linear Programming Problems with
Variable Upper Boundsn,MathematicalProgramming 23, 34 - 49, 1982.
R.T. Wong, ((A Dual Ascent Approach to Steiner Tree Problems on a Directed Graphr,Mathematical
Programming 28, 211 - 287, 1984.

Nelson Maculan
COPPE and Instituto de Matematica
Federal University of Rio de Janeiro
P.O. Box 68501
21945 Rio de Janeiro
Brazil

This Page Intentionally Left Blank

Annals of Discrete Mathematics 31 (1987) 213 - 258
0 Elsevier Science Publishers B.V. (North-Holland)

ALGORITHMS FOR KNAPSACK PROBLEMS

Silvano MARTELLO and Paolo TOTH

1. Introduction

A great variety of practical problems can be represented by a set of entities,
each having an associated value, from which one or more subsets has to be select-
ed in such a way that the sum of the values of the selected entities is maximized,
and some predefined conditions are respected. The most common condition is
obtained by also associating a size to each entity and establishing that the sum
of the entity sizes in each subset does not exceed some prefixed bound. These
problems..are generally called knapsack problems, since they recall the situation
of a hitch-hiker having to fill up his knapsack by selecting from among various
possible objects those which will give him the maximum comfort.

In the present survey we will adopt the following terminology. The entities
will be called items and their number will be indicated by n. The value and size
associated with the j - th item will be called profit and weight, respectively,and
denoted by pi and wj (j = 1, . . . , n) .

The majority of problems considered in this survey are single knapsack
problems, where one container must be filled with an optimal subset of items.
The capacity of such a container will be denoted by c. In Section 4 we consider
the more general case where m containers, of capacities ci (i = 1,. . . , m) , are
available (multiple knapsack problems).

We will suppose that profits, weights and capacities are positive integers.
With the exception of very particular cases -see for example Hirshberg and

Wong [30] -, knapsack problems are NP-hard in the Carey and Johnson [2 2]
sense, although they can generally be solved in pseudo-polynomial time by
dynamic programming. We will review both exact and approximate algorithms
for the solution of the most important types of knapsack problems.

Exact solutions are generally obtained through branch-and-bound algorithms
or dynamic programming, or a combination of the two approaches. The perfor-
mance of these algorithms will be evaluated by computational experiments
with randomly generated test problems.

Approximate algorithms are of the greedy type or are based on scaling. They
will generally be evaluated on the basis of their worst-case performance. The
worst-case performance of a heuristic algorithm h is defined as follows. Given

213

2 14 S. Martello, P. Toth

any instance P of the considered problem, let z (P) be the value of the optimal
solution and h (P) the value of the solution found by h. The worst-caseperfor-
mance ratio of h is then the greatest r (h) value such that r (h) < k (P) / z (P) for all
possible instances P.

Knapsack problems have been intensively studied both because they arise as
subproblems in various integer programming problems and may represent many
practical situations. The most typical applications are in capital budgeting and
industrial production. Various capital budgeting models have been studied by
Weingartner [77,78], Weingartner and Ness [79], Cord [14] and Kaplan [41].
Among industrial applications, the classical studies an Cargo Loading Problems
(Bellman and Dreyfus [7]) and on Cutting Stock Problems (Gilmore and Gomory
[25, 26, 27, 281) are worth mentioning. More detailed reviews of applications
can be found in Salkin [69] and Salkin and de Kluyver [70].

Almost all books on Integer Programming or Combinational Optimization
contain a chapter on knapsack problems. In particular mention is made of
those of Hu [32], Garfinkel and Nemhauser [23], Salkin [69], Martello and
Toth [53], Syslo, Deo and Kowalik [72].

2. 0-1 knapsack problem
2.1. The problem

the following integer linear program
The 0-1 Knapsack Problem (KP) can be mathematically formulated through

maximize z = p Pix j
i = 1

n

subject to c wj xi < c
j = 1

(2.1)

(2.2)

xi = O or 1 (j = 1 , . . . ,n)

where xi is 1 if the j- th item has been selected, otherwise 0. Since profits and
weights are positive, it will be supposed, without loss of generality, that

p W,>C

i = 1

(2.3)

y . < c (j = 1 , . . . , n) (2.4)

KP is NP-hard, as can easily be verified by considering that the Subset-Sum
Problem, which will be proved to be NP-hard in Section 3.1, is a special case of KP.

Algorithms for Knopsock Problems 215

KP is a well-known problem and several exact and heuristic algorithms have been
proposed for its solution. The exact algorithms can be subdivided into two classes:
branch and bound methods (Kolesar [43], Greenberg and Hegerich [29], Horowitz
and Sahni [31], Fayard and Plateau [19, 201, Ahrens and Finke [2], Barr and
Ross [6], Nauss [65], Martello and Toth [48 ,52 ,61] , Zoltners [81], Suhl [71],
Balas and Zemel [5]) and dynamic programming procedures (Horowitz and Sahni
[31], Arhens and Finke (21, Toth [75]). The performance of both classes of
algorithms largely depends on the size of the problems to be solved. This can
generally be decreased by applying reduction procedures (Ingargiola and Korsh
[36], Toth [74], Dembo and Hammer [16], Fayard and Plateau [20]) so as to
fix the value of as many variables as possible. One of the essential ingredients of
the implicit enumeration algorithms and the reduction procedures is the quality
of the upper bounds used in the computation. The most effective upper bounds
for KP will be presented in Section 2.2. The following sections will summarize
the reduction procedures (Section 2.3), the branch and bound methods for
small size (Section 2.4) and large size (Section 2.5) problems and the dynamic
programming approaches (Section 2.6). An experimental analysis of these exact
algorithms is given in Section 2.7.

The main heuristic schemes are presented in Section 2.8.

2.2. Relaxations and upper bounds

For computation of the upper bounds it is assumed that the items are ordered
according to nonincreasing values of the profit per unit weight, that is, so that

pilwi > p , + l /wi +

for j = 1, . . . , n - 1.

If this is not the case, the sorting of the items can be performed in 0 (n log n)
time through any efficient sorting procedure (see, for instance, Aho, Hopcroft
and Ullman [1 I).

Let the critical item s be defined as

s = m i n j : c w i > c l I i = l

(because of (2.3) and (2.4), we have 1 < s < n) .
Given a problem instance P, we denote with z(P) the value of any optimal

solution of P. If P can be formulated as an integer linear program, we denote
with

The linear programming relaxation of KP, also called the continuous knapsack
problem, is defined by

the linear programming relaxation of P.

-
(KP) (2.1), (2.2) and

0 4 xi G 1 (j = 1, . . . , n) .

The optimal solution X of KP can easily be obtained in the following way
(Dantzig [151)

216 S. Martello. P. Torh

-
x . = 1 for j = l , . . . , 3 - 1

X = O for j = s t l , . . . , n

I

1

2, = c/ws,

s- 1 -
where c = c - c wj.

j = 1

The optimal solution value of KP is given by

s- 1

z (E) = x pi + cps /ws .
j = 1

Because of the integrality of pi and xi, a valid upper bound for KP is:

where [r] is the largest integer not greater than r .
The computational complexity of D, and hence of the Dantzig bound ul, is

clearly O(n) if we assume that the items are already sorted, otherwise O(n logn).
An improved upper bound has been proposed by Martello and Toth 1481

according to the following consideration: since,in KP, xs cannot assume a frac-
tional value, the optimal solution of K P can be obtained from the corresponding
continuous solution X of either without inserting the s-th item (i.e. by setting
Ys = 0) or by inserting it (i.e. by setting X, = 1). In the former case, the solution
value cannot exceed

s- 1

b , = x Pj + F P S + Jws+ 11>
j = 1

which corresponds to the case of filling the residual capacity C with items having
the best possible value of pj/wj (i.e. p s + l/w,+ l). In the latter, since it is necessary
to remove at least one of the first s - 1 items, the best solution value is given by

s- 1

b, = pi + [P,-(ws - a P s - , / w s -] l j
j = 1

where it has been supposed that the item to be removed has exactly the minimum
necessary value of wj (i.e. w, - F) and the worst possible value of p j / w j (i.e.
p s - l/w,p l>. A valid upper bound for KP is so given by

u, = max { b,, b2} .

Algorithms for knapsack problems 217

It can be proved (see [48]) that u, < u , .
The consideration on which the Martello-Toth bound is based can be further

exploited to compute more restrictive upper bounds than u,. This can be
achieved by replacing the values b, and b, with stronger values, say b, and b,,
which take more carefully into account the exclusion and inclusion of the s-th
item. Hudson [33] has proposed computing b, through the continuous relaxa-
tion of KP with the additional constraint x, = 1, that is

-
b, = [z(KP with x, = 111.

Fayard and Plateau [20] and, independently, Villela and Bornstein [76], have
proposed computing b, as well through continuous relaxation of KP, by impos-
ing constraint x, = 0, that is,

b, = [z (@ withx, = 011.

The corresponding bound is

u, = max { b,, 6,).

It can easily be proved that, since b, < b, and b, < b,, we have u, < u,.
Bound u , can also be seen as the result of the application of Dantzig's bound

at the two terminal nodes of a decision tree having the root node correspond-
ing to KP and two descendent nodes, say N1 and N2, corresponding to the
exclusion and inclusion of the s - th item. Clearly, the maximum among the
upper bounds corresponding to all the terminal nodes of a decision tree
represents a valid upper bound for the original problem corresponding to the
root node. So, if b, and b, are the Dantzig bounds corresponding respectively
to nodes N l and N2, u, represents a valid upper bound for KP.

An improved bound u, can be obtained by considering decision trees having
more than two terminal nodes; this approach has been proposed by Martello
and Toth in [61]. If, for example, nodes N1 and N2 have each two descendent
nodes, corresponding to the exclusion and inclusion of the (s + 1)-th item, a
valid upper bound is given by

U4 = max {b,, b,, b,, b8},
- -

where b, = [z(KP with x, = x,+, = O)], b, = [z(KP with x, = 0 and x,+, = 111,
b, = [z(KP with x, = 1 and x , + ~ = O)] , b, = [z(KP with x, = x , + ~ = l)]. Since
max{b, ,b ,}<b, andmax{b , ,b ,}<b , , thenE,<u,.

A different approach to the computation of upper bounds, proposed by Mul-
ler-Merbach [64], is based on Lagrangean Relaxation. Given a non-negative
multiplier A, the Lagrangean relaxation of KP is defined as

- -

n

(LR,) maximize Z" = pixi + A
j = 1

(2.5)

x . = O or 1 (j = 1 , . . . , n).
I

subject to

218 S. Martello, P. Toth

The objective function (2 . 5) can be restated as

n

maximize z = pixi + hc
j = 1

where $. = p J j -hw. I (j = l , . . . , n) . (2 . 6)

The optimal solution of LR, can easily be obtained as Zj = 1 if 5i > 0, Zj = 0
or 1 i fFj = O,jz / = 0ifFj < O .

Note that z(LR,) = z(LR,) for any h 2 0.
It can easily be verified that for h = = p,/w,, z(LR,) assumes its minimum

value. In fact, 6 2 0 for j = 1, . . . , s and 8 < 0 for j = s + 1 , . . . , n ; from which:

z(LRx) = z (L R ~) = z(E) 2 z(KP);
Z . = X . for j = 1 , . . . , s - l , s + 1 , . . . , n.

I 1

It is noted that I gi I represents the decrease of ~(LRI;) corresponding to the
change of the j - th variable from 2, to 1 - Zi. Other properties of the Lagrangean
relaxation for KP have been studied by Maculan [45 I.

In order to obtain an integer solution to KP from the continuous one, either
the fractional variable X, alone has to be set to 0 or at least one of the other
variables, say El, has to change its value (from 1 to 0 or from 0 to 1). If the
latter change takes place, for any j # s we have

z(KPwithxj = 1 - T ,) < [z (L R ~ w i t h x ~ = 1 -Z,)] =

= [Z (LRx) - 1 pi I] = [Z (KP) - I pj I 1.
Hence the Muller-Merbach upper bound for KP is

us = max{z(KP) - ~ p , / w , , [z(KP) - min {IF, I : j = 1 , ..., n ; j #s}I}.

It can easily be seen that us < u
An improved bound with respect to both u3 and u s has recently been pro-

posed by Dudzinski and Walukiewicz [171. Consider any feasible solution .? to
KP, of value 1 and safisfying

wiZi + wi > c for any j such that 2j = 0.
i = 1

If 2 is not optimal for KP, then an optimal solution can be obtained only if at
least two variables, say 2, and 2, with Zk = 0 and 2,, = 1, change their values
to zk = 1 and .2h = 0. The following upper bound can thus be derived:

u6 = max { i, [min {z (m withxs= 11, z (m) - min{ 5. : j = 1 ,... , s - 1 }} 1,
I

[min {z (G w i t h x , = 01, z (3) + max{q. : j Efi}}]}
e

where N ={ j : ij = 0, j = 1 , . . . , n , j # s}. It can be proved that u6 < min { ug, u s } .

Algorithms for Knapsack Problems 219

Further improvements on u6, leading to more time-consuming bounding
procedures, have been presented in [171.

Since us can be less, equal, or greater than u4, an improved upper bound for
KP is

u, = min { u4, u 6 } .

Although all the above bounds have the same computational complexity, that
isO(n) if the items are already sorted, their average performances are quite
different, as can easily be seen from the corresponding definitions. When
implementing a branch- and-bound algorithm, the bound to be computed at each
node of the branch-decision tree must be selected by considering that u l , u2,
ug and u4 can easily be computed through parametric techniques (the value of
s generally changes slightly from one node to the next), while u5 and u6 need
examination of value F j for all currently unfixed variables x i .

Most of the algorithms for KP require initial sorting of items so that pi/wi >
2 pi + , /wj + (j = 1, . , . , n - 1). For algorithms not requiring this sorting, all
upper bounds can still be computed in O(n) time since the continuous solution
is completely identified by the value of s, which can be computed in O(n) time
through a partitioning technique, as shown in detail is Section 2.5.

2.3. Reduction procedures

The number of binary variables (x i) and the value of c can be decreased by
applying reduction procedures ([3 6] , [74], [16], [20]) which fix the optimal
value of as many variables as possible. These procedures partition set
N = (1, 2 , . . . , n } into three subsets:

J 1 = { j E N : xi = 1 in an optimal solution to KP};

J O = { j E N : xi = 0 in an optimal solution to KP};

F = N - (J I UJO).

The original KP can now be transformed into the reduced form

maximize z = pixi + i;
j € F

subject t o wjxj < 2.
j E F

xi = O or 1 (~EF)

where 5 = pi , 2 = c - y .
j € J 1 j € J 1

220 S. Martello, P. Toth

Subsets J 1 and J O are obtained by considering the implications corresponding
to setting a variable xi to 0 or to 1. If setting a variable xi to a given value a
(a = 0 or 1) implies an infeasible solution to KP or a solution not better than an
existing one, variable xi can be fixed to 1 --a, since this is the only choice which
can lead to feasible or improved solutions. The implications of what occurs by
setting a variable to a given value can be derived either through dominance rela-
tions or the evaluation of upper bounds. For KP, the most efficient reduction
procedures are based on the latter approach (the former will be considered in
Section 4.3 for reduction of the Multiple Knapsack Problem).

Let .? be any feasible solution to KP and .? the corresponding value (2 represents
a lower bound on the optimal solution value z * to KP). Moreover, for j EN, let
zi (resp. Fj) be the upper bound corresponding to KP with the additional
constraint xi = 1 (resp. xi = 0). Then we have

J 1 = { j E N : T i < 2 J ,

J 0 = { j E N : zi < 2).
The effectiveness and computational efficiency of the reduction procedures

clearly depend on the techniques used in computing 2, zi and 7 .
The upper bounds zi and .Ti can be computed through any of the approaches

of Section 2.2. In particular, bound u 1 has been used in [36] and [20],bound
u2 in [74]. Since the computation of bounds zi (resp. Ti) requires O(n) time
to find the critical item si (resp. $1 in the corresponding continuous solution,
the overall complexity of the reduction procedures is O(n2). However, if bounds
u l , u 2 , u3 or u4 are used, the average computing times can be greatly decreased
since, as mentioned in Section 2.2, these bounds can easily be computed through
parametric techniques. A further decrease of the average time can be obtained
by considering that it is useless to compute z j (resp. Ti) if xi = 1 (resp. xi = 0) in
the solution corresponding to the upper bound u computed for the original KP,
since, in these cases, we have z j = u (resp. Ti = u) . For instance, if u is given by
u l , it is useless to compute Fj for j < s and zi for j > s. In addition, the worst-case
time complexity of the reduction procedures can be decreased to O(n logn) as
follows.

Procedure REDUCTION
sort the items so that pi/wi 2 pi +,,/wi + (j = 1 , . . . , n - 1);
f o r j = 1 tondocomputet i = X : . = l wi;
find, through binary search,^ such that t3- , < c < t,;
for j = 1 to s do compute Zi by finding the corresponding value 5 such that

for j = s to n do compute z j by finding the corresponding value S;. such that
t q - , < c + W i < t +

fS-, < c - wj < tT.

The time complexity is O(n log n) for the first step, O(n) for the second, O(1ogn)

AIgorithms for knapsack problems 221

for the third, and O(n log n) for the last two steps.
A faster, but less effective, procedure of time complexity O(n), has been derived

in [161 by considering that value I Fj 1 , defined by (2.6), represents the decrease
of z (e) corresponding to the change of the j - th variable from Tj to 1 - F j .
The upper bounds z j and Z j can thus be given by [z(E) - 1 I 1. It is easy to
prove that the values zi and 5 obtained in this way are not lower than any bound
previously considered, so this reduction procedure is generally less effective than
the previous ones.

The cardinality of subset F can be further decreased by imposing conditions
(2.3) and (2.4) on the reduced problem (i.e. by setting J O = JO U { j E F : wj > 2)
and, if C j t F wi G i?, J 1 = J 1 u F) and by repeating the reduction procedure for
the items in F until no further variable is fixed (insertion of an item into J1 or
J O can decrease the value of the upper bounds z j and F j for j E F).

The lower bound 2 can be computed by using any heuristic procedure for
KP (see Section 2.8), for instance the greedy solution as proposed in [16] and
[20], or by taking the best of the integer solutions obtained as a by-product
from the computation of the upper bounds zi and Zi (j EN), as proposed in
[36] and [74].

2.4. Branch-and-bound algorithms

Many branch-and-bound methods have been proposed in the last few decades
for the exact solution of KP ([431, [29], [311, [191, 121, 161, [651, [481, 1521,
[81], [71], [S], [20] , [61]). The algorithms differ in the upper bounding technique
(see Section 2.21, branching strategy, the application of dominance or infeasibility
criteria at the nodes of the branch-decision tree, and the parametrization used in
computing the upper bounds.

The most efficient methods apply a depth-first binary branching scheme
which, at each node, selects a not yet fixed item, say the i-th, having the maximum
ratio profit/weight, and generates two descendent nodes by fixing x,,respectively,
to 1 and 0. The search continues from the node associated with the insertion of
the i-th item in the current solution (x i = l) , i.e. from the node having the
maximum value of the corresponding upper bound. In the following, we will
describe two of the most efficient branch-and-bound methods for KP, that is,
those proposed in [3 1 1 and [481.

The algorithm of Horowitz and Sahni [3 1] starts by sorting the items according
to decreasing values of profit per unit weight and then by taking the continuous
solution of KP (see Section 2.2) with xs = 0 as first current solution. A forward
move consists of inserting the largest set of new consecutive items into the current
solution under condition (2.2). A backtracking move consists of removing the
last inserted item from the current solution. Whenever a forward move is exhaust-
ed, the upper bound u , corresponding to the current solution is computed and
compared with the best solution so far in order to check wether further forward
moves could lead to a better one: if so, a new forward move is performed,

222 5. Martello. P. Toth

otherwise a backtracking follows. When the last item has been considered, the
current solution is complete and possible updating of the best solution so far
occurs. The algorithm stops when no further backtracking can be performed.

The Martello and Toth algorithm [48] differs from the above method in the
following main respects.

i. Upper bound u2 is used instead of u 1.

ii. The forward move associated with the selection of the j- th item is split
into two phases: building of a new current solution and saving of the current
solution. In the first phase the largest set Nj of consecutive items which can be
inserted into the current solution starting from the j-th, is defined and the upper
bound uj corresponding to the insertion of the j- th item computed. If uj is not
greater than the value of the best solution so far, a backtracking move immedia-
tely follows. Otherwise, the second phase, that is, insertion of the items of set
Nj into the current solution, is performed only if the value of such a new solution
does not represent the maximum which can be obtained by inserting the j- th
item. If this is not the case, the best solution so far is changed but the current
solution is not updated, so that useless backtrackings on the items in N j are
avoided.

iii. A particular forward procedure, based on dominance criteria, is performed
whenever, before a backtracking move on the' i-th item, the residual capacity I?
does not allow insertion into the current solution of any item following the
i-th. The procedure is based on the following consideration: the current solu-
tion could be improved only if the i-th item is replaced by an item having greater
profit and a weight small enough to allow its insertion, or by at least two items
having global weight not greater than wi + 2. By this approach it is generally
possible to eliminate most of the useless nodes generated at the lowest levels
of the decision tree.

iv. The upper bounds associated with the nodes of the decision-tree are comput-
ed through a parametric technique based on the storing of information related
to the current solution. Suppose, in fact, that the current solution has been
built by inserting the items from the j- th to the r-th: then, when trying to build
a new solution starting from the i-th item (j < i < r), if no insertion or removal
occurred for the items preceding the j-th, it is possible to insert at least the items
from the i-th to the r-th into the new current solution.

Detailed description of the algorithm follows.

Algorithm MT 1
1. [initialization]

sort the items so that pj/wj 2 pi + l/wj + (j = 1, . . . , n - I) ;
findr = max{j : Z / = l wj <c}and computep* = X,!=lp, , w* = Z;=l wj;

Algorithms for Knapsack Problems 223

fo r j = 1 t o n do compute mi = min {wi : i = j + 1,. . . , n}and set xi = 0;
=tp ,+ , =o,w,,, = - , m , = 00, z = 0, z* = 0, r^ = n,E = c ;

set j = 1 and go to Step 3.

2. [building of a new current solution]
while w, > 2 do

set u = u 2 = p * + max { [(c - w *) P ~ + ~ / w ~ + ~ 1, I$,+ 1 - (wr+ 1 - (C -w*))~r/wrIJ;

i f z * > z + [c^pj+l/wjtl] thengotoStep5;
else set j = j + 1;

f i n d r = m a x { i : G j + Z ~ = , . w k < c ^ } (i f G j + w q > > , s e t r = ~ - l) ; I

compute p * = pj + CT=Fj p i , w * = W j + X,!'= .i wi;
i fw* = c ^ o r r = n

then if z * < z + p * then set z * = z + p *;
f o r i = 1 t o j - ldose tx :=x i ;
for i = j t o r do set xi* = 1;
for i = r + 1 to n do set x: = 0;
if z* = u then stop;

go to Step 5 ;
e l s e i f z * < z + p * + [(E - w *) ~ ~ + ~ / w ~ + ~ l

then go to Step 3;
else if z * > z + p * + [pr+ - (wr+ - (2 - w*))pr/wr] then go to Step 5.

3. [saving of the current solution]
set E = 2 -w*, z = z + p*; for i = j to r d o set xi = 1 ;
set wj = w*, pi = p *, rj = r + 1 ;
f o r i = j + 1 t o r d o s e t i i =Wi-l-wi- l ,pi =pi- l -p i - l , r i = r + 1;
for i = r + 1 to r̂ do set Ei = 0, pi = 0, Yi = i;
set r̂ = r, j = r + 2 ;
if E 2

- -
- - -

then go to Step 2.

4. [updating of the best solution so far]
i f z * < z t h e n s e t z * = z ;

for i = 1 to n do set .xi* = x i ;
if z * = u then stop.

5. [backtracking]
find i = max{ k : xk = 1 , k < j } ; if no such i exists then stop;
set 2 = c ̂ + wi, z = z - p i , xi = 0;
if; - wi 2 mi then set j = i + 1 and go to Step 2 ;

else set j = i , h = i .

6. [replacement of the i-th item with the h-th]
set h = h + 1;
if z * 2 z + [2 ph/wh] then go to Step 5;
if w, = wi then repeat Step 6;

224 S. Martello. P. Toth

if w,, > wi then if w, > 2 or z * > z + p,, then repeat Step 6;
set z* = z + p,;
for k = 1 to IZ do set x: = x k ;
set x$ = 1;
i f z* = u then stop;
set i = h and repeat Step 6;

else if 2 - w, < m,, then repeat Step 6;
Set 2 = c ̂ - W h , Z = Z + p h , Xh = 1, j = h + 1;

2 set Wh = wh,jih = p , , , r h = h + 1 ;
for k = h + 1 to i do set Wk = 0, F k = 0, rk = k ;
set r̂ = h and go to Step 2.

2.5. Large-size problems

As will be shown in Section 2.7, many instances of KP can be solved by branch-
-and-bound algorithms for very high values of n. For such problems, the prelimi-
nary sorting of the items requires, on average, a comparatively high computing
time (for example when n 2 2000 the sorting time is about 90 percent of
the total time required by the algorithms of Section 2.4). In the present section
we review some algorithms which do not require preliminary sorting of 'all the
items.

The first algorithm of this h n d was presented by Balas and Zemel [5] and is
based on the so-called ((core problem)). Suppose the items are sorted so that
pity 2 = ~ ~ + ~ / y for j = 1, . . . , n - 1, and, for an optimal solution (x*), let

j z = m a x { j : x * I = I}, j , = m i n { j : x * I =O},

I = { j . . , i 2 } ;

the core problem is then defined as

maximize Z" = x p i x i
j € S

E wj sibject to wi xi < c -
j € I j g { i : P i / w i > P j , / w j , }

x i = O o r 1 fo r jE1 .

In general, for large problems, the size of the core is a very small fraction of n.
Hence, if we knew ((a priori)) the values of jl and j 2 , we could easily solve the
complete problem by setting xi* = 1 for all j such that p j / y >pidyl, xi* = 0
for all j such that pi/wi <piz/wi2 and by solving the core problem through any
branch-and-bound algorithm (so that only the items in I would have to be
sorted). jl and j z cannot be ((a pr ior i~ identified, but a good approximation of the
core problem can be obtained if we consider that, in most cases, given the critical

Algorithms for knapsack problems 225

item s, which identifies the solution of the continuous relaxation of KP (see
Section 2.21, we have j l 2 s - 612 and j 2 < s + 612 for some 19 << n. Balas and
Zemel have proposed the following procedure, having a prefixed value 6, to
identify item s, the continuous solution and set I of the items in the approximate
core problem, without preliminary sorting.

Procedure CORE
setJO =J1 = 8, F = {1,2, . . . ,n},c^ =c ;
while I F I > 6 do

let h be the median of the first 3 ratios p i / y in F;
partition F into: N > = { j E F : pj/wi> A},

N < = { j E F :pi/y < A } ,
N = = (j E F : p i / y = A } ;

set c, = Z i E N > 3, c2 = c1 + Zit,,= wj;
if c, < c^ < c2

then (A = p,/w,, so) the continuous solution is obtained by setting .Yj = 1 for
j EJ1 U N>, xi = 0 for j E J O U N < and then filling the residual capacity
2 - c1 with items in N = in any order (thus identifying item s);
sort the items in F according to decreasing pj/y ratios and define I as a
(sorted) subset of F such that I I I = 6 and s is contained in the middle
third of I ; stop;

else if c1 > c^ then set JO t= JO U N < u N=, F = N > ;
else set J 1 = J1 u N > u N', F = N<, ĉ = i? - c2;

set I = F ;
sort I according to decreasing pi/wi ratios and determine the continuous solution
by setting 5 = 1 for j EJ1, = 0 for j €10 and then solving the continuous
relaxation of the core problem by Dantzig's method.

The Balas-Zemel method also makes use of two procedures, H and R.
Procedure H is a heuristic, including dominance relations among the
items, which finds ani approximate solution for a given core problem
I (let z,, be the corresponding value of the heuristic solution of KP).
Procedure R is a reduction algorithm (see Section 2.3) which fixes
as many variables as possible by applying the Dembo-Hammer test and
then the Ingargiola-Korsh test, modified so as to compute an approximate
continuous solution when the items are not sorted.

The overall algorithm can be outlined as follows. Let N = { 1, 2 , . . . , n} .

Algorithm BZ
apply procedure CORE and let z , be the value of the continuous solution to KP;
apply procedures H and R t o the items in I ;
if z,, = [z ,] then (an optimal solution has been found, so) stop;

226 S. Martello, P. Toth

apply procedure R to the items in N - I and let J1 and J O be those subsets of N
whose corresponding variables are respectively fixed to 1 and 0;
define a new core problem I = N -J1 -JO;
if I I I > y (y being a threshold value)

then apply procedures H and R to the items in I and define the new sets J1,

if zh = [z,] then stop;
J O and I = N -J1 -JO;

sort the items in I and exactly solve the core problem through the enumerative
Zoltners algortithm [8 1 1.

Two algorithms to solve large 0-1 knapsack problems without sorting all the
items, have been derived from Balas and Zemel’s [5] basic idea. That of Fayard
and Plateau [20], presented together with an efficient Fortran implementation,
can be briefly described as follows.

Algorithm FP
find the continuous solution of the problem through a procedure similar to CORE
and let this solution be defined by s, J1 and z,, with

find a heuristic solution of value zh = Cj , J 1 pi + g, where g is obtained by apply-
ing the greedy algorithm (without sorting) to the items in { 1,2, . . . , n } -Jl;
if zh = [z ,] then stop;
apply the reduction procedure of Dembo and Hammer [16] and let F be the
set of items whose corresponding variables are not fixed;
sort the items in F according to increasing values of 16 I = 1 pi - wj ps/ws I and
exactly solve the corresponding problem through a particular enumerative techni-
que.

zc = zjc=J]Pj + (c - c j E J 1 wj)Ps/ws;

Martello and Toth [61] have recently proposed another algorithm - based on
the core problem - and the corresponding Fortran implementation. The method
can be outlined as follows.

Algorithm MT2
find the set I of items in the core problem through a procedure similar to CORE
and let J1 be the set of items whose corresponding variables are temporarily
fixed to 1 ;
if 1 Z I < n/a (a a prefixed parameter)

then sort the items in I according to decreasing pj/y ratios;
find an exact solution (of value Z) to the core problem through a modified
version of algorithm MTl of Section 2.4, which also gives upper bound
u4 on KP (see Section 2.2) ;
if Z j E J 1 pi + E = u4 then stop;
apply a modified version of the Toth algorithm [74] to reduce the comple-
te problem without sorting, and let F be the set of items whose correspond-

Algorithms for knapsack problems 221

ing variables are not fixed;
if F C I then (ZjEJ1 pi + Z is an optimal solution value to KP, so) stop;
sort the items in F according to decreasing pj/wj ratios;

apply the reduction algorithm of Toth and define the corresponding set F,
else sort all the items according to pj/wi ratios;

exactly solve the reduced problem through algorithm MT 1.

2.6. Dynamic programming algorithms

let
For each integer m (m = 1 , 2 , . . . , n) and for each integer b (b = 0, 1, . . . , c)

Xm(b) = set of items inserted in the optimal solution corresponding
tofm(b) (i.e.fm(b) = Z i E X , (b p j) .

From the above definitions it follows that

& (b) = O , X , (b) = O for O<b<ww, ,

f ; (b) = pl , X I @) = { I } for w1 < b < c.

The backward recursive equations for the m-th stage (m = 2 , . . . , n) and for
b = 0,. . . , c are defined as

f,@) =f, - ,(b),X,(b) =X,-,(b)
if b < w , or f,_,(b)>f,_,(b-w,)+p,;

otherwise f,(b) =f,-,(b - ~ ~) + p ~ , X , (b) = X , - ~ (b - w ,) u { m } .

The optimal solution for KP is given by

z = f , (c) ,

xi = 1 if j EXn(c) , otherwise xi = 0.

The time complexity of the dynamic programming algorithms based on the
above recursions is clearly O(nc) (pseudo-polynomial algorithms).

An improvement over the basic scheme can be obtained through the following
considerations. Each triplet (b, g , Y) with g = f, (b) and Y = X,,, (b) represents a
state at stage m. It is generally possible to obtain a considerable reduction of the
number of states considered at a given stage by eliminating all the dominated
states, that is, the states (b , g , Y) for which at least one state (b,g, y>, having

< b and g > g, exists at the same stage. The states at stage m (m = 2, . . . , n)
can thus be defined by considering only the undominated states at stage m - 1
and applying forward recursive equations (see [31], [2] , [75]). This approach
requires no specific sorting of the items. However, its average efficiency increases
if the items are sorted so that pily 2 pi+ ,/wit , for j = 1, . . . , n - 1, since the

228 S. MarteUo, P. Toth

number of undominated states at each stage decreases. It can be seen that the
maximum number of states at stage m is given by min (2" - 1, Z,% wj, c } .

Horowitz and Sahni [3 1] have proposed an algorithm based on splitting of the
original problem into two subproblems having, respectively, 4 = [n / 2] and
r = n - q items. For each subproblem, a list containing all the undominated
states relative t o the last stage (respectively the 4-th and the r-th), is computed.
Then the two lists are merged to find the optimal solution of the original problem.
The main feature of this approach is given by the property of having, in the
worst case, two lists, each of (2'1 - 1) states, instead of a list of (2" - 1) states
as required by the original problem.

Ahrens and Finke [2] have independently obtained an algorithm where the
above technique is combined with a branch and bound procedure in order to
reduce the storage requirements. This method works well for problems having
small values of n and very large values of wj and c .

Toth [75] has proposed an algorithm based on the computation of upper
bounds for fathoming the states not leading to optimal solutions and on the
elimination of the unutilized states, that is, of the states which will no longer
be considered in the following stages. In addition, the method performs a combi-
nation of forward and backward recursive equations taking into account the
number of undominated states and the value of c.

2.7. Computational results

In this section we analyze the computational performance of the algorithms of
the previous sections on sets of randomly generated test problems. Since the diffi-
culty of such problems is greatly affected by the correlations between profits and
weights, we consider three uniformly randomly generated data sets, with different
degrees of correlation:

uncorrelated : l < W j G i j W , l < p j s p ;

weakly correlated : 1 < wi < G, wj - r <p i < 9 + r;

strongly correlated: 1 d wj < G, p . = w. + r .
I 1

For each data set we consider two values of the capacity: c = 2iij and
c = 0.5 Zr= wj. In the first case the optimal solution contains very few items,
while in the second it contains about half of them.

We give separate tables for small-size problems (n = 50, 100,200) and large-
-size problems (n = 500, 1000, 2000, 5000, 10000).

We compare the Fortran IV implementations of the following algorithms:

HS
MT 1
R + HS
R + MTl

= Horowitz-Sahni [31] (Section 2.4);
= Martello-Toth [48,52] (Section 2.4);
= HS with reduction (Section 2.3);
= MTl with reduction;

Algorithms for knapsack problems 229

R + DPT
BZ
FP
MT2

MTI , FP and MT2 are published codes. HS, R and DPT have been coded by
us. For BZ we give the computing times presented by the authors [5], which
have been obtained by choosing 19 = 25 and y = 50.

All runs have been executed on a CDC-Cyber 730. For each data set, value
of c and value of n , the tables give the average running time, expressed in seconds,
computed over 20 problem instances. Since Balas and Zemel give times obtained
an a CDC-6600, which we verified to be about two times faster than the CDC-
-Cyber 730 on this kind of problems, the times given in the tables for BZ are
those in [5] multiplied by 2.

Code FP includes its own sorting procedure. The sortings needed by HS, MTl ,
DPT and MT2 have been obtained through Fortran subroutine SORTZV of the
CERN library. For n = 50, 100, 200, 500, 1000, 2000, 5000, 10000 this sub-
routine requires respectively 0.008, 0.018, 0.041, 0.114, 0.250, 0.529, 1.416,
3.010 seconds on a CDC-Cyber 730. All times given in the tables include the
corresponding sorting time.

Tables 2.1, 2.2 and 2.3 compare algorithms HS, R + HS, MTl, R + MT1, FP
and R + DPT on small-size problems (we do not give the times of MT2, which
are almost equal t o those of R + MTl). For all datasets, W = 100, = 100, r = 10.
Table 2.1 refers to uncorrelated problems, Table 2.2 to weakly correlated prob-
lems. All algorithms solved the problems very quickly with the exception of HS
and, for weakly correlated problems, R + DPT. MTl is only slightly improved
by previous application of R, contrary to what happens for HS. Table 2.3 refers
to strongly correlated problems. Because of the high times generally involved, a
time limit of 500 seconds has been assigned to each algorithm for solution of the
60 problems generated for each value of c. The dynamic programming approach

= Toth’s dynamic programming [75] (Section 2.6) with reduction;
= Balas-Zemel [5] (Section 2.5);
= Fayard-Plateau [20] (Section 2.5);
= Martello-Toth [6 1] (Section 2.5).

Table 2.1
Uncorrelated problems: 1 Q w, < 100, 1 < p i < 100. CDC-Cyber 730 seconds. Average times
over 20 problems.

C n HS R + H S MT1 R + M T l FP R+DPT

50 0.022 0.013 0.015 0.012 0.013 0.013
200 100 0.039 0.024 0.026 0.025 0.018 0.029

200 0.081 0.050 0.051 0.050 0.032 0.055

n 50 0.031 0.016 0.016 0.013 0.013 0.020
0.5 1 y 100 0.075 0.028 0.030 0.026 0.021 0.043

j =1 200 0.237 0.065 0.068 0.057 0.053 0.090

230 5. Martello, P. Toth

Table 2.2
Weakly correlated problems: 1 Q y < 100, wj - 10 < p i Q q + 10. CDC-Cyber 730 seconds.
Average times over 20 problems.

C n HS R + H S MTl R + M T l FP R f D P T

50 0.031 0.018 0.017 0.014 0.016 0.022
200 100 0.049 0.029 0.032 0.024 0.023 0.041

200 0.091 0.052 0.055 0.048 0.030 0.066

n 50 0.038 0.025 0.022 0.020 0.021 0.071
0.5 x q 100 0.079 0.042 0.040 0.031 0.039 0.158

j =1 200 0.185 0.070 0.069 0.055 0.057 0.223

Table 2.3
Strongly correlated problems 1 < q < 100,
times over 20 porblems.

= q + 10. CDC-Cyber 730 seconds. Average

C n HS R + H S MTl R + M T l FP R + D P T

50 0,165 0.101 0.028 0.025 0.047 0.041
200 100 1.035 0.392 0.052 0.047 0.096 0.070

200 3.584 2.785 0.367 0.311 0.928 0.111

n 50 timelimit timelimit 4.870 4.019 17.895 0.370
0.5 x wj 100 - - time limit time limit time limit 1.409

- - 3.936 - - - j =1 200

appears clearly superior to all branch-and-bound algorithms (among which MTl
has the best performance).

For large-size problems we do not consider strongly correlated problems,
because of the impractical times involved. Tables 2.4 and 2.5 compare algorithms
MT1, BZ, FP and MT2. Dynamic programming is not considered because of
excessive memory requirements, HS because of clear inferiority. The best algo-
rithms are FP and MT2 for uncorrelated problems, BZ and MT2 for weakly
correlated problems.

MT 1, which is not designed for large problems, is generally the worst algorithm.
However, about 90 percent of its time is spent for sorting, so its use can be conve-
nient when several KP’s are to be solved for the same item set and different values
of c . A situation of this kind arises for multiple knapsack problems, as will be seen
in Section 4.

The core memory requirements of codes MT1, FP and MT2 are, respectively, 8n,
7n and 8n words. MT1 consists of 180 statements, FP of 600, and MT2 of 1000.

Algorithms for Knapsack Problems 231

Table 2.4
Uncorrelated problems. 1 G y < 1000, 1 <pi G 1000,
c = 0.5 ZY=, w,. CDC-Cyber 730 seconds. Average times
over 20 problems.

n MTl BZ FP MT2

500 0.199 - 0.104 0.157
1000 0.381 0.372 0.188 0.258
2000 0.787 0.606 0.358 0.462
5000 1.993 0.958 1.745 0.982

10000 4.265 1.514 7.661 1.979

Table 2.5
Weakly correlated problems. 1 < y < 1000, w, - 100 <
< p i < y + 100, c = 0.5 Z,!'=, w,. CDC-Cyber 730 seconds.
Average times over 20 problems.

n MT 1 BZ FP MT2
~

500 0.367 - 0.185 0.209
1000 0.663 0.588 0.271 0.293
2000 1.080 0.586 0.404 0.491
5000 2.188 0.744 1.782 0.771

10000 3.856 1.018 19.481 1.608

2.8. Heuristic algorithms

In this section we review some approximation schemes to determine an appro-
ximate solution of value .? to KP. An approximation scheme is a parametric
algorithm which allows one to obtain any worst-case performance ratio (see
Section 1) by prefixing the value of a parameter.

The first approximation scheme for KP was proposed by Sahni [68] and
makes use of a greedy procedure, which finds a lower bound solution by filling,
in order of nonincreasing pi/wi ratios that part of c which is left vacant after
the items of a given set M have been put into the knapsack. Given M C{l , . . . , n }
and assuming that the items are sorted so that pi/wi 2 p i+ l /wj+ for j = 1, . . . , n - 1,
the procedure is:

Procedure g (M)

let g = ZjEM p i , c ' = c - Z i E M w,, X = M ;
for j = 1 to n do

ifj $ M and w, <c' then setg = g + p i , C' = c' -w.,X I = X U { j }

The Sahni scheme, MTk, where k is a nonnegative integer parameter, is

232 S. Martello, P. Toth

Algorithm Sk

S o r t t h e i t e m s ~ o t h a t p ~ / w ~ > p ~ + ~ / w ~ + , f o r j = 1 , . . . , n - 1 ;
set 2 = 0;
for eachM c { 1 , 2 , . . . , n } such that IM I < k and Zj tM wi < c do

ifg(M) > 2 then set 2 = g(M), = M u X .

Since the time complexity of procedure g is O(n) , algorithm Sk runs in O(n ')
time. The space complexity is clearly O(n). Sahni has proved that the worst -case
performance ratio of Sk is r(Sk) = k / (k + 1). Hence the Sahni algorithm is a
polynomial approxirnation scheme, in the sense that any worst-case performance
ratio can be obtained in a time bounded by a polynomial. However, the degree
of the polynomial increases with k , so the time complexity of the algorithm is
exponential in the inverse of the worst -case relative error E = 1 - r.

Ibarra and Kim [35] have obtained a fully polynomial approxirnation scheme,
i.e. a parametric algorithm which allows one to obtain any worst-case relative
error (note that imposing E is equivalent t o imposing r) in polynomial time and
space, and such that the time and space complexities grow polynomially also
with the inverse of E . The basic ideas in the Ibarra-Kim algorithm are: (a) to
separate items, according to profits, into a class of ((large)) items and one of
((small)) items; (b) to solve the problem for the large items only, with profits
scaled by a suitable scale factor 6 , through dynamic programming. The dynamic
programming list is stored in a table T of length [(3 / ~) ~] + 1; T (k) = @ or is of the
form (L (k) , P (k) , W(l i>) , where L (k) is a subset of (1 , . . . , n } , P (k) = 2itL(k)pj,
W (k) = Z j t L (k) W j and k = x j E L (k) & withPj = [p i /&] .

Algorithm IKE
Sort theitemsso that pj/wi >pj+l /wi+l f o r j = 1 , . . . , n - 1;
find the largest r such that I% = X i z l wj < c ;
if ii, = c then set 2 = CIXl p j , X = (1,. . . , r } and stop;
set T = ZsL:pi (note that 2"/2 < z <z") and define the scale factor 6 = F (E / ~) ~ ;
set S = 6, T(0) = (6, 0,0), q = [f / 6] = [(3/eI2 I ;
for i = 1 t o q do set T (i) = 6;
f o r j = 1 ton do

L

if pi < cZ/3 then (the item is ctsmall)), so) set S = S U { j } , preserving the
nonincreasing profit/weight order;

else define the scaled profit 6 = [p j /6 1 ;
for i = q -q to 0 step - 1 do

if T (i) # 6 and W(i) + wj < c then
if T(i + pi) = 6 or W (i + pi) > W (i) + wi then

set T (i + pi) = (L (i) u { j } , P (i) + p i , W(i) + 9);
set f = 0;
for i = 1 to q do

Algorithms for Knapsack Problems 233

if T (i) # 8 then set .? = P(i) + CirA pi, where A is obtained by filling the resi-
dual capacity c - W (i) with items in S , in order;
if Z > 2 then set I = Zf,* = L (i) U A .

The time complexity of IK' is O(n log n + 5 log (k)), the space complexity
O(n + $1,

A fully polynomial approximation scheme for KP, based on the same ideas
contained in the Ibarra-Kim algorithm, was independently found by Babat [4].

The Ibarra-Kim scheme has been modified by Lawler [44] to obtain time
complexity O(n log (i) + 6) and space complexity O(n + $), and by Magazine
and Oguz [47] to obtain time complexity O(n2 lognlf) and space complexity

Note that the core memory requirements of the fully polynomial approxima-
tion schemes depend on E and can become impractical for small values of this
parameter. On the contrary, the space complexity of Sahni's polynomial appro-
ximation scheme is O(n) , independently of r.

O(nlE)*

3. Subset -sum problem
3.1. The problem

Problem where pi = wi for all j . It can thus be formulated as
The Subset-Sum Problem (SSP) is a particular case of the 0-1 Knapsack

n

maximize z = wi xi
j = l

subject to wixi < c ,
i = l

x . = O or 1 (j = 1 , . . . , n) .
I

SSP is also called the Value-Independent Knapsack Problem or Stickstacking
Problem. We will suppose, without loss of generality, that wj < c (j = 1, . . . , n)
and C;i"=, wi > c .

SSP is NP-complete, as we can see by polynomial transfonnation from Parti-
tion, which is the following basic NP-complete problem (see Karp [42]):

Instance : finite set A , sizes (a) E Z+ for each a E A , positive integer b.
Question : is there a subset A' C A such that the sum of the sizes of elements

in A' is exactly b?

Given any instance of the Partition Problem, we can define the following

234 S. Martello. P. Toth

instance of SSP:

w. = s(a.> (j = 1 , . . . , n) , where A = { a l , a 2 , . . . ,a,,);

c = b .

I I

Let z be the solution value of this SSP and (x") the corresponding solution
vector. Clearly the answer to the Partition Problem instance is ((yes)) if and
only if z = c, so that A' = {a j E A :xi* = 1).

SSP can obviously be solved by any algorithm for the 0-1 Knapsack Problem
(some computational results have been given by Martello and Toth [59]) . It can
easily be verified, however, that all the upper bounds of Section 2.2 would,
for an SSP, give the trivial value c, so branch-and-bound algorithms could dege-
nerate into complete enumeration. For the same reason, no effect can be expect-
ed from the reduction procedures of Section 2.3. In the next sections we examine
specific optimal and heuristic algorithms for SSP.

3.2. Exact algorithms

SSP has been optimally solved through dynamic programming by Faaland
[181 and Ahrens and Finke [2] , and, for large-size problems, through an enume-
rative technique by Balas and Zemel [5] . The Faaland algorithm is a pure dy-
namic programming recursion and is dominated by the Ahrens-Finke method,
which is also based on a tournament-sort technique. Because of the large core
memory requirements (the Ahrens-Finke algorithm needs about 2"14 + words),
the dynamic programming approaches can be used only for small values of n.
The Balas-Zemel algorithm is a particularization of their method for large 0-1
Knapsack Problems (Section 2.5).

Martello and Toth [5 9] have presented a mixture of dynamic programming
and branch-and-bound, which proved to be more efficient, on the average,
than the other methods. The main idea is that of applying the dynamic program-
ming recursions only to a subset of items while, for the remaining items, tree-
-search is performed. When n is large, this mixed approach is applied only to a
core problem, which is theoretically defined similarly to that of the 0- 1 knap-
sack problem, but can be determined much more efficiently.

Algorithm MTS
0. [initialization]

Define the values of parameters M1, M2 and C;
i f n < 100 then (no core problem is needed, so) set J1 = 6, sort the items so

that wi 2 wi+ , fo r j = 1 , . . , , n - 1 and go to Step 2
else define the values of parameters t and At , set co = c and find

the smallest s such that Z,?=l 9 > c.

Algorithms for Knapsack Problems 235

1. [core problem]
Set J1 = { j : 1 S j G s - - t - 1) (the items in J 1 are supposed to be in tlie
optimal solution);
the core problem to be solved is defined by PZ = 2t + 1, c = co - ZiEJ1 wi and
by items s - t , . . . , s + t (in steps 2 and 3 we denote these items with
1, 2 , . . . , n) ; sort these items so that wj 2 wi + I f o r j = 1, , . . , n - 1.

A state (V,X) is defined by a feasible solution X, represented by the set of
items having xi = 1, and by the corresponding weight V = ZiEx 14.
Note that X can be stored as a bit string. Two states are considered distinct
iff they have different weights. We use two lists of states.
Given a prefixed value M1 < n , list (Vlj ,Xli) , i = 1 , . . . , L1, contains all
the L 1 distinct states which correspond to the last M1 items and whose weight
is Vlj < c. The states are ordered so that Vli < Vl,+, for all i.
Given two prefixed values M2 (M1 <M2 < n) and C < c, list (Vq., X2,), i =
- - 1 , . . . , L 2 , contains all the L 2 distinct states which correspond to the last
M 2 items and whose weight is V2, < c . The states are ordered so that V2, <
< V2i+ for all i.
Start by determining list (Vl,, Xl,) as follows. Initially place only states
(V l l , X l l) =(O,@) and (V l z , X l z) =(w,,{n}) in the list. Then, at iteration
k (k = 1 , . . . , M I - l) , form a new one from each state (Vl , ,Xl j) ,
(Vl, + w ~ - ~ , X ~ , U { n - k }) , if Vlj + w , - ~ G c and Vli + w n - k # V1, for all
p , and place it in the list so that the states are ordered according to decreasing
weights. These operations can be implemented efficiently by taking the sorting
of the states into account.
Once list (Vl, , Xl,) has been determined, list (V2,, X2,) is obtained as follows.
Initially, place all the states (Vl, , Xl,) such that Vl, S F i n list (V2,, X2,) by
preserving the sorting of the states. Then, at iteration k (k = 1, . . . , M2 - Ml) ,
update the list in the same way as was done for (Vl,, Xl ,) (replace (Vl , , Xl ,)
with (V2,, X2,) , c with F, and tz - k with n -M1 + 1 - k) .
Set N1 = n -M1 and N2 = n -M2 (Figure 3.1 shows the states covered by the
two lists: the thick lines approximate the step functions giving, for each item,
the maximum state weight obtained at the corresponding iteration).

2. [dynamic programming phase]

3. [tree-search phase]
Determine J;: = Z;= wi for j = 1, . . . , n .
Generate a binary decision-tree by setting xi to 1 or 0 for j = 1, . . . , N1.
Only the first N1 items are considered, since all the feasible combinations
of the items N1 + 1 , . . . , n are in list (Vlt ,Xli) . A forward move starting
from an item k consists in finding the first item 2 k which can be added
to the current solution and then in adding tlie largest sequence E , I? + 1 , . . .
of consecutive items to the current solution such that the solution remains
feasible. A backtracking step consists in removing from the current solution

236 S. Martello. P. Torh

maximum
state weight

N 2 n items
I
I

Fig. 3.1
-

that item
from E + 1.
At any node of the decision-tree, let

which was inserted last and in performing a forward move starting

X = set of the items which are in the current solution;
r = residual capacity = c - X i E x wi;
z * = value of the best solution so far.

Before any forward move (say starting from k),perform the following step:

if r > f k then set z* = max{z*, ZjEx wj + f k] and perform a backtracking step;
else determine, through binary search, q = min { j :J < r } and set

if Z i E x wj + (f k - fk +s) S z* then perform a backtracking step.

- s = n - q + l ;

(Note thatsis the maximum number of items which could be added to the current
solution by subsequent forward moves, so fk - fk + (= Z,!zkrp wi = value of
the 5 largest available items) is an upper bound on the value we can add to the
current solution).
At the end of a forward move, let m be the next item to be considered (i.e.
the forward move inserted items z, . . . , m - 1) and define:

Z(r) = max { i : Vli < r } ;
1 G i 4 L 1

h (r, X) = max { i : V2, < r and X n X2, = O}.
l G i < L 2

(Vl,(r) is the maximum weight we can add to the current solution by using

Algorithms for knapsack problems 237

only the last M1 items; V2,,(r,x1 is the maximum weight not greater than
c that can be added to the current solution by using only the last M2 items.
Both l (r) and h(r , X) can be determined through binary search). Then perform
the following step:

if r < C then determine h (r , X) and set A = V 2 , (r ,x) ;
else determine I(r) and set A = Vl,(r);

-

if A <C and z* < c - r + C then determine h (r , X) and set

Now A gives the maximum additional weight we can obtain from the lists, so
we can set z* = rnax { z* , c - r + A } (if now z* = c, execution stops). Then, if
r < Fand m > N 2 , we perform a backtracking step (since no better solution can
be found); otherwise, we perform a forward move starting from m.

A J"h(r,X).

4. [halting tests]
Let X * be the set of items which are in the optimal solution at the end of Step 3 ;
if J 1 = 0 then the optimal solution is z * , X * ; stop;

else if z* = c then the optimal solution is z* + CiEJ1 wi, X* U J l ; stop;

The parameters for the dynamic programming lists have been experimentally
determined as the following functions of n and M = max { wi] : M 1 = min (2 log,&,
0.7 n) , M 2 = min (2.5 log,&, 0.8 n) , C = 1.3 wN2. The parameters for the defini-
tion of the core problem have been experimentally fixed as t = 15, A t = 5 .

else set t = t + At and go to Step 1.

3.3. Computational experiments

In Table 3.1 algorithm MTS is compared with algorithm AF of Ahrens and
Finke [2] on problems with n < 40, i.e. when no core problem is generated.
The following sets of test problems have been considered:

1) wi uniformly random in range 1 - lo3, c = lo3 n/4;
2) wi uniformly random in range 1 - 1 06, c = 1 O6 n/4;
3) wi uniformly random in range 1 - 10l2, c = 10l2 n /4;
4) wi even uniformly random in range 2 - lo3, c = lo3 n/4 + 1 (odd).

In all data sets the value of c was set to the expected value of Xy= wj/2, so that
the solutions would contain about half of the items. For each data set and each
value of n , 10 problems were generated and solved, through Fortran IV programs,
on a CDC-Cyber 730. Each of the two algorithms was assigned 16000 words
of core memory and a time limit of 450 seconds to solve the 90 problems ge-
nerated for each data set. The entries in Table 3.1 give the average and maximum
running times.

The problems of data sets 1) and 2) are comparatively ((easy)), since they
generally admit a large number of feasible solutions of value c. The problems
of data sets 3) and 4) are comparatively ((hard)) for the opposite reason.

238 S. Martello. P. Torh

Table 3.1
CDC-Cyber 730 seconds. Average (maximum) times for 10 problems.

Data set n AF MTS

8
12
16

24
28

c = lo3 n/4 32
36
40

wi uniformly 20
random in 1 - lo3

0.012(0.018)
0.023 (0.039)
0.040 (0.067)
0.069 (0.112)
0.137 (0.203)
0.349 (0.531)
0.940 (1.934)
2.341 (3.672)
5.590 (9.306)

0.004(0.013)
0.010 (0.018)
0.011 (0.026)
0.007 (0.021)
0.010 (0.029)
0.010 (0.019)
0.009 (0.024)
0.009 (0.018)
0.011 (0.026)

8
12

wi uniformly 16
20
24

c = 106n/4 28
32
36
40

random in 1 - lo6

~ ~~

8

16
20

c = n/4 24
28
32

wi uniformly 12
random in 1 - 1OI2

0.012 (0.021) 0.004(0.012)
0.029 (0.043) 0.013 (0.025)
0.091 (0.134) 0.049 (0.074)
0.322 (0.543) 0.185 (0.263)
0.640 (1.282) 0.5 13 (0.992)
1.341 (1.844) 0.647 (1.054)
2.284 (5.923) 0.661 (1.593)
4.268(12.917) 0.605 (1.732)
9.712 (25.346) 0.663 (2.306)

0.013 (0.029) 0.004 (0.014)
0.029 (0.051) 0.013 (0.029)
0.092 (0.143) 0.050 (0.093)
0.422 (0.536) 0.232 (0.341)
2.070 (2.296) 1.098 (1.164)
9.442 (10.383) 6.306 (12.663)

time limit time limit

8
12

wi even and 16

random in 2 - lo3 24
28

c = lo3 n/4 i- 1 32
36
40

uniformly 20

0.013 (0.027)
0.028 (0.060)
0.090 (0.138)
0.392 (0.490)
1.804(3.312)
7.091 (9.254)
21.916 (30.604)

time limit
-

0.005 (0.013)
0.021 (0.031)
0.053 (0.087)
0.190 (0.351)
0.525 (1.081)
0.969 (1.744)
1.496 (1.930)
2.184 (4.615)
2.941 (6.208)

Table 3.2 gives computational results for problems with high values of n .
These problems are generally easy to solve if the range of weights is not too
large since, in this case, many solutions of value c exist. The Ahrens-Finke algo-
rithm cannot in general be applied to such problems because of the excessive
memory requirement. Balas and Zemel [5] have experimented a specialized
version (BZS) of their algorithm for large 0- 1 KP’s on sets of SSP’s obtained by

Algorithms for knapsack problems 239

Table 3.2
wi uniformly random in 10 - M ; c = 0.5 Xi"=, 9. CDC-Cyber 730 seconds. Average (maxi-
mum) times over 20 problems.

Data set n BZS MTS

1000 0.012 (0.048) 0.009 (0.016)
2500 0.018 (0.036) 0.016 (0.037)
5000 0.036 (0.164) 0.025 (0.041)

10000 0.056 (0.074) 0.044 (0.048)
M = 102

1000 0.054 (0.150) 0.025 (0.041)
2500 0.060 (0.162) 0.032 (0.047)
5000 0.060 (0.1 16) 0.034 (0.062)

10000 0.084 (0.136) 0.049 (0.082)

1000 0.490 (1.764) 0.083 (0.125)
2500 0.386 (0.796) 0.092 (0.130)
5000 0.474 (2.142) 0.100 (0.142)

10000 0.604 (2.378) 0.1 22 (0.137)

M = lo3

M = lo4

randomly generating the weights in different ranges 10 - M (with M = 1 02, 1 O 3
and lo4) and by setting c = 0.5 Z,!=, M;, For each pair (n, M) they ran the For-
tran IV code of their algorithm on a CDC-6600 over 20 problems. We randomly
generated problems according to the same distribution and ran algorithm MTS
on a CDC-Cyber 730, which, on problems of this kindis about two times slower
than the CDC-6600. The times given in [S] for BZS were consequently multiplied
by 2 .

In all cases the initial core problem (of size n = 31) was enough to solve the
problem.

3.4. Heuristic algorithms

The most important heuristic algorithms for SSP are approximation schemes,
which allow one to obtain any worst-case performance ratio (see Section 1) by
fixing the value of a parameter. As for the 0-1 knapsack problem, we subdivide
these algorithms into two classes (see Section 2.8): polynomial approximation
schemes and fully polynomial approximation schemes. We denote by .? a heuristic
solution and by 2 the corresponding value of the objective function.

The first polynomial approximation scheme for SSP was proposed by Johnson
[39]. For any prefixed positive integer k , the scheme gives an algorithm J k of
time complexity O(nk) (plus O(n log n) for sorting the items), space complexity
O(n) and worst-case performance ratio r (J k) = &.

These results have been improved on by Martello and Toth [60] through
a polynomial approximation scheme based on a modified greedy algorithm. The
standard greedy algorithm for SSP examines the items according to decreasing

240 S. Martello, P. Toth

weights and adds each wi to the current solution value g if and only if wi < c -g.
The modified algorithm assumes that a partial feasible solution M is known,
and, for a given i < n , examines only those items wi such that j and j 2 i.
The corresponding procedure follows.

Procedureg(M, i)
comment it is assumed that wj 2 wi +

set g = Z j E M wi, X = M;
f o r j = i to n do

fo r j = 1 , . . . , n - 1;

if j @ M and wi < c -g then set g = g + wi, X = X U { I } .

It is self-evident that g(M, i) runs is O(n) time. For any prefixed positive
integer k , the Martello-Toth approximation scheme is the following:

Algorithm MTk
Sort the items so that wi 2 wi,+ for j = 1, . . . , n - 1 ;
if k = 1 then set f = g(6, 11, X = X and stop;
set 2 = 0;
for eachM C N = (1 , . . . , n } such that I M (< k - 2 and Z i E M wi < c do

fo reach iEN-Mdo
ifg(M, i) > f then set 2 = g (M , i), 2 = M U X .

For k = 2 the algorithm considers mly set M = 6, so it applies the modified
greedy algorithm n times (with i = 1, 2, . . . , n , respectively) with no partial
solution. For k = 3 it considers, in addition, the n singletons {l}, {2}, . . . ,{n}
as setsM, so each item is imposed in turn as a partial solution and, for each partial
solution, the modified greedy algorithm is applied n - 1 times. For k = 4 all
feasible pairs of items are imposed as a partial solution, and so on.

The time and space complexities of MTk are the same as those of Johnsons'
Jk scheme, i.e. O(nk) (plus O(n log n) for the sorting) and O(n) , respectively.
As to the worst-case performance, it has been proved in [60] that:

- r(MT') = r (J ') = 1/2;
- r(MT2) = 3/4 (while r (JZ) = 2/3);
- r(MT3) = 6/7 (while r (J3) = 3/4);
- for k > 3, r(MTk) 2 (k + 3)/(k + 4) (while r (J k) = k / (k + 1)). The exact

worst-case performance ratio of MTk for k > 3 is still an open problem,
although it is conjectured that r(MTk) = kl;('"++,;i (note that this is true
fork < 3).

MTk is related to the polynomial approximation scheme Sk proposed by
Sahni [68] for the 0-1 knapsack problem. However, the Sahni scheme, when
applied to SSP, is dominated by both MTk and J k , in the sense that it has the
same time and space complexities but r (S k) = (k - l)/k. An efficient implemen-
tation of the Martello-Toth scheme has been presented in [62].

Algorithms for knapsack problems 24 1

Let us now consider fully polynomial approximation schemes for SSP. As for
the 0-1 knapsack problem, the complexities will be given as functions of n and
of E = 1 - r (worst-case relative error).

The first fully polynomial approximation scheme for SSP was derived by Ibarra
and Kim [35] from their scheme for the 0- 1 knapsack problem (see Section 2.8).
They proved that by removing the preliminary sorting of the items from this
scheme one has a scheme for SSP which has time complexity O(n + log (~ / E) / E ~)

and space complexity O(n + l /e3). Lawler [44] modified the Ibarra-Kim scheme
to obtain time complexity O(n + l / e3) and space complexity O(n + 1/e2).

A different fully -polynomial approximation scheme is the following, proposed
by Gens and Levner [24].

Algorithm GL'
find the largest s such that P = < c. Set Po = max (P, max {wj}); set

l < i < n
I/' = (0 , wl};
for j = 2 to 11 do

set T = Vj-' u {(wj + wk) : w, E P"', wj + w, < c, (wi + w,) @ Vj-'}, with
the elements ti E T ordered so that ti < ti + (this can easily be obtained
through ordinary dynamic programming techniques) ;
S e t h = l , i = l , v , , = t i ;
repeat

if t i+ , > 5, + €Po then set i = i + 1;

set h = h + 1 , vh = ti
else set i = max { q : t , < v h + €PO};

until i = 1 TI ;
set V = { v l , . . . , v,,};

set 2 = vh and determine the items in the approximate solution 2 by backtracing
from V'* to V ' .

GL' has time and space complexity O (~ / E) , so the scheme can be either more
or less efficient than the Lawler scheme, depending on the values of n and E .

The practical behaviour of the approximation schemes of Johnson [39], Martel-
lo-Toth [60], Lawler [44] and Gens-Levner [24] has been experimentally analyz-
ed in [62]. The algorithms have been coded in Fortran IV and compared on seven
sets of randomly generated problems, as well as an two sets of deterministic
hard problems proposed in Chvital [131, with n ranging from 10 to 1000 and
prefixed worst-case performance ratios r1 = 1/2, r2 = 3/4, r3 = 6/7. The experi-
ments showed that

(i) All the approximation schemes have a much better experimental perfor-
mance than their worst-case performance. So, in practical applications, we can
obtain good results with short computing times, i.e. by prefixing small values
of the worst -case performance ratio.

242 S. Martello. P. Toth

(ii) Although polynomial approximation schemes have a worse bound on
computing time, their average performance appears superior to that of the fully
polynomial approximation schemes, in the sense that they generally give better
results with shorter computing times and fewer core memory requirements.

(iii) MTk turned out to be the most efficient scheme. For n 2 50, the largest
average error of MT2 was 0.0075 percent, that of MT3 0.0005 percent.

4. 0-1 multiple knapsack problem

4.1. The problem

The 0-1 Multiple Knapsack Problem (MKP) is a generalization of the 0-1
knapsack problem of Section 2 to the case where m containers with capacities
cl, . . , , c, are available. If pi and wj are, respectively, the profit and weight of
the j- th item (j = 1 , . , . , n) , and we introduce a boolean variable x i , j which
is set to 1 if item j is inserted in container i, or to 0 otherwise, the problem
can be formally stated as

maximize z = j. i. p j x i , j
i = l j = I

(4.1)

n

subject to wj x i , j < ci (i = 1 , . . . , m) (4.2)
j = 1

r n

(4.3)

x i , i = 0 or 1 (i = 1, ... , m ; j = 1, ... , n) (4.4)

The problem is clearly NP-hard, since it reduces to the 0- 1 knapsack problem

In what follows we will assume, without loss of generality
when m = 1.

min {wj} < min { c i } ;

max {y.} < max {ci);

I i

i i

n

wj > max { c i } .
i i = 1

Furthermore, we will assume that the items are sorted so that pj/wj 2 pi+ I/wj+,

Algorithms for Knapsack Problems

(j = 1, . . . , n - 1) .

243

4.2. Relaxations and upper bounds

Two relaxation methods are generally employed to obtain upper bounds for

The Lagrangean Relaxation, relative to a nonnegative vector (A), is
MKP: the Lagrangean relaxation and the surrogate relaxation.

r n n 11 , rn

x . . = O or 1 (i = 1 , . . . , m ; j = 1 , . . . , n) .
1 9 1

Since the objective function can be written as

n r n n

the relaxed problem can be decomposed into a series of m single knapsack pro-
blems. For i = 1, . . . , m we can solve the single knapsack problem

maximize zi = 1 (pi - xi> xi,,

I1

subject to wi x i , , < ci
j = 1

x i , , = 0 or 1 (1 = 1 , . . . , n)

and then set zi = Ci";l Xi + Cy=l z i . In order to find the tightest possible bound,
vector (X) should be determined so that zi is minimized. An approximation of
the optimum (A) can be obtained through subgradient techniques, which are,
however, time consuming. Hung and Fisk [34], who first used this relaxation t o
obtain upper bounds for MKP, set the Xi's equal to the optimal dual multipliers
of constraints (4.3) in the continuous relaxation given by (4.1), (4.2), (4.3) and

O < X ~ , ~ < 1 (i = 1 , . . . , m ; j = 1 , . . . , n) ,

that is, Xi = p i - wj (p , /wt) if j < t , or Xi = 0 otherwise, where t is the smallest
index such that

t rn

j = 1 i = l

244 S. Martello, P. Toth

The Surrogate Relaxation of MKP, relative to a non-negative vector (n), is
defined as

m n

m n m

subject t o E ni wj < E xi ci

x. . = O or 1 (i = l , . . . , m ; j = 1 , . . . , n) .
191

In this case too, Hung and Fisk [34] have set the ni's equal to the optimal dual
multipliers of constraints (4.2) in the continuous relaxation, that is, ni = pr/wt for
all i . Martello and Toth [57] have proved that setting ni = k (k any positive
constant) for all i's leads to the minimum value of the optimal solution of the
surrogate relaxation, that is, to the tightest upper bound this relaxation can give
for MKP. If we set yi = Cirri_] xi,i (j = 1, . . . , n) , the surrogate relaxation of
MKP can thus be expressed as the 0- 1 single knapsack problem

n

maximize z n = pi y j

subject t o 2 wi yi < c,

(4.5)

(4.6)
j = l i = l

y . = O I or 1 (j = 1 , . . . , n) . (4.7)

Both the Lagrangean and the surrogate relaxation are NP-hard problems,
since they require the solution of 0-1 single knapsack problems. However, we
can compute upper bounds on the value of z h or z , (as shown in Section 2.2)
and hence upper bounds for MKP in polynomial time.

Neither relaxation dominates the other. In general, it can be expected that
z , gives tighter upper bounds when m is small or the ratio n/m is large, since
the surrogate problem allows one t o split items between two knapsacks and the
number of split items is in this case comparatively small.

4.3. Reduction

t o that presented for KP in Section 2.3, so as t o determine two sets:
The size of a 0-1 multiple knapsack problem can be reduced, in a way similar

Algorithms for Knapsack Problems

i m

245

I , .

J O = l j : xi,j = o in an optimal solution

In this case, however, only JO allows one to reduce the size of the problem by
eliminating the corresponding items, while J1 gives only information useful in
reducing the number of nodes of a branch-decision tree, since it cannot speci-
fy in which knapsack the items must be inserted.

Ingargiola and Korsh [37] have presented a specific reduction procedure,
based on an extension of the dominance between items. Let j D k indicate that
item j dominates item k . Set D j = { k : j D k } can be determined, f o r j = 1, . . . , n ,
as follows. Let N = { 1 , 2 , . . . , n} .

Procedure DOMINANCE
set Di = { k : wk 2 wj and pk < p i with both equalities not true, or w k = wi, p k = pi

repeat
and k > j] ;

set d = 1 Dj I ;
for each k E N - Di do

if there exists a subset E C Dj such that wj + C e t E we S wk and pi +
+ C e E E p e 2 P k

then set Di = Dj U {k};
until I Di 1 = d .

Given any two items j and k such that j D k and a feasible solution of value .?
that includes k but excludes j , then there is a feasible solution of value F 2 i
that includes j and excludes k . Consequently, if an item j is excluded from the
optimal solution, then also the items in Dj must be excluded. It follows that

Proposition 4.1. Given any feasible solution of value Z, all items in J 1 = { j :
: C k E N - ({ j) V D j , p k S Z } must be included in an optimal solution.

In fact, the exclusion of any item j E J 1 , and hence of all the items in D j ,
would give solutions of value no greater than 2. A reduction procedure can
thus start by determining sets Dj (note that this computation requires a time
which is exponential in n) , finding a feasible solution through any heuristic
algorithm and then determining set J l . Observing now that if an item k is imposed
in the optimal solution, then all items j such that j D k must be imposed, set JO
can be determined through the following

Proposition 4.2. Given any feasible solution and the corresponding set J1 (obtained

246 S. Martello. P. Toth

from Proposition 4.1), let E, = { j : jDk, j $J1}. Then all the items in J O = (k :
: w, + Z i E E k wi > Zy=l ci - Z j r J 1 wj } must be excluded from an optimal solu-
tion.

In fact, the imposition of any item k E J O , and hence of all the items in E , ,
would produce infeasible solutions.

4.4. Exact algorithms

Algorithms for MKP are generally oriented either to the case of low values of
the ratio nlm or to the case of high values of this ratio. Algorithms for the first
class, which has applications, for example, when m liquids, that cannot be mixed,
have to be loaded into n tanks, have been presented by Christofides, Carpaneto,
Mingozzi and Toth [12] and by Neebe and Dannenbring [66]. In the following
we will review algorithms for the second class, which has been more intensively
studied.

Hung and Fisk [34] have proposed a depth-first branch-and-bound algorithm,
where successively higher levels of the decision-tree are constructed by selecting
an item and assigning it to knapsacks in decreasing order of their capacities; when
all the knapsacks have been considered, the item is assigned to a dummy knap-
sack, implying its exclusion from the solution: so, each node of the decision-tree
generates m + 1 descendent nodes. The upper bound associated with each node
can be computed either as the solution of the Lagrangean relaxation, or the
surrogate relaxation, of the current problem, or as the smaller of the two. As
was pointed out in Section 4.2, vectors (A) and (n) have been set respectively
equal to the optimal dual multipliers of constraints (4.3) and (4.2) in the conti-
nuous relaxation of MKP.

Martello and Toth [54] have obtained better computational results through
a different branching scheme which computes at each node a Lagrangean relaxa-
tion with hi = 0 for all j (it can easily be verified that this choice is not dominat-
ed and does not dominate the Hung -Fisk choice). In the resulting problem (given
by equations (4.1), (4.2) and (4.4)), each knapsack can be solved independently
of the others. If no item appears in two or more knapsacks, a feasible solution to
the current problem has been found and a backtracking can be performed. Other-
wise, an item which appears in m’ (2 < m’ < m) knapsacks is selected and m‘ no-
des are generated (m’ - 1 by assigning the item to the first m‘ - 1 knapsacks
where it appears, the m’-th one by excluding it from them). The m’ upper bounds
are computed by solving only m’ single knapsacks and utilizing part of the solu-
tions previously found for the ascendent nodes. Each bound can be improved by
assuming the smaller between it on the one hand and the solution of the corre-
sponding surrogate relaxation on the other.

The experimental results given in [54] indicate the clear superiority of the
Martello-Toth algorithm over the Hung-Fisk one, both with and without previous
application of the reduction algorithm of Section 4.3.

Algorithms for Knapsack Problems 247

A further improvement has been obtained by Martello and Toth [57] through
a so-called ((bound-and-bound)) algorithm. This modification of a branch-and-
-bound approach, based on the computation at each decision-node of both an
upper bound and a lower bound of the current problem, can be used to solve
any 0-1 linear programming problem. A complete description of the general
approach can be found in [57].

For MKP, the resulting algorithm consists of an enumerative scheme where each
node of the decision-tree generates two branches either by assigning an item j to
a knapsack i (x i , j = 1) or by excluding j from i (x i , i = 0) . Stack Si (i = 1, . . . , m)
contains those items that are currently assigned to knapsack i or excluded from
it. The current problem corresponding to (S) is the original problem with the
additional constraints given by fixing the items in Si (i = 1, . . . , m) . Let upper
(S) and lower (S) be respectively an upper and a lower bound to this problem.

upper (S) is computed by procedure SIGMA which solves a surrogate relaxation
of the current problem.

lower (S) is computed by a heuristic procedure, PI, which finds an optimal
solution for the first knapsack, then excludes the items inserted in it and finds
an optimal solution for the second knapasck, and so on. The heuristic solution
found is stored in 2i, (i = 1, . . . , m ; j = 1, . . . , n).

At each iteration, the algorithm selects as branching variable the next x i , j such
that .?i,j = 1, according to increasing values of i. It follows that, given the current
value of i , knapsacks 1 , . . . , i - 1 are ((completely loaded)) (i.e. no further item
can be inserted in them), knapsack i is ((partially loaded)), and knapsacks
i + 1,. . . , m are ((empty)).

The main conceptual difference between this approach and a standard depth-
-first branch-and-bound one is that the branching phase is here performed
by updating the partial solution through the solution obtained from the computa-
tion of a lower bound. This gives two important advantages:

(a) For all S for which lower (S) =upper (S) , (2) is obviously an optimal
solution to the corresponding current problem, so it is possible to avoid explora-
tion of part of the tree.

(b) For all S for which lower (S) <upper (S) , S is updated through the heu-
ristic solution previously found by procedure PI, so the resulting partial solution
can generally be expected to be better than that which would be obtained by a
series of forward steps, each fixing a variable independently of the following ones.

A general description of the algorithm follows. It is assumed that items and
knapsacks are sorted no that pilwi > pi + I /wj + for j = 1, . . . , n - 1 and ci < ci +

for i = 1 , . . . , m - 1.

Algorithm MKP

1. [initialization]
for i = 1 to m do set Si = 8;

248 S. Martello. P. Torh

set z* = O , X ~ , ~ = 0 for alli andj, i = 1;
apply procedure SIGMA (i) and let u = upper (S) ;

2 . [heuristic]
apply procedure PI (i) and let 1 = lower (S) , (2) = heuristic solution found;
if 1 > z* then set z* = 1, (x*) = (i);

if 1 = u then go to step 4;

3 . [updating]
let j = min {Y : v @ Si and gi, = 1) (j = 0 if no such Y exists);
if j = 0 then if i < m - 1 then set i = i + 1 and repeat step 3 ;

else go to step 4;
else set S, = S, u{ j } , xi,i = 1 ;

apply procedure SIGMA (i) and let u = upper (S);
if u > z* then repeat step 3;

4. [backtracking]
let j be the last item inserted in Si such that xi,i = 1 (j = 0 if no such j exists);
i f j = 0 then if i = 1 then stop;

else set Si = 6, i = i - 1 and repeat step 4;

apply procedure SIGMA (i) and let u = upper (S) ;
if u < z* then repeat step 4;

else set xi , = 0, Si = Si - {v E Si : v was inserted in Si after j } ;

else go to step 2 .

Procedure SIGMA (i)

letc = (~ ~ - Z ~ ~ ~ ~ w ~ x ~ , ~) + Z l m _ ~ + ~ c , . , Q = { j : x ~ , ~ =Oforal l r};
solve the single knapsack problem defined by the items in Q and by capacity c
and let T be the solution value;
set u p p e r (S) = Z + X t = , Z i E S r p j ~ r , j .

Procedure PI (i)

let lower (S) = X:=l ZiEs p j x r , i , Q = { j : x ~ , ~ = 0 for all r } ;
set c = ci - xiEsi wj x i , i , 8 = Q - si, r = i;
repeat

solve the single knapsack problem defined by the items in Q and by capacity
c ; let 2 be the solution value and store the solution vector in the r-th row of
(2);
set Zower (S) = lower (S) t 2;
set Q = Q - { j : 2 p , j = l } , Q = Q , r = r t 1;
if r < m then set c = c r ;

-

unt i l r>m;
for r = 1 to i - 1 do fo r j = 1 to n do set 2r,j = x ~ , ~ ;
for each j E Si do if xi , i = 1 then set 2i,i =I .

Algorithms for Knopsack Problems 249

A Fortran implementation of MKP has been presented in [63]. The experimen-
tal performance of this code is analyzed in Section 4.6.

4.5. Heuristic algorithms

To our knowledge, no polynomial approximation scheme for MKP has been
presented. Nor is any heuristic with guaranteed worst-case performance known.

Fisk and Hung [2 1] have presented a heuristic approach which is based on the
exact solution of the surrogate relaxation (4.5) - (4.7) of MKP and hence requires,
in the worst case, a non-polynomial running time.

Martello and Toth [58] have presented heuristic procedures, all polynomial in
the problem size m + n , which can be combined in different ways according to
the size and the difficulty of the problems to be solved, to produce various
approximate algorithms for MKP. The basic approach can be outlined as follows
(assume that items and knapsacks are arranged so that pj/wj 2 pi + I /wj + for
j = 1 , . . . , n - 1 and ci < ci + 1 for i = 1 , . . . , m - 1).

1. Determination of an initial feasible solution. The simplest way to do this is to
apply the greedy algorithm (see Section 2.8) m times: to the f i s t knapsack, then
to the second one by using only the remaining items, and so on. Other approaches
are also proposed.

2. Rearrangement of the feasible solution found. The purpose of this step is to
exchange items between the knapsacks so that each contains items of dissimilar
profit per unit weight. In fact, it has been experimentally verified that in this way
the subsequent improving algorithms tend to have better performance.

3. Improvement of the rearranged feasible solution. This step is performed by
applying two procedures. The first considers all pairs of items in the current
solution and, if possible, interchanges them between knapsacks should the inser-
tion of a new item into the solution be allowed. The second procedure tries to
exclude in turn each item currently in the solution and to replace it with one or
more items not in the solution so that the total profit is increased.

The overall complexity of this approach is O(mn + n 3) . A Fortran implementa-
tion of the method has been given in [5 8] .

4.6. Computational results

In this section we analyze the experimental performance of the algorithms of
Section 4.4 and 4.5. We will call MKP the Fortran code [63] of the exact algo-
rithm of Section 4.4, and HMKP the Fortran code [58] of the heuristic algorithm
of Section 4.5. MKP has been tested also as a heuristic by halting execution after
a prefixed number of iterations.

A series of test problems has been obtained by independently generating the
values pi , wj and ci from a uniform distribution according to the conditions:

250 S. Martello, P. Toth

1O<Pj < 100
1O<Wi<10O (j = l , . . . , n);

(j = 1 , . . . , n);

n i -1

0 Q ci < 0.5 wj - c cu (i = l , . . . , m - 1) ;
j = 1 u = 1

n m - 1

c,,, = 0.5 wj - c c,, .
j = 1 u = 1

We solved 10 problems for each value of n (n = 50, 100, 200,500, 1000) and
of m (rn = 2 , 5 , 10). Table 4.1 gives the average times, expressed in seconds, of a
CDC-Cyber 730 and comprehensive of the sorting times, for the following cases:

1) exact solution with MKP;

2) heuristic solution with MKP halted after 10 iterations;

3) heuristic solution with MKP halted after 50 iterations;

4) heuristic solution with HMKP.

Table 4.1
CDC -Cyber 730 seconds. Average times (average percentage errors) over 10 problems.

Exact solution Heuristic solution
m n

HMKP MKP MKP
(10 iterations) (50 iterations)

50 0.082 0.049 (0.028) 0.070 (0.004) 0.013 (0.170)
100 0.129 0.089 (0.018) 0.127 (0.000) 0.031 (0.147)

2 200 0.153 0.143 (0.000) 0.152 (0.000) 0.057 (0.049)
500 0.243 0.242 (0.000) 0.242 (0.000) 0.132 (0.020)

1000 0.503 0.502 (0.000) 0.502 (0.000) 0.266 (0.003)

50 1.190 0.157 (0.344) 0.434 (0.312) 0.018 (0.506)
100 1.014 0.268 (0.076) 0.601 (0.027) 0.040(0.303)

5 200 1.178 0.327 (0.018) 0.687 (0.012) 0.074 (0.148)
500 0.862 0.659 (0,001) 0.705 (0.001) 0.186 (0.031)

1000 1.576 1.231 (0.001) 1.576 (0.000) 0.391 (0.016)

50 3.852 0.162 (0.287) 0.477 (0.211) 0.035 (0.832)
100 7.610 0.324 (0.174) 0.950 (0.092) 0.057 (0.437)

10 200 32.439 0.659 (0.060) 1.385 (0.039) 0.106 (0.219)
500 5.198 1.760 (0.009) 3.836 (0.003) 0.535 (0.078)

1000 9.729 3.846 (0.003) 7.623 (0.001) 0.870 (0.031)

Algorithms for Knopsack Problems 25 1

For the heuristic solutions, the times are followed, in brackets, by the average
percentage errors.

Table 4.1 shows that the time required to find the exact solution increases
much more steeply with m than with n and tends to become impractical for
m > 10. When used as a heuristic, MKP gives solutions very close to the optimum;
the running times are reasonable and increase slowly with n and m. HMKP is
faster than MKP, but its solutions are clearly worse.

The test problems of Table 4.1 are relatively ((easy)), since profits and weights
are uncorrelated (see Section 2.7). For correlated profits and weights, exact
solutions obviously tend to become impossible when n 2 100, while HMKP can
solve, with reasonable percentage errors, problems with m = 100 and n = 1000
(see [63]).

5 . Other single knapsack problems

In this section we reyiew some problems strictly connected with the 0-1
knapsack problem, in the sense that they can be either transformed into a 0-1
knapsack problem or solved through techniques similar to those described in
Section 2. We will not examine other knapsack-type problems which conceptual-
ly differ from those considered in this survey, such as, for example, the Multiple
Choice Knapsack Problem, the Fractional Knapsack Problem, the Quadratic
Knapsack Problem, and so on.

5.1. Unbounded knapsack problem

When, for each j (j = 1, . . . , n) , an infinite number of items of profit pj and
weight wi is available, we have the so-called Unbounded Knapsack Problem:

n

maximize z = pi xi
j = 1

subject to wi xi < c,

xi 2 0 and integer (j = 1, . . . , n).

The most efficient dynamic programming algorithm for exact solution of the
problem is that of Gilmore and Gomory [28] as improved by Hu [32]. Enumera-
tion methods have been proposed by Gilmore and Gomory [26], Cabot [81
and Martello and Toth [51]. This last method experimentally turned out to be
the fastest (see Martello and Toth [49, 5 1 I). In fact, it can exactly solve problems
with up to 10000 variables (with pi, wj uniformly random in 1 - 1000 and

25 2 S. Martello, P. Toth

c = 0.5 ZYzl wj) in average time of 3.1 seconds, sorting time included, on a CDC-
-Cyber 730.

The unbounded knapsack problem can also be transformed into an equivalent
0-1 problem (and hence solved with one of the algorithms of Section 2) as
follows:

Set k = 0;
for j = 1 to n do

set d = [c/wj], e = 1 ;
w h i l e e G d d o s e t k = k + 1 , F k = e p i , % , = e w j , e = 2 e .

The 0- 1 knapsack problem to be solved is

k

maximize z = pi xi
j = l

k

subject to Gj F j < c,
j = 1

(5.2)

(5 .3)

X . = O or 1 (j = 1 , . . . , k), (5.4)
I

where k = Z;=l [log, [c/wjI((1) (the solution vector (x) can easily be obtained
from (X)).

5.2. Bounded knupsuck problern

we have so-called Bounded Knapsack Problem:
When, for each j (j = 1, . . . , n), bj items of profit pi and weight wj are available,

I 1

maximize z = pjxj
i = l

subject t o
j = l

0 < xi < bj and integer (j = 1, . . . , n) ,

where it is usually assumed, without loss of generality, that bj wj > c and
bj wj < c for j = 1, . . . , n.

The most efficient method for the exact solution of this problem is Martello
and Toth’s branch-and-bound algorithm [5 11 (see also a recent note by Aitto-
niemi and Oehlandt [3]). The method can solve (see [49]) randomly generated

ru1 e smallest integer not less than a.

Algorithms for Knapsack Problems 25 3

problems with up to 1000 variables (with pi, wj in the range 1 - 1000, bi in 1 - 10
and c = 0.5 Cy= wi) in an average time of 8.5 seconds, sorting time included,
on a CDC-Cyber 730. A different branch -and-bound approach has been proposed
by Ingargiola and Korsh [38] and corrected by Martello and Toth [561. A dynamic
programming algorithm has been presented by Nemhauser and Ullmann [67].

The bounded knapsack problem too can be transfonned into 0-1 form as
follows:

Set k = 0;
for j = 1 t o n do

set d = bi;
while d > 0 do set e = rd/21, k = k + 1, Pk = epj , Wk = ewi, d = [d / 2] .

The equivalent 0- 1 knapsack problem is defined by (5.2) - (5.4) with
k = C;= [log, bjl .

5.3. Change- ma king problems

Consider an unbounded knapsack problem where pi = - 1 for j = 1 , . . . , n and
where, in condition (S.l) , the equality constraint is imposed. The resulting prob-
lem can be expressed as

ri

minimize z = xi (5 . 5)
j = 1

subject to p wixi = c,
j = 1

(5.6)

xJ > 0 and integer (j = 1, . . . , n)

and is generally called the Unbounded Change-Making Problem. It can be
viewed, in fact, as the problem of assembling a given change, c, using the least
number of coins of specified values w, (j = 1 , . . . , n) in the case where, for
each value, an infinite number of coins is available.

A recursive algorithm for the exact solution of the problem in the case where
one of the w,$ has value 1 (i.e. a feasible solution always exists) was presented
by Chang and Gill [9]. An Algol implementation of this method was presented
by the authors [l o] and corrected by Johnson and Kernighan [40]. The exact
solution of the general case has been obtained by Wright [80] through dynamic
programming and by Martello and Toth [50, 551 through branch-and-bound.
The Martello-Toth algorithm [55] experimentally proved to be very much faster
than all the other methods, solving problems up to 1000variables (with w, unifor-
mly random in the range 1 - 2000 and c = C;=, w J) in average time of 0.3
seconds, sorting time included, on a CDC-Cyber 730.

The greedy algorithm for the unbounded change-making problem consists in

254 S. Martello, P. Toth

sorting the items according to decreasing weights and then, for j = 1, . . . , n , in
inserting in the solution as many items of the j-th type as possible. Chang and
Korsh [l l] , starting from the results obtained by Magazine, Nemhauser and
Trotter [46] on the greedy solutions of knapsack problems, gave necessary and
sufficient conditions for deciding whether a given instance of the problem is
exactly solved by the greedy algorithm. The problem of maximum percentage
error when the greedy algorithm does not work has been studied by Tien and
Hu [73]. The experimental performance of the greedy algorithm has been analyz-
ed by Martello and Toth [551.

The Bounded Change-Making Problem is defined by (5.5), (5.6) and by

0 < xi < b, and integer (j = 1, . . . , n) .

The only exact algorithm for this problem is the Martello and Toth’s branch-
-and -bound approach [50], which solves randomly generated problems up to
1000 variables (with w, in the range 1 - 2000, bj in 1 - 5 and c = 0.5 , b, wj)
in average time of 0.3 seconds, sorting time included, on a CDC-Cyber 730.

Akno wledgemen t

This work was supported by Minister0 della Pubblica Istruzione, Italy.

References

I11
121

131

141

15 1

161

A.V. Aho, J.E. Hopcroft and J.D. Ullman, Data Structures and Algorithms, Addison-Wesley, 1983.
J.H. Ahrens and G. Finke, ((Merging and Sorting Applied to the Zero-One Knapsack Problem)).
Operations Research 23, 1099 - 1109, 1975.
L. Aittoniemi and K. Oehlandt, ((A Note on the Martello-Toth Algorithm for One-Dimensional Knap-
sack Problems,, European Journal of Operational Research 20, 117, 1985.
L.G. Babat, ((Linear Functions on the N-dimensional Unit Cube), Doklady Akademiia Nauk SSSR

E. Balas and E. Zemel, ((An Algorithm for Large Zero-One Knapsack Problems,, Operations Research

R.S. Ban and G.T. Ross, ((A Linked List Data Structure for a Binary Knapsack Algorithm,, Research
Report CCS 232, Centre for Cybernetic Studies. University of Texas, 1975.
R. Bellman and S.E. Dreyfus, Applied Dynamic Programming, Princeton University Press, Princeton,
N.J., 1962.
A.V. Cabot, ((An Enumeration Algorithm for Knapsack Problemsx, Operations Research 18, 306 -
311, 1970.
S.K. Chang and A. Gill, ((Algorithmic Solution of the Change-Making Problemx, Journal of ACM

S.K. Chang and A. Gill, tAlgorithm 397. An Integer Programming Problem,, Communications of

L. Chang and 1.F. Korsh, ((Canonical Coin-Changing andGreedySolutions,,JournaI of ACM 23,

N. Christofides, G. Carpaneto, A. Mingozzi and P. Toth, ((The Loading of Liquids into Tanks,, Impe-
rial ColIege Research Report, London, 1976.
V. Chvltal, ((Hard Knapsack Problemsx, Operations Research 28,402 - 411, 1980.
J. Cord, ((A Method for Allocating Funds to Investment Projects when Returns are Subject to Uncer-
tainty,,Managemmt Science 10,335 - 341,1964.

222,761 - 162, 1975.

2 8 , 1 i 3 0 - 1154,1980.

17, 113 - 122, 1970.

ACM 13,620 - 621,1970.

418 - 422, 1976.

Algorithms for knapsack problems 255

G.B. Dantzig, ((Discrete Variable Extremum Problems,, Operations Research 5 , 266 - 277, 1957.
R.S. Dembo and P.L. Hammer, ctA Reduction Algorithm for Knapsack Problemsr,MethodsofOpera-
tions Research 36 ,49 - 60, 1980.
K. Dudzinski and S. Walukiewicz, ((Upper Bounds for the 0-1 Knapsack Problemr, ReportMPD-10-
-49184, Systems Research Institute, Warsaw, 1984.
B. Faaland, ((Solution of the Value-Independent Knapsack Problem by Partitioning)), Operations
Research 21, 332 ~ 337, 1973.
D. Fayard and G. Plateau, ((Resolution of the 0-1 Knapsack Problem: Comparison of Methods,,
Mathematical Programming 8, 272 - 307,1975.
D. Fayard and G. Plateau, ((An Algorithm for the Solution of the 0-1 Knapsack Problem,, Computing

J.C. Fisk and M.S. Hung, ((A Heuristic Routine for Solving Large Loading Problems)), NavalResearch
Logistics Quarterly 26, 643 - 650, 1979.
M.R. Carey and D.S. Johnson, Computers and Intractabi1ity:a Guide to the Theory ofNP-Complete-
ness, Freeman, San Francisco, 1979.
R.S. Garf ikel and G.L. Nemhauser, IntegerProgramming, John Wiley and Sons, 1972.
G.V. Gens and E.V. Levner, ((Fast Approximation Algorithms for Knapsack Type Problems,, in K.
Iracki. K. Malinowski and S. Walukiewicz, eds., Optimization Techniques, Part 2 , Lecture Notes in
Control and Information Sciences 23, 185 - 194, Springer, Berlin, 1980.
P.C. Gilrnore and R.E. Gomory, ccA Linear Programming Approach to the Cutting Stock Problem
In, Operations Research 9, 849 - 858, 1961.
P.C. Gilmore and R.E. Gomory, ((A Linear Programming Approach to the Cutting Stock Problem
IIr , OperationsResearch 11, 863 - 888, 1963.
P.C. Gilmore and R.E. Gomory, ((Multi-Stage Cutting Stock Problems of Two and More Dimen-
sions,, OperationsResearch 13, 94 - 120, 1965.
P.C. Gilmore and R.E. Gomory, ((The Theory and Computation of Knapsack Functions,, Opera-
tions Research 14, 1045 - 1074, 1966.
H. Greenberg and R.L. Hegerich, ((A Branch Search Algorithm for the Knapsack Problemr, Manage-
ment Science 16, 327 - 332, 1970.
D.S. Hirshberg and C.K. Wong, ((A Polynomial - Time Algorithm for the Knapsack Problem with
Two Variables,, Journal of ACM 23,147 - 154, 1976.
E. Horowitz and S. Sahni, ((Computing Partitions with Applications to the Knapsack Problem,,

T.C. Hu, Integer Programming and Network Flows, Addison-Wesley, New York, 1969.
P.D. Hudson, ((Improving the Branch and Bound Algorithms for the Knapsack Problem)), Queen’s
University Research Report, Beurnst, 1977.
M.S. Hung and J.C. Fisk, ((An Algorithm for 0-1 Multiple Knapsack Problems,. Naval Research-
LogisticsQuarterly 24,571 -579 , 1918.
O.H. Ibarra and C.E. Kim, ((Fast Approximation Algorithms for the Knapsack and Sum of Subset
Problems), Journal of ACM 22,463 - 468, 1975.
G.P. Ingargiola and J.F. Korsh, ctA Reduction Algorithm for Zero-One Single Knapsack Problems#,
Management Science 20,460 - 463,1973.
G.P. lngargiola and J.F. Korsh, ((An Algorithm for the Solution of 0 -1 Loading Problems,, Opera-
tionsReseareh 23, 1110- 1119, 1975.
G.P. Ingargiola and J.F. Korsh, ((A General Algorithm for One-Dimensional Knapsack Problems)),
Operations Research 25, 752 - 759, 1917.
D.S. Johnson, ((Approximation Schemes for Combinational Problems,, Journal of Computer and
System Science 9,256 - 278, 1974.
S.C. Johnson and B.W. Kernighan, ((Remarks on Algorithm 3978, Communications of ACM 15,
469,1972.
s. Kaplan, ((Solution of the Lorie-Savage and Similar Integer Programming Problems by the Generaliz-
ed Lagrange Multiplier Method*, Operations Research 14, 1130 - 1136, 1966.
R.M. Karp, ((Reducibility among Combinatorial Problems)), in R.E. Miller and J.W. Thatcher, eds.,
Complexity of Computer Computations, Plenum Press, 1972.
P.J. Kolesar, ((A Branch and Bound Algorithm for the Knapsack Problem,, Management Science

E. L. Lawler, ((Fast Approximation Algorithms for Knapsack Problems,. Mathematics of Olrterations
Researeh 4 ,339 - 356, 1979.

28, 269 - 287, 1982.

J O u r d o f A C M 2 1 , 2 1 7 - 292, 1974.

13 ,723 - 735, 1967.

256 S. Martello, P. Toth

N. Maculan, ((Relaxation Lagrangienne: Le Probleme d u Knapsack 0- I)), Canadian Journal of Opera-
tional Research and InformationProcessing 21, 315 - 327, 1984.
M.J. Magazine, G.L. Nemhauser and L.E. Trotter, Jr , ((When the Greedy Solution SolvesaClassof
Knapsack Problems)), Operations Research 23, 207 - 217, 1975.
M.J. Magazine and 0. Oguz, ((A Fully Polynomial Approximate Algorithm for the 0 - 1 Knapsack
Problem)), European Journal o f Operational Research 8 , 270 - 273, 1981.
S. Martello and P. Toth, ((An Upper Bound for the Zero-One Knapsack Problem and a Branch and
Bound Algorithm)), Europeanfournalof Operational Research 1, 169 - 175, 1977.
S. Martello and P. Toth, ((Computational Experiences with Large-Size Unidimensional Knapsack
Problems)), Presented at the TZMSIORSA Joint National Meeting, San Francisco, 1977.
S . Martello and P. Toth, ((Solution of the Bounded and Unbounded Change-Making Problemu,Presen-
ted at the TZMSIORSA Joint National Meeting, San Francisco, 1977.
S. Martello and P. Toth, ((Branch and Bound Algorithms for the Solutionof the General Unidimensio-
nal Knapsack Problem)), in M. Roubens, ed., Advances in Operations Research, North -Holland,
Amsterdam, 1977.
S. Martello and P. Toth, ((Algorithm for the Solution of the 0 - 1 Single Knapsack Problem)), Comput-
ing 21, 81 - 86, 1978.
S . Martello and P. Toth, ((The 0-1 Knapsack Problem,, in N. Christofides, A. Mingozzi, P. Toth and
C. Sandi, eds., Combinatorial Optimization, John Wiley and Sons, 1979.
S. Martello and P. Toth, ((Solution of the Zero-One Multiple Knapsack Problem)), European Journal
of Operational Reseorch 4, 276 - 283, 1980.
S. Martello and P. Toth, ((Optimal and Canonical Solutions of the Change-Making Problem)), Euro-
pean Journal of Operational Research 4, 322 - 329, 1980.
S. Martello and P. Toth, ((A Note on the Ingargiola-Korsh Algorithm for One-Dimensional Knapsack
Problems,, Operations Research 28, 1226 - 1227, 1980.
S. Martello and P. Toth, ((A Bound and Bound Algorithm for the Zero-One Multiple Knapsack
Problemr,DiscreteAppliedMathematics 3, 275 - 288, 1981.
S . Martello and P. Toth, ((Heuristic Algorithms for the Multiple Knapsack Problem)), Computing
27,93 - 112, 1981.
S. Martello and P. Toth, ((A Mixture ofDynamic Programming and Branch-and-Bound for the Subset-
Sum Problem,,Managemenl Science 30,765 - 771, 1984.
S. Martello and P. Toth, ((Worst-case Analysis of Greedy Algorithms for the Subset-Sum Problem)),
MathematicalProgramming 28, 198 - 205, 1984.
S. Martello and P. Toth, ((A New Algorithm for the 0-1 Knapsack Problem), Report OR/85/1 , DEIS-
-University ofBologna, 1985.
S . Martello and P. Toth, ((Approximation Schemes for the Subset-Sum Problem: Survey and Experi-
mental Analysis,, European Journal of Operational Research (to appear).
S . Martello and P. Toth, ((A Program for the the 0- 1 Multiple Knapsack Problem)), ACM Transactions
on Mathematical Programming (to appear).
H. Miiller-Merback, ((An Improved Upper Bound for the Zero-One Knapsack Problem: a Note on the
Paper by Martello and Totha, European Journal of Operational Research 2 , 212 - 213, 1978.
R.M. Nauss, ((An Efficient Algorithm for the 0-1 Knapsack Problems, Management Science 23,27 -
31, 1976.
A. Neebe and D. Dannenbring, ((Algorithms for a Specialized Segregated Storage Problem)), Technical
Report No. 77 - 5, University of North-Carolina, 1977.
G.L. Nemhauser and Z. Ullmann, ((Discrete Dynamic Programming and Capital Allocation)), Manage-
ment Science 15,494 - 505, 1969.
S. Sahni, ((Approximate Algorithms for the O / l Knapsack Problem)), Journal of ACM 22, 115 - 124,
1975.
H.M. Salkin,ZntegerProgramming, Addison-Wesley, New York, 1975.
H.M. Salkin and C.A. de Kluyver, ((The Knapsack Problem: a Survey,, Naval Research Logistics
Qwrtely 22,127 - 144,1975.
U. Suhl, ((An Algorithm and Efficient Data Structures for the Binary Knapsack Problem)), European
Journal o f OperationaI Research 2 ,420 - 428, 1978.
M.M. Syslo, N. Deo and J.S. Kowalik, Discrete Optimization Algorithms-with Pascal Programs,
Prentice Hall, 1983.
B.N. Tien and T.C. Hu, ((Error Bounds and the Applicability of the Greedy Solution to the Coin-
-Changing Problem)), Operations Research 25,404 - 418, 1977.

Algonthnis for knapsack problems 257

1741 P. Toth , ((A New Reduction Algorithni for 0-1 Knapsack Problems)). Presented at the ORSAITMS
Joint National Meeting, Miami, 1976.

I75 I P. Toth , ((Dynamic Programming Algorithm% for the Zero-One Knapsack Problem)), Computing 25,
29 - 45, 1980.

1761

1771

1781

1791

1801
1811

P.R.C. Villela and C.T. Bornstein, ((An Improved Bound for thc 0-1 Knapsack Problem)), Report
ES31-83, COPPE.Federal University o f Rio de Janeiro, 1983.
H.M. Weingartnrr. Mathematical Programming and the Analysis of Capital Budgeting Problems,
Prcntice Hall, Englewood Cliffs, N.J. , 1963.
H.M. Weingartner. ((Capital Budgeting and lnterrclated Projects: Survey and Synthesisu. Management
Science 12,485 - 516. 1968.
H.M. Weingartner and D.N. Ness. ((Methods for the Solution of the Multi-Dimensional 0-1 Knapsack
Problem)), OperationsResearch 15, 83 - 103, 1967.
J . W. Wright, ((The Change-Making Problems. JournalofACM 22, 125 - 128, 1975.
A.A. Zoltners, ((A Direct Descent Binary Knapsack Algorithma,JournalofACM25, 304 - 311, 1978.

Silvano Martello
Paolo Toth
DEIS-University of Bologna
Viale Risorgimento 2
40136 Bologna
Italy

This Page Intentionally Left Blank

Annals of Discrete Mathematics 3 1 (1987) 259 - 282
0 Elsevier Science Publishers B.V. (North-Holland)

LINEAR ASSIGNMENT PROBLEMS

Silvano MARTELLO and Paolo TOTH

1. Introduction

Suppose n jobs have to be assigned to m machines. Let ci,i be the cost of
assigning job j to machine i , r i , j the quantity of resource correspondingly requir-
ed, and bi the total amount of resource available for machine i . The Generalized
Assignment Problem (GAP) consists of minimizing the total cost required to
assign each job to exactly one machine without exceeding the machine's avail-
able resources. If we introduce a binary variable xi , i taking the value 1 if and
only if job j is assigned to machine i , and define I = { 1 , . . . , m } , J = { 1, . . . , n } ,
GAP can be mathematically described as:

(GAPI) minimize z = ci,i xi , / (1.1)
iEI j € J

subject to ri , j x i , j < bi (i E l) ,
j E J

(1.2)

(1.3)

xi,i = 0 or 1 (i E l , j EJ). (1.4)

We will assume, without loss of generality, that c ~ , ~ , r i , j and bi are non-negative
integers. GAP is "-hard, as we can see by transformation from the subset-sum
problem, which is known to be NP-hard. Given a set of n positive integers
wl,. . . , w,, and another positive integer d , the subset-sum problem is to find
that subset whose sum is closest to, without exceeding, d. Given any instance
of subset-sum, we can define the following instance of GAP: m = 2, cl,i = -

= r 2 , j = wj and c , , ~ = M wj (M a sufficiently large number) for all j EJ; b , = d ,
b , = m. Now let J, = (j : x ~ , ~ = 1 in the optimal solution of GAP}. Since
z = ZiE J1 wi + M w,, J1 gives the optimal solution of the instance of
subset -sum.

The most famous particular case of GAP is the classical Min-Sum Assignment

-

25 9

260 S. MarteIIo, R Toth

Problem (AP) , which is given by GAP when n = m , bi = I and ri3j = 1 for all
i € 1 and j EJ (note that, in the resulting formulation, we can replace < with
= in (1.2)). If the objective function of AP is replaced with

minimize z = max {c. . x i , j }
i E I , ~ E J ' ' I

we have the Min-Max (or Bottleneck) Assignment Problem (MAP). If it is re-
placed with

minimize z = max { c ~ , ~ x i , j } -
i E I , j € J

we have the Balanced Assignment Problem (BAP).
All these problems can be solved in polynomial time, as we will see in Sections

2 (AP), 3 (MAP) and 4 (BAP). GAP will be considered in Section 5.
All the problems analyzed in the present paper are linear. We will not consider

nonlinear assignment problems, such as, for example, the well-known Quadratic
Assignment Problem, which is reviewed in Finke, Burkard and Rend1 [151.

2. Min-sum assignment problem

2.1. The problem

Given a cost matrix (c) of order n , the Min-Sum Assignment Problem (AP)
consists of finding a permutation (f) of the elements of set N = { 1, 2, . . . , n }
that minimizes

It will be assumed, without loss of generality, that the elements of the cost
matrix are non-negative integers.

If ci,j represents the cost of assigning job (column) j to machine (row) i (with
j EN, i EN), AP can be considered as the problem of minimizing the total cost
required to assign each job to exactly one machine and each machine to exactly
one job. By introducing binary variables xi,j taking the value 1 iff column j
is assigned to row i , AP can be mathematically formulated as the integer linear
program

(AP) minimize z =
i E N i E N

subject to x i , j = 1 (i E N) ,
i EN

Linear assignment problems 26 1

x.. = 0 or 1 (i E N , j EN).
1 7 1

Since the coefficient matrix associated with constraints (2.2) and (2.3) is
totally unimodular, AP is equivalent to the continuous linear program (P) given
by (2.1), (2.2), (2.3) and

X i ,] 2 0 (i E N , j EN).

The dual problem of P is

(D) maximize Z = ui + 7

subject to M i + vj ,< ci , j (i E N , j EN),

where ui and 9 are the dual variables associated, respectively, with row i and
column j . It is well known that, since both P and D are continuous problems,
solving P is equivalent to solving D.

A third formulation of Ap can be obtained by considering the following graph
theory problem. Given a bipartite directed graph G = (S U T , A) , where S ={ sl,
. . , , s~}, T = { t I , . . . , t,, } and ci,i is the cost of arc (si, ti> E A , the solution of
the minimum cost perfect matching problem associated with graph G coincides
with the solution of AP. Vertices si E S and ti E T correspond, respectively, to
row i (i EN) and column j (j EN) of (c).
AP can be solved by any linear programming algorithm, but more efficient

polynomial methods exploiting the special structure of the problem can be used.
These procedures can be subdivided into three main classes: primal algorithms
derived from the simplex method (Barr, Glover and Klingman [l] , Mc Ginnis
[25]), primal-dual algorithms based on the Hungarian method (Kuhn [19, 201,
Silver [27], Bourgeoisand Lassalle [31, Lawler [21], Carpaneto and Toth [6, 8,
91, Bertsekas [2] , Mc Ginnis [2 5]) and primal-dual algorithms based on the
shortest augmenting path methods (Ford and Fulkerson [17], Tomizawa [28],
Edmonds and Karp [141, Dorhout [131, Burkard and Derigs [4]). Efficient For-
tran implementations and extensive experimental comparisons of the above
procedures are given in Carpaneto, Martello and Toth [5]. In the following, only
primal-dual algorithms, which have been shown to be more efficient than the
primal ones (see [25] and [5]), will be considered.

2.2. Primal -dual algorithms

Most primal-dual algorithms can be viewed as specializations of a general algo-

262 S. Martello, P. Toth

rithm which makes use of the bipartite directed graph G = (S U T, A) previously
described and of a non-negative reduced cost matrix (c*) defined as cTj = ci,i -
ui - 9 (si E S, ti E T), where (u) and (v) are the dual variables considered in
Section 2.1. It can be proved that any optimal solution of the AP associated
with the reduced cost matrix (c *) is optimal for the AP associated with the
original cost matrix (c) as well.

Algorithm AF'
1. g+S, T+ T, A+ 4 (s a n d T are the unassigned vertex sets, arcs (t j , s i) Ex

define the current partial assignment);

2. while 1

3.

1 < n do

begin
with respect to the reduced cost matrix (c*) , find a minimum cost aug-
menting path P ={ (pl, p 2) , (p z , p 3) , I . . , @Zh P Z h) } (i.e. a directed path
between two unassigned vertices p1 and pzh whose arcs are alternately in
sets A and Aand such that ~ p * 2 ~ - ~ , ~ ~ ~ is a minimum);

4.

5 .

f o r k = 1 tOh - 1 d 0 ~ + A - { ((p z k , p 2 , + ,) } ;

f o r k = 1 to h d O K + - K U {(Pzk-1,p2k)};

6 . s+&{pl} , r+ T - { p 2 , }

end

7. for each(tj,si) E x d o $ +-j.

At each of the n iterations, solution (u) , (v) of the dual problem is feasible since
constraint cti 2 0 (and hence ui + 9 < c ~ , ~) holds for each si E S and ti E T.
The corresponding solution (x) of the primal problem is infeasible since only
a subset of constraints (2.2) and (2.3) is satisfied. Hence the algorithm is primal
for dual problem D and dual for primal problem P.

The performance of algorithm AP can be improved through the following
initialization steps. The dual variables can be initialized as

5 = min { c ~ , ~ : si E S} (ti E n,
ui = min{ci,i - 3 : ti E T } (si ES).

An initial partial primal solution can easily be obtained by assigning vertex si
to vertex ti if c t i is zero and both vertices s, and ti are unassigned (note that,
because of the definition of (u) and (v), at least one zero element exists in each
row and column of the reduced cost matrix). The number of initial assignments
can be increased (see [6 1) by performing, for each unassigned vertex s i , an addi-

Linear assignment problems 263

tional step which tries to reassign a previously assigned vertex in S to a currently
unassigned vertex in T so as to allow the assignment of vertex si by considering
only zero elements of the reduced cost matrix.

All primal-dual algorithms can be derived from AP by specializing the techniques
used to find a minimum cost augmenting path and to update the dual variables.

2.3. Hungarian algorithrris
The Hungarian algorithms look for an augmenting path by considering only

zero elements of the reduced cost matrix (c*). When no such path exists, the dual
variables are updated so as to increase the number of zero elements in (c*) and
the augmenting path search continues.

Algorithm HAP
1. initialize Tand x;
2 . while I XI < n do

3.

4. repeat

5 . find an augmenting path P={(p,,p,) , @ , , p 3) , . . . , @ 2 h - 1 , ~ 2 h) } ,

begin
let s, E s be any unassigned vertex;

with p1 = sr, by considering only zero elements of (c*) and applying
a labelling procedure;

if such a path P exists then 6.

7. f o r k = 1 t o h - 1 d o ~ + ~ - - ((p , , , p , , + ,) } ;

8.

begin

f o r k = 1 t o h d o ~ t ~ U { @ , , ~ l , p ~ k) } ;

9. S+S-{s,}, T+ F-{p2h}
end

begin
else

10.

11.

12.

d c min { c t j : si E S and labelled, ti E T and unlabelled};

for each labelled vertex si E S do ui + ui + d ;

for each labelled vertex f j E T do 3 + 3 - d

end
13. until s, 4 s

end

The time complexity of HAP depends on the technique used for the computa-

264 5. Martello, P. Toth

tion of d at Step 10, since the remaining steps require O(n3) time. In fact Step 1
can be performed in O(n2) time. The while-loop is executed O (n) times. At
each iteration of the while-loop, Steps 7 and 8 are performed once, Steps
10, 11 and 12 at most O (n) times (the number of labelled vertices increases by
at least two units at each execution), Step 5 globally requires O (n Z) time (each
element of the cost matrix is considered at most once). If the computation of
d is performed as specified at step 10, each execution requires O(n2) time, so
the overall complexity of HAP is O(n4). It is possible to achieve better comple-
xity if, at Step 5 , for each unlabelled vertex ti E T, one computes the minimum
(say 7 r j) of the reduced costs of the labelled vertices in S. The complexity of
Step 5 is not affected by this modification, while Step 11 requires now O (n)
time (d = min{ 7ri : vertex ti E T is unlabelled}), so the overall complexity is
o(n3) .

2.4. Shortest augmenting path algorithms

The bipartite graph formulation can be used to transform AP into a minimum-
cost flow problem (MCFP) on network c = (S u T U V , A u W) defined as:
V = { s , t } , W = { (s, s i) : si E S }U { (t i , t) : ti E T } , all arcs have unit capacity, the
cost of arcs (i , j) E A is a j , j and that of arcs in W is zero. It can easily be seen
that the minimum cost flow of value y1 from s to t gives the solution of AP.
Because of the special structure of the network, it is possible to solve MCFP by
applying a standard shortest path routine (for instance the Dijkstra labelling
method) to find, in O(n2) time, a minimum cost augmenting path with respect
to the non-negative reduced cost matrix (c*). The updating of the dual variables
is postponed until an augmenting path is found.

Algorithm SPAP
1 . initialize

2. whileIxI<n do

3.

4. find an augmenting path P = { (p , , p2) , (p z , p 3) , . . . , (P 2 h - I , P , ,) } ,
with p1 = s,,, by applying a shortest path labelling procedure on (c*)
(let fi j be the cost of the path from vertex s, to the labelled vertex
ti E T and t , the last vertex of P);

for each labelled vertex tj E T - { t , }do

T and z;

begin
lets, E S be any unassigned vertex;

5 .

begin
6 .

7 .

let si be the vertex currently assigned to ti;

v. 4-1.’. + K. - 7rq, ui t U i -nj + 7rq
I l l

end

Linear assignment problems 265

The time complexity of SPAP is clearly O(n3).
A combination of the Hungarian and shortest augmenting path methods has

been proposed in [91.

2.5. Sparse cost matrices

In many practical cases the cost matrix (c) can be represented as a sparse ma-
trix. All the primal-dual algorithms described in the previous sections can be
modified so as to consider this case (see [8, 51). Since the elements of the cost
matrix are always scanned only along the rows and never along the columns, the en-
tries of row i (i EN) of the sparse matrix can efficiently be represented by two sets
Ji and Ci containing, respectively, the corresponding column indices and costs.

The computational results show (see Section 2.6) that the computing times
for sparse problems are much smaller than those for the corresponding complete
problems. Moreover, the entries of the cost matrix associated with the optimal
assignment, that is, entries ci,fi (i EN), generally have very small values with
respect to the other entries. On the basis of these considerations Carpaneto
and Toth [9] have proposed an algorithm (APM) for the complete problem
which transforms the complete cost matrix (c) into a sparse one (c ') (by remov-
ing all the entries of the initial reduced cost matrix greater than a given threshold)
and computes, by applying a sparse cost matrix procedure, the optimal solutions
(x') and (u f) , (v') corresponding to the primal and dual problems associated with
(c'). If the dual solution (u ') , (v') is feasible for the original dual problem D, that
is, if ci, j -ul! - v; 2 0 holds for all i E N and j E N , then (u f) , (Y') is optimal
for D and the primal solution (x ') is feasible and optimal for the original primal
problem P.

2.6. Computational results

Two implementations of the Hungarian method described in Section 2.3 have
been considered-algorithms HAPl, requiring O(n3) time, and HAP2, requiring
O(n4) time. The second algorithm, derived from the procedure proposed in
[6], utilizes a pointer technique to locate the unexplored zero elements of the
reduced cost matrix and can be faster for particular instances.

The Fortran codes corresponding to algorithms HAPl, HAP2, SPAP (Section
2.4), APM (Section 2.5) for complete cost matrices, and to the sparse matrix
implementation of HAP1, were run on a CDC-Cyber 730 on randomly-ge-
nerated test problems. Two classes of problems were considered by genera-
ting the entries of the cost matrix as uniformly random integers in the ranges

266 S. Martello. P. 7'0th

(1 - lo2) and (1 - lo6) respectively. For the sparse cost matrices, two different
values (5% and 20%) of the density of the number of the sparse matrix elements
with respect to the number of elements in the corresponding complete matrix,
were considered. Six values of n (40, 80, 120, 160, 200, 240) for complete
matrices and eight values (120, 160, 200, 240, 280, 320, 360, 400) for sparse
matrices were utilized. For each cost range, density and value of n , 5 problems
were solved. Tables 2.1 to 2.4 give the corresponding average computing time
(expressed in seconds and comprehensive of the initalization phase) for each
algorithm and the average time and number of assignments of the initialization
procedure.

Tables 2.1 and 2.2 clearly show that, for complete cost matrices, algorithm
APM has the best performance, especially for large values of n. Algorithms HAPl
and SPAP are almost equivalent, while algorithm HAP2 has good computing
times only for small values of the cost range.

For sparse cost matrices, Tables 2.3 and 2.4 show that the total computing
times increase more steeply with the cost range than with density.

Table 2.1.
Complete matrices. 1 < cj,j < lo2 . CDC-Cyber 730 seconds over 5 problems.

Total computing time Initialization phase

Number of
Time assignments n HAP1 HAP2 SPAP APM

40 0.086 0.214 0.086 0.070 0.026 34.0
80 0.403 0.722 0.446 0.272 0.099 67.6

120 1.041 1.367 1.225 0.625 0.213 101.2
160 1.912 2.054 2.366 1.022 0.362 140.4
200 3.294 2.821 4.134 1.593 0.569 175.0
240 5.709 3.724 1.503 3.078 0.766 212.0

Table 2.2.
Complete matrices. 1 < ci,j < lo6. CDC-Cyber 730 seconds over 5 problems.

Total computing time Initialization phase

n HAPl HAP;! SPAP APM

40 0.099 0.448 0.079 0.071
80 0.488 3.215 0.403 0.282

120 1.356 10.703 1.183 0.785
160 2.673 23.453 2.345 1.409
200 4.843 46.618 4.363 2.320
240 7.317 82.424 6.721 3.233

Time

0.025
0.096
0.218
0.373
0.601
0.834

Number of
assignments

34.2
66.2
96.8

131.4
160 .O
197.2

Linear assignment problems 267

Table 2.3.
Algorithm HAP1 for sparse matrices. 1 Q Ci,j < 102. CDC-Cyber 730 seconds over 5 problems.

Density 5% Density 20%

Initialization phase Initialization phase
Total Total
time Numberof time Number of

Time assignments Time assignments n

120 0.518
160 0.942
200 1.576
240 2.384
2 80 3.371
3 20 4.329
360 5.874
400 6.680

0.021
0.03 5
0.050
0.073
0.092
0.1 18
0.138
0.168

98.6 0.602
130.8 0.965
166.4 1.666
197.6 2.216
225.8 3.363
258.4 4.5 76
292.6 5.931
328.4 7.229

0.059 97.6
0.101 132.2
0.154 168.2
0.203 20 1.2
0.282 230.0
0.369 267.2
0.456 301.4
0.586 338.0

Table 2.4.
Algorithm HAP1 for sparse matrices. 1 < cij < 106. CDC-Cyber 730 seconds over 5 problems.

Density S% Density 20%

Initialization phase Initialization phase
Total Total
time Number of time Number o f

Time assignments Time assignments n

120 0.646
160 1.277
200 2.188
240 3.284
280 4.593
3 20 6.442
3 60 7.817
400 10.281

0.020
0.035
0.052
0.069
0.088
0.116
0.132
0.170

101 .o
128.2
162.6
195.0
228.6
257.4
290.0
322.6

0.875
1.639
2.659
4.185
5.857
7.878

10.448
13.450

0.062
0.103
0.149
0.223
0.285
0.379
0.463
0.596

99 .O
128.2
162.6
195 .O
228.6
257.4
290.0
322.6

More extensive computational results and a statistical analysis of the perfor-
mance of the algorithms consider in this Section are given in [5 1.

3. Min-max assignment problem

3.1. The problem

Given a cost matrix (c) of order n , the Min-Max (or Bottleneck) Assignment
Problem (MAP) consists of finding a permutation (f) of the elements of set

268 S. Martello, P. Torh

N = { 1 , 2 , . . . , n } that minimizes:

z = max(c. I , f i : i EN}.

By introducing boolean variables xi , i taking the value 1 iff column j is assigned
to row i (i.e. if 4 = j) , MAP can be mathematically formulated as the integer
linear program :

(MAP) minimize z (3.1)

(3 2) subject to c i , j x i , j < z (i E N , j E N) ,

j € N

x i , j = 1 (j EN) ,
i E N

(3.4)

x i , j = 0 or 1 (i E N , j E N) .

Since, contrary to what occurs for the min-sum problem Ap (see Section 2.1),
the coefficient matrix associated with constraints (3.21, (3.3) and (3.4) is not
totally unimodular, the optimal solution value of the continuous relaxation of
MAP gives only a lower bound on the value of z .

A third formulation of MAP can be obtained by considering the bipartite
directed graph G = (S u T , A) defined in Section 2.1 for AP. It can easily be
shown that the solution of the min -max cost perfect matching problem associat-
ed with graph G coincides with the solution of MAP.

Several polynomial methods have been proposed for the exact solution of the
problem. As for AP, these algorithms can be subdivided into primal approaches
(Gross [18]) and into primal-dual procedures based on the Hungarian method
(Carpaneto and Toth [7]) and on the shortest augmenting path method (Derigs
and Zimmermann [12], Burkard and Derigs [4], Derigs [l l]) . In this case too,
the primal approach has been shown to be much less efficient than the primal-
dual ones. These last procedures differ from those proposed for the min-sum
case (see Sections 2.2, 2.3 and 2.4) mainly because the original cost matrix
(c) is considered in the search for min-max cost augmenting paths, instead of the
reduced cost matrix (c *). The computational complexities remain the same.

3.2. Hungarian method

In the Hungarian method (see [7]), the zero elements of the reduced cost
matrix correspond to the elements of set C, = { c i , j : ci, i <Y, si E S , ti E T } ,
where Z is a lower bound (threshold value) on the value of z . So the search for
the initial partial assignment (initialization phase) and the labelling procedure to

Linear assignment problems 269

find an augmenting path consider only elements of C,.
The threshold value Z can be inizialized as

where

2’ = max { min (c ~ , ~ : si E S } : ti E T } ,

Z” =max{min{c i , j : t i € T } : s i € S) .

When no augmenting path with respect t o the elements of C,- has been found
by the labelling procedure, the threshold value Z can be updated, i.e. increased,
as follows (see Step 10 of algorithm HAP):

Z = min { ci,i : si E S and labelled, ti E T and unlabelled}.

3.3. Shortest augmenting path method

lower bound Z on z , let
Given an augmenting path P starting from the unassigned vertex si E S and a

bJP) = max{ Z , max { c ; , ~ : (si, t i) E Pi)

be the bottleneck cost of path P.
Path P is a shortest bottleneck augrnenting path with respect to Z if condition

bJP) < b,(P’)

holds for any augmenting path P‘ starting from s i .
In the shortest augmenting path method (see [121, [4], [1 1 I), at each iteration

a search for a shortest bottleneck augmenting path P starting from an unassigned
vertex si E S is performed, and the value of lower bound Z is then updated by
setting Z = b,(P).

3.4. Computational results

The Fortran codes BASS [7] (derived from the Hungarian method) and BAPl
[12 1, LBAP [4], LBAP2 [I 1] (derived from the shortest augmenting path method)
were run on a CDC-Cyber 730 by solving randomly generated test problems.
As for AP, two cost ranges of the entries of matrix (c) ((1 - lo2) and (1 - lo6))
and six values of n (40, 80. . . . , 240) were considered. For each cost range
and value of n , 5 problems were solved. Table 3.1 gives the corresponding average
computing times (expressed in seconds) for each algorithm.

The table shows that LBAP2 is slightly faster than BASS and that BAPl is
clearly worse than the other codes. Moreover, the computing times are practically
independent of the cost range.

210 S. Martello, P. Toth

Table 3.1.
CDC-Cyber 730 seconds over 5 problems.

1 < q j < 102 1 < C C j < 106

n BASS BAPl LBAP LBAP2 BASS BAPl LBAP LBAP2

40 0.069 0.101 0.080 0.053 0.087 0.099 0.083 0.057
80 0.182 0.383 0.234 0.154 0.185 0.431 0.281 0.160

120 0.271 0.812 0.422 0.230 0.293 0.940 0.474 0.259
160 0.365 1.448 0.616 0.318 0.374 1.763 0.647 0.332
200 0.518 2.431 0.728 0.445 0.530 2.854 0.806 0.494
240 0.673 3.716 0.983 0.606 0.707 4.320 1.073 0.651

4. Balanced assignment problem

4.1. Balanced optimization problems

Suppose we are given a finite set E , a cost c, associated with each e E E and
a family 9 of feasible subsets of E. The general Balanced Optimization Problem
is to find S* E 9 which minimizes z = max {c, : e E S } - min {c, : e E S } over all
S E 9. If E is the set of cells of an n x n assignment matrix, c, the value contained
in cell e and 9, the family of all subsets of cells which constitute assignments, then
we obtain the Balanced Assignment Problem : find an assignment which minimizes
the cost difference of the most expensive and least expensive cell used.

Assume that a feasibility procedure accepts as input a set E' C E and either
produces some S E @such that S C E' or else states that no such Sexists. Martel-
lo, Pulleyblank, Toth and de Werra [24] have proved that if we know a polyno-
mially bounded feasibility procedure then we are able to solve the associated ba-
lanced optimization problem in polynomial time as follows. Let v1 < v2 < . . . < vk
be the (sorted) list of different values appearing as element costs, and for any
1, u satisfying 1 < I < u < k , let E(1, u) ={ e E E : v, G ce < v,,}.

Algorithm BOP
1. l + - l , u + - l , z + m ;
2. while u < k do

3.

4.

5 .

6 . I + - 1 + 1

begin
apply the feasibility procedure to E(1, u) ;

if E(1, u) contains no member of 9 then u t u + 1 else

if v, - v, < z then 1" +- I, u * +- u , z = v,, - v,;

begin

end
end

Linear assignment problems 271

If the feasibility procedure has time complexity O(f(1 E I)) then the overall
complexity of the algorithm is O (k .f(I E 1)).
4.2. An algorithm for the balanced assignement problem

Given an n x n cost matrix (c) , we could solve the balanced assignment problem
through the algorithm of the previous section by using, as feasibility procedure,
any algorithm for the assignment problem. Using, for example, algorithm HAP
of Section 2 . 3 , would give O(n5) as overall time complexity. We can, however,
solve the problem in O(n4) through the following specialized algorithm:

Algorithm BAP
1. z4-m;

2. solve a min-max assignment problem on (c) and let vr, uu be respectively the
minimum and maximum cost in the solution (v, = 00 if no assignment exists);

3. while vu < m do
begin

4. if v, - u, < z then
begin

5 .

6.

u * + u ; I * + 1; 2 4- v, - vr ;

if z = 0 then stop
end

7.

8.

set to m all cells (i ,]) of (c) such that ci,i < v l ;
solve a min-max assignment problem on (c) starting with the current
(partial) assignment and define v,, v, as in step 2

end

The correctness of the algorithm can easily be proved (see [24]). The time
complexity can be determined as follows. Step 2 can be performed in O(n3)
time (see Section 3.2). Step 8 requires the search of an augmenting path for each
row which, after execution of step 7, results unassigned. Since this can occur
at most O(nZ) times, and the computational effort to find an augmenting path
is O(n*) (see Section 2.4), the overall complexity of the step and, hence, of
the algorithm, is O(n4).

5 . Generalized Assignment Problem

5.1. The problem

(relations
The Generalized Assignment Problem (GAP) has been defined in Section 1.1

(1 . I) - (1.4)) as a minimization problem (GAPl). GAP can also be

212 S. Martello, P. Toth

defined as a maximization problem by manipulating the objective function as
follows (Martello and Toth [2 3]) . Let t be any integer constant such that
t > max { c ~ , ~ } , and define, for all i E 1 and j €1

i E 1 , j t . l

Then

i E I i t J

subject t o ri , j xi , i < bi (i €0 , (5.2)
j t J

x i , j = 1 (i E J), (5 . 3)
i E I

is equivalent t o (GAP1). The objective function of (GAP1) is given by z = n t - w .
Note that pi,j can be interpreted as the profit obtained by assigningjob j to machine
i. In the following sections we will always consider the (GAP2) version of the
problem.

Chalmet and Gelders [101 have studied a different formulation of GAP, where
the = sign is replaced with the < sign in (5 . 3) . Since it is no longer necessary for
all jobs to be assigned, a feasible solution to such a problem always exists (this
formulation is more frequent in real-world problems). However, it has been
shown in [2 3] that any problem of this kind can easily be transformed into
a (GAP2).

5.2. Upper bounds

GAP is generally solved through branch -and-bound algorithms (remember
that the problem is NP-hard). In this section we review the most effective bounds
proposed in the literature.

Ross and Soland [2 6] have proposed the following upper bound. First the
relaxed problem (5.1), (5 . 3) , (5.4) is exactly solved by determining, for each
j E J, an index i (j) such that

and setting xi(i),i = 1 and xi, i = 0 for all i ~ I - - (i u) } . This initial upper bound,

Linear assignment problems 213

of value Cj, is then refined as follows. Let

4. = j j E J : x i , j = I } (j €0 ,

I ’ = { i ~ / : d , > O j .

Since I ‘ is the set of those machines for which condition (5 . 2) has been violated,

q. = min { p . . . - p k , j : rk , i < bk}
k t l - { ; (j)] ’(’”’

is the minimum penalty that will be incurred if j ob j is reassigned. Hence, for
each i EZ’, a lower bound on the loss of profit to be paid in order to satisfy
condition (5.2) can be obtained by solving the 0- 1 knapsack problem

(K;) minimize z i= r q j j ; , j
i C J ;

and the refined upper bound is

Martello and Toth [23] have obtained an upper bound for (GAP2) by solving
the relaxed problem (5.l) , (5 . 2) , (5.4). This relaxation would have no meaning
for (GAPI), since the removal of condition (1.3) would give a trivial problem
(solution = 0 for all i E J and j E J) with a useless lower bound of value 0.
For (GAP:!) we have a non-trivial problem, whose solution can be obtained by
solving, for each machine i E I , the 0- 1 knapsack problem

(K,z) maximize wi = p . . x . .
1,l 1,l

j € J

subject to ri , i xi , i < h i ,
j € J

214 S. Martello, P. Toth

xi , i = 0 or 1 (1 €4.

In this case, too, the initial upper bound, of value Z i E I wi, can be refined by
computing a lower bound on the penalty to be paid in order to satisfy the violat-
ed constraints. Let

4 ={ i EI : x i , i = 1)

w:~ = upper bound on (Kf) if x . = 0

wi:i = upper bound on (Kf) if x. . = 1

(I' E J) ;

(i €1, j E J) ;

(i E I , j E J) ,

/ > I

1 3 1

where w$ and wifi can easily be obtained, for example, from the continuous
solution to (K,Z). We can now compute

v:i = min { wi, w;, } (j EJO, i €0,

(j EJ', i € 4) vifi =min{wi,w:i}

and determine a lower bound li on the penalty to be paid for job j in order t o
satisfy condition (5.3) as

min{w, - [v&]} if j E J O , 1 i E I

1. =
I

(w i - [v . ' j]) - m a x (w i - [v ~ i] } if j E J ' . I, i E Ii

The refined upper bound is thus

u = x w i - max is}.
i E J O U J ' 2

i E I

Fisher, Jaikumar and Van Wassenhove [16] have recently proposed a new
upper bound for (GAF'2), obtained by dualizing constraint (5.3) with a vector
(s)i of multipliers. The resulting Lagrangean problem separates into m 0-1 single
knapsack problems (one for each i E r) of the form

(K:) maximize w i e) = x Q~,, -3,) x,,,
i € J

Linear assignment problems 21s

subject to ri,i xi , i B bi,
j € J

and it can be easily verified that

is a valid upper bound on w for any s. Note that the initial Martello-Toth
upper bound is given by this Lagrangean relaxation when sj = 0 for all j EJ.
The Fisher-Jaikumar-Van Wassenhove method for determining the multi-
pliers begins by initializing each sj to the second largest pi,i. With this choice,
pi,i -si > 0 for at most one i E I , so there is a Lagrangean solution satisfying
Z i E I < 1 for all j E J . If C i s I x i , j = 1 for all j E J , then this solution is
feasible and hence optimal. Otherwise, under certain conditions, it is possible
to select a 7 for which Z i r I x i , i = 0 and decrease s~ by an amount large enough
to ensure CiE I x i , i = I in the new Lagrangean solution, but small enough for
Z i E I < 1 to continue to hold for all other j in the new Lagrangean solution.
The method is iterated until either the Lagrangean solution becomes feasible
or the required conditions fail.

It has been proved in [16] that u3 dominates the Ross and Solaud bound in
the sense that the value of u g obtained in the first iteration of this method equals
u1.

5.3. Exact algorithms

The most important algorithms in the literature for the exact solution of GAP
are depth-first branch-and-bound algorithms.

In the Ross and Soland scheme [26], upper bound u 1 is computed at each node
of the decision-tree. If branching is needed, the variable chosen to separate on,

is the one among those with y i , j = 0 in the optimal solution to the (K;) for
which the quantity

qj/ r j , j / 6, - r . . x. .I) i i j E J i ' * I ' , l

is a maximum. Two branches are then generated by imposing = 1 and

in the Martello and Toth scheme [23], at each node of the decision-tree,
both upper bounds u 1 and u2 are computed. If branching is needed, the separa-
tion is performed on the job j * for which

x i , j' = 0.

216

1.. = max {Z.}.

Branching is then determined

I j E J O U J ' I

S. Martello, P. Toth

by the type of infeasibility given by job j * in the
solution of the relaxed problem solved to obtain u2. If j * € J o , m branches are ge-
nerated by assigning j * to each machine in turn, as shown in figure 5. l . If j * E J ' ,
I J' I branches are generated as follows. Let 4. = { i,, i,, . . . , i , 1; 5 - 1 branches
are generated by assigning j * to i,, i,, . . . , i,-,, and another branch by excluding
j * from i,, i,, . . . , i+, (see figure 5 . 2) . It can be proved that, with this branching
strategy, it is necessary to solve m (K,?) problems to compute the upper bound
associated with the root node of the decision-tree, but only one new (K?) prob-
lem for each other node.

In the Fisher, Jaikumar and Van Wassenhove scheme [161, at each node of the
decision-tree, upper bound uj is computed. If branching is needed, the variable
chosen to separate on, xi.,j., is the one for which is maximum. Two branches
are then created by imposing

x, , j * = 1

= 1 and = 0.

n

. . .
Fig. 5.1.

Fig. 5.2.

5.4. Heuristic and reduction algorithms

Martello and Toth [2 3] have proposed the following algorithm to find a heuri-
stic solution (2) to (GAP2). Let f (i , j) be a weight function relative to the assign-
ment of job j to machine i. The algorithm iteratively considers all the unassigned

Linear assignment problems 211

jobs and determines that job j * , which has the maximum difference between the
largest and the second largest f (i , j) : j * is then assigned to the machine for
which f(i , j*> is a maximum. The second part of the algorithm (steps 11 -14)
attempts to improve on this solution through local exchanges.

Algorithm HGAP

1. F t J ;

2 . for each i E I do a, +- b,;

3. while F # !J do

begin
4. g t - 0 0 ;

5 . for each j E F do

begin

6 . f(c j) t { f (i , j) : r i , j d a, } (if this set is empty then stop:
no feasible solution has been found);

d t f (T j) - , max_ { f(i , j) : r i , j < u i } (if this set is empty then
d + + m) ;

, E I - - (1 }
7.

-
8. i f d > g theng +-d, j * t i , i* t i

end
9.

10.

&, j . +- 1 , F t F - { j *}, a,. + a,* - T i * , j * ;

for each i E I -{i*} do ? i , j * + 0

end
11. for eachj E J do

begin

12.

13.

let i * be the machine for which 2,*, = 1 ;

Q~ t . max {

if pci > pi,, then ?.* . + 0, a,* t a,* + ri*si , i, + I , a: I +-a: I - r: i , j

: r i , j <a,};
i E I - {i*}

14. 1 , I

end

HGAP can be implemented to run in O(nm log m + n2) time. Computational
experiments have shown that good results are given by the following choices for
f (i , j) : f (i , j) = ~ , , ~ , f (i , j) = ~ ~ , ~ / r , , , , f (i , j) = - r i , j , f (i , j) = --riJbi.

The following two algorithms, also presented in [23], can be used to reduce
the size of a GAP. Let (3) be any feasible solution (for example that found by
HGAP) and 8 = X i = I X j E J 2i,j the corresponding value. The first algorithm
determines the initial upper bound of Ross and Soland and fixes to 0 those

278 S. Martello, P. Toth

variables xi,j which, if set to 1 , would give an upper bound not better than 6.

Algorithm RlGAP
1. for eachj E J do find p i (j) , j = I,I~,X{ : ri,i < bi};

2. + Z j e J Pi(j),j;

3. for each i E I do

4.
5.

RlGAP has time complexity O(nm).
The second algorithm applies the same reduction criterion to the initial Martel-

lo and Toth upper bound ii = Zit, wi (where wi is the solution of problem (KI)
in the relaxation of (GAP2)).

for each j E J do
i f G > u - (p . . I (/) , / . - p . 1.1 .) o r r i , j > b i t h e n x i , j + O

Algorithm R2GAP
1 . f o r e a c h i E Z d o

2. for each j E J do

begin
3.

4. ifi$>ii--(wi--[6]) thenxi,i +2i,i

6 +min{~~,(upperboundon(K,?)ifx~,~isset to 1 -ii,i)};

end

The value 6 has the same meaning as and v,'~ in Section 5.2. R2GAP requi-
res, in the worst case, a non-polynomial running time since finding each wire-
quires the solution of a 0-1 knapsack problem. However, such w/s must be
determined in the first iteration of the Martello and Toth branch-and-bound
algorithm of Section 5.3. Hence, if R2GAP is applied as preprocessing of this
algorithm, the extra computational effort involved is O(rnng(n)), where g (n)
is the time complexity for finding each upper bound on (Kf) .

5.5. Computational results

We coded the algorithms of Ross and Soland and of Martello and Toth (includ-
ing HGAP, RlGAP and R2GAP) in Fortran IV and ran them on a CDC-6600.
All the 0- 1 knapsack subproblems were solved trhough the algorithm of Martello
and Toth [22]. The Fisher, Jaikumar and Van Wassenhove algorithm was coded
by the authors in Fortran IV and run on a DEC 10. Since the CDC-6600 is
considered to be about 5 times faster than the DEC 10, the Fisher-Jaikumar-
Van Wassenhove times in Table 5.1 are DEC 10 seconds divided by 5 .

Computational experiments were executed on the following problem genera-
tions:

Linear assignment problems 279

A. Ross-Soland generation [2 6] : ri,i and pi,i uniformly random between 5
and 25 and between 1 and 40 respectively and bi = 0.6 (n / rn) 15 +
+ 0.4 %a;(xi, J i r i , i) .

B. Same as A, but with bi set t o 70 percent of the value given in A.

C. Same as A for rb j and pi,i but bi = 0.8 Z i t ri ,Jrn.

D. ri,i uniformly random between 1 and 100; pi,i = 10 t ri , i -e, with e
uniformly random in (- 10, 10); bi = 0.8 Ci , r i , i /m .

Problems of type A generally admit many feasible solutions, while in problems
of types B and C constraints (5.2) are tight; in problems of type D a correlation
between profits and resource requirements (often found in real-world applica-
tions) is introduced.

For each data generation we considered two values of m (m = 3 , 5) and two
values of n (n = 10, 20). We solved 10 problems for each data generation and

Table 5 . l .
CDC-6600 seconds; 10 problems for each entry.

Ross-Soland
Fisher-Jaikurnar-
Van Wassenhove Martello - Toth

Average Average Average Average
Data m n running number running number

time ofnodes time ofnodes set

A 3 10
A 3 20
A 5 10
A 5 20

B 3 10
B 3 20
B 5 10
B 5 20

c 3 10
c 3 20
c 5 10
c 5 20

0.012
0.031
0.029
0.077

0.227
32.852(6)
0.230

Time limit

0.321
6 I . I 85(4)
0.3 70

Time limit

5
8

13
17

127
11801

110
-

191
25175

162
-

0.030
0.054
0.093
0.464

0.288
5.977
0.3 12

18.203

0.165
7.96 1
0.215

15.084

2
3
7

24

42
555
28

1098

19
718
22

1027

Average Average
running number

time ofnodes

0.034 0
0.053 0
0.050 1
0.129 2

0.307 4
1.028 12
0.3 93 5
2.986 28

0.337 2
1.116 13
0.508 3
2.750 25

D 3 10 0.793 510 0.409 50 0.361 4
D 3 20 Timelimit - 16.289 1235 3.872 31
D 5 10 1.353 669 0.767 90 0.788 8
D 5 20 Time limit - 100.932(2) 5889 13.521 126

280 S. Martello, P. Toth

for each pair (m, n) . The entries in Table (5.1) give average times and average
number of nodes solved in the branch-decision tree. 250 seconds were assigned
t o each algorithm to solve the 20 problems generated for each data type and
value of m. For the: cases with a time limit, we give the number of problems
solved in brackets.

The table shows that the Ross and Soland algorithm is faster for data set A,
but much slower than the other methods for data sets B, C and D. For these
(harder) data sets, the Martello and Toth algorithm appears slightly faster when
n = 10, while the Fisher, Jaikumar and Van Wassenhove algorithm is clearly
superior when n = 20. The analysis of the average number of nodes solved in
the branch-decision tree indicates that the good performance of the Fisher-
Jaikumar-Van Wassenhove algorithm depends on the quality of the upper bound
(their branch-and-bound being a very simple dichotomic scheme). Hence good
results can be expected if this bound is imbedded in the more sophisticated
Martello -Toth algorithm.

Table 5.2 shows the performance of heuristic algorithm HGAP on large-size
problems of type A, the only problems which can be solved exactly, allowing
an analysis of the quality fo the heuristic solutions found. The table shows that
HGAP gives very good solutions with acceptable running times. Further expe-
riments indicated that the running times of HGAP are practically independent
of the data set, while the quality of the solutions decreases for data sets B, C
and D.

Reduction procedures R lGAP and R2GAP showed good experimental perfor-
mance for data set A (more than 90% of the variables were fixed) and a rather
poor performance for the other data sets (about 10% of the variables were fixed).

Table 5.2.
Algorithm HGAP; CDC-6600 seconds; 10 problems for each entry.

Average Number of op-
Data m n running Average timal solu-

error tions found set time

A 5 50
A 5 100
A 5 200
A 10 50
A 10 100
A 10 200
A 20 50
A 20 100
A 20 200

0.096
0.240
0.569
0.134
0.334
0.692
0.243
0.540
1.239

0.07%
0.05%
0.02%
0.06%
0.06%
0.03%
0.13%
0.03%
0.04%

Linear assignment problems 28 1

Aknowledgement

This work was supported by Consiglio Nazionale delle Ricerche (C.N.R.),
Italy.

References

R.S. Barr, F. Glover and D. Klingman, ((The Alternating Basis Algorithm for Assignment Problems)),
MathematicalProgramming 13, 1 - 13, 1977.
D.P. Bertsekas, ((A New Algorithm for the Assignment Problem)), Mathematical Programming 21,

F. Bourgeoisand J.C. Lassalle, <An Extension of the Munkres Algorithm for the Assignment Problem
to Rectangular Matrices), Communications ofACM 14, 802 - 804, 1971.
R.E. Burkard and U . Derigs, Assignment and Matching Problems Solutions Methods with FORTRAN
Programs, Springer, Berlin, 1980.
G. Carpaneto, S. Martello and P. Toth, I1 Problema dell 2ssegnamento:Metodi ed Algoritmi, Progetto
Finalizzato Informatica, SOFMAT, C.N.R., Roma, 1984.
G. Carpaneto and P. Toth, ((Algorithm 548, Solution of the Assignment Problem,, ACM Dunsactiom
on Mathematical Sofrware 6, 104 - 1 1 1, 1 980.
G. Carpaneto and P. Toth, ((Algorithm for the Solution of the Bottleneck Assignment Problem)),
Computing27, 179 - 187, 1981.
G. Carpaneto and P. Toth, ((Algorithm for the Solution of the Assignment Problem for Sparse Matri-
ces9, Computing 31, 83 - 94, 1983.
G. Carpaneto and P. Toth, ((Primal-Dual Algorithms for the Assignment Problem)), Report OR/84/2,
DEIS, University of Bologna, 1984.
L. Chalmet and L. Gelders, ((Lagrange Relaxations for a Generalized Assignment-Type Problem)), in
M . Roubens, ed., Advances in Operations Research, North-Holland, Amsterdam, 1977.
U. Derigs, ((Alternate Strategies for Solving Bottleneck Assignment Problems - Analysis and Computa-
tional Results)), Computing 33, 95 - 106, 1984.
U . Derigs and U. Zimmermann, ((An Augmenting Path Method for Solving Linear Bottleneck Assign-
ment Problems)), Computing 19, 285 - 295, 1978.
B. Dorhout, ((Het Lineaire Toewijzingsproblem. Vergelijking van Algoritmen,, Report BN 21, Sticht-
ing Mathematisches Centrum, Amsterdam, 1973.
J . Edmonds and R.M. Karp, ((Theoretical Improvements in Algorithmic Efficiency of Network Flow
Problenisa,JoumalofACM19, 248 - 261, 1972.
G. Finke, R.E. Burkard and F. Rendl, ((Quadratic Assignment Problems)), this volume.
M.L. Fisher, R. Jaikumar and L.N. Van Wassenhove, ((A Multiplier Adjustment Method for the
Generalized Assignment Problem)), Management Science (to appear).
L.R. Ford and D.R. Fulkerson, Flow in Networks, Princeton University Press, Princeton, New York,
1962.
0. Gross, ((The Bottleneck Assignment Problems, P- 1630, The Rand Corporation, Santa Monica,
California, 1959.
N.W. Kuhn, ((The Hungarian Method for the Assignment Problem)), Naval Research bgjsrics QWH-
erly 2 , 83 ~ 97, 1955.
N.W. Kuhn, ((Variants of the Hungarian Method for the Assignment Problem)), Naval Research LO-
gistics Quarterly 3, 253 - 258, 1956.
E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston,
New York, 1976.
S. MarteUo and P. Toth, ((Algorithm for the Solution of the 0-1 Knapsack Problem)). Computing
2 1 , 8 1 - 86, 1978.
S . Martello and P. Toth, ((An Algorithm for the Generalized Assignment Problem)), in J.P. Brans.
ed., Operational Research 81, North-Holland, Amsterdam, 1981.
S. Martello, W.R. Pulleyblank, P. Toth and D. de Werra, ((Balanced Optimization Problems)), Opera-
twns Research Letters 3,215 - 218, 1984.
L.F. McGinnis, ((Implementation and Testing of a Primal-Dual Algorithm for the Assignment Prob-
lem), Operations Research 31, 271 - 291, 1983.

152 - 171, 1981.

282 S. Martello, P. Toth

1261

[271
1281

G.T. Ross and R.M. Soland, ((A Branch and Bound Algorithm for the Generalized Assignment Prob-
lem)),MathematicalProgramming 8, 91 - 103, 1975.
R. Silver, ((An Algorithm forthe Assignment Problem)), Communications ofACM 3,605, 1960.
N. Tomizawa, ((On Some Techniques Useful for Solution of Transportation Network Problems)),
Networks 1,173 - 194,1971.

Silvano Martello
Paolo Toth
DEIS, University of Bologna
Viale Risorgimento 2
40136 Bologna
Italy

Annals of Discrete Mathematics 31 (1987) 283 - 324
0 Elsevier Science Publishers B.V. (North-Holland)

NETWORK SYNTHESIS AND DYNAMIC NETWORK OPTIMIZATION

Michel MINOUX

1. Introduction

Determining a minimum cost network designed in such a way as to meet a
given set of specifications (flowing prescribed traffic requirements, achieving
a quality of service, etc. . . .), is a fundamental class of problems which arise
in a wide variety of contexts of applications such as Transportation Science,
Telecommunication network engineering, distribution systems, energy networks,
water distribution networks etc. .

This paper is intended as a survey of past work concerning two important
and quite general problems arising in the area of distributed telecommunication
(telephone and/or data processing) networks: (a) network synthesis under non-
simultaneous single- commodity or multicommodity flow requirements (section
2); (b) determining an optimal investment policy for meeting increasing multi-
commodity flow requirements over a given time period. (sections 3 to 9). The
importance of the latter problem stems from the fact that most optimum network
design problems are essentially dynamic in nature,in the sense that the time
factor should be explicitely taken into account. Since most research effort in the
network optimization area has been directed so far towards static rather than
dynamic models, we have felt it preferable here to insist on dynamic models and
methods for their solution.

Optimum network design and synthesis problems have attracted much interest
in the OR Community since the early ~ O ’ S , and this is mainly due to the impor-
tance and variety of practical applications involved : Transportation systems,
Telecommunications systems, teleprocessing and Computer Communication
networks, distribution systems, energy distribution systems, water supply
networks and so on. Surveys covering applied and/or computational issues related
to networks synthesis and optimum network design problems will be found for
instance in Frank and Frisch [24], Zadeh [79, 801, Steenbrink [731, Minoux L.571,
Boorstyn and Frank [8], Schwartz [71], Dionne and Florian [16], Gavish [28],
Kobayashi [48], Magnanti and Wong [5 2] , Minoux [65] .

Even if we restrict to a specific context of application such as Telecommunica-
tions (i.e. telephone and/or data transmission networks) the diversity of models
(and solution methods), which have been studied in connection with optimum

283

284 M. Minoux

design issues for systems and networks is striking and, without the pretention of
being exhaustive, one can mention:
- minimum concave cost multicommodity network flow models (with appli-

cations to the determination of an optimum network structure and/or network
planning): see Yaged [77,78]; Zadeh [79,80] , Minoux [57,58]. In the special
case of linear with fixed costs: see Billheimer and Gray [6]; Minoux [58]; Boffey
and Hinxman [71;
- minimum concave cost single commodity network flow models (with

application to optimum design of centralized networks): Zangwill [8 11, Gallo
and Sodini [2 5] , Gallo, Sandi and Sodini (261;
- minimum linear cost multicommodity flows with a budget constraint (the

so-called ((optimum network problem))): see Scott [72]; Boyce and a1 [9]; Hoang
[4 1 3 ; Dionne and Florian [1 61 ;
- optimum network synthesis with nonsimultaneous single-commodity flow

requirements: see Gomory and Hu [34, 351;
- optimum network synthesis with nonsimultaneous multicommodity flow

requirements (with application t o optimum design of net works under reliability
constraints or time-varying requirement matrix): see Minoux [6 1,641, Minoux
and Serreault [67, 681;
- capacitated minimum spanning trees (with application to optimum design

of homogeneous centralized data processing networks): see Chandy and Lo
[lo] , Kershenbaum [461, Kershenbaum and Boorstyn 1471, Gavish [29, 301;
- concentrator location problems (in connection with optimum design of

heterogeneous centralized data processing networks): see Chandy and Russel
11 1 I , Elias and Ferguson [191, Tang, Woo and Bahl 17.51, Gavish [28];
- Steiner tree problems in graphs (related to applications such as optimal

location of switching centers or concentrators in networks): see Dreyfus and
Wagner [181, Hakimi [391. Aneja [l l , Claus and Maculan [15], Beasley [4] and
the survey paper by Maculan in the present book.

As can be observed from the above references, most of the work carried out
in the area of optimal network design concerns static models, in the sense that
'an optimal network structure is looked for, given the traffic flow requirements
at some specific time instant, but without taking into account the evolution of
the traffic requirements over a (sufficiently long) time period. Section 2 below
provides a brief survey of basic static network synthesis models.

However, it turns out that, partly due to the fundamentally discontinuous
nature of the possible investment decisions (for increasing capacity on links
and/or nodes, choice is usually limited to a few distinct physical devices cor-
responding to a few [capacity, cost] pairs), examples are easily found (see Minoux
[561, and section 3) where the sequence of optimum static solutions (obtained
by solving the static model at the various successive instants t = 0, 1, . . . , T of
the time period [0, r] under consideration) is not only far from the optimum,
but practical2y unfeasible (e.g. because investments decided at instant t , should

Network synthesis and dynamic network optimization 285

be removed at instant t + 1). In view of this, it is readily seen that good investment
policies can only be obtained by taking account of the time factor, in other
words (even if it is more often implicit than explicit) by taking account of the
essentially dynamic nature of network optimization problems. However, - and
this is likely to be due to the intrinsic complexity of realistic dynamic models -
it appears that only a limited amount of research effort has been devoted so far
to such models; this is precisely one of the main purposes of this paper to try and
provide some state-of-the art in the area of dynamic network design problems
describing(Sections 3 to 9 below) various models and approaches for solving them.
Moreover, it will be shown how the most practically applicable solution methods
are related to the work on static models cited above.

2. Static network synthesis models

As already alluded to in the introduction, a great deal of work has been devot-
ed in the past to network optimization problems viewed as static problems i.e.
without taking into account the evolution,over several successive time periods,
of the networks under consideration. Thus an extensive survey of this area (the
interested reader may refer to Minoux [6 5]) would be beyond the scope of this
paper which, as already said, will focus on dynamic rather than static models.
However, before turning to a full treatment of this issue, we felt it worth while
giving at least a flavor of some of the most basic static network optimization
models which are commonly referred to as network synthesis problems (this
terminology was suggested by Gomory and Hu [35]). This is a class of problems
in which a minimum cost network is looked for (assuming that the costs are linear
functions of installed capacity) with the requirement that the capacities installed
on the various links of the network be large enough to meet a number of given
distinct and independent single-commodity (or multicommodity) flow require-
ments.

2.1. The single-commodity case (Gomory and Hu [34,35])
Considering first, the single commodity case, the problem may be more speci-

fically stated as follows. The structure of the network is represented by a non-
directed (connected) graph G = [X , U] where X is the set of nodes (I X [= N)
and U the set of edges (I U I = M) . Moreover, we assume that we are given a set
of p (distinct) single-commodity flow requirements on the above graph, the
krh of these (1 < k f p) being described by:
- an origin-destination pair (s k , t k) ;
- the requested flow value rk > 0 between s, and t,.
(Since the problem is basically nondirected, sk and tk may be indifferently

considered as source or sink of the flow). Also, with each edge u E U, we associate
a linear cost -y,, the cost of one unit capacity on link u . It is required to determine

286 M. Minoux

capacities yu 2 0 to be assigned to the edges u E lJ of G in such a way that:
(i) the total cost ZuE 7, . yu is minimized;

(ii) for each node pair (sk, t ,) (1 < k G p) there exists a feasible flow of value
rk between sk and t k .

In other words, a set of capacities y = (y J U E u on the graph will be feasible
if and only if it allows nonsimultaneously meeting each one of the given flow re-
quirements (independently of the others). This is why the problem is often referred
to as ((network synthesis with nonsimultaneous single-commodity flow require-
ments)). A linear programming formulation can easily be set up by using the
basic definition of a single-commodity flow in terms of the node-arc incidence
matrix A : choose any orientation on each edge u = (i , j) of G thus obtaining an
arc, still denoted by u (arc u is (i , j) if the orientation chosen is from i to j , and
(j , i) if it is from j to i). Each column of A corresponds to an arc, u = (i , j) and has
exactly two nonzero entries aiu = + 1 and aiu = - 1 corresponding to the two
endpoints of u . Now a vector r p k = represents a flow of value rk between
two nodes sk and t, if and only if:

A rpk = rk . b k

where bk is a N-vector with exactly two nonzero entries + 1 and - 1 respectively
corresponding to rows sk and t k of A . (note here that rp has negative components
on arcs for which the flow happens to be sent in the direction opposite t o the
orientation on the arc, but constraints (ii) only concern the absolute values 1 rpul
of the flow on the arcs).

The single-commodity network synthesis problem can then be expressed as
the following linear program

Minimize yUyu
U E U I I subject to

The matrix representation of the problem is shown on Table 1 featuring a block-
-diagonal structure corresponding to the (pk variables (k = 1, . . . , p) , t hep network
flow subproblems being coupled through the y variables (coupling variables). Note
that the capacity constraints 1 r p i I Q yu have been rewritten there: - yu G ,pi <yu .

Gomory and Hu [34] have shown how problem (LP) can be solved through
generalized linear programming by reformulating it in terms of a large scale linear
program with only M variables (the coupling variables y) but a large number of

Network synthesis and dynamic network optimization

- costs 0 0 0 i - - - - - i 0 I 7
I I I I

v2 Y

287

coupling variables

Table 1 . Matrix representation of the single-commodity network synthesis problem (A is the
node-arc incidence matrix of the graph).

288 M. Minoux

constraints of the form:

where Ck is a sk - tk cut in the network (thus the above inequalities state that
for each pair (sk, t,J, the capacity of any cut Ck should be greater than or equal to
the flow requirement r k . Note that the equivalence with the original problem
stems from the max-flow-min-cut theorem (Ford and Fulkerson [23])). The
objective is still t o minimize ZuE Lr 7, y,. Of course, due to the large number of
constraints (of cuts in the network) the problem is relaxed by considering only
a (small) subset of cut constraints; constraints which are violated by the current
solution (optimal solution to the current relaxed problem) are then easily identi-
fied by maximum network flow computations, and iteratively appended to the
current relaxed problem (this process is often referred to as constraint-genera-
tion, and is seen to be the dual of a column generation scheme). Since there are
finitely many cuts in the network and each generated cut is necessarily different
from those already belonging to the current relaxed problem, the process neces-
sarily terminates in a finite number of iterations with a solution to the relaxed
problem (implicitly) satisfying all the cut constraints: it is then an optimal '>

solution to the single-commodity network synthesis problem. It is interesting here
to point out that this constraint generation process can be interpreted as applying
the Benders decomposition procedure (Benders 1962) to the linear program (LP)
(note that the original Benders procedure was designed to handle mixed integer
programming problems - problems in which the coupling variables are constrain-
ed to be integral - but applies as well and even better from the point-of-view of
computational efficiency, to ((ordinary)) linear programs: it can then be used as
a decomposition technique provided that the problem to be solved display the
appropriate structure, namely diagonal blocks with coupling constraints).

A special case of the single-commodity network synthesis problem is worth
mentioning: the one where all the costs are equal to 1. This is the ((basic Gomory
and Hu network synthesis problem)) for which a purely combinatorial (and
polynomial) graph theoretic algorithm exists (Gomory and Hu [35]). This algo-
rithm is based on the fact that only a subset of (at most N - 1) requirements
need be considered, the ones belonging to the so -called ((dominant requirement
tree)) (considering the graph GR on X where there exists an edge (i , j) iff there
is a strictly positive flow requirement from i to j , the weight on the edge being
the value of the requirement, a dominant requirement tree is nothing but a
maximum weight spanning tree on GR).

The dominant requirement tree is then decomposed into a sum of subtrees
with uniform requirements, and the optimal network is directly obtained (ctsyn-
thetized))) by associating with each uniform requirement subtree a cycle running

Network synthesis and dynamic network optimizarion 289

through all the nodes spanned by the subtree. For more details, see the original
paper by Gomory and Hu [351 or Lawler [49], Minoux [65].

2.2. The multicommodity case (Minoux [6 11)
The single-commodity network synthesis problem considered by Gomory and

Hu can be generalized to multicommodity network flows in the following way.
Here p distinct independent multicommodity flow requirements are given on the
graph G = [X , U] representing the network structure. Each of the individual
multicommodity flow requirement k , is described by a set of origin-destination
pairs (s i , t:) (s:, t:), (sgk t ik) together with the corresponding source-sink require-
ments r i r z , . . . , rjk.

Here, a set of capacities y = (y,),,, assigned to the links of the network
is called feasible with respect to multicommodity flow k if the capacities allow
simultaneously flowing all the single-commodity flow requirements r i (between
s i and t i) , r: (between s z and tz) . . . rjk (between sik and t ,fk>.

The purpose is to find a minimum cost (ZuEv 7, y,) assignment of capacities
which is feasible with respect to any one of the p given multicommodity flow
requirements independently of the others. This is the reason why in Minoux [61]
the problem has been referred to as ({network synthesis with nonsimultaneous
multicommodity flow requirements)).

Again, using a node -arc formulation for each individual feasible multicom-
modity flow problem, this can be formulated as a (large scale) linear program
with block-diagonal structure and M coupling variables y,, (U E v). However,
contrasting with the single-commodity case, each block now displays the matrix
structure of a feasible multicommodity flow problem in node -arc formulation
i.e.: a block diagonal substructure composed of repeated node-arc incidence
matrices of the graph with coupling constraints (the capacity constraints). Again
Benders decomposition can be applied to such a structure with the more complex
feature that now, each subproblem is a feasible multicommodity flow problem
(significantly harder t o solve than the maximum flow problem in the single-
-commodity case). Minoux [6 11 showed how the multicommodity network syn-
thesis problem can be reformulated as a large scale linear program in the coupling
variables y, only, but with very many constraints, by using a proper generalization
of the max-flow-min-cut theorem to multicommodity flows, and then proposed
to solve this Iarge scale program by applying a constraint generation scheme.
Minoux and Serreault [67, 681 applied this methodology to a telecommunication
problem involving multicommodity network optimization when security cons-
traints are imposed (the network to be ((synthetized)) should be able to flow
prescribed traffic requirements, even in case of failure of some of its constitutive
elements -links o r nodes-). Due to the very high dimensionality of the
problems to be solved in real applications, their implementation made use of
subgradient algorithms for (approximately) solving both the master problem and
the feasible multicommodity flow subproblems at each iteration. The proof of

290 M. Minoux

convergence to an approximate solution (to within a controllable accuracy)
is provided by Minoux [64] in the more general context of Benders decomposi-
tion, when approximations are allowed in the solution of both the master problem
and the subproblems.

Another interesting application of network synthesis with nonsimultaneous
multicommodity flow requirements will be found in Minoux [6 5] .

3. The dynamic network optimization problem: formulation as a minimum
cost dynamic multicommodity flow problem with discontinuous cost functions

We now turn t o the study of dynamic network optimization problems, by
describing in this section a very general formulation where the minimum PW of
AC (Present Worth of Actual Cost) of network expansion over a given time
period [0, is t o be determined. Contrary to many others described in the
litterature, the model presented here is intended to stick to reality as much
as possible, in particular by deliberately coping with the difficulty, constantly
encountered in practice, of discrete discontinuous cost functions (due to the
fact that capacity expansion on the links can only be performed by choosing
among a finite set of possible capacity values). We think that, due t o its great
generality and realism, both the model and solution methods described here
should have wide applicability and not only in the Telecommunication field.
The structure of the network will be represented by an (undirected) graph
G = [X , U] where X is the set of nodes (1x1 =N) and U is the set of edges
(or links) (1 UI =M). In case where a transmission link may be created between
every pair of nodes (i , j) i = 1 , . . . , N , j = 1,. . . , N , i < j , thenM = N (N - 1)/2.
However in practice we have usually M <<N(N - 1)/2. The time period [O , T]
is supposed to be divided into T intervals of unit duration (in general each time
unit will correspond to one year), and it is required that at each time instant
t (0 G t < r) the capacity installed on the links of the network be sufficient
t o allow flowing prescribed traffic requirements at instant t . The traffic require-
ments at instant t may be characterized as a multicommodity f low composed
of K = N (N - 1)/2 distinct (independent) single-commodity flows, one for
each possible source-sink pair (i , j) i = 1, . . . , N , j = 1 , . . . , N , i < j . Each
individual single commodity flow associated with a source-sink pair (i , j) will
be represented at instant t by a M-vector p' i (t) = (pLj(t)),,Eu (an arbitrary
orientation being chosen on each link of the network, it is well-known that
the M-vector @ (f) is a flow if and only if it satisfies the so-called first
Kirchhoff's law) and the value of the flow u(p' j (t)) is equal t o the total flow
leaving node i (source) or, equivalently, to the total flow into node j (sink).
(Observe that in most applications, the (i -1) flow will represent the total traffic
from i to j and from j t o i , so the distinctionbetween source and sink among the
pair (i , j) is purely conventional). When all the K single commodity flows p i j (t)

Network synthesis and dynom'c network optimization 29 1

are simultaneously present on the network, then the total flow value on each link
u E U at instant t is

In what follows, a minimum cost network expansion over the time period [0, TI
is looked for under the constraint that ,at each instant t (t = 0, 1 , . . . , T) the
value of each (i - j) flow @ (t) be equal t o some desired value r i j (t) (i = 1,
. . . , N , j = 1 , . , , , N , i < j) . The N x N matrix R (t) whose entries are the
values r i j (t) for all (i, j) i < j will be called the traffic requirement matrix at
time t .

Thus, from now on, and t l t = 0, 1 , . . . , T , @ (t) will denote a single-com-
modity flow o f value rii (t) from source i to sink j in the network.

A solution to the network expansion problem will be described by a sequence
of T + 1 M-vectors : Y(O), Y (1) , . . . , Y(T) where, for each t (O , < t , < T):

and Y,(t) is the total capacity (of the transmission facilities) installed on link
u at instant t .

In many situations, where network expansion requires, on each link, a succes-
sion of investments where new transmission systems are progressively added to
face increasing requirements, an investment, once decided, is not reconsidered
later on, resulting in total installed capacity values Y,(t) which are nondecreasing
functions of time.

In that case, which will be the one considered here, the various vectors Y (t)
which compose a solution should meet the following dominance relations:

Y(O),<Y(l)< . . . ,<Y(T) (1)

where, for any two M-vectors Y 1 and Y2, the dominance relation ,<is defined
by :

Y1 S Y z if and only if Y,' ,< Y,' (vu E 0.

A solution Y = [Y(O), Y (1) , . . . , Y(T)] will be called feasible if, for each t =
= 0, 1, . . . , T , the capacities Y,(t) (u E v) installed on the links of the network
are sufficient to simultaneously flow all the required amounts of flows r i j (t) ,
in other words, if there exist M-vectors @ (t) such that

292 M. Minour

(2) are called the capacity constraints and (3) the requirement constraints.
No we define the cost of a solution Y = [Y(O), . . . , Y(T)] satisfying the

dominance relations (1) in the following way. Each time extra capacity is needed
on some link u E U, we assume that we have choice among a given (finite) family
of equipments, each equipment s = 1, 2, . . . , S in the family being characterized
by its capacity Q(s) and total cost P(s) which can be quite accurately approximat-
ed by a formula of the type:P,(s) = F(s) + 1, V(s) where:

F(x) is the fixed cost of equipments located at the terminal endpoints of
the link (independent from the length of the link).

0 V(s) is the variable cost per unit distance of transmission system s of capacity

1, is the total physical length of link u .
(Of course, it would not be conceptually difficult t o consider more complex

dependence of cost on link length or possibly other parameters associated with
the link).

Thus for a given link u , 1, is fixed, and the family of possible transmission
equipments which may be installed on link u (to increase capacity) may be
represented on a capacity versus cost chart as a set of points, each point (Q(s) ,
P (s)) corresponding to a specific equipment of the family. Figure 1 illustrates
this on a family of equipments composed of 5 systems with the following capa-
city/cost characteristics (cost being given for, say, a 100 kmlink).

Q<s>.

Total cost
(for a 100 km link)

Millions US $

Total capacity
(number of channels) System number

s = 1 Q(1) = 500 P(1) = 4.5
s = 2 Q(2) = 1000 P(2) = 7
s = 3 Q(3) = 2000 P(3) = 10
s = 4 Q(4) = 3000 P(4) = 13
s - 5 Q(5) = 10000 P (5) = 27

It can be checked that the cost roughly follows a law of variation of the
form 0.1 1 (Q) , . , . (This example will be considered again in 87).

As it can be observed from these figures (and this is exactly what happens
in reality) the above family obeys the so-called economy of scale phenomenon
namely that the mean cost (cost per line) is decreasing with the total capacity
of the systems installed (see figure 2). If, as is the case on figure 1, the cost
follows a law of variation of the form P(Q)o.6 where P is a constant, then mean
costs follow a law of variation of the form p(Q)-O.4.

In what follows, we will denote by r,(x) the cost function on link u which
is defined only for x = 0 and for x = Q(s) (s = 1, . . . , S) and whose value is

Network synthesis and dynamic network optimization

10 -*

7

4.5

293

..
'- i . .

a
H

total cost
(Million US S)

27 -I- *

13

Fig, 1. Example of a capacity versus cost chart associated with a family of 5 transmission
systems. It can be checked that the cost as a function of capacity is well approximated by a
function of the form: P 0.1 1 (Q)a6.

Mean cost
(cost per channel)

9000

7000

5000

4300

2700

, ..*

. .
, a

. I
. *

. I

. '

i ; : I t
500 1000 2000 3000 10000 Capacity

Fig. 2 . The ((economy-of-scale)) phenomenon: among a given family of transmission systems,
mean cost (cost per channel) is a decreasing function of the capacity of the system. Since on
figure 1, the cost is well approximated by the formula 0.1 1 (Q)a6, the mean cost variation is
well approximated by the formula 0.1 1 (Q)-OC'.

294 M. Mnoux

(= P,(s) = F(s) t I, V(s) if x is equal t o Q(s) for some s (1 < s < S) ;

I undefined, otherwise.

Now, in order to determine the best network expansion strategy, we shall resort
to what economists have been using for years, namely the Present Worth of
Actual Cost (PWAC) criterion, which if we consider any sequence of investments
of values I (l) , l (2) , . . . ,I(T) performed at each instant of the time period
[0, TI is defined by:

The parameter B is an exogenous parameter usually chosen in the range [0.05,
0.1 51 and is called the actualization rate; its value depends o n a great number of
economic factors such as: interest rates, rates of growth of the firm, and so on.
It will be considered here as a fixed known external parameter.

Using the above cost criterion, we are now in a position to define the total
PW of AC of a feasible solution Y = [Y(O), Y(l), . . . , Y (r)] t o the network
expansion problem.

For the sake of simplicity in the presentation, we will assume that, on each
link of the network, no more than one system of the family at hand need be
installed at a time. Of course, this simplifying assumption could easily be drop-
ped, but it turns out that it is quite realistic since the capacities of the transmis-
sion systems are usually chosen sufficiently large so that fill-in takes on several
years t o occur. Under these conditions the solution Y is such that, for each link
u E U , the extra capacity Y,(t) - Y,(t - 1) added between any two consecutive
instants t - 1 and t is either equal to 0 (no investment on link u at time t - l) ,
or corresponds to the capacity Q (s) of one of the systems of the family
considered. Thus, using the I', function introduced earlier, the investment cost
on link u at time t - 1 is exactly

In view of this, the total PW of AC of network expansion over the time period
[O , TI for the solution Y is the sum of the PW of AC of expansion of the links
i.e.:

To summarize, the problem is to find optimal values of YJt) i),(t) and p f j (t)
solving the following minimum cost dynamic multicommodity f low problem :

Network synthesis and dynamic network optimization 295

1 under the constraints:

1 vt E [1 , TI, v u E u : Y,<t - 1) < Y J t)

I (dominance constraints)

(capacity constraints)

V t , v (i , j) : c p i j (t) is an (i - j) flow of value u(cp'j(t)) = @ (t)

(flow requirement constraints)

(3)

Vu E U : Yu(0) (the capacity existing on link u at time 0) is supposed
to be given

Constraints (4) have been added here to recall that capacity expansion on the
links cannot be performed but by using one of the transmission systems in the
family considered.

In order t o get a better understanding of the structure of the problem, and
in particular of its highly combinatorial nature, we will first reformulate it using
a dynamic programming approach (Bellman [5 I).

' \

I

4. A dynamic programming formulation of the network expansion problem

We show, in this section, that problem (MCDMF) can be formulated as a
Dynamic Programming problem, in other words as a shortest path (minimum
cost path) problem in a (large) sequential graph defined in the following way.

are divided into T stages corresponding to the time instants
t = 1, t = 2, . . . , t = T. At each stage 1, the associated nodes of correspond
to the various possible feasible states of the network, each feasible state being
characterized by a M-vector Zj(t) with components Zh(t) (u E v) where Zh(t)
is the total capacity installed, up to the instant t , on link u . Moreover, the M-
-vector Zj(t) associated with a feasible state at time t should be such that the
capacities Zi(t) on the links of the network are sufficient t o flow all the single-
commodity flow requirements rij(t) simultaneously. We note here that the
problem of deciding whether a given state vector Zj(t) is feasible with respect
t o the requirements rii (t) amounts t o looking for a feasible multicommodity

The nodes of

296 M. Minoux

flow for which various efficient exact or approximate algorithms have been
described: see for instance Assad [2] Kennington [451, Gondran and Minoux [36]
chapter 6 . An efficient approximate algorithm for finding feasible integral
multicommodity flows has been devised by Minoux [55] .

Since only a finite number, S , of distinct capacity values can be used to
augment capacity on each link, and since (according to the assumption made
in 0 3) , at each instant f, at most one such capacity value can be added, each
component of Zi (t) can take on at most S' distinct values. Thus there is afinite
number of possible states (of possible nodes in c) at each stage f (say, at most

We also consider in c a special node (called the origin) corresponding to the
state Y (0) of the network at time 0 (the beginning of the study period). (Remem-
ber that the capacity Y,(O) on each link u in the initial state of the network is
supposed to be given).

The arcs of c are now defined in a natural way: only arcs between nodes
corresponding to two consecutive stages t - 1 and t are allowed; moreover there
will be an arc [Zi(t - l) , Z'(t)] between two nodes Zi(f - 1) and Zj(t) , if and
only if, for each component u E U :

MS' G MS').

Zk(t) -zL(t - 1) E {O, Q(l), Q (2) , . . . , Q(s>)

in which case, the cost of the arc will be taken equal to:

i.e. the total present worth of actual cost of all the investments performed at
time t - 1 on all the links.

Figure 3 provides a graphical representation of the sequential (dynamic pro-
gramming) graph c (for 1 < f < T, the number of states at stage t has been
denoted by vt). Note that in c, not every node (state) is reachable by a path
from the origin; on the other hand, that there are nodes which can be reached
by several distinct paths.

Solving the minimum cost network expansion problem is then equivalent t o
looking for a shortest (minimum cost) path between the initial state Y (0)
(taken as the origin) and the set of nodes corresponding to the final stage T.
It is important, for what follows, to realize that,solving the minimum cost path
problem, simultaneously provides two important kinds of information: (a) an
optimal terminal state which we denote by Z * (n (b) a shortest (minimum cost)
path between Y (0) (the initial state) and Z*(n (the optimal terminal state).

Network synthesis and dynamic network optimization 291

Stage t = 1 Stage t = 2
.1 .1

- .

/ /

,
/ ’ 1

0 . i - -- - -

/ ’ /

I ‘ ‘

\ , .
\ .

\ 4 .

Stage t = T

.1

- * - - 9 z l(o
4’

/

/ .
’r

Fig. 3. The minimum cost network expgsion problem viewed as a shortest path (minimum
cost path) problem on a sequential graph G .

5 . The short -term-long-term decomposition approach

If the Dynamic Programming formulation has the interest of providing a new
way of loolung at the problem (on which we shall rely later on), it can by no
means provide a practically applicable solution method for network optimization
problems of realistic size. T o be convinced of this, it is enough to say that in prac-
tical applications:
- M (the number of possible links) is usually well above 100;
- S (the number of possible distinct transmission systems) is commonly

around 10 to 20;
- T (the number of time intervals in the time period considered) is in the

range 5 - 10.
Taking only the minimum values of the above figures, and considering that

M S T is a good estimate of the number of states in the dynamic programming

298 M. Minoux

formulation (number of nodes in c) (I) , we obtain a number of the order of
1001ooooo which is very very far beyond the possibilities of resolution of Dynamic
Programming techniques (and even of the most sophisticated ones, e.g.: combining
Branch and Bound and Dynamic Programming as suggested in Weingartner and
Ness [76], Morin and Marsten [70]; or the so-called state space relaxation techni-
ques as in Christofides, Mingozzi and Toth [13, 141).

In view of the highly combinatorial nature, and intrinsic difficulty of the
problem, pointed out above, the search for exact solutions is likely to remain
hopeless for many years, hence the need for devising approximate algorithms
both computationally efficient, and providing solutions as close to optimality
as possible.

Along this line, it turns out that the Dynamic Programming formulation of the
network expansion problem - and this is one of its main interests in the present
exposition - naturally leads to a good approximation scheme (already suggested
in Minoux [55,56]) based on a two-stage decomposition of the problem where
the two following subproblems (P l) and (P2) are successively solved:
(Pl) Find a good approximate final state Z f (0 (1 < f < vT) in the sense that

the cost of a minimum cost path between Y (0) and Zf(7J is close to the
cost of the optimal path between Y(0) and the (unknown) Z * (T) ;

(P2) Find a path between Y (0) and Z f (n which closely approximates the
(unknown) minimum cost path between Y (0) and Z f (0 ;

In economical terms, problem (Pl) might be called the long term planning
subproblem and problem (P2) the short-to -medium term planning subproblem.
Z f (n may be called the ((target network)). The basic ideas underlying the two-
-stage decomposition approach are that (i) owing to some simplifying (though
reasonable) assumptions, problem (P l) can be reduced to a static (nonlinear)
minimum cost multicommodity flow problem, significantly simpler than the
dynamic multicommodity flow problem initially considered (see 96) ; (ii) once
a good target solution has been determined, it becomes much easier t o generate
good approximate solutions to the dynamic network expansion problem.

To be a little more specific, the implementation of the two-stage decomposi-
tion approach, to be described later on, makes essential use of the following
remarks :

(a) in solving the long term subproblem it is not very important t o take
account of all the details of how network expansion has to be performed, year
by year. Only trends are important and this will lead to considering rates of
growth of the required traffic values r i j (t) instead of the traffic requirement

(1) One might object that a large proportion among all these MSTstates would not be feasible. However,
since there is no simple straightforward characterization of feasible state vectors among the whole set of
a priori possible states, a feasibility rest will have to be systematically applied to all the states examined,
without knowing in advance whether they will be feasible or not. Thus a large number of unfeasible states
will have to be taken into consideration too. It this sense, the valueMSTcan be considered as a good estimate
of the state space cardinality of the problem.

Network synthesis and dynamic network optimization 299

values themselves;
(b) Once a good approximate final state Zf(r) has been determined according

to the above principle, many variables of the problem become fixed; in particular
we get the structure of the optimal (or suboptimal) expansion subnetwork, i.e.,
we know on which links capacity has to be added. Moreover, since we know the
required growth rate of the flow values on each link of the expansion subnetwork,
it is possible to deduce the nature of the best possible transmission system (among
the S possible systems of the family) which should be installed on each link.
Also good approximate dates for performing the various necessary capacity
expansions on each link can easily be deduced.

(c) Once we know, for each link of the expansion subnetwork, the sequence
of capacity expansions to be performed, and approximate dates of installation,
problem (P2) is solved by considering each time instant t E [1, r] and trying to
reduce the total investment cost necessary at instant t at a minimum, while
maintaining feasibility (this leads to delaying some of the investments which
were part of the long term plan). This can be achieved, as suggested in Minoux
[5 5] or in Minoux [5 7] by means of a heuristic procedure analogous to the so-
-called backward dynamic programming scheme, beginning from the end of the
time period (t = 7') and ending at t = 0 (2). At each t , a number of trials are made
for eliminating (i.e. delaying) the most expensive investments, feasibility being
tested for by means of a procedure solving, (either exactly or approximately)
the feasible multicommodity flow problem.

In the following sections, we will focus on the solution of problem (Pl) (the
long term planning subproblem) which essentially aims at determining an optimal
(or suboptimal) stucture for the expansion subnetwork. For details on the solu-
tion of problem (P2) (the short-to-medium term planning subproblem) the reader
is referred to Minoux [55, 561.

6. Determining a good approximation to the optimal final state (target network):
a (static) minimum cost multicommodity flow model with nonlinear (concave)
cost functions

We show in this section how, by means of some simplifying (though reasona-
ble) assumptions, the problem of determining a good approximation to the
optimal final state Z*(T) (see $ 5) can be reduced to a (static) minimum cost
multicommodity flow problem with continuous (but nonlinear) cost functions.

The basic idea here is to repalce each function ri j (t) specifying the evolution

(1) Heuristic procedures based on backward dynamic programming usually lead to better results than
those based on forward dynamic programming. See Minoux [S 6] for an example.

300 M. Minoux

of the traffic flow requirement between i and j over time, by its trends which
will be characterized by the mean speed of growth over the period [0, TI, denoted
by uii and defined, in a natural way, as:

rij(n -#i(o)

T
=

Though considering for each source-sink pair the linear function of time
2..

r f l (t) = r'i(0) + uii . t

may not always very accurately account for the given values ri i (t) , it will be
assumed (assumption A l) that this adequately accounts for the trends of varia-
tion of the traffic flows over time. This assumption is justified by the practical
observation that, since the rii (t) values are usually obtained from forecasting
models, which have a well-known smoothing effect, they rarely exhibit sharp
and irregular variations.

The second assumption (A2) which will be made is that for every source-sink
pair (i - j) , the routing of the flow qij remains the same all over the time period
[0, T]. In other words, if at time t = 1 , we decide to send the flow on some
(i - j) path in the network, then it will go on following the same route at every
other subsequent time instant.

I t follows from assumptions (Al) and (A2) that we can replace the (dynamic)
multicommodity flow problem of flowing the r i j (t) requirements at the various
successive instants t = 1, 2 , . . . , T by the static multicommodity flow problem
of flowing the uij values through the network; indeed, proceeding that way, we
note that the speed of growth of the total flow through any link u E U, B u , is
equal to the sum of the speeds o f growth uii of all the (i - j) flows running
through link u . (C(r' j(0) + d j t) = Z r i j (0) + (Z u i /) t = Crii(0) + O u t , where
summation is taken over the subset of source-sink pairs corresponding to the
flows using link u) .

Now the problem which has to be solved is the following: given some (arbi-
trary) routing of the uii flows on the network, resulting on each link u E U in a
total speed of growth B,> 0, determine the Present Worth of Actual cost of
network expansion corresponding to this routing strategy.

In what follows, in order t o simplify the discussion, we will assume that all
the initial flow values rij(0) are zero and that no capacity has been installed on
the network yet (Y (0) = 0). This is the situation where the network has to be
built from scratch. Of course, all that will be said easily generalizes to the (more
frequent) situation where we start from an existing network with installed capa-
cities Y(0) # 0 and nonzero flow requirements rii(0).

For all u E U , we thus have to determine the (minimum) PW of AC of expan-
sion of link u in order to satisfy total flow requirement of the form:

Network synthesis and dynamic network optimization 301

when capacity expansions are performed using only transmission systems belon-
ging to the family (P(s) Q (s) , s = 1 . . . S) (see §3) . This minimum PW of AC of
expansion of link u when the speed of growth on link u is 8, will be denoted by
a, (8,). As we will see in section 7 below, the a,, (0,) are nonlinear functions of
0, which can be closely approximated by concave differentiable functions.

In view of this, and with the assumptions (A l) (A2), the problem of determin-
ing a minimum cost expansion network over the time period [0, r] amounts to
solving the following (nonlinear concave) static multicommodity flow problem:

under the constraints:

(P1) I

7 . Determining the cost functions on the links in the static multicommodity
flow model

The problem which we address here is t o determine an optimum sequence of
investments on some link where the total flow requirements increase linearly
with time, 8 > 0 being the speed of increase, and assuming that we can choose
only among a finite set of transmission sytems, characterized by capacity -cost
pairs Q (s) , P(s> (s = 1, . . , ,S).

In order to perform an optimal choice among the several possible available
systems, we will introduce a simple rule based on the concept of equivalent
cost (cf. Minoux and Guerard [661).

Consider, first, the following simplified situation where we have to choose
between two equipments E l , E, of capacity Q , and Q, respectively, and total cost
P, and Pz respectively. Since it is desirable that the choice between El and E,
be as independent as possible from the actual duration T of the time period
under consideration, the two solutions should be examined in comparable situa-
tions, namely on a sufficiently long time period T' (possibly longer than T) in
order that no residual (installed but unused) capacity be left at the end of the
time period (see Figure 4). Thus, since the fill-in times for E , and E , under a
growth rate of 8 units per year are

302

Capacity

2Q2

*Q,

Q2

Q,

M. Minoux

T = 10

!

I / ' I I

I I I 1

1 ' ;
1 t

Fig. 4. Comparison of two transmission systems E l and E2 for satisfying a total flow require-
ment increasing linearly with time (growth rate 6). Taking T = 10, neither of the two systems
are saturated. T' = 12 is the earliest date at which saturation occurs for the two systems.

1 2 3 4 5 6 7 8 9 1 0 1 1 12 Timet

Q 2

' e 2 e
n = - Q, n =-

respectively, we'll have to choose T' such that

T ' = k , n , = k 2 n 2

with integer k , , k,.
Then the PW of AC on [O, T '] in case E l is chosen, is:

which can be rewritten as:

1 - (1 + G) - T '

1 - (1 + G)-"I
z ,(e, T') = P,

or equivalently:

Network synthesis and dynamic network optimization 303

where

PI 1 -(1 +a)-'
e 1 - (i + , T - Q ~ ' o

1 - (1 + G)-*'
1 - (1 -4- b)-n2

r p) = -

Similarly, in case E, is chosen, the PW of AC would be:

q e , T I) = pZ

which can be rewritten as:

where

It is then seen from (5) and (6) that the comparison between E , and E, amounts
to comparing the two quantities r,(e) and r,(f3), which indeed, appear to be
independent from the duration T' on which the comparison is performed,

Now, the above reasoning can be extended, in a straightforward manner, to
the case where choice has to be performed among a family of S equipments of
capacities Q(s) (s = 1 , . , , , 59 and costs P(s) (s = 1, . . . , S). Indeed, by carrying
out all possible pairwise comparison, the best choice will correspond to the
equipment s such that the quantity:

is a minimum i.e.:

We will call r,(e) given in (7) the equivalent cost of equipment s under growth
rate 6 (see Minoux and Guerard [6 6]) . Note that, extending (5) and (6) to any s
(1 < s < S) we have the following relation between the equivalent cost and the
PW of AC over [0, T '] :

for any T' which is a multiple of Q (s) / e (the fill-in time).

3 04 M. Minoux

Equation (8) readily suggests another interesting feature of the equivalent
cost, which is t o allow extending the definition of the PW of AC function z,
(0 , T ') t o all values of T ' , even to those values which are not multiples of Q(s)/e
(thus resulting in interpolating and smoothing the discrete set of values
z,(0, Q(s)/e) z,(0, 2Q(s)/e) . . . z,(e, kQ(s)/6) . . .). It can be seen that this way
of approximating the PW of AC amounts t o deduce from the total PW of AC
of the equipments actually installed, a certain amount accounting for the residual
capacities existing at the end of the study period. More specifically, if we use the
formula

for a value of T which is not a multiple of Q(s)/e, i.e. such that (k - l)Q(s)/e < T
and T < k Q (s) / e , this corresponds to implicitely assigning to the residual (unus-
ed) capacity kQ(s) - 8 . T a t time T a cost equal to:

~ ' - 1 e q e) kQ(s)

t = T E (1 + G I t e
where T ' = - .

In view of this, we will use (9) for approximating for each value 0 of the growth
rate, and for fixed T, the PW of AC of a link when system s (1 < s < S) is being
used for performing the capacity expansion of the link.

Since

T - 1 1 1 - (I + s) - T

1 - (I +b)-'
-

t = O E-- (1 +a) '
(9) can be rewritten as

T being a fixed parameter, we study the family of functions z , (e , 7') defined
by (10). To each system s (1 < s < S) corresponds one such cost function which,
as a function of 8, has the following characteristic:
0 for e = 0, z,(o, T) = P (S) [I - (I + G)-
0 for 0 -+ w,z,(e, Z') has an asymptote which is the linear function

1 - (I + i 5 - T Z,(O, T)

Q<s> . 6 Q<s, 6
P (s) * 8=- e .

In other words, there is a f ixed cost at the origin, which is equal to P(s) [1 -
(1 + and a linear asymptotic cost equal to l/Q(s) G times the fixed

Network synthesis and dynamic network optimization 305

cost.
To illustrate this, consider the family of systems (s = 1, 2, . . . , 5) introduced

in $3 . For T = 10 and an actualization rate B = 0.1, we obtain the following
values of z,(O, 7') and zs(O, T) / Q (s) 6:

s = 1 4.5 500 2.76 5.5 10-2
s = 2 7 1000 4.3 4.3 10-2
s = 3 10 2000 6.1 3 10-2
s = 4 13 3000 8 2.7
~ = 5 27 10000 16.6 1.7

The family of corresponding curves is displayed on figure 5 where the bold
line indicates the lower envelope of the family, i.e. the graph of the function

@(8) = Min { z s (8 , T) } (1 1)
s = I , ..., s

which, for any value of 8, represents the minimum PW of AC for meeting the flow
requirements growing at rate 8 (number of channels per year).

A good approximation to the function @(8) above can be obtained as follows.
As pointed out in $ 3 , the dependence between the costs P(s) and the capacities
Q (s) of the family can be approximated by a function of the form P = 0.1 1 (Q)o.6.

The idea is to assume that we have precisely a continuous (infinite) family
of systems, with capacity-cost pairs related by a formula of the type

P = p . (Q) . (O<a< 1) (12)

From (10) it follows that for given 8 and for the system of capacity Q the PW
of AC is equal to:

Now, for each 8, the best system to use is the one achieving the minimum
with respect to Q in (13). The condition az(8, T) / a Q = 0 reads:

1

8
(Q). - [log (1 + F)] [(1 + K) - Q / ']

- = n
u(QY-'

-
1 - (1 + F)-Q's [1 - (1 + r)-Q'e]2

306 M. Minoux

w e)
PW of AC
on [O. 101

20

10

0

(speed of growth)

Fig. 5. Building the function @ (O) giving the minimum PW of AC of expansion corresponding
to growth rate 0 on a link, as the lower envelope of the family of curves z,(0, 7') (here T = 10
and 6= 0.1).

which yields:

Q log(1 +a)
(1 + G)Q'O = 1 +

(ye
(14)

Relation (14) shows that,in this case, the optimal fill-in time Q/e is a constant
n* defined as the solution of equation

log(1 + a)
(l + G Y = l + n 3

(]I

With the values considered above (a = 0.6 and G= 0.1) we obtain: n* = 10.
In view of this, the optimum PW of AC, z* (0 , T) , on the entire family, is

then obtained by substituting n* t o Q/e and n*0 t o Q in (13) and we obtain

This shows that, in this case, the optimum PW of AC function z*(0, T) assumes

Network synthesis and dynamic network optimization 307

the same form as the cost versus capacity relation (12). To see that this is indeed
a good approximation to @ (e) we have plotted on figure 5 (in dotted lines)
the function corresponding to the values n* = T = 10, cc = 0.1 1 and 01 = 0.6,
i.e.: z*(O, T) = 0.1 1 x 0.614 x 3.98 (6')0.6 = 0.268 (8) o . 6 ; we get for instance

for e = 200 Z * = 6.4

e = 500 Z * = 11.15

e = 1000 Z* = 16.9

e = 2000 Z * = 25.6.

As already pointed out in 53, in most practical applications, the families
of available equipments follow relations of type (121, hence it is reasonable
to use the approximation (15) of the actual curve @(e) defined by (11).
Referring back t o the network expansion problem, since all the above
reasoning can be applied t o each link of the network, this leads to the
reasonable assumption that, on each link u E U , the cost function @',(OU) is
a concave cost function of the parameter Bu (the growth rate on link u) . The
following section will now be devoted to solving the minimum cost multicorn-
modity flow problem (P l) where the cost functions @',(e,) on the links are
concuve and differentiable.

Remark. It should be noted, however, that an interesting feature of the solution
methods which will be described below is that they can be applied to the exact
cost function @ (e) defined by (11) (which may not be exactly concave nor
differentiable as shown on figure 5) , thus providing good heuristics for a model
which may be closer t o reality.

8. Solving the minimum concave cost multicommodity flow problem

Assuming that, on each link u E U of the network, the PW of AC of link
expansion is (or can be closely approximated by) a nonlinear concave differen-
tiable function a', of Bu (the speed of growth of flow requirements on link u)
problem (P l) (the long term subproblem) is a minimum concave cost (static)
multicommodity flow problem which, as already indicated in $6, can be stated
as :

308 M. Minoux

(remember that V (i , j) oii denotes the rate of increase of the flow requirements
between i and j , see 86).

In order to illustrate the various procedures which will be described, or to
which we will refer, we will consider the example shown on figure 6. Figure
6a indicates the set of all possible links (where extra-capacity can be added);
Figure 6b provides the speeds of growth of the various (i - j) flow requirements
(expressed for instance in number of additional channels per year); Figure 6c
shows the speeds of traffic growth on the various links of the network when each
flow (i -1) is routed on the link (i , j) (direct route). We will take as cost function
on each link of the network a function derived from the approximation @ (O) =
= 0.268 (0) 0 . 6 obtained in section 7 and which corresponds to the family of
transmission systems considered in 53 for a 100 kin link. Assuming, to simplify,
that cost is simply proportional to link length, we easily deduce the cost function
on eachlink u of the network of figure 6 by:
aU (0,) = 0.268 1,/100 (0,)o.6 (where 1, is the length in kilometers). For in-

stance, computing the total cost of the solution of Figure 6c (where each flow
follows the direct route) we get:

cost of link (1,2) : 9 1.9
cost of link (1,3) : 79.2
cost of link (1,4) : 4 1.8
cost of link (2,3) : 84.1
cost of link (2,4) : 1 11.2
cost of link (3,4) : 95.1
and total cost is : 503.3.

Of course, this is not an optimal solution to the minimum (concave) cost rnulti-
commodity flow problem, and we now proceed to show how it can be improved
while describing various solution methods applicable to the problem. We first
begin by mentioning an important property of optimal solutions which is
derived from a general well-known result about concave minimization problems
over polyhedra, namely that: in case of a unique optimal solution (nondegene-
racy), the optimal solution always lies a t an extreme point of the polyhedron

Network synthesis and dynamic network optimization

1

2

3

4

309

i 300 , 100 1 50

200 150
~

100
~. . ~~ ~ -

i

400
6a. The set of all possible
links where capacity can be
added and their lengths (kms)
(Complete undirected graph
on 4 vertices)

6b. Speeds of growth of
the various (i - j) flow
requirements (number of
additional channels per year).

6c. The speeds on the linksof
the network when each flow
(i - j) is routed on the link
(i , j) (direct route)

Total cost of this solution:
503.3

Fig. 6. An example of a 4-node network.

310 M. Minoux

(in the degenerate case, there is always an optimal solution which is at an extreme
point). For the problem considered here, it turns out that the extreme points of
the multicommodity flow polyhedron (defined by conditions (16) and (17) in
(P l) above) can be easily characterized as solutions obtained by routing each flow
(i - j) on a single route (chain) between i and j in the network (see e.g. Mnoux
[581). From this we deduce that (assuming non degeneracy) an optimal solution
to the minimum concave cost multicommodity flow problem is such that each
flow is routed along a single route (moreover, in case of degeneracy, global opti-
mality is not lost by restricting t o such single-routing solutions).

It can also be shown (cf. e.g. Yaged [77]) that, for the minimum concave cost
multicommodity network flow problem, the Kuhn-Tucker necessary conditions
for (local) optimality take on a very simple form. Let e = (c)uEU be an extreme
point of the multicommodity flow polyhedron (1 6)-(17) obtained by sending
each (i - j) flow along a single chain, say Lli. With each link u E U we associate
the number (marginal cost):

1, d@U XU = -
d % 100

(e,) = 0.16 - (eu)-0.4.

Then, for 3 to be a (local) optimum to the problem,it is necessary that for each
pair (i , j) , L, be a shortest i - j chain with respect to the values A, on the links.

As shown by Yaged [77], when a solution e fails to meet the Kuhn-Tucker
conditions, then it is possible t o generate a new solution e' improving strictly the
cost criterion by carrying out the following operations :

(a) determine the marginal costs A, associated with the links u E U;
(b) 3' is the (extreme point) solution obtained by sending each (i - j) f low

on the shortest i - j chain with respect to the lengths Xu on the links
(minimum marginal cost chain).

If we denote by T the transformation which maps e onto 3' (e' = T (e)) then
a (local) optimum solution is a fixed point of the transformation T above. Thus
Yaged's procedure can be viewed as a fixed point computation where, starting
from an initialsolution O o , a sequence of solutions B k with strictly decreasing total
cost is generated according to O k = T (O k P 1) , until a fixed point (a local optimum
solution) is reached.

This fixed point computation is illustrated on figure 7 taking as starting solu-
tion the one shown on figure 6c. Routing each of the flows on a shortest (mini-
mum marginal cost) chain leads to the new solution shown on figure 7b,the total
cost of which is: 464.5. This solution satisfies the Kuhn-Tucker conditions as is
easily verified by one more application of the procedure. The main advantages
of the fixed-point approach are:ease of implementation (it reduces to shortest path
computations); computational efficiency (even for large scale problems, the number
of necessary iterations for reaching a local optimum almost never exceeds 8 - 10).

Network synthesis and dynamic network optimization 31 1

7u. The marginal costs on
the links for the solution
of Figure 6c

7b. The new solution obtain-
ed by routing each (i - j) flow
along the shortest chain ac-
cording to the criterion of
marginal cost
Total cost of this solution:
464.5

Fig. 7 . Testing for (local) optimality with the Kiihn-Tucker conditions and improving a solu-
tion. The solution obtained on figure 7b meets the Kiihn-Tucker conditions, hence is a local
optimum.

However, it suffers important drawbacks due to the fact that (as is more general-
ly the case for concave minimization problems over polyhedra), the number of
local optima is usually enormous (3) and in such a context, the Fixed Point
Algorithm systematically tends to produce a local minimum which is (just as
in our example) quite close to the starting point: in other words, the solution
obtained will be good if the starting solution already was, but getting a starting
solution already close to (global) optimality is nearly as difficult as solving the
problem! This pathology is illustrated on the example of figures 6 and 7, where

($) Indeed it is easy to generate problems for which each extreme point of the polyhedron is a local
minimum.

312 M. Minoux

the Fixed Point Approach converges in only 1 iteration but leads to only
38.8/464 2 8% improvement upon the starting solution, whereas 107.1/396 2

21 27% improvement would be necessary to get the global optimal solution (of
cost 396.1, see figure 8). Other examples of this pathology will be found in
Minoux [65].

To get rid of this pathology, Minoux [58] proposed a greedy-type algorithm
based on a much more restrictive necessary condition for optimality which
can be stated as follows.

Let e = (c) be an extreme point solution, and for any link u = (k , I) such
that Cu> 0, assign to the links of the network the following lengths:

7, = +,ceu + ",> - a, (8) u f u 1 y " = + W

(k , I) being the endpoints of u , let L (P , u) be the length of the shortest k - 1
chain with respect to the values 7, on the links. Then:

Theorem 1 . (Minoux [58]). A necessary condition for
mum solution is that, for each u E U such that Fu > 0:

to be a (global) opti-

(18) L (8 , u) - QU(<j 2 0.

Proof. If L (g , u) - Cpu(8,) < 0 for some link u = (k , I) such that Fu > 0, then
by rerouting all the flow passing through u on the shortest k - 1 chain (w.r.t.
the 7,) then one obtains a better solution. QED.

Checking the condition of theorem 1 is computationally effective since it
requires at most O(Mj shortest path computations. Moreover, it is seen that
the proof given above provides a simple constructive way of improving a solu-
tion which does not satisfy the necessary condition for optimality. This lead

Figure 8. Final solution produced by the greedy algorithm on the example of figure 6 (cost
396.1). This is actually the global optimum to the problem of figure 6.

Network synthesis and dynamic network optimization 313

Minoux [58] to suggest the following greedy-type algorithm:

Greedy algorithm for the minimum concave cost multicommodity flow problem

(a) .Let 8 O be the initial (starting) solution; set k +- 0.
(b) At step k , let 8 be the current solution. For every u E U such that 8: > 0

compute :

~ (u) = L (e k , u) - age;)
(c) Select u E U such that

Ak(u) = Min {Ak(u)} .
"llg > 0

If Ak(u) > 0 STOP: the current solution 8 satisfies the necessary optimality
condition of theorem 1 ;

Otherwise :
(d) Let (k , 1) be the endpoints of U, and let Akl be the shortest k - 1 chain

obtained at step (b). Then generate a new solution O k t l by rerouting all the
flow through u on the chain / I k l i.e. set:

e; + * +- 8; ' JU # U, u @

Set k +- k + 1 and return to (b).

Computational experiments show that the above greedy algorithm provides
approximate solutions which are almost always very close to optimality if not
optimal (out of 60 test problems treated in Minoux [58], exact optimal solu-
tions were obtained on about half of them; moreover, in case of nonoptimal
solutions, the differences in cost with the exact optimal solutions were quite
small, about 1 or 2%).

As an illustration, the greedy algorithm will be applied to the example offigure
6 starting with the solution of figure 6c. At the first step, computing the A0(u)
values leads to the following results:

The best improvement corresponds to deleting link (1,3) (marked with an arrow
above). The resulting solution 8 ' is obtained by rerouting the total flow (100)

314 M. Minoux

through (1,3) on links (1,2) and (2,3) and is the same as the one shown on Figure
7b (cost 464.5). Computing the values A1 corresponding to this solution leads to:

A’ + 136.5 - 12.9 + 118.9 - 33.9 - 35.1

t

The best improvement now corresponds to deleting link (3,4) and the new solu-
tion f3 is obtained by rerouting the total flow (100) through (3,4) on links (4,2)
and (2,3). The corresponding cost is: 429.4. The values A* corresponding to this
solution are then

A’ + 122.3 - 16.3 + m - 33.2

t

Now the best improvement is obtained by deleting link (2,4) which leads to the
solution shown on figure 8 of cost 396.1 and the algorithm stops with a solution
satisfying the necessary condition of theorem 1 (no link can now be deleted
without disconnecting the network so all the A values would be + -). (For
this example, it can be checked - by simply trying all possible solutions -that
this is indeed the global optimal solution to the problem of figure 6). In spite
of the fact that the greedy algorithm above tends to produce high quality results
(i.e. very close to global optimality) it may be quite time-consuming on medium-
-to-large scale network problems (say N > 50 to fix ideas). Indeed, each step
of the algorithm requires O (M) shortest path calculations (as many as there are
links carrying strictly positive flow) and as many as O (M) steps may be necessary,
hence an O (M z N z) complexity (in case where the starting solution has the com-
plete undirected graph as its support, i.e. all links of the complete graph carry
strictly positive flow, then M = N (N - 1)/2 and the complexity is O(N6)). Howe-
ver, looking at things carefully, it can be realized that the transformations per-
formed at each step are local in the sense that they only affect the link which
is deleted and a few neighbouring nodes and links, and the rest of the network
(the major part) remains unaffected. As a consequence, many of the Ak(u) values
remain the same (i.e. shouldn’t be recomputed) from one step to the next.
Minoux [581 suggested a way of taking account of this phenomenon which
dramatically improves the efficiency of the basic greedy algorithm, and which
has been referred to as the accelerated greedy algorithm. Indeed, as shown in
Minoux [59 ,60 ,62] this acceleration technique is quite widely applicable and can

Network synthesis and dynamic network optimization 315

be used, more generally, for solving large scale combinatorial problems involving
the minimization o f a supermodular set function. In fact the supermodularity
property is equivalent t o assuming that (for fixed u) the values Ak(u) are nonde-
creasing with the iteration number k (monotonicity property) and, in that case,
it can be proved that the accelerated greedy algorithm produces the same solution
as the basic greedy algorithm (4). However it does the job much more efficiently:
extensive computational experiments carried out on the minimum concave cost
multicommodity flow problem showed that, on the average, only 2 or 3 A values
need be recomputed a t each step, resulting in an average speeding-up factor of
about M / 3 (thus the speeding-up factor itself increases linearly with the number
of links in the initial network!). This allowed getting very good approximate solu-
tions to fairly large scale problems (networks with more than 200 nodes and
several hundreds of links in the starting solution) within very reduced computing
times (2 - 3 minutes) on medium-power computer systems.

9. A new model and solution method for the dynamic network optimization
problem

We introduce here a new model and solution method for the dynamic network
optimization problem, which extend the whole approach described so far in a
number of ways. First, the new model is more general than the one presented
in 5 6 and basically differs from it by the fact that the traffic requirements
rij(t) are no longer approximated by the linear function of time

Contrasting with that, the new model will make use of the very data at hand,
namely, for each pair (i , j) , the sequence of T + 1 values rij(0), r i j (l) , . . . , r i j (T)
without any need for assuming regularity in the evolution (for instance, decrease
in the traffic requirement may occur from one time instant t o the next). Thus
instead of routing (static) flows representingspeeds of growth of the traffic require-
ments, on the network, we will consider routing multidimensional (T + 1)-compo-
nent flows each component t (0 < f < T) of a given (i - j) flow representing the
traffic requirement at time t for that flow. Accordingly, the total flow through

(4) It can be proved (cf. Minoux [5 9 , 6 0]) that the monotonicity property holds for the minimum cost
multicommodity flow problem when the cost functions are linear with ajixed cost; but it doesn't necessarily
hold in the case of arbitrary concave cost functions. However, experience on medium-sized problems showed
that the solutions obtained by the two algorithms (the basic one and the accelerated one) were systemati-
cally the same, thus suggesting that the cost functions should be in a sense very close to supermodular
functions.

316 M. Minoux

each link u of the network, resulting from some routing strategy, will be repre-
sented by a (T + 1) -dimensional vector denoted (as in 83) by $u(t) (t = 0, 1,
. . . , T). Computing the corresponding expansion cost of the network then
requires defining, for each link u E U , a cost function in (T f 1) variables say : -

qp0> XI’ . * * 9 X T)

giving the (minimum) cost for link expansion over the considered time period
[0, r] when the total flow requirements xo, xl, . . . , xT (x t 2.0, t/ t) have to be
met at each instant of the period. If the functions GU are available, then the cost
corresponding to any routing strategy where,Vu E U, the total flows through
the links are $u(t) (t = 0, . . . , T) can be easily evaluated by

c q $ J O) , $u(l) , . . . > $u(T)) .
U € U

It can easily be shown that determining one bnction value 6u (xo, . . . , x T)
for any given sequence of requirements (xo, xl, . . . , xT) on link u can be effi-
ciently done by dynamic programming.

Zadeh [80], even showed how t o convert the problem into a standard shortest
path problem solvable via Dijkstra’s algorithm. As an example of how such
a computation can be carried out, consider a typical (1 00 km long) link on which
capacity expansion can be obtained by installing any one of the 3 following
systems (taken out the 5 described in 93).

capacity total cost
(for 100 km link)

s = l Q(1) = 500 P(1) = 4.5

s = 2 Q(2) = 1000 P (2) = 7

s = 3 Q(3) = 2000 P (3) = 10.

The requirements to be met over the time period [0,10] are given in the following
table:

~~ ~~

Time 0 1 2 3 4 5 6 7 8 9 instant

1 requirement 0 600 1000 1800 1500 2000 2700 3100 3400 3700 38001

and are plotted on figure 9 (here, x1 = 600 means that the total requirement at
the end of the first time interval [O,l] will be equal t o 600).

The problem of minimizing the PW of AC of linkexpansion for satisfying these

Network synthesis and dynamic network optimization 317

Total flow
requirements
(channels)

4000

3000

2000

1000

,

I ! ! ! ' 1 I I I I -
0 1 2 3 4 5 6 7 8 9 10 Time

9a. The requirements xg. xl , . . . , xI0over [0,10].

3 4.5 n >
1500

9b. The graph representing all capacity expansion possibilities. The optimum expahsion cost
corresponds to a shortest path between node 0 and node 4000.

Fig. 9. Determining the optimum PW of expansion cost
a shortest path problem in a circuitless graph.

(x,,, . . . , xld and its formulation as

318 M. Minoux

requirements reduces to a shortest path computation in the (circuitless) graph
offigure 9b where:
- the nodes represent all the possible values of total capacity obtained by

combining systems 1, 2 and 3, up to the maximum (4000);
- there is an arc between two nodes associated with capacity values c, cb

(cb > c,) when cb - c, = Q(s) for some s, and the cost associated with the arc
is P(s)/(l + Z)" where t , is the first time instant at which extra capacity is
needed. For instance there is an arc between (1000) and (2000) of cost 7/(1 +
+ Z)z because a total capacity 1000 meets the requirements on [0,2] but not on
a longer time period.

On the example of figure 9 the minimum cost path between 0 and 4000
corresponds to a PW of AC equal to 16.21, thus

It is seen that, even for larger families of systems, this computation of each
function value of the cost functions &u can be made very efficiently.

Now, in this new context, both the greedy algorithm and accelerated greedy
algorithm described in 8 8 enjoy the interesting property that they only require
evaluating the cost function QU(Ou) for some definite values of the parameters
B u ; contrary to other methods (such as Yaged's fixed point algorithm), they do
not require the cost functions to be differentiable, nor do they assume that the
cost functions take on a simple analytical form allowing computation of deriva-
tives.

In view of that, and referring to 8 6 above, it is then realized that the only
assumption actually needed is assumption (A2) stating that for every source-
-sink pair (i - j) the routing of the flow qij should be kept the same all over the
time period [0, TI. Owing to it, the basic greedy algorithm of 8 8 can be readily
extended to multidimensional (T + 1)-component flows, according to the
following procedure:

Extended Greedy algorithm for the minimum cost multidimensional multicom-
modity network f low problem

(a) Let [$ O] = [$ O (O) , $ O (11, . . . , $ O (r) l be a starting solution (obtained by
routing each individual (T + 1)-component flow requirement [r'i(O), rij(l) ,
. . . , r i j (T)] on a single (i - j) chain in the network). Set k + 0.

(b) At step k , let [$ k] = [$ k (0) , ~) ~ (l) , . . . , I) ~ (T)] be the current solution.
For every u = (i , j) E (I such that $,k(t) > 0 for some t E [0, r] compute:

-
+(x,, x I , . . . , x l J = 16.21.

where L ([Q k] , u) is the length of the shortest i - j chain on the network, where
link u is assigned a length 7, = t 00 and links u # u are assigned lengths

Network synthesis and dynamic network optimization 319

(c) Select u E U such that:

ak(u) = Min{ nk(u))
U

(where the minimum above is taken over those u such that $,k(t) > 0 for some t) .
If Ak(u) 2 0 STOP: the current solution [1 4 ~ 1 is a (local) optimum. Other-

wise:
(d) Let (i , j) be the endpoints of u (selected at (c)) and let A, be the shortest

i - j chain obtained in (b). Then generate a new solution $ k + by rerouting all
the flows through u on the chain Aij, i.e. set:

$," + ' (t) 4- 0 V t E [O , TI

Set k t k + 1 and return to (b)

In the above procedure, each time a cost function gU needs be evaluated (as in
expressions (19) and (20)) a dynamic programming procedure (or the equiva-
lent shortest path procedure, such as the one described earlier in this section)
is applied. Thus,only function values are computed at specified points, without
having to assume any particular analytical form. It should also be observed that,
just 'as was the case of the basic greedy algorithm in $8, the above procedure
considers only routing strategies in which each f low is sent along a single route
in the network.

Though no formal proof can be given that optimality is not lost by restricting
to such a routing strategy in the case of the multidimensional multicommodity
flow model, this can be justified by referring to the approximate model presented
in sections 5 to 8 (which lead to concave cost minimization over the multicom-
modity flow polyhedron) for which the single route property of optimal solutions
could be proved quite rigorously. Due to the fact that the new approach present-
ed here, essentially aims at solving a refined version of the same problem, it seems
reasonable to keep on assuming the single route property for optimal solutions.

Concerning computational efficiency, the need for reducing the number of
cost function evaluations appears to be crucial here, since each of these requires
a shortest path calculation. Thus, solving medium to large scale network problems
requires incorporating into the greedy algorithm above the acceleration techniques
mentionned in $8. Though, here again, no formal proof can be given that the
monotoiiicity property on the Ak values (see 88) indeed holds, one can infer from
the case of static minimum concave cost multicommodity flows, that the ac-
celerated greedy algorithm should produce the same solutions as the basic
greedy algorithm in a high percentage of cases. On the other hand, it should
be noted that this problem of computational efficiency, to which the accelerated

320 M. Minoux

greedy algorithm appears to bring a very appropriate answer, is certainly the
fundamental reason for which so few publications have made concerning dynamic
multicommodity network flow problems. Besides B. Yaged's (rather unsucces-
sful) attempt to generalize the fixed point approach to the dynamic case (see
Yaged [78]), Zadeh [80] contains a thorough study of various optimality tests
which can be applied to dynamic multicommodity network solutions, and which
can be used to generate improved solutions. However these various tests do not
seem to have ever been put together into an algorithm, and we think that one
reason for this is that a straightforward implementation of these tests would have
been prohibitively time consuming.

The algorithm suggested here, and which is based on an extension of the acce-
lerated greedy algorithm devised in Minoux [58] for static minimum cost multi-
commodity flows, thus appears to be the first computational scheme efficient
enough for getting solutions very close to global optimality to dynamic network
optimization problems up to the large sizes which are commonly encountered in
practice.

References

P. Aneja, ((An Integer Linear Programming Approach to the Steiner Problem in Graphs)), Networks

A. Assad, ((Multicommodity Network Flows - A Survey,,Networks 8 ,37 - 91, 1978.
M.L. Balinski, ((Fixed Cost Transportation Problems)), Naval Research Logistics Quarterly 8 . 4 1 - 54,
1961.
J.E. Beasley, ((An Algorithm for the Steiner Problem in Graphs)), Networks 14, 147 - 159, 1984.
R,. Bellman, Dynamic Programming, Princeton University Press, Princeton N.J., 1957.
J. Billheimer and P. Gray, ((Network Design with Fixed and Variable Cost Elements)), Danspona-
tion Science 7 , 4 9 - 74, 1973.
T.B. Boffey and A.I. Hinxman, ((Solving for Optimal Network Problem,, European Journalof Opera-
tional Research 3, 386 - 393, 1979.
R.R. Boorstyn and H. Frank, ((Large Scale Network Topological Optimization)), IEEE 'ILansactions
on Communications COM-25,29 - 47,1977.
D.E. Boyce, A. Farhi and R. Weischedel, ((Optimal Network hob1em:aBranchand Bound Algo-
rithm)), Environment andplanning 5 ,519 -533, 1973.
K.M. Chandy and T. Lo, ((The Capacitated Minimum Spanning Tree)), Networks 3, 173 - 181,1973.
K.M. Chandy and R.A. Russel, ((The Design of Multipoint Linkages in a Teleprocessing Tree Net-
work)), IEEE Transactionson Computers C-21, 10, 1062 - 1066,1972.
N. Christofides and P. Brooker, ((Optimal Expansion of an Existing Network)), Mathematical Pro-
gramming 6, 197 - 21 1, 1974.
N. Christofides, A. Mingozzi and P. Toth, ((State Space Relaxations for Combinatorial Problems)),
Internal Repon IC-OR 79-09 Imperial College, London, 1979.
N. Christofides, A. Mingozzi and P. Toth, ((State Space Relaxation Procedure for the Computation
ofBounds to Routing Problems)),Networks 11, 145 - 164,1981.
A. Claus and N. Maculan, (tune nouvelle Formulation du problhme de Steiner st ir un graphen,
Prepublication #280, Centre de Recherche sur les Transports, Universitt! de Montreal, 1983.
R. Dionne and M. Florian, ((Exact and Approximate Algorithms for Optimal Network Design)), Net-
works 9, 37 - 59, 1979.
P.J. Doulliez and M.R. Rao, ((Optimal Network Capacity Planning: A Shortest Path Scheme)), Opera-
tions Research 23,810 - 818,1975.
S.E. Dreyfus and R.A. Wagner, ((On the Steiner Problem in Graphs)), Networks 1, 195 ~ 207, 1972.

10, 167 - 178,1980.

Network synthesis and dynamic network optimization 321

D. Elias and M.J. Ferguson, ((Topological Design of Multipoint Teleprocessing Networks)), IEEE
Transactions on Communications COM-22, 1753 - 1762, 1974.
L.W. Ellis, ((La loi des volumes Bconomiques appliquBe aux t6lBcommunications)), Revue des T&-
communications 1 , 50, 4 ~ 20, 1975.
L.W. Ellis, ((Scale Economy Coefficients for Telecommunications)), IEEE Transactions on Systems,
Man and Cybernetics SMC-10, 1 , 8 ~ 15,1980.
M. Florian and P. Robillard, ((An Implicit Enumeration Algorithm for the Concave Cost Network
Flow Problem)),Management Science 18, 184 - 193, 1971.
L.R. Ford and D.R. Fulkerson, Flows in Networks, Princeton University Bess , 1962.
H. Frank and I .T. Frisch, ((The Design of Large Scale Networks)), Proceedings IEEE 60 ,1 ,6 - 11,1972.
G. Gallo and C. Sodini, ((Concave Cost Minimization on Networks)), European Journal of Operational
Research 3, 239 - 249, 1979.
G. Gallo, C. Sandi and C. Sodini, ((An Algorithm for the Min Concave Cost Flow Problem)), European
Journal o f Operational Research 4 , 248 - 255, 1980.
M.R. Carey and D.S. Johnson, Computers and 1ntractability:a Guide to the Theory ofNP-Complete-
ness, Freeman, San Francisco, 1979.
B. Gavish, ((Topological Design of Centralized Computer Networks: Formulations and Algorithms)),
Networks 12, 355 - 377, 1982.
B. Gavish, ((Formulations and Algorithms for the Capacitated Minimal Directed Tree Problems,
JournalofACM30, 1 , 118 - 132, 1983.
B. Gavish, ((Augmented Lagrangean Based Algorithms for Centralized Network Design)), Working
Paper QM 8321. The Graduate School o f Management. The University of Rochester, N Y 14627,
1984.
A.M. Geoffrion and G. Graves, ((Multicommodity Distribution System Design by Benders Decomposi-
tion)),Management Science 5 , 8 2 2 - 844, 1974.
M. Gerla and L. Kleinrock, ((On the Topological Design of Distributed Computer Networks)), IEEE
Transactions on CommunicationsCOM-25, 1 .48 - 60, 1977.
R.E. Gomory and T.C. Hu, ((Multiterminal Network Flows)), SIAM Journal Applied Mathematics

R.E. Gomory and T.C. Hu, ((Application of Generalized Linear Programming to Network Flows)),
SlAMJoumal on AppliedMathematics 10, 260 - 283, 1962.
R.E. Gomory and T.C. Hu, ((Synthesis of a Communication Networks, SIAM Journal on Applied
Mathematics 12, 348 - 369, 1964.
M. Gondran and M. Minoux, Graphes e t Algorithmes, Eyrolles Paris, 1979. English translation, J .
Wiley, 1984.
C.C. Gonzaga and R.M. Persiano, ((Planning the Expansion of a Power Transmission System. A Graph-
Theoretical Approach)), 6th International Conference on System Sciences, Hawai, 393 - 396, 1973.
P. Gray, ((Exact solution of the Fixed Charge Transportation Problem)), Operations Research 19,

S.L. Hakimi, ((Steiner’s Problem in Graphs and its Applications)), Networks 1, 1 1 3 - 135, 1972.
A.D. Hall, ((An Overview of Economies of Scale in Existing Communications Systems)), IEEE T r a w c -
tionson Systems, Manand Cybernetics SMC-5, 1 , 2 - 14, 1975.
H.H. Hoang, ((A Computational Approach to the Selection of an Optimal Network)), Management
Science 19,488 -498 , 1973.
H.H. Hoang, ctTopological Optimization of Networks: a Nonlinear Mixed Integer Model Employing
Generalized Benders Decomposition)), IEEE Transactions on Automatic Control AC-27, 164 - 169,
1982.
T.C. Hu, ((Optimum Communication Spanning Trees)), SIAM Journal on Computing 3, 188. 195,
1974.
D.S. Johnson, J .K. Lenstra and A.H.G. Rinnooy Kan, ((The Complexity of the Network Design
Problem)), Networks 8 ,279 - 285, 1978.
J . Kennington, ((Multicommodity Flows: a State-of-the-Art Survey of Linear Models and Solution
Techniques)), Operations Research 26, 209 - 236, 1978.
A. Kershenbaum, ((Computing Capacitated Minimal SpanningTrees Efficiently)), Networks 4 , 299 -
310, 1974.
A. Kershenbaum and R.R. Boorstyn, ((Centralized Teleprocessing Network Design,, Networks 13,

H. Kobayashi, ((Communication Network Design and Control Algorithms - a Survey)), Research
Reoort RC 9233. IBM Thomas J . Watson Research Center. 1982.

9 ,551 - 570,1961.

1529 - 1538,1971.

279 - 293, 1983.

[491 E. ’Lawler, Combinatorial Optimization: Networks and hatroids, Holt, Rinehart andwinston, 1976.

322 M. Minoux

L.J. Leblanc, ((An Algorithm for the Discrete Network Design Problem)), lkansoction Science 9,

T.L. Magnanti, P. Mireault and R.T. Wong, ((Tailoring Benders Decompostion for Network Design)),
Working paper OR 125 - 83, Operations Research Center. Mossochusetts Institute of Technology,
1983.
T.L. Magnanti and R.T. Wong, ((Network Design and Transportation Planning Models and Algori-
thms)), Donsportation Science 16, 1 - 55, 1984.
M. Malek Zavarei and I.T. Frisch, ((On the Fixed Cost Flow Problem)), International Journal of
Control 16, 897 - 902, 1972.
P. Marcotte, ((An Analysis of Heuristics for the Network Design Problem,, Publication #200, Centre
d e Recherche sur les Transports, Universiti de Montrdal, 1982.
M. Minoux, ((Planification B court et B moyen t e r m d’un rbseau de Tblbcommunications)~, Annales
des Tdicommunicotions 29, 509 - 536, 1974.
M. Minoux, ((Multiflots dynamiques de miit actualis6 minimal)), Annales des Tdlicommunications

M. Minoux, ((Optimisation et planification des riseaux de Tblbcommunications)), in Optimization
Techniques G. Goos, J.HartmanisandJ. Cea, eds., Lecture Notes in Computer Science 40, Springer
Verlag, 419 -430,1976.
M. Minoux, ((Multiflots de codt minimal avec fonctions de coDt concavesr, Annales des Te7icommuni-
cations 31, 77 - 92, 1976.
M. Minoux, ((Algorithmes gloutons et algorithmes gloutons accblQBs pour la rbsolution des grands
problbmes combinatoires)), Bulletin d e la Direction Etudeset RecherchesEDF, Sbrie C, n. 1 , 5 9 - 68,
1977.
M. Minoux, ((Accelerated Greedy Algorithms for Maximizing Submodular Set Functions)), Proceed-
ings IFIP(J. Stoer, ed.), Springer Verlag, 234 - 243, 1977.
M. Minoux, <Optimum Synthesis of a Network with Nonsimultaneous Multicomrnodity Flow Requi-
rements)), in, Studies on Graphs and Discrete Programming, P. Hansen, ed., Annals of Discrete Mathe-
matics 1 1 , North Holland, 269 - 277, 1981.
M. Minoux, ((Accelerated Greedy Algorithms for Minimizing Convex and Concave Functions on Par-
tially Ordered Sets)), Proceedings International Congress aMathematics for Computer Science>, Paris
March 1982, AFCET Publisher, 1982.
M. Minoux, Programmation Mathimotique: Thbr ie et algorithmes, Dunod, Paris, 1983.
M. Minoux, ((Subgradient Optimization and Benders Decomposition For Large Scale Programming)),
Proc. hternat Congress on Mathematical Progromming. Rio, in R.W. Cottle, M.L. Kelmanson and
9. Korte, eds., MothemnticalPTogramming, 271 - 288, North Holland, 1984.
M. Minoux, (Network Synthesis and Optimum Network Design Problems: Models, Solution Methods
and Applications)), to appear, 1985.
M. Minoux and A. Guerard, ((Choix d’investissements en materiels de Tblbcommunications: une
nouvelle approche de la notion de cout bquivalentn, Annales des Tdicommunicotions 36, 602 ~

612,1981.
M. Minoux and J.Y. Serreault, ctSynthbse Optimale d’un rbseau de Tilbcommunications avec con-
traintes de sbcurith, Annalesdes Tilicommunicotions 36, 211 - 230, 1981.
M. Minoux and J .Y. Serreault, ((Subgradient optimization and large scale programming: an applica-
tion to network synthesis with security constraints)),RAIRO 15,185 - 203, 1981.
M. Minoux and J.J. Strodiot, t u n algorithm exact pour les p rob lhes de multiflots de wilt minimum
avec fonctions de codt concaves)), Unpublished reporr. CNET, 1982.
T.L. Morin and R.E. Marsten, ctBranck and Bound Strategies for Dynamic Programming)), Operations
Research 24,611 - 627, 1976.
M. Schwartz, Computer Communications Network Design and Analysis, Prentice Hall, Englewood
Cliffs, 1977.
A.J. Scott, ((The Optimal Network Problem: some Computational Procedures)), Runsportation Re-
search 3, 201 - 210, 1969.
P.A. Steenbrink, Optimization of lkonsport Networks, J . Wiley & Sons, 1974.
D.I. Steinberg, ((The Fixed Charge Problemz,Naval Research Logistics Quarter& 17, 217 - 236, 1970.
D.T. Tang, L.S. Woo and L.R. Bahl, ((Optimization of Teleprocessing Networks with Concentrators
and Multiconnected Networks)), IEEE Transactions on Computers (2-27, 7 ,594 - 604, 1978.
H.M. Weingartner and D.M. Ness, <<Methods for the Solution of Multidimensional 0-1 Knapsack
Problems)), Operations Research 15 ,83 - 103, 1967.
B . Yaged Jr, tMinimum Cost Routing for Static Network Models,, Network 1, 139 - 172, 1971.
B. Yaged Jr, ((Minimum Cost Routing for Dynamic Network Models)), Networks 3, 193 - 224,1973.

283 - 287,1975.

30, 51 - 58, 1975.

Network synthesis and dynamic network optimization 323

1791 N. Zadeh, ((On Building Minimum Cost Communication Networks)), Networks 3, 315 - 331, 1973.
1801 N. Zadeh, ((On Building Minimum Cost Communication Networks Over Time)), Networks 4 , 19 - 34,

1974.
181 1 W.I. Zangwill, ((Minimum Concave Cost Flows in Certain Networks)), Managements Science 14,

429 - 450. 1968.

Michel Minoux
Universite de Paris 9 - Dauphine
Lamsade
Place du Marechal De Lattre de
Tassigny 75775 Paris
France

This Page Intentionally Left Blank

Annals of Discrete Mathematics 31 (1987) 325 - 364
0 Elsevier Science Publishers B.V. (North-Holland)

PARALLEL COMPUTER MODELS
AND COMBINATORIAL ALGORITHMS

Celso Carneiro RIBEIRO

1. Introduction

As pointed out by Hwang and Briggs [81], the computer industry has experien-
ced four generations of development over the past four decades, coming from
components consisting of relays and vacuum-tubes (1940 - 1950) to diodes and
transistors (1950 - 19601, to small and medium scale integrated circuits (1960 -
1970) and to large and very large scale integrated systems more recently (from
1970 onwards). This evolution was characterized until some years ago by constant
improvements in device speed and reliability, associated with reductions in
hardware size and cost.

More recently there were significant changes in computer architecture and a
new era in very high-performance computing is beginning, in which high-perfor-
mance systems will be dominated by parallel architectures. Parallelism is a set of
techniques that introduce concurrency in computer systems, enabling several
units to be simultaneously active, in order to increase the computational through-
put. It is important to notice that the idea of parallelism induces a structural
change in computation theory and algorithm design. The different ways used
for introducing parallelism into computer systems and the theoretical concepts
underlying them should be examined.

Two different levels of parallelism should be distinguished. From the hardware
point-of-view, there is parallelism if there are at least two processing units work-
ing simultaneously. Hence, concurrency of operation seeks to achieve better
utilization of available hardware by overlapping activities which use disjointed
parts of the computing system. Among the techniques used to introduce concur-
rency at the hardware level, there are pipelining, vector registers, replication of
processors and interconnection networks, which are very often combined in
practical assemblages.

From the sofware point-of-view, parallelism exists whenever two o r more
logical tasks can be performed simultaneously (and one is able to make use
of this logical parallelism through the computer languages available for a given
machine). Hence, another line to seekspeed-up in computer systems is the design
of parallel algorithms based on the logical parallelism inherent in each problem.
The computer programs corresponding to these algorithms should be coded

325

326 C. C. Ribeiro

taking into account the architecture of the machine on which they will run,
in order to maximize their efficiency.

The main objective of this work is t o study parallelism in terms of how it
affects combinatorial algorithm design and complexity. In section 2 , some impor-
tant issues concerning parallel computer models and architectures are reviewed:
classification schemes of parallel machines (as well as examples of practical
assemblages), communication issues in parallel processing, interconnection net-
work models and systolic devices. Section 3 is concerned with the complexity
theory and its extensions to synchronous parallel computation. The main con-
cepts are the parallel computation thesis, solvability in polylog parallel time
and log-space completeness for P. Finally, section 4 presents several examples
of parallel combinatorial algorithms, ranging from sorting and searching to graph
theory and NP-hard optimization problems.

2. Parallel Computer Models and Architectures

In this section some important issues in parallel computer models and architec-
tures are studied : classification schemes of parallel architectures, communication
issues in the design of parallel algorithms, network models used in the implemen-
tation of parallel architectures and systolic devices.

2.1, Parallel Computer Architectures

Several classification schemes of computer archtectures have been proposed,
based on different points-of-view; for surveys see Thurber and Wald [1761 and
Hockney and Jesshope [79], among others. The taxonomy proposed by Flynn
[58, 591 is based only on the multiplicity of instruction and data streams. In
spite of sometimes being quite ambiguous, it is still used because of its simplicity
and some of the associated terminology has become part of the language of
parallel computing. Four classes of machines are defined according to Flynn:

(i) SISD (single instruction stream, single data stream): This class corresponds
to the conventional sequential (or serial) computer architecture proposed by von
Neumann: the instructions are executed sequentially, each instruction is perform-
ed at a time on a single set of data.

(ii) SIMD (single instruction stream, multiple data stream): This class corres-
ponds to machines where the same instruction is executed simultaneously on
several sets of data. A high number of processing elements, each one with its
own local storage, is controlled by a unique control unit. At a given moment,
each processor is performing the same instruction on a different set of data from
a distinct data stream. As Hockney and Jesshope [79] point ou t , the term SIMD
became synonimous with an array of many processors working in lockstep under
common control. The first computer with this type of architecture was the
ILLIAC IV, with 64 processors organized as an 8 x 8 array; see Barnes et alii [121.

Parallel computer models and combinatorial algorithms 3 2 1

Other examples of SIMD machines are the ICL DAP (Distributed Array Processor)
and the Burroughs BSP (Scientific Processor), described respectively in Reddaway
[1451 and Austin [9].

(iii) MISD (multiple iizstructioii stream, single data stream): This class corre-
sponds to machines where a number of processors simultaneously perform differ-
ent instructions on the same set of data. So far, it has received less attention and
no practical realization seems to be available.

(iv) MIMD (multiple instruction stream, rnultiple data stream): This class
corresponds to the most general model of architecture. More frequent up to
now are control-flow multiprocessor architectures (synchronous or asynchro-
nous), in which the operations are executed in an order predetermined by a
control convention used by the programmer, corresponding to a program stored
in the memory. Data-flow and reduction machines have been proposed and
designed. The latter are characterized by the fact that the operations are executed
in an order determined by data interdependencies and resource availability.
Data-flow machines carry out data-driven computations in which the operations
are executed in an order determined by the availability of input data, while
reduction machines carry out demand -driven computations in which the opera-
tions are executed in an order determined by the requirements for data. These
architectures are based upon completely different principles with respect t o the
traditional control-flow architectures and will require completely different
algorithmic techniques and programming languages; the interested reader is
referred to Treleaven et alii [178], Chudik [3 5] and Sharp [1611 among others.

Hockney [78] proposed a structural classification for control-flow MIMD
systems, which can also be applied to SIMD models, defining two major categories
of architectures. The first one is formed by the so-called switched systems, in
which there is an identifiable and separate switch unit that connects together
a number of processors and memory modules. Within this class there are shared
memory and distributed memory architectures. In shared memory architectures
a number of processors are connected via the switch unit t o a number of inde-
pendent memory modules, so that the memory is shared by all processors on an
equal basis. Examples of shared memory MIMD systems are CRAY -XMP, CRAY -
2 and CRAY-3, ETA-I0 (which will be comprised of 8 CPUs each based on the
architecture of the CDC CYBER 205) and Denelcor HEP (Heterogeneous Element
Processor, comprised of 16 Process Execution Modules, each capable of having up
to 50 user instruction streams; see e.g. Smith [1681). The characteristic of distri-
buted memory systems is that the memory modules are attached directly to the
processors, so that the role of the switch is to interconnect the processors and
there are no memory modules connected directly to the switch. The second
category is that of network systems. In these architectures a number of pro-
cessors are connected through an interconnection network with a particular
topology. The processing elements which form the nodes of the network
may only communicate with neighbor processors directly connected to

328 C. C. Ribeiro

them. Several topologies for these interconnection networks have been proposed
and some of them are reviewed in section 2.3; see e.g. Siege1 [1671.

Being a very simple classification, Flynn's scheme is sometimes ambiguous
and is not always able to perfectly characterize all machines, e.g. pipelined com-
puters. In a pipelined computer, concurrency is introduced by subdividing basic
tasks into several subtasks. Each task is executed by a specialized hardware
stage that operates concurrently with other stages in the pipeline, while inputs
and results are streamed through the pipeline in such a way that successive tasks
are executed in an overlappej fashion. As soon as a subtask is carried out , the
stage responsible for its execution can accept and process a new set of inputs.
Let us suppose that some task should be executed on N sets of data and that
it can be pipelined into P stages, each one taking T time units for its execution.
Then, the overall execution time in pipelined mode will be (N + P - I) T , while
in sequential mode it would be NPT, which represents savings of O(P) in terms
of computing time. Some pipelined computers are also characterized by the
existence of vector registers that allow the feeding of pipelined functional units
at a rate of one set of data per clock period. Hockney and Jesshope [79], Kogge
[98] and Hwang and Briggs [S l] present very detailed studies of pipelined com-
puters. Among them we have CRAY-1 (and its successors),CDC CYBER 205,
FPS AP-l20B, TEXAS ASC, FACOM VP-200 and IBM 3090, described respecti-
vely in Russell [1531, Kascic [93], Harte [72], Watson [1941, Tamura et alii [1721
and IBM [821.

Besides the examples of parallel architectures already mentioned, several other
parallel machines have been proposed and designed, such a CDC STAR-100,
SOLOMON I and SOLOMON 11, PEPE (Parallel Element Processing Ensemble),
STARAN, OMEN (Orthogonal Mini Embedment), MPP (Goodyear Massively
Parallel Processor), C m m p , Cm* and Cosmic Cube; the reader is referred to
Thurber and Wald [176], Zakharov [198] and Hockney [78], where these and
other machines are described in detail and the original references are quoted.

2.2. Communication Issues in Parallel Processing

Communication plays a very important role in parallel processing. Factors like
the geometry of the array of processors and the way they are interconnected
affect the performance and the effectiveness of parallel algorithms, due to the
introduction of delays on inter-processor communication and data transmission.
It is sometimes the time for data movement, rather than the computation time
based on data dependencies, which limits execution speed.

According to the way in which information is transmitted among the proces-
sors, two general models of parallel architectures are distinguished: paracomputers
and ultracomputers; see Schwartz [1591, Lint and Agerwala [1 161 and Ausiello
and Bertolazzi [8].

.In a paracomputer, a very large number N of identical processors share a global
storage area and at any time any number of processors can simultaneously access

Parallel computer models and combinatorial algorithms 329

the common memory. Although the technology currently available prohibits the
realization of a paracomputer, because of physical fan-in limitations, they are of
great theoretical interest and can provide important complexity results concerning
the limits of parallel algorithms and computations. A structured complexity
theory for parallel computation is important,in order to make it possible to
understand the range of problems for which good parallel algorithms may exist.
The complexity theory of synchronous parallel computation is based on models
of shared memory parallel machines which have been derived from the paracom-
puter, such as PRAM, WRAM and CREW-PRAM (see section 3.2).

In a realistic and physically realizable assemblage, one could not expect that
any processing element could be connected to more than a fixed number k of
other computer elements. A parallel computer model where N processors (each
one with its own memory) communicate through an interconnection network
with a particular topology should therefore be considered. This kind of architec-
ture is called an ultracomputer. Within an ultracomputer the processors communi-
cate through an interconnection network, while in a paracomputer they commu-
nicate through the memory. Many of these interconnection networks have been
proposed, some designed for particular problems. In the next section some of
the general purpose networks are reviewed; for complementary references the
reader is referred to Haynes et alii [73], Valiant [1861 and Vishkin [1901.

2.3. Basic Network Models

The interconnection networks mentioned in the previous sections can be seen
as undirected graph models, as described by Ausiello and Bertolazzi [8]: N iden-
tical processors are located at the nodes of a potentially infinite recursive graph
structure and communicate through the edges of this graph. The practical use of
this kind of structure is limited by wiring constraints, as well as by design and
fabrication principles :

(i) The difficulty of performing interprocessor communication in logarithmic
time (due to constraints on the capacity of communication lines).

(ii) The fan-in physical limitations which require that the number of neigh-
bor processors be either constant or at most logarithmic in terms of the total
number of processors.

(iii) The wiring constraints which d o not allow (specially for VLSI implemen-
tations) more than two or three levels of wiring and which impose restrictions on
the density and length of connection wires in a layout.

Taking these limitations into account, Preparata [1391 suggests some require-
ments that should be satisfied by an architecture graph:

(i) Degree-boundedness: the degree d , of each node should be bounded by
a small constant.

(ii) Size-independence: the structure of the deployed processors should be

330 C. C. Ribeiro

independent of the system size (i.e., the number N of processors).
(iii) Regularity and modularity: the layout of the graph should be highly

regular (i.e., susceptible of a simple and compact description) and modular
(i.e., obtainable by suitably combining layouts of analogous graphs of smaller
sizes).

(iv) Logarithmic diameter: the maximum path length (number of edges) d ,
between any pair of nodes of the graph should grow at most logarithmically in
the number N of processors, ensuring fast communication.

Of the many interconnection networks that have been proposed, the large-
purpose ones described below (among others) exhibit these features, with minor
exceptions:

(i) Rectangular mesh: The rectangular mesh consists of N = m . n processors
located at the nodes of an in x n grid. At each node (i , j) of the grid there is a
processor that can communicate with the processors located at nodes (i + 1 , I)
and (i,] k I) , provided they exist. In this very regular and modular structure
all nodes have degree less than o r equal to four, i.e.d, = 4. If the two-dimensional
n x n square mesh connected network proposed by Unger [1821 is considered,
then the diameter d, = 2(n - 1) = O(<N), which is greater than O(logN); see
figure 1 . The ILLIAC-IV computer has its 6 4 processors arranged in an 8 x 8
square mesh network. This type of interconnection network is very useful for
finite difference approximations to various partial differential equation problems;
see e.g. Lomax and Pulliam [1 171.

(ii) Cube connected network: This structure, proposed by Squire and Palais
[169], corresponds to an n-dimensional hypercube with N = 2" processors
located at its vertices and interconnections along the edges. In this case, d , =
= d , = n = O(1og N). Seitz [1601 presents the architecture and applications of
the Cosmic Cube, a machine which is a hypercube with N = 2 6 processors hosted
by a VAX 11/780; see also Hockney [78].

(iii) Cube connected cycles network: This structure, proposed by Preparata
and Vuillemin [1401, is obtained from the previous one by substituting each of
the vertices of the cube by a cyclically connected set of n processors, so that
the total number of processors is N = 3 . 2 n ; see figure 2 . Each processor has
at most two cycle connections and one edge connection. It has several desirable
features: d , = 3, d , = O(1og N), the modules are size-independent and its layout
is highly regular and modular. This network has been shown to be optimal for
several problems with respect t o the area x time2 complexity measure proposed
by Thompson [1741 for VLSI implementations; see Preparata and Vuillemin
[1401, Ausiello and Bertolazzi [8], Preparata [1391, Leighton [1 1 1] and Leiserson
[1 131. Nevertheless, a severe limitation to its physical realization comes from
the technological problems concerning the layout of non-planar structures.

(iv) Perfect shuffle-exchange graph: The foundations of this structure go
back. to Clos [3 6] and Benes [151, in the context of switching networks. It was
later explored and improved by Stone [1701. There are N = 2" processors and for

Parallel computer models and combinatorial algorithms 331

Fig. 1. Square mesh connected network Fig. 2 . Cube connected cycles network
(n = 4 , N = 16). (n = 3 , N = 24), from Kindervater and

Lenstra [95] .

each i = 0, 1 , 2 , . . . , N - 1, processor P, is connected to processors 4 + , (resp.
e.-,) if i is even (resp. odd), P,(il and Po., where

(i)'

if O < i < N / 2

2 i + 1 - N , if N / 2 < i < N

if i is even

(i - 1)/2 + N/2, if i is odd,

all sums being taken modulo N ; see figure 3. Schwartz [1591 shows that since
any arbitrary permutation of the contents of the processors can be performed
in time O(1og N), the shuffle interconnection has very important applications
in some algorithms having a recursive, ((divide and conquer)) characteristic.
This architecture is also characterized by d , = 3 and d, = O(1ogN). In spite
of its lack of layout regularity and modularity, the perfect shuffle has also been
shown to be optimal with respect to the area x time* complexity measure for
VLSI implementations; see Preparata [1381, Leighton [1 111 and Leiserson [1 131,
among others.

(v) Binary tree: In this kind of architecture, the processors correspond to
intermediary nodes and leaves of trees. Mead and Conway [19 I] describe an
n-level binary tree architecture, in which N = 2" - 1 processors are available
and each processor controls two subprocessors. Bentley and Kung [171 propose
a different architecture consisting of two (n + 1)-level binary trees with common
processors located at their leaves. The first tree (an out-tree) is used to send
data down to the processors located at the leaves and the second tree (an in-
tree) combines the results already obtained. There are 2" common processors

332 C. C. Rlbeiro

Fig. 3. Perfect shuffle interconnection network (n = 3 , N = 8).

Fig. 4. Binary tree network with common leaves (n = 3, N = 22) .

and each tree has 2" - 1 additional processors, hence N = 3 . 2" - 2. In this
case, as in the previous one, d , = 3 and d, = O(1ogN); see figure 4. The com-
bination of binary tree and mesh connected networks gives rise to the ortho-
gonal trees network. As described by Preparata [1391, a two-dimensional or-
thogonal mesh-of-trees has the following structure. Given an n x n square mesh
with edges removed, for each row (and column) a binary tree is built having the
vertices of that row (column) as its leaves, as illustrated in figure 5 for n = 4. The
inter-row (column) area is used to embed 2n(n - 1) non-leaf processors corre-
sponding to the root and internal nodes of the associated row (column) tree,
hence there are N = 3 n Z - 2n processors; see Nath et alii [1341 for details.

Parallel computer models and combinatorial algorithms 333

Fig. 5. Orthogonal trees network (n = 4 , N = 40), from Nath et alii [134].

2 .4 . Sj,stolic Arrajjs

Systolic arrays are highly parallel synchronous architectures suitable for the
implementation of highly synchronized computations, characterized by the
following properties; see Kung [1021 and Hwang and Briggs [81]:

(i) Each systolic architecture is appropriate for a special class of problems.
(ii) The architecture is based on a small number of different types of proces-

(iii) The processors are locally and regularly connected, in order to form an

(iv) The flows of inputs and results are pipelined through the interconnection

(v) Communication of data occurs only between neighboring processors and

(vi) Communication with the outside world occurs only at the boundary cells.
As a consequence, they are very well suited for reliable and inexpensive imple-

mentation using many identical components. Systolic arrays assume many dif-
ferent structures, depending on the type of algorithm that will be implemented
on them. Figure 6 shows some of these structures and table 1 illustrates their
potential usage. Two-dimensional systolic arrays are attracting a great deal of
attention even though their implementation on VLSI chips still faces many
practical difficulties. Three-dimensional arrays in which multi-layer devices
are used have also been recently proposed. One of the first commercialy available
systolic machines seems to be the GAPP (Geometric Arithmetic Parallel Proces-
sor) designed by NCR. It consists of 72 processors organized as a 6 x 12 two-
dimensional array (each processor communicates with its four neighbors) and

sors (or cells), each capable of performing some simple operation.

array or a tree.

network during the computations, in synchronous parallel mode.

control signals propagate through the array like data.

334 C. C. Ribeiro

n-u-u-u
(a) one-dimensional linear array

I

(c) two-dimensional hexagonal array
cb) two-dimensional square array

<d) binary tree (e) triangular array

Fig. 6. Some systolic array configurations: (a) one-dimensional linear array, (b) two -dimen-
sional square array, (c) two-dimensional hexagonal array, (d) binary tree and (e) triangular
array (from Hwang and Briggs [Sl]).

several of such blocks can be placed side by side in order to obtain a more power-
ful machine; see Breteuil [27] for details.

Some examples of systolic architectures and algorithms are presented below:

Example 1. Matrix-Vector Multiplication

The problem of multiplying an n x n matrix A = (a,) with an n-vector x = (xi)
is addressed here. The elements in the product y = (y , , . . . , yn) can be computed
by the following recurrences, as described by Mead and Conway [1211:

Parallel computer models and combinatorial algorithms

Table 1 .
Some applications of systolic arrays and their desired VLSI structures.

Processor array structure Applications

1 -D linear arrays Convolution, discrete Fourier transform,
solution of triangular linear systems,
matrix-vector multiplication, odd -even
transposition sort.

2 - D square arrays Dynamic programming, graph algorithms
involving adjacency matrices.

2-D hexagonal arrays Matrix multiplication, LU decomposition,
transitive closure.

Trees Searching algorithms, parallel function
evaluation.

Triangular arrays Inversion of triangular matrices.

335

y i l = 0

y; + ' = y; + U i k X k

yi = y i " + ' .

(k = l , 2 , . . . , 1 2)

These recurrences can be computed by pipelining vectors x and y through 2n - 1
linearly connected processors of the type described in figure 7, each one with
three input and three output gates.

k-l

Fig. 7. Processor for matrix-vector multiplication at (a) the beginning and (b) the end of a
cycle.

336 C. C. Ribeiro

As illustrated in figure 8, vector y (which is initially zero) moves to the left,
while vector x moves to the right and matrix A moves down, all movements
being pipelined and synchronized.

a 33

a 23 a 32

"13 a 22 a 31

a12 a21

a1 1

Fig. 8. Linearly connected array for matrix-vector multiplication.

Example 2. Matrix Multiplication

Multiplying two n x n matrices A = (aii) and B = (b i j) can be done in O (n)
time with different types of mesh connected networks. The first type, illustrated
in figures 9 and 10, is based on processing elements with two input gates, two
output gates and one register each. Matrix A is pipelined through the rows of
the mesh, while matrix B is pipelined through its columns. At each cycle the
processor located at vertex (i, j) of the mesh receives elements uik and b k j as
inputs, multiplies them and adds the result to the contents of its register. After
2n - 1 cycles each processing element (i , j) will contain the value

w

c.. = aikbki.
11

k = l

The second type of mesh connected network is more suited to band matrix
multiplication and is based on a kind of hexagonal processor shown in figure 1 1 .
In this case, the partial sums obtained at each cycle are also pipelined through the
mesh and the overall computations also take O (n) time; see Mead and Conway
[12 1] for details.

The reader interested in systolic algorithms is referred to the following referen-
ces: Rote [151], where it is shown how the Gauss-Jordan elimination algorithm
for the algebraic path problem can be implemented on a hexagonal systolic
array with a quadratic number of processors in linear time; Andre et alii [5],

Parallel computer models and combinatorial algorithms 337

Fig. 9. Processing element for matrix multiplication in a mesh connected network (first type)
at (a) the beginning and (b) the end of a cycle.

b44

b43 44

b42 b33 b24

b41 %? b23 44

Fig. 10. Matrix multiplication on a mesh connected network

338 C. C. Ribeiro

I ck-1
‘I

k- 1
k-1 = 2
11 IA ail blj (a) c..

Fig. 11. Hexagonal processor for matrix multiplication (second type) at (a) the beginning
and (b) the end of a cycle.

where a systolic architecture is studied for the word detection problem; Mead
and Conway [121], where systolic algorithms are proposed for several other
problems on square and hexagonal mesh-connected networks (LU decomposi-
tion of a matrix, resolution of triangular linear systems, computation of convolu-
tions, finite impulse response filters and discrete Fourier transforms) and binary
trees (matrix multiplication and the clique and color-cost problems); Hwang
and Briggs [81], for an in-depth study of systolic techniques (including reconfi-
gurable processor arrays that can host several different systolic array organiza-
tions).

3. An Overview of Complexity Theory of Parallel Computation

As Kindervater and Lenstra [95] point ou t , beyond the basic distinction
between solvability in polynomial time and completeness for NP (which are
the most important issues in sequential computation), many other concepts
have been studied for parallel computation. Among them are the very important
notions of solvability in polylog parallel time and log-space completeness for
P. After reviewing the main concepts from complexity theory, the model of a
parallel random access machine is discussed and an introduction to the main com-
plexity results for parallel computation is presented; the reader is referred to Cook
[39] for a complete study on the complexity theory of synchronous parallel
computation.

Parallel computer models and combinaroiial algorithms 339

3.1. A Quick Overview of the Complexity Theory for Sequential Computation

In this section the main notions and results from complexity theory are review-
ed; the reader is referred to Carey and Johnson [62] for an exhaustive study, to
Cook [40] for a very clear overview of this theory, where its history and current
lines of research are discussed, and e.g. to Papadimitriou and Steiglitz [1361 for
a very didactical explanation.

Associated with every optimization problem one can always define a decision
problem of the type ((given a problem instance I (i.e. a set of data), is there an
associated structure S satisfying a certain property Q?x, i.e., a question that can be
answered by ((yes)) or ((no)). A problem instance is said to be feasible if it leads
to an answer ((yes)). The size of an instance is defined as the number of bits
needed to encode the data under any reasonable encoding scheme. The running
time of an algorithm can be seen as the number of elementary operations required
for its solution. An algorithm is said to be polynomial if its running time is
bounded by a polynomial function of the problem size. Since one can always
solve the optimization problem and check whether its solution satisfies property
Q or not, the decision problem is never harder than the corresponding optimiza-
tion problem. Under very general and realistic assumptions, it can also be shown
that the optimization problem can be solved efficiently whenever the decision
problem can. Since the decision problem is never harder than the original optimi-
zation problem, any negative results proved about the complexity of the decision
problem will apply to the optimization problem as well. For this reason, complex-
ity theory is based on the analysis of decision problems rather than optimization
problems.

The class of decision problems solvable by polynomial time algorithms is
denoted by P, i.e., a problem is in class P if an algorithm exists that determines
in polynomial time, for any instance, whether the answer is ((yes)) o r (<no)).
Since polynomial time algorithms are largely accepted as efficient, P can be
seen as the class of easy and well-solvable decision problems for which efficient
algorithms exist. NP denotes the class of decision problems for which algorithms
exist that can always check in polynomial time if some given candidate leads
to a ((yes)) answer. By their definition, it can easily be seen that P 5 NP.

A decision problem A transforms polynomially to B (which is denoted by
A a B) if a polynomial transformation T exists so that the answer for problem
A given any instance I is ((yes)) if and only if the answer for problem B given the
instance T(I) is ((yes)). If A a B and there is a polynomial time algorithm for B ,
there is also a polynomial time algorithm for A . It turns out that there is a subset
of problems in NP which are the hardest problems, in the sense that if a polyno-
mial time algorithm for one of the problems of this subset is found, it will apply
to all other problems in NP. Hence, a decision problem is said to be NP-complete
if it belongs to NP and all other problems in NP polynomially transform to it.
The term NP-hard is sometimes associated with the optimization version of an

340 C. C. Ribeiro

NP-complete problem. The interested reader is referred to Carey and Johnson
[62], Papadimitriou and Steiglitz [1361 and Johnson and Papadimitriou [89]
for in-depth studies of many other complexity classes.

Up to this point, complexity has been considered only in terms of computing
time. In practice, the amount of storage (space) required for solving a problem
is also important. Using the model of the Turing Ma&ine, Carey and Johnson
[62] show that all problems solvable in polynomial time can be solved in poly-
nomial space. PSPACE is defined as the class of decision problems solvable by
polynomial space algorithms. A problem is said to be PSPACE-complete if it
belongs to PSPACE and all other problems in PSPACE transform polynomially
to it. Hence, a PSPACE-complete problem could belong to P if and only if
P = PSPACE. As Garey and Johnson [62] point out, the fact that a problem is
PSPACE-complete is an even stronger indication that it is intractable than if
it were NP-complete, since we could have P # PSPACE even if P = NP. Using
the model of a non-deterministic Turing Machine, one could define analogously
the class NPSPACE, but it can be shown that PSPACE = NPSPACE; see Savitch
[1581 and Carey and Johnson [62]. As a consequence, PSPACE-completeness is
the strongest type of completeness result currently available.

3.2. Parallel Random Access Machines

A very basic issue in complexity theory is t o find the most appropriate model
of a computer. Different models could lead to different computations and the
number of steps executed by the same algorithm would be different, depending
on the model of machine considered. The widely accepted model of a RAM
(Random Access Machine) consists of a read-only input tape, a write-only
output tape, a program and a memory; see e.g. Shepherdson and Sturgis [1621
and Aho et alii [11 for a detailed description of the properties and characteris-
tics of the RAM.

Fortune and Wyllie [60] proposed the model of a PRAM (Parallel Random
Access Machine) for parallel computations, which is an extension of the RAM
model. In a PRAM there is a potentially infinite sequence of global registers,
plus a potentially infinite set of N identically -programmed processors. Each
processor has a set of local registers, and at any time it can refer to either its
local registers or global ones: simultaneous reads are allowed ,while simultaneous
writes are not (i.e., the system crashes in case of an access conflict due to two
processors trying to write in the same global register at the same time). At the
beginning of the computations the input is loaded into the global registers and
only the first processor is active. At each time unit any active processor can
perform one of a set of primitive operations, among them the operation of
activating a new processor (that will run in parallel with those already in opera-
tion from that time on, until it is tumed-off). The first processor is always
active and the computation is considered terminated when it halts.

Since any active processor can access any global register, the PRAM model

Parallel computer models and combinatorial algorithms 341

coincides with an N-processor paracomputer (see section 2.2) in which O(1og N)
time is required to activate the N processors. This O(logN) activation time
would be realistic in any reasonable model, due to delays introduced in practice
by fan-in limitations. Other models of shared memory parallel machines derived
from the concept of a paracomputer have been proposed in the literature, like
the WRAM and the CREW-PRAM; see e.g. Shiloach and Vishkin 11631 and
Borodin and Hopcroft [26]. The basic differences between each of these models
are concerned with how they deal with read and write conflicts of memory access.

3.3. Complexity Theory of Synchronous Parallel Computation

An overview of the main results derived from the complexity theory of syn-
chronous parallel computation is presented here. The reader is referred to John-
son [88] and Kindervater and Lenstra [95] for very clear presentations on which
this section is largely based, as well as t o Cook [39] for a more in-depth survey.

Several authors have mentioned that there is evidence that parallel time and
space are equivalent up to a polynomial factor. This parallel computation thesis
is stated by Chandra et alii [32] and Goldschlager [67] as: time-bounded parallel
machines are polynomially related to space-bounded sequential machines. This
conjecture states that the class of decision problems solvable in time T (n) O (l) by
a machine with unbounded parallelism (i.e., polynomial in T(n) , where n is the
problem size) is the same class of decision problems solvable in space T(n)O(l) by
a sequential machine. However, Blum [25] proved that the parallel computation
thesis is not sustained when, for the parallel computer model considered, an
arbitrarily large though finite number of processors can be activated in one parallel
step and each memory cell of an arbitrarily large though finite memory can be ac-
cessed by any processor. As pointed out by Blum, these properties are fulfilled for
many models (see e.g. Shiloach and Vishkin [1631 and Borodin and Hopcroft
[26]), but are not satisfied for the models where O(1ogN) time is needed to
activate N processors; see Van Emde Boas [1881 for a survey of several cases
of parallel computer models and time bounds for which this thesis is consistent.

The parallel computation thesis holds, in particular, in the case where T (n) =

= n o (]) (i.e., a polynomial function of the problem size) and the computer model
considered is a PRAM. This model is quite powerful: the class of decision prob-
lems that a PRAM could solve in polynomial time would be precisely PSPACE,
including the very difficult NP-complete and PSPACE-complete problems. Howe-
ver, if the more realistic case of a PRAM with a polynomial number of processors
(instead of unbounded parallelism) is considered, the class of decision problems
solvable in polynomial time is exactly P. Under this restrictive but realistic as-
sumption, all that can be obtained with parallelism is the speeding-up of the
solution of problems in P: hard problems (for which it is unlikely that polyno-
mial time algorithms could ever be found) remain as hard as they were without
parallelism, in terms of theoretical complexity.

In turns out that many problems in P can be solved in parallel time

342 C. C. Ribeiro

O((1og n)O(*)), i.e., time that is polynomially bounded by the logarithm of the
problem size, which is called polylog parallel time. Among them are the problems
of maximum finding, partial sums, sorting, preemptive scheduling, scheduling
fixed jobs, maximum flow in a planar graph and linear programming with a
fixed number of variables; for details about polylog parallel time algorithms
for these problems see Kindervater and Lenstra [95], Dekel and Sahni [47,48],
Muller and Preparata [1271, Johnson and Venkatesan [90] and Meggido [1221.
Based on the parallel computation thesis, the class POLYLOGSPACE of decision
problems that can be solved in polylog sequential space is defined as correspond-
ing to the class of decision problems solvable in polylog parallel time. Since any
realistic computer model needs at least O(1og N) time to activate N processors,
it is very unlikely that sublogarithmic algorithms could ever be found. In this
sense, the class POLYLOGSPACE can be considered as formed by the easiest
problems in P. Section 4 shows several examples of polylog parallel time algo-
rithms for combinatorial problems.

A problem is said to be log-space complete for P if it belongs to P and all
problems in P can be reduced to it by means of some transformation computable
using logarithmic work space. Examples of log-space complete problems are:
solvability of a path system, circuit value, linear programming and maximum
flow; see Cook [38], Ladner [1031, Goldschlager [66], Dobkin et alii [54], Valiant
[1851 and Goldschlager et alii [68]. If any log-space complete problem could
ever be solved in polylog (sequential) space, so would be all problems in P. Since
this assumption does not seem to hold, log-space complete problems are unlikely
to be in POLYLOGSPACE and, by the parallel computation thesis, are unlikely
to be solvable in polylog parallel time. In this sense, the log-space complete
problemscould be seen as the hardest problems in P.

Other approaches to the study of the complexity of parallel and distributed
algorithms exist; see e.g. Santoro [154] and Lavallee and Lavault [1081.

4. Combinatorial Algorithms

While many publications and numerical results are available concerning the
use of parallel algorithms for problems arising in partial differential equations,
linear algebra, non -linear optimization, fast Fourier transform, image processing
and power system analysis, the same is not true in the field of combinatorial
algorithms, mainly with respect to computational results obtained with the
use of parallel machines.

In this section, parallel algorithms for several combinatorial problems are
studied; the reader is referred to Kindervater and Lenstra [96] for a complete
commented survey of the literature up to 1983. Basically, four classes of prob-
lems are considered : sorting and related problems (searching, merging, data
transmission and permuting), graph theory problems, well-solvable and NP-hard

Parallel computer models and combinatorial algorithms 34 3

optimization problems. Also included in this survey of parallel algorithms are
distributed algorithms, suited to asynchronous MIMD machines in which no
common memory is available, so that the processors (connected by means of
an interconnection network) communicate by exchanging messages.

4.1. Sorting, Merging and Data Permutation

Some references on sorting and related problems are presented below; the
majority of them are quoted and commented by Kindervater and Lenstra [96]:

(i) Sorting networks: Batcher [13], Muller and Preparata [127], Ajtai et
alii [3], Siege1 [1661, Leighton [1121 and Bilardi and Preparata [23].

(ii) Algorithms for shared memory SIMD and MIMD computers: Even [57],
Gavril [631, Valiant [1831, Todd [1771, Hirschberg [75], Preparata [1381, Barlow
et alii [1 11, Shiloach and Vishkin [1631, Reischuk [1481, Borodin and Hopcroft
[26], Kruskal [99], Aigner [2], Akl [4], Reischuk [I491 and Cole and Yap [37].

(iii) Algorithms for mesh-connected networks: Orcutt [1351, Thompson
and Kung [175], Nassimi and Sahni [128, 1301, Kumar and Hirschberg [I011
and Lang et alii [1061.

(iv) Algorithms for other interconnection networks and architectures: Baudet
and Stevenson [14], Valiant and Brebner [187], Lev et alii [I 141, Nassimi and
Sahni [131, 1321. Valiant [1841. Reif and Valiant [1471, Nath et alii [134],
Stout [17 I] and Gottlieb and Kruskal [69].

The reader is referred to Bitton et alii [24] for a survey on parallel sorting
algorithms, where a taxonomy of parallel sorting is proposed, encompassing a
broad range of sorting algorithms. Some implementations of sorting algorithms
on different types of parallel architectures are presented below, in order to
illustrate the interrelationships between algorithms, implementations and archi-
te c tu res.

Example I . Implementation of Batcher’s bitonic sorting algorithm on a perfect
shuffle interconnection

Batcher [131 proposed a sorting algorithm that can sort N numbers in O(logz N)
time when embedded in a sorting network consisting of O (N logz N) comparison-
exchange modules. Stone [1701 shows how a single rank of N/2 modules is all
that is necessary to perform Batcher’s bitonic sort when a perfect shuffle inter-
connection network is used.

The central idea of Batcher’s algorithm is that the network shown in figure
12 can sort a bitonic sequence of N = 2k numbers. A sequence of N real numbers
a, ,al , a,. . . . , a N - , is bitonic (i) if there is an index i such that the sequence
a,, al, a,, . . . , a; is monotonically increasing and the sequence a,, a,+ 1, a;+*,
. . . , a N - , is monotonically decreasing or (ii) if the sequence can be shifted
cyclically so that condition (i) is satisfied. This network consists basically of
N / 2 comparison-exchange modules that perform a comparison of a, and ai+ N,Z

for i = 0, 1, 2 , . . . , N/2 - 1 and place the lower (resp. higher) value of the two

344 C. C. Ribeiro

Q O
Q 1

'N/2 - 2
aN/2-1

QN/2
'N/2+1

aN -2
'N-1

Sorter

-
4

F

4

Sorter

d

Fig. 12. The structure of a bitonic sorter for Nelements.

inputs at the output gate labelled L (resp. H). Batcher proved that after perform-
ing the comparison-exchange operations (i) the subsequences consisting of the
first N/2 numbers and the last N/2 numbers are both bitonic and (ii) every
number in the first subsequence is not greater than any number in the second
subsequence. A complete bitonic sorter can be devised based on a recursive con-
struction technique which uses the basic structure presented in figure 12 (the
last stage of the network consists of a bitonic sorter for two numbers, which
is simply a comparison-exchange element). Then, a complete sorter can be
constructed by (i) successively sorting and merging smaller sequences into larger
ones until a bitonic sequence of size N is obtained and (ii) inputing this bitonic
sequence to the bitonic sort network already described.

Using the fact that every pair of items that enter a comparison-exchange
module differ only by a single bit in their binary representation, Stone [1701
shows that the bitonic sort algorithm can be implemented with a single rank
of N/2 comparison-exchange modules connected by means of a shuffle network,
as illustrated in figure 13. It is also shown that if a mask is used to control the
behavior of the compare -exchange modules, reversing the outputs of appropriate
modules at precise iterations, the first phase of the algorithm (sorting and merging
smaller sequences until a bitonic sequence is obtained) can also be implemented
on the same network. The total number of comparison-exchange steps is k (k +
+ 1)/2 and the number of shuffles of the data is k(k - l) , hence the algorithm
takes O(log2 N) time.

Parallel computer models and combinatorial algorithms 345

Storage Compare-Exchange
Registers Modules

Fig. 13. Sorting processor for performing Batcher’s bitonic sort algorithm.

Example 2. Implementation of the odd-even transposition sort on a mesh-
connected network

Given N numbers a,, a,, a,, . . . , a N - , to be sorted in ascending order, the
odd-even transposition sort works as follows; see Knuth [97]:

Step 0: Set k t 1 .

Step 1: For all i = 0, 1 , 2 , . . . , “12 - 11 such that aZi+ , <a,,+,, set r +aZi+,,

S f e p 2: For all i = 0, 1 , 2, . . . , LN/2 - 1 J such that a,,+ I < a z i , set t +az i+

S f e p 3: Set k t k + 1. If k < N/2 go back to step I . Otherwise, stop.

Assume now that N = n numbers should be sorted on an n x il square mesh-
connected network where each processor is connected to all its neighbors and
wrap-around connections between processors at the perimeter do not exist.
Observe that, in the worst case, elements initially loaded at opposite corner
processors will have to be transposed during the sort and at least 4(n - 1) unit-
distance routing steps will be needed. Hence, O (n) is a lower bound for the

a , i + 2 + a,,+ 1 and + It f .

az i+ + a,, and a,, c f .

346 C. C. Ribeiro

time-complexity of any algorithm designed for sorting n 2 numbers on an n x n
mesh-connected network.

As Thompson and Kung [175] state, the processors of the mesh may be in-
dexed by any function that is a one-to-one mapping from 1,2, . . . , n x l 1 2,
. . . , n onto 0, 1, 2 , . . . , N - 1 . The N items to be sorted are initially loaded
in the N processors and the sorting problem is defined t o be the problem of
moving the jth smallest element to the processor indexed by j - 1 for all j = I ,
2 , 3 , , N. Three different ways of indexing the processors (row-major in-
dexing, shuffled row-major indexing and snake-like row-major indexing) are
illustrated in figure 14. Orcutt [135], Thompson and Kung [175] and Nassimi
and Sahni [1281, among others, present adaptations of Batcher’s bitonic sort
for sorting N = n z elements in O (N) time on n x n mesh-connected networks
using different indexing schemes.

It is shown now how the odd-even transposition sort can be implemented
in O(N) time for sorting N = n elements on an n x n mesh-connected network
with the processors indexed in snake-like row-major order (which can be seen
as a linear array; see figure 14). Step 2 is a ((cheap comparison-interchange
operation)): the contents of even and odd processors located at the same row
of the mesh are compared and eventually interchanged; this can be done in
O(1) parallel time. Step 1 is an ((expensive comparison-interchange operation)) :
the processors which have their contents interchanged are sometimes located at
different rows; this can also be done in 0(1) parallel time, but more time is
needed for data routing. Since N / 2 steps are necessary, the overall algorithm
takes O(N) time.

(b)

Fig. 14. (a) row major-indexing, (b) shuffled row-major indexing and (c) snake-like row-
major indexing.

Example 3. Implementation of an enumeration sort on a SIMD machine with
shared memory where simultaneous writes are prohibited

Enumeration sort methods are based on counting the number of items which
should precede each item; see Knuth [97]. This kind of algorithm consists basical-
ly of three distinct steps: (i) counting (computation of the relative ranks), (ii)
ranking (computation of the position of each item) and (iii) permutation (routing

Parallel computer models and combinatorial algorithms 341

each element to the processor corresponding to its rank). The algorithm proposed
by Muller and Preparata [I271 is studied below, assuming that the sequence
a, , . . . , aN to be sorted is such that ai # aj for i # j . The notation

par [p < i < q] si

is introduced to denote that the statements si are to be executed in parallel for
all values of the index i in the given range, each one corresponding t o a different
processor. Their algorithm can be stated as follows; see Kindervater and Lenstra
[951 :

Step 1 (counting): par [1 < i , j < N] rij + 1, if ai f ai ; rii t 0, otherwise.

StepZ(ranking):par[l < j < N] pj+surn{ri i) 1 <.idN}.

Step3(rout ing):par[l <j<iV] a +a j .

Step 1, corresponding to the computation of the relative ranks rii, can be
performed in O(1) time with N 2 processors or in O(1ogN) time with N2/10gN
processors. For the computation of the positionspj the reader is referred t o Dekel
and Sahni [47] and Kindervater and Lenstra [95], where a partial sums algorithm
is described: step 2 can be performed in O(1og N) time with N2/log N processors.
Finally, the data routing step can be performed in O(1) time using only N pro-
cessors. Hence, the algorithm requires O(log N) time and N*/log N processors.
Nassimi and Sahni [132] study the implementation of an enumeration sort on
a cube connected network in O(1og n) time using N2 = 22n processors.

P i

4.2. Graph Theory and Path Problems
The reader is referred to Kindervater and Lenstra [96] for a commented survey

of the literature up to 1983 and to Ivanov and Shevchenko [84] for a survey of
the russian literature. Some complexity results concerning the implementation
of parallel algorithms for graph theory and path problems on synchronous SIMD
and MIMD architectures with shared memory are presented in table 2. These
results are complemented by table 3, where some examples of graph algorithms
on interconnection networks, asynchronous MIMD models and pipelined vector
processors are presented. The reader is referred to the references, as well as to
Quinn and Deo [1441, for more details on the algorithms, implementations and
architectures considered. Other references are Crane [42], one of the first papers
about parallel graph algorithms; Hirschberg [74], Goldschlager [65] and Wyllie
[1961, where some complexity results for graph problems are given; Wisniewsl
and Sameh [1951, where the single source shortest path problem is solved through
the resolution of systems of the form x = A x + b in the regular algebra of CarrC,
by solution methods (mostly known from linear algebra) that are parallelized;
Tsin [1791, where algorithms for the bridge-connectivity and biconnectivity
problems are presented and it is shown how they can be implemented on any
parallel computer model on which an ordinary matrix multiplication algorithm

348 C. C. Ribeiro

Table 2.
Parallel algorithms for some graph problems for synchronous shared memory computer models(n = number
of vertices, m = number of arcs, d = diameter of the graph, SR = simultaneous reads allowed, SW = simul-
taneous writes allowed).

Problem Parallel time
complexity

Minimum spanning tree O(1og'n)
o((n'/p) log n)
O(log'n)
O(log'n)
o(log' n)
O(hTn)

Transitive closure O(iog' n)
O(Iog'n)
O(h3 n)

Shortest paths O(Iog' n)
O (h n)

Connected components O(loga n)
o(1og'n)
O(log n log d)
~(Iog ' n)
O(b3 n)
O(Iog' n)
O (log ' n)
O(h3 n)

Biconnected components O(log2 n)
O(logan)
O (h n)

Triconnected componentsO(log' n)

Weakly -connected o(log'n)
components

Breadth-first and depth- O(n + m/p)
first search

Bridge finding O(log'n)
O(1og' n)

Spanning forest o(log' n)
O(logan)

Fundamental cycles O(1og'n)
O(Iog'n)

Separation vertices O(Iog'n)
Bisection width in trees O(10g3 n)

Planarity testing O(log'n)

Topological sort of O(log n)
acyclic graphs
Strong orientation of log' n)
undirected graphs O (b n)

O(logn)
O(log' n)

Number of
processors

n '/log n
n4

n 3
n '/log n
n3/10g n
m + n l o g n
n + 2 m

n '/log n
n '/loga n
n + m

n4

n '/log' n

P

n ' l o g n
n '/log' n

n */ logan
n'/Iog'n

n 3
n'llog n

n '/log' n

n'

n4

n4

n 3
n 3
n + m
n'/Ioga n

Reference and model of mochine

Savage [155], SIMD-SR
Deo and Yo0 [SO], MIMD-SR
Savage and Ja'Ja' [157], SIMD-SR
Nath and Maheshwari [133], SIMD
Chin et alii [34], SIMD-SR
Kucera [1001, SIMD-SR-SW
Hirschberg et alii [76], SIMD-SR
Chin et alii [34], SIMD-SR
Kucera [1001, SIMD-SR-SW

Savage [155],SIMD-SR
Kucera [loo], SIMD-SR-SW

Reghbati and Corneil[146], SIMD-SR
Hirschberg et alii [76], SIMD-SR
Savage and Ja'Ja' [157], SIMD-SR
Savage and Ja'Ja' [157], SIMD-SR
Shiloach and Vishkin [164], MIMD-SR-SW
Nath and Maheshwari [1331, SIMD
Chin et alii [34], SIMD-SR
Kucera [IOO], SIMD-SR-SW
Savage and Ja'Ja' [1571, SIMD-SR
Tsin and Chin [1811, SIMD-SR
Tarjan and Vishkin [173], SIMD-SR-SW
Ja'Ja' and Simon [86], SIMD-SR
Chin et alii [34], SIMD-SR

Eckstein and Alton [56], MIMD-SR

Savage and Ja'Ja' [1571, SIMD-SR
Tsin and Chin [181], SIMD-SR
Chin et alii [34], SIMD-SR
Tsin and Chin [181], SIMD-SR
Savage and Ja'Ja' [1571, SIMD-SR
Tsin and Chin [181], SIMD-SR
Tsin and Chin [181], SIMD-SR
Coldberg and Miller [64], SIMD-SR-SW

Ja'Ja' and Simon [86], SIMD-SR
Kucera [loo], SIMD-SR-SW

Atallah (61, SIMD-SR
Atallah [6], SIMD-SR-SW
Vishkin [191], SIMD-SR-SW
Tsin [180], SIMD-SR

Parallel computer models and combinatorial algorithms 349

Table 3.
Parallel algorithms for some graph problems for interconnection networks, asynchronous MIMD
machines and vector processors.

Problem Architectures References

All shortest paths

Shortest path tree

Minimum spanning tree

Enumeration of spanning
trees

Transitive closure

Topological sort and
critical paths

Connected components

Radius, diameter, center
and medians

Bridges, articulation points
and shortest cycle

systolic array (hexagonal mesh)
MIMD (Denelcor HEP)
cube connected, perfect shuffle
systolic array (hexagonal mesh)
vector processor (CRAY- 1)

MIMD (Denelcor HEP)
cube connected, perfect shuffle
binary tree, systolic array,
MIMD (asynchronous. shared
memory)
MIMD (full interconnection)
vector processor (CRAY - 1)

systolic array (square mesh)
binary tree
MIMD (full interconnection)

perfect shuffle, orthogonal tree
two-dimensional square mesh
systolic array (linear)
MIMD (asynchronous shared
memory)

MIMD (Neptune System)

two-dimensional square mesh
systolic array (hexagonal mesh)
vector processor (CDC CYBER
205)

cube connected, perfect shuffle

k-dimensional mesh
perfect shuffle, orthogonal tree
two -dimensional square mesh
k-dimensional mesh
systolic array (linear)

cube connected, perfect shuffle

two -dimensional square mesh

Levitt and Kautz [1151
Deo et alii [49]
Dekel et alii [44]
Rote [151]
Ribeiro [1 SO]

Deo et alii [49]
Dekel et alii [44]
Mateti and Deo [1201

Chandy and Misra [33]
Ribeiro [1501

Levitt and Kautz [1151
Bentley [161
Humblet [80], Parker and Samadi
[137], Gallager et alii (611, LavallCe
and Roucairol [1101
Nath and Maheshwari [1331
Awerbuch and Shiloach [10)
Savage [1561
LavallCe [1071

Mai and Evans [1 181

Cuibas et alii [70],Van Scoy [189]
Rote [151]
Courteille and Fraisse [41]

Dekel et alii [44]

Nassimi and Sahni [1291
Nath and Maheshwari [1331
Awerbuch and Shiloach [lo]
Hambrush [71]
Savage [156]

Dekel et alii [44]

Atallah and Kosaraju [7]

350 C. C. Ribeim

exists; Ja’Ja’ [8 5] , where general lower bound techniques are developed to deter-
mine the VLSI complexity of several graph problems; Vishkin and Wigderson [1921,
where a new technique for proving lower bounds for parallel computation is
introduced, enabling the obtention of non-trivial tight lower bounds for shared
memory models of parallel computation that allow several processors t o have
simultaneous access to the same memory location; Bertossi and Bonuccelli [191,
where polylog parallel time algorithms are given for finding maximum cliques,
maximum independent sets, minimum clique covers and minimum dominating
sets of interval graphs, as well as hamiltonian circuits and the minimum band-
width of proper interval graphs.

Two implementations of parallel graph algorithms are described below. In both
cases, the tree-structured searching machine originally devised by Bentley and
Kung [171 for searching and sorting problems is used; see figure 15. This structure
contains three types of processors, represented by circles (which broadcast data),
squares (which store data and compute) and triangles (which combine their inputs
in a suitable way). The input and ouput nodes (processors) are connected.

Fig. 15 . Structure of the tree machine.

Example 1. Minimum spanning tree
Given a complete undirected graph C with vertex set V = { 1 , 2 , . . . , N } and

edge lengths c r j , the algorithm proposed by Prim [141] obtains the minimum
spanning tree of C after N iterations in O (W) time. At the end of iteration k,
let V k be the set of nodes already spanned and Tk the set of edges used to span
them. At iteration k + 1, set V k + t V k U {a} and Tk + c Tk U {(a, p) } , where
a and p are such that

= min { c i j } .
ievk

Parallel computer models and combinatorial algorithms 35 1

Bentley [161 studies a parallel version of this algorithm, using a binary tree
machine with N square processors (suppose that N = 2 4 - 1 for some integer
4) . The algorithm is initialized with V' = { 1 } and 7" = 4. At the end of iteration
k , each active processor 4 (such that i 6 V k) stores the values pi and di given by

For each k = 1, 2 , . . . , N - 1 the following computations are performed:

d, is the minimum of the values di among all active processors, i.e.,
(i) Apply a minimum finding procedure to obtain the node Q! such that

da = min (d i } .
iq vk

(ii) Let p=p, , V k t l + V k u { a } a n d T k + I + T k U { (a , p) } . N e x t , s e n d a f r o r n
the input node in order to turn-off P, (forever) and each 4 with di < cia (tempo-
rarily for the rest of this iteration).

(iii) For all active processors 4 recompute their contents (pi +-a and d, +cia) ,
turn-on all processors P, temporarily turned-off, set k + k + 1 and go back to
step (i) .

Hence, data is broadcast three times from the input node to the output node
during each iteration. Since each of these phases can be performed in O(l0gN)
time and N - 1 iterations are necessary, the overall computation takes O (N log N)
time.

Example 2 . Shortest path from a single source

Given a complete directed graph G with vertex set V = { I , 2 , . . . , N } and
positive arc lengths c i j , the algorithm proposed by Dijkstra [53] solves the shortest
path problem from a single source in O (N *) time. Mateti and Deo [1201 describe
a parallel implementation of Dijkstra's algorithm on the tree machine shown in
figure 15. Each square processor 4 contains the length di of the shortest path
already obtained from the source to node i and the initialization is such that
di = + m for all i = I , 2, . . . , N. Let V* be the set formed by all vertices for
which the shortest path from the source is already known, with I/' ={source}.
For each k = I , 2 , . . . , N - 1 the following computations are performed:

(i) Input t o the root a pair of numbers (x, d,) consisting of the (last) vertex
that was included in V k (at the end of the previous iteration) and the length
of the shortest path from the source to this node. The pair (source, 0) is inputed
f o r k = I .

(ii) Broadcast the input to the square processors through the circle processors.
(iii) Each active square processor 4 receiving (x, d,) as input performs the

following computations: if x # i set di + min {di, d, + cXi } and broadcast the
pair (i, d i) ; otherwise turn-off 4 .

(iv) Each triangle processor receives (x,d,) from the left and (y,d,,) from
the right and broadcasts (z , d,),where z = x if d, < d, and z = y otherwise.

35 2 C. C. Riheiro

(v) The node a that should be included in V k is obtained at the output node.
Set Vk + t Vk U {a}, k t k + 1 and broadcast the pair (a , d,) to the input node.

Each iteration takes O(1og N) time and N - 1 iterations are necessary, thus
the overall computation takes O(N log N) time, as for the minimum spanning
tree algorithm.

4.3. Well-Solvable Combinatorial Optimization Problems

Even though this class is not as rich as the previous one in terms of applications
of parallelism, efficient algorithms have been proposed for some scheduling
problems, network flows and linear programming.

(a) Scheduling problems
Dekel and Sahni [45 ,46 , 47,481 study polylog parallel time algorithms for

many scheduling problems. Their algorithms are based on binary trees which
provide the basis for computing the partial sums of n numbers in O(1og n) time
with O(n/log n) processors and for finding a maximum matching in n-vertex
convex bipartite graphs in O(logzn) time using O (n) processors; the reader is
referred to Kindervater and Lenstra [9 5] for a very clear presentation of some
of these algorithms, as well as to Kindervater and Lenstra [96] for a summary
of the main results concerning their complexity.

(b) Network flow problems
Goldschlager et alii [68] show that the maximum flow problem is log-space

complete for P, using a log-space transformation from the monotone circuit
value problem. Shiloach and Vishkin [165] present an algorithm for solving
the maximum flow problem that is closely related to the sequential methods
due to Dinic and Karzanov. Their algorithm is devised for a synchronous shared
memory machine (simultaneous reads allowed, simultaneous writes allowed
provided the same value is written) and has parallel time complexity
O((n3/p) log n) when p < n processors are available. Megiddo [1231 points out
that the efficiency of sequential algorithms for one problem may be improved
by exploiting the parallelism in other problems. It is shown, for instance, how
parallel sorting algorithms turn out to be useful for cost-effective resource alloca-
tion, and how parallel all-shortest -path algorithms serve for the minimum ratio
cycle problem. Sometimes, the study of parallel algorithms for a given problem
may also help to devise and understand the behavior of sequential algorithms.
As an example, the algorithm proposed by Shiloach and Vishkin [1651 induces
a new rather simple O(n3) algorithm for the maximum flow problem. Johnson
and Venkatesan [90] consider the model of a synchronous shared memory machi-
ne (simultaneous reads allowed, no simultaneous writes allowed) and show that
the maximum flow in planar directed n-vertex networks can be computed in
o(l0g3 n) time using O(n4) processors or in O(1ogZ n) time using O(n6) processors
(it is also shown that O(logz nJ time and U (n 4) processors suffice for planar
undirected networks). More recently, Janiga and Koubek [87] showed that the

ParaIIeI computer models and combinatorial algorithms 35 3

maximum flow problem in planar graphs can be solved with only O (n 4) proces-
sors (O (n 3) suffice when the graph is known to be planar beforehand) in
O(log2 n) time.

Bertsekas and El-Baz [221 study distributed asynchronous relaxation methods
for convex network flow problems, well suited for implementation on parallel
machines. In their pure form these algorithms modify the dual variables (node
prices) one at a time, using only local node information while aiming to improve
the dual cost. They can be shown to converge for problems with strictly convex
arc costs, even if relaxation at each node is carried out asynchronously with
out-of-date price information from neighboring nodes. In a more recent paper,
Bertsekas [2 I] describes a distributed algorithm for solving the classical linear
assignment problem. This algorithm employs exclusively pure relaxation steps
whereby the prices of sources and sinks are changed individually on the basis
of only local (neighboring) node price information. It can be implemented in
an asynchronous manner and seems to be efficient for problems with small
cost ranges.

(c) Linear programming and decomposition
Using a log-space transformation starting from the unit resolution problem

(see Jones and Laaser [91]) and in conjunction with Kachian’s algorithm, Dobkin
et alii [54] show that linear programming is log-space complete for P. Other
results concerning linear programming can be found in Kamdoum [92], where
it is shown that each pivot step of the simplex method can be executed p times
faster when p processors are available (for small values of p , when compared to
the number of variables and constraints), and Megiddo [122], where a parallel
implementation of a linear programming method is proposed, running in O(logn m)
time when the number n of variables is fixed (m is the number of constraints).
Decomposition schemes using parallel computation are studied in Dutta et alii
[S S] , where a SIMD implementation of the simplex method is presented and a
parallel architecture for implementing the Dantzig-Wolfe decomposition algo-
rithm is proposed, and Ho [77], where three approaches for the introduction
of parallel computation in linear programming are compared : parallel simplex
paths, parallel block pricing and Dantzig-Wolfe decomposition. A parallel succes-
sive overrelaxation method for linear programming is proposed by Mangasarian
and DeLeone [1 191, suitable for a multiprocessor such as the Madison Crystal
multicomputer. The Crystal multicomputer consists of twenty VAX 1 1/750,
each with 2 megabytes of memory, linked via a 10 megabit/second token ring.
Parallel algorithms for large -scale traffic assignment and generalized networks,
along with computational results on Crystal, are presented by Meyer [1241.

4.4. Enumeration Methods and NP-Hard Optimization Problems

In this section, parallel implementations of enumeration schemes (such as
dynamic programming and branch and bound) and other results for some NP-

354 C. C. Ribeiro

hard optimization problems are discussed.
Dynamic programming is a technique very well suited for implementation on

systolic arrays and synchronous MIMD (or SIMD) machines, since a regular sequen-
ce of many highly similar and quite simple instructions is performed. Casti et
alii [31] seems to be the first paper where a parallel implementation of the dy-
namic programming technique is proposed. A mesh-connected architecture is
considered and different schemes are studied, corresponding to parallel state,
decision and stage algorithms. Al-Dabass [43] studies the efficiency of the algo-
rithms proposed in the previous paper, considering their implementation on a
master-slave architecture. Bertolazzi and Pirozzi [181 make some assumptions on
the general problem to which the previous algorithms are applied, in such a
way that communication steps no longer depend on the size of the problem,
making it possible to propose more efficient architectures in which communica-
tion can be carried out in constant time. Two classes of problems which can be
solved by parallel algorithms with a reduction of complexity are proposed. Some
applications are discussed, concerning the problems of optimal parenthesization
and extraction from a picture of one line of fixed length which is optimal accord-
ing to some given figure of merit ; see respectively Guibas et alii [70] and Montana-
ri [1261 for more details about these problems. The reader is also referred to
Bertsekas [20], where asynchronous distributed algorithms for solving dynamic
programming problems are discussed. The class of problems considered is very
broad and includes shortest path problems and finite and infinite horizon sto-
chastic optimal control problems.

Parallel dynamic programming approaches have been considered for the resolu-
tion of the 0-1 knapsack problem, formulated as to

maximize i(: c ix i
i = 1

n

subject to aixi < b
i = 1

xi ~ (0 , I } i = 1 , 2 , . . . , n ,

where b and ai are positive integers, for i = 1 , 2 , . . . , iz. The first of such ap-
proaches was the one proposed by Casti et alii [31] , in which the states of each
stage are handled in parallel. This algorithm is described by Kindervater and
Lenstra [9 5] as:

par [O < z < b]

f o r j = 1 t o n do:

c(0, z) +- 0

par [0 < z < u j]

par [ai Q z Q b]

c (j , z) t c (j - 1 , z)

c (j , z) + max { c (j - 1, z) , c (j - 1, z - - u,) + q}

Parallel computer models and combinatorial algorithms 355

where c(], z) denotes the value of the optimal solution of the subproblem

maximize c i x i
i = 1

subject t o a i x i = z
i = 1

x i € { O , I } i = 1 , 2 , . . . , j .

It can be easily seen that this scheme requires O (n) time when b + 1 processors
are available. Ribeiro [1501 uses the same idea to develop a vector implementa-
tion for the resolution of this problem on a CRAY-I computer. The numerical
results obtained show that maximum efficiency is attained and computer times
are reduced by a significant factor through vectorization. A theoretical result is
obtained by Yao [1971, who considers the complexity of solving the knapsack
problem on a parallel computer with real arithmetic and branching operations.
A time-processor trade-off constraint is derived and, in particular, it is shown
that an exponential number of processors has to be used if the problem is to
be solved in O(&) time.

In contrast to dynamic programming, branch and bound methods are more
suited to implementation in a distributed way on asynchronous MIMD machines.
The subproblems that should be solved are distributed and each processor deals
with a subproblem. Bounds and feasible solutions are either communicated
through the processors or stored in a shared global memory (which can be used
for processor communication). Desai [51] proposes a staged MIMD system to
solve 0- 1 integer programs using implicit enumeration. El-Dessouki and Huen
[5 2] study a distributed branch and bound scheme in which each part (subtree) of
the search tree is associated with one of the processors after the first branching
operation. The processors communicate only to broadcast new feasible solutions
and bounds o r to redistribute the subproblems that remain to be solved. Depth-
first search is used by each processor for exploring the subtree associated with
it. Another approach is presented by Imai and Fukumura [83] for shared memory
MIMD machines. Each processor selects one unresolved subproblem (following
a global depth-first strategy) and either finds that it is a leaf of the search tree
or creates all the successors of the corresponding node. For both of these
approaches numerical results obtained through simulation are presented. Burton
et alii [29] consider distributed branch and bound algorithms for execution on
cube connected networks of processors. Burton et alii [30] and Lai and Sahni
[104, 10.51 analyse anomalies arising in the context of distributed branch and
bound algorithms: it is shown that it is quite possible for a parallel branch and
bound algorithm using n 2 processors to take more time than one using n , proces-

356 C. C. Ribeiro

sors even though n , < n , ; furthermore, it is also possible to achieve speedups
greater than n,/n , (experimental results for the 0- 1 knapsack and traveling
salesman problems are presented). LavallCe and Roucairol [1091 review the
previous approaches, compare two general schemes for implementing distributed
branch and bound algorithms and specificate both of them using CSP. The
first scheme is called vertical parallelization, in which each processor deals with
one of the subtrees generated after the first branching operation (as proposed
by El-Dessouki and Huen [52]), seeming to be more suited to computer net-
works or multiprocessors with slow intercommunication. The second one is
a horizontal parallelization scheme, in which each processor is associated with
one node of the search tree and expands all of its descendants (as proposed by
Imai and Fukumura [83]), more suited to architectures with a large number of
processors and efficient message passing patterns. A branching scheme based on
the Bellmore-Malone criterion is proposed, in order to better use the capabilities
of the parallel processors. Roucairol [1521 studies the adaptation of the second
parallelization scheme (proposed in the precedent paper) for asynchronous
shared memory MIMD machines such as the CRAY-XMP. The distribution of
the subproblems to be solved is done by the use of a shared list which contains
information about every node that should be expanded. This list is kept sorted
according to some criterion corresponding to the selection rule (depth-first search,
breadth-first search, best -first search). This parallel branch and bound scheme is
applied to the resolution of quadratic assignment problems and numerical results
obtained on a simulator of the CRAY-XMP are reported.

A different approach is adopted by Wah and Ma [1931, who propose the design
of an architecture for implementing parallel branch and bound algorithms. The
critical element in this architecture is the selection network, which selects sub-
problems to be evaluated by the parallel processors based on a kind of best -first
search. In a (synchronous) parallel branch and bound algorithm using best -first
search, a set of subproblems equal in size to the number of processors must be
selected in each iteration. Provided that these subproblems are those with the
smallest lower bounds, they do not have to be selected in a sorted order.
Selection is carried out in parallel and it is shown that an unidirectional ring
network is cost-effective for this operation, as well as in connecting the memory
controllers so that the workload of the system is balanced. The other major
components of this architecture are: secondary storage (which provides virtual
memory support for excess subproblems which can not be stored in the subprob-
lem memory controllers due to memory limitations), secondary storage redistribu-
tion network (which allows a subproblem memory controller to store and access
subproblems in any set o r subset of the secondary storage modules), parallel proces-
sors (which are general purpose computers for partitioning subproblems and evalua-
ting lower bounds), global data register (which is accessible to all memory control-
lers and contains the value of the best feasible solution found) and subproblem me-
mory controllers (which are designed to manage the local list of subproblems and

Porollel computer models and combinotorinl algorithms 35 7

communicate with other controllers through the selection network). This architec-
ture is simulated by a simulation model written in C language and implemented
on a VAX 11/780 computer with virtual storage. Numerical results, concerning
the resolution of vertex covering problems, are given.

Some results concerning the traveling salesman problem are available. Pruul
[1421 describes a parallel implementation of the subtour elimination algorithm
for an asynchronous MIMD machine, in which each processor performs its own
depth-first search. The algorithm is simulated on a sequential machine. Mohan
[1251 shows how it can be solved on Cm*, a multiprocessor system, using two
parallel search programs based on branch and bound algorithms. One of these
programs is synchronous and has a master-slave architecture, while the other
is asynchronous and has an egalitarian architecture. Their absolute execution
times and speedups are discussed. Quinn and Deo [1431 describe an implemen-
tation of the farthest -insertion heuristic for the Euclidean traveling salesman
problem to run on the Denelcor HEP with p processors in O (n 2 / p + n p) time.
Kindervater [941 presented the parallel complexity of several different heu-
ristics for the traveling salesman problem, showing that the nearest - addition
heuristic (and others based on the same principles) can be implemented in
polylog parallel time O(log2 n) , while the problem corresponding to the nearest-
neighbor heuristic is log-space complete (by a reduction from the circuit value
problem).

Other results available for NP-hard combinatorial optimization problems are
those concerning the maximum cardinality clique and color cost problems,
studied by Browning [28]. A binary tree based algorithm (each node of the
tree is a processor with general computing capability) with time complexity
O (n 2) with 2" - 1 processors is proposed for the maximum cardinality clique
problem on n-vertex undirected graphs. The color cost problem is an adaptation
of the k-colorability problem. Given an undirected graph with n nodes and a
set of n colors, each with an associated cost, find a minimum cost coloring of
the graph such that no nodes sharing an edge are colored with the same color.
The algorithm proposed by Browning runs in O (n 2) time on a binary tree machine
with 2 n n - 1 processors.

Acknowledgements

This work was sponsored by FINEP-Financiadora de Estudos e Projetos, under
research contract number 6.2.84.041 6.00. The author wishes to thank Ivan
Lavallee, for many constructive comments and important remarks; Miguel Me-
nasche, for the reading of the final draft of this monograph and some fruitful
discussions; William Koelsch and Pamela Schmitt, for improving the readability
of this work; and Angela Jaconianni,for the carefully prepared illustrations. The
author is also grateful to Henri Maitre for the warm reception at the Image Labo-

358 C. C. Ribeira

ratory of the ENST (Paris) where this work was finished, as well as to IBM Brasil
for providing financial support which enabled the travel between Rio de Janeiro
and Paris.

References

A.V. Aho, J .E . Hopcroft and J . D . Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, 1974.
M. Aigner, ctParalle1 Complexity of Sorting Algorithms)), Journal of Algorithms 3, 79 - 88, 1982.
M. Ajtai, 1. Komlos and E. Szemeredi, ((An O(n logn) Sorting Network,.Proceedings o f the 15th
Annual Symposium on Theory of Computing, 1 ~ 9, 1983.
S.G. Akl, ((An Optimal Algorithm for Parallel Selection)),Information Processing Letters 19, 47 - 50,
1984.
F. Andri, P. Frison and P. Quinton, ((Algorithmes Systoliques: de la Thdorie la Pratiques, Rapport
de Recherche no. 214, INRIA, Rennes, France, 1983.
M.J. Atallah, ((Parallel Strong Orientation of an Undirected Graph)), Informarion Processing Letters

M.J. Atallah and S.R. Kosaraju, ((Graph Problems on a Mesh-Connected Processor Array)), Proceed-
ingsof the 14th Annual ACMSymposium on Theory of Computing, 345 - 353, 1982.
G . Ausiello and P. BertObazZi, ((Parallel Computer Models: An Introduction)), Proceedings o f the
Symposium on Vector and Parallel Processors, Rome, Italy, 1982.
J .H. Austin Jr . , ((The Burrough? Scientific Processor)), in C.R. Jesshope and R.W. Hockney, eds.,
Infotech State of The Art Report: Supercomputers. Val. 2 , 1 - 31, Infotech Intl. Ltd., Maidenhead,
1979.
B. Awerbuch and Y. Shiloach, ((New Connectivity and MSF Algorithms for Ultracomputer and
PRAM)), Proceedings of the 1983 International Conference on Parallel Processing, 175 - 179. 1983.
R.H. Barlow, D.J . Evans and J . Shanehchi, ((A Parallel Merging Algorithm)), Information Processing
Letrers 13, 103 - 106, 1981.
G.H. Barnes, R.M. Brown, M. Kato, D.J . Kuck, D . L . Slotnick and R.A. Stokes, ((The ILLIAC-IV
Computer)), IEEE Transactions on Computers C - 17, 746 - 757, 1968.
K.E. Batcher, (<Sorting Networks and Their Applications)), Proceedings o f the AFIPS Spring Joint
Computer Conference 32, 307 - 314, 1968.
G. Baudet and D. Stevenson, ((Optimal Sorting Algorithms for Para l l~ lComputers)) , I~EE Transac-
tionson Computers C-27. 84 - 87, 1978.
V.E. Benes, Mathematical Theory o f Connecting Networks and Telephone Traffic, Academic Press,
Ncw York. 1965.
J .L . Bentley. ((A Parallel Algorithm for Constructing Minimum Spanning Trees)), Journal of Algo-
rithms l , 51 - 59, 1980.
J.L. Bentley and H.T. Kung, ((A Tree Machine for Searching P r o b l e m s ~ , Proceedings o f ' the1979
International Conference on Parallel Processing, 251 - 266, 1919.
P. Bertolazzi and M. Pirozzi, ((Parallel Algorithms for Dynamic Programming Problems)), Proceed-
ings ofrhe Symposium on Vector and Parallel Processors, Rome, Italy, 1982.
A.A. Bertossi and M.A. Bonuccelli, ((Some Parallel Algorithms on Interval Graphs)), in P. Bertolazzi
and F. Luccio, eds., VLSI: Algorirhms and Architectures, 69 - 78, North-Holland. Amsterdam,
1985.
D.P. Bertsekas, ((Distributed Dynamic Programming)), IEEE Transactions on Automatic Control

D.P. Bertsekas, ((A Distributed Asynchronous Relaxation Algorithm for the Assignment Problem)),
Proceedings of the 24th IEEE Conference on Decision and Control (to appear).
D.P. Bertsekas and D. El-Baz, ((Distributed Asynchronous Relaxation Methods for Convex Net-
work Flow Problems)), LIDS Report P-1417, Massachusetts Institute of Technology, Cambridge,
1984.
G. Bilardi and F . Preparata, ((A Minimum VLSl Network for O(logN) Time Sorting,, IEEE Tran-
sactionson Computers C-34, 336 - 343, 1985.
D. Bitton, D.J. DeWitt, D.K. Hsiao and J . Menon, ((A Taxonomy of Parallel Sorting)), ACM Comput-
ingSurueys 16, 287 - 318, 1984.

18, 37 - 39, 1984.

27,610 - 616, 1982.

Parallel computer models and combinatorial algorithms 35 9

1251

I261

1271

1281

I291

1421

1431

1441

145 I

N. Blum, ((A Note on t h e Parallel Computation Thesis)), Information Processing Letters 17, 203 -
205, 1983.
A. Borodin and J .E . Hopcroft, ((Routing, Merging and Sorting on Parallel Models o f Computation)),
Proceedings o f the 14th Annual ACM Symposium on Theory o f Computing,338-344, 1982.
H. Breteuil, (tune machine qui a d u coeur: l e processcur systolique Gapp d e NCR)), Minis et Micros

S.A. Browning, ((Algorithms for the Tree Machiner, in C. Mead and L. Conway, authors, Introduc-
tion to VLSISystems. 295 - 312, Addison-Wesley, Reading, 1980.
F.W. Burton, G.P . McKeown, V.J. Rayward-Smith and M.R. Sleep, ((Parallel Processing and Com-
binatorial Optimizations, in L.B. Wilson, C.S. Edwards and V.J. Rayward-Smith, eds., Combina-
torial Optimization 111, 19 - 36, University of Stirling, 1982.
F.W. Burton. M.N. Huntbach, G.P . McKeown and V.J . Rayward-Smith, ctParallelism in Branch-
and-Bound Algorithms)). Report CSA/3/1983, University of East Anglia, Norwich, 1983.
I. Casti, M. Richardson and R. Larson. ((Dynamic Programming and Parallel Computers);, Journal
o f Optimization Theory and Applications 12,423 - 438, 1973.
A.K. Chandra. D.C. Kozen and L.J . Stockmeyer. aAlternation)),Journalof the ACM 28, 114 - 133,
1981.
K.M. Chandy and I. Misra, ((Distributed Computation on Graphs: Shortest Path Algorithms)),
Communications o f the A C M 2 5 , 833 - 837, 1982.
F.Y. Chin, J . Lam and I-N. Chen, ((Efficient Parallel Algorithms for Some Graph Problems)). Com-
munications o f the ACM 25,659 - 665, 1982.
J . Chudik, ((Data Flow Computer Architecture)), in J. Miklosko and V.E. Kotov, eds., Algorithms.
Software and Hardware ofParallel Computers, 323 - 358, Springer-Verlag, Berlin, 1984.
C. Clos, ((A Study of Nonblocking Switching Networks)), Bell Systems Technical Journal 32, 406 -
424, 1953.
R . Cole and C.K. Yap, ctA Parallel Median Algorithm)), Information Processing Letters 20, 137 -
139. 1985.
S.A. Cook, ((An Observation on Time-Storage Trade O f f r , Journal o f Computerand System Scien-
ces 9, 308 - 316, 1974.
S.A. Cook, ((Towards a Complexity Theory o f Synchronous Parallel Computations, Enseignement
Mathdmarique 27,99 - 124, 1981.
S.A. Cook, ((An Overview of Computational Complexity)), Communications o f the ACM 26, 401 -
408. 1983.
F. Courteille and P. Fraisse, ((Vectorisation d’Algorithmes de Calcul de Fermeture Transitive)),
Actesdu Stminuire le Calcul Parall&Ie et ses Applications aux Ttldcommunications, Note Techni-
q u e CNET NT/PAA/TIM/MTI/lSIO, 79 - 122, Issy-les-Moulineaux, 1985.
B.A. Crane, ((Path Finding with Associative Memory)), iEEE Transactions on Computers C-17,

D. Al-Dabass. ((Two Methods for the Solution of the Dynamic Programming Algorithm on a Multi-
processor Cluster)), Optimal Control Applicationsand Methods 1, 227 - 238, 1980.
E. Dekel, D . Nassimi and S . Sahni. parallel Matrix and Graph Algorithms)), SIAM Journal on
Computing 10,657 - 675, 1981.
E. Dekel and S . Sahni, ((A Parallel Matching Algorithm for Convex Bipartite Graphs and Applica-
tions t o Scheduling)), Technical Report 81 - 3. Computer Science Department, University of Minne-
sota, Minneapolis, 1981.
E. Dckel and S . Sahni, ((A Parallel Matching Algorithm for Convex Bipartite Graphs)), Proceedings
o f the 1982 International Conference on Parallel Processing, 178 - 184, 1982.
E. Dekel and S. Sahni, ((Binary Trees and Parallel Scheduling Algorithms)), IEEE Transactions on
Computers C-32, 307 - 315. 1983.
E. Dekel and S . Sahni, ((Parallel Scheduling Algorithms);, Operations Research 31, 24 - 49, 1983.
N. Deo, C.Y. Pang and R.E. Lord, ((Two Parallel Algorithms for Shortest Path Problems)), Pro-
ceedings o f the 1980 international Conference on Parallel Processing, 244 - 253, 1980.
N. Dco and Y.B. Yoo, <(Parallel Algorithms for the Minimum Spanning Tree Problemr,Proceedings
of the 1981 International Conference on Parallel Processing, 188 - 189, 1981.
B.C. Desai, ((The BPU, a Staged Parallel Processing System to Solve the Zero-One Problem)), Pro-
ceedingsofICS‘78, 802 - 817, 1978.
0.1. El-Dessouki and W.H. Huen, ((Distributed Enumcration on Between Computers)), IEEE Tran-
sactionson Computers C-29, 818 - 825, 1980.
E.W. Dijkstra, ((A Note on Two Problems in Connexion with Graphs)), Numerische Mathematik I ,
269 - 271, 1959.

235,67 - 73, 1985.

691 - 693, 1968.

360 C. C. Ribeiro

1691

I701

1731

I741

175 I

D. Dobkin, R . J . Lipton and S . Reiss, ((Linear Programming is Log-Space Hard forPu, Information
Processing Letters 8, 96 - 97, 1979.
A. Dutta, H.J. Siege1 and A.B. Whinston. ((On the Application of Parallel Architectures t o a Class
of Operations Research Problems)), RAIRO Recherche Opirationnelle 17. 317 - 341, 1983.
D.M. Eckstein and D.A. Alton, ((Parallel Searching of Non-Sparse Graphs)), Technical Report
77-02, Department of Computer Science, University of Iowa, Iowa City, 1977.
S . Even, ctParallelism in Tape Sorting)), Communications of the ACM 17, 202 - 204, 1974.
M.J. Flynn, ((Very High-speed Computing Systems)), Proceedings o f the IEEE 54, 1901 - 1909,
1966.
M.J. Flynn, ((Some Computer Organizations and Their Effectiveness)), IBEE Transactions on Com-
puters (2-21, 948 - 960, 1972.
S . Fortune and J. Wyllie. ctParallelism in Random Access Machiness.Proceedings o f the 10th Annual
ACMSymposiumon TheoryofComputing, 114 - 118, 1978.
R.G. Gallager, P.A. Humblet and P.M. Spira, ((A Distributed Algorithm for Minimum-Weight
Spanning Trees)), ACM 7Yansactions on Programming Languages and Systems 5 . 66 - 77, 1983.
M.R. Garcy and D.S. Johnson, Computers and Intractability: A Guide t o the Theory o f NP-Com-
pleteness, W.H. Freeman and Company. San Francisco, 1979.
F. Gavril, ((Merging with Parallcl Proccssorss, Communications o f the ACM 18, 5 8 8 -591, 1975.
M. Goldberg and 2. Miller, ((A Parallel Algorithm for Bisection Width in Trees)), XII International
Symposium on Mathematical Programming, Cambridge, 1985.
L.M. Goldschlager, ((Synchronous Parallel Computation)), Technical Report 114, University of
Toronto, Toronto. Canada, 1977.
L.M. Goldschlager, ((The Monotone and Planar Circuit Value Problems are Log-Space Complete
forPs,SIGACTNews9(2),25-29, 1977.
L.M. Goldschldger, ((A Universal Interconnection Pattern for Parallel Computers)). Journal o f the

L.M. Goldschlager, R.A. Shaw and J . Staples, ((The Maximum Flow Problem is Log-Space Complctc
forb's, TheoreticalComputer Science 21, 105 ~ 111, 1982.
A. Gottlieb a n d C.P. Kruskal, ((Complexity Results for Permuting Data and Other Computations on
Parallel Processorsa.Joumalofthe ACM 31, 193 - 209, 1984.
L.J. Guibas, H.T. Kung and C.D. Thompson, ((Direct VLSI Implementation of Combinatorial
Algorithms)), Caltech Conference on VLSI, 509 - 525, 1979.
S.E. Hambrush, (tVLSI Algorithms for the Connected Component Problem)), SIAM Journal on
Compuring 12, 354 - 365, 1983.
J . Harte, ((The FPS AP-12OB Array Processor)), in C.R. Jesshope and R.W. Hockney, eds., Infotech
State of the Art Report:Supercomputers - Vol. 2 , 183 - 203, Infotech Intl . Ltd., Maidenhead, 1979.
L.S. Haynes, R. L. Lau, D.P. Siewiorek and D.W. Mizell, ((A Survey of Highly Parallel Computing)),
IEEEComputer 15(1), 9 - 24, 1982.
D.S. Hirschberg, ((PardkI Algorithms for the Transitive Closure and t h e Connccted Component
Problems)), Proceedings o f the 8 th Annual ACM Symposium on Theory o f Computing, 5 5 - 51,
1976.
D.S. Hirschberg, ((Fast Parallcl Sorting Algorithms)), Communications o f the ACM 21. 657 - 661,
1978.
D.S. Hirschberg, A.K. Chandra and D.V. Sarwatc. ((Computing Connected Components o n Paral-
lel Computers,, Communications o f the ACM 22, 461 - 464, 1979.
J .K. Ha, ((Decomposition o f Linear Programs Using Parallcl Computations. XI1 International Sym-
posium on Mathematical Programming, Cambridge, 1985.
R.W. Hockney, (tMIMD Computing in thc U S A - 1 9 8 4 ~ , Parallel Computing 2, 119 - 136. 1985.
R.W. Hockney and C . R . Jesshope, Purallel Compurers, Adam Hilger Ltd., Bristol. 1981.
P.A. Huniblct, (<A Distributed Algorithm for Minimum Weight Directed Spanning Trees)). Techni-
cal Report LIDS-P-1149, Massachusetts Institute of Technology, Cambridge, 1981.
K. Hwang and F .A. Briggs, Computer Architecture and Parallel Processing, McGraw-Hill Book
Company, New York, 1984.
IBM Corporation. The IBM3090Processor, 1985.
M. Imai and T. Fukumura, ((A Parallelized Branch-and-Bound Algorithm Implementation and
Efficiency)), Systems-Computers-Controls 10, 62. 70, 1979.
E.A. lvanov and V.P. Shevchenko, ((Parallel Computations on Graphs)), Cybernetics 20. 418 - 425,
1985.
J . Ja'Ja', ((The VLSl Complexity o f Selected Graph Problems)), Journal of the ACM31, 377 - 391.
1984.

ACM 29, 1073 - 1086, 1982.

Parallel computer models and combinatorial algorithms 361

1901

J . Ja’Ja’ and J . Simon. ((Parallel Algorithms in Graph Theory: Planarity Testing)), SIAM Journal
on Computing 11, 314 - 328, 1982.
L. Janiga and V. Koubek. ((A Note o n Finding Minimum Cuts in Directed Planar Networks b y
Parallel Computationan, InformationProcessing Letters 21. 75 - 78, 1985.
D.S. Johnson, ((The NP-Completeness Column: An Ongoing Guide (seventh edition)>, Journal
ofAlgorithms4, 1 8 9 - 203, 1983.
D.S. Johnson and C.H. Papadimitriou. ((Computational Complexity)), in E . Lawler, J .K. Lenstra,
A.H.C. Rinnooy Kan and D.B. Shmoys, eds., The Traveling Salesman Problem, 37 - 8 5 , Wiley,
New York, 1985.
D.B. Johnson and S.M. Venkatesan, ((Parallel Algorithms for Minimum Cuts and Maximum Flows
in Planar Networks)), Proceedings o f the 23rd Annual IEEE Symposium on Foundations of Com-
puter Science, 244 - 254, 1982.
N.D. Jones and W . T . Laaser, ((Complete Problems for Deterministic Polynomial Time)), Theoretical
CornputerScience 3, 105 - 1 1 7 , 1976.
B. Kanidoum. ((Speeding up the Primal Simplex Algorithm o n Parallel Computers, SIGMAPEulletin

M.J. Kascic J r . , ((Vector Processing on the CYBER-200n, i n C.R. Jesshope and R.W. Hockney, eds.,
Infotech State o f the Art Report: Supercomputers - Vol. 2 , 237 - 270. Infotech Intl., Maidenhead,
1979.
G.A.P . Kindervater. ((The Complexity of Trawling Salesman Heuristics on Parallel Computers)),
XII International Symposium on Mathematical Programming, Cambridge, 1985.
G.A.P . Kindervater and J.K. Lenstra, ((An Introduction t o Parallelism in Combinatoridl Optimiza-
tion)), Report OS-R8501, Department of Operations Research and System Theory, Centre for
Mathematics and Computer Science, Amsterdam, 1985.
G.A.P. Kindervater and J . K . Lenstra, ((Parallel Algorithms)), in M. O’hEigeartaigh, J .K. Lenstra
and A.H.G. Rinnooy Kan, eds., Combinatonal Optimization, 106 - 128, Wiley, Chichester, 1985.
D.E. Knuth, The Art o f Computer Programming - Vol. 3: Sorting and Searching, Addison-Wesley,
Reading, 1973.
P.M. Kogge, The Architecture o f Pipelined Computers, McCraw-Hill Book Company, New York,
1981.
C.P. Kruskal, ((Results in Parallel Searching, Merging and Sorting)), Proceedings o f the 1982 Interna-
tional Conference on ParallelProcessing, 196 - 198, 1982.
L. Kucera, ctParallcl Computation and Contlicts in Memory Access)), Information Processing Letters

M. Kuinar and D.S. Hirschberg, ((An Efficient Implementation of Batcher’s Odd-Even Merge Algo-
rithm and Its Application in Parallel Sorting Schemes)), IEEE Transactions on Computers C-32.

H.T. Kung, ((Why Systolic Architoctures?a,IEEE Computer 15(1), 37 - 4 6 . 1982.
R.E. Ladner, ((The Circuit Value Problem is Log-Space Complete for P r , SIGACT News 7 (I) ,

T . -H. Lai and S. Sahni, ctAiiomalie\ in Parallel Branch-and-Bound Algorithmsx, Proceedings of
the 1983International Conferenceon ParallelProcessing, 183 - 190, 1983.
T . - H . Lai and S . Sahni. ((Anomalies in Parallel Branch-and-Bound Algorithms)), Communications
o f the ACM 27.594 - 602, 1984.
H.W. Lang, M. Schimmler, H. Schnieck and H. Schrdder, ((A Fast Sorting Algorithm for VLSIr,
in J . D h z , ed., Proceedings o f the 10th Colloquium on Automata, Languages and Programming,
Lecture Notes in Computer Science 1 5 4 , 4 0 8 - 419, Springer-Verlag, Berlin, 1983.
I . Lavallee, ((Un Algor i thm Parallele Efficace pour Construire u n Arbre d e Poids Minimal dans
u n Graphe~) . RAlRO Recherche Opc+ationnelle 19, 5 1 . 69, 1985.
1. LavallCe and C. Lavault, ((Algoritliniique Parall& et Distribueea, Rapport de Recherche no.
4 7 I , INRIA, Rocquencourt, France, 1985.
I . LavallCe and C . Roucairol, ((Parallel Branch and Bound Algorithmsr. MASI Research Report,
EURO VII, Bologna. Italy, 1985.
1. Lavall6e and G . Roucairol, ((A Fully Distributed (Minimal) Spanning Tree Algorithms, Informa-
tion Processing Letters (to appear).
T . Leighton. Complexity Issues in VLSI-Optimal Layouts for the Shuffle Exchange Graph and
Other Networks, The MIT Press, Boston, 1983.
T . Leighton, ((Tight Bounds on the Complexity of Parallel Sorting)), IEEE Transactions on Com-
puters C-34, 344 - 354, 1985.
C.E. Leiserson, Area-Efficient VLSI Computation, The MIT Press, Boston, 1983.
G . Lev, N. Pippcnger and L.G. Valiant. ((A Fast Parallel Algorithm for Routing in Permutation

31, 1 9 - 2 3 . 1982.

1 4 , 9 3 - 96, 1982.

254 - 264, 1983.

I8 - 20, 1975.

362 C. C. Ribeiro

Networks)), IEEE Transactions on Computers C-30,93 - 100, 1981.
K.N. Levitt and W.H. Kautz, ctCellular Arrays for the Solution of Graph Problems)), Communica-
tionsoftheACM15,789-801, 1972.
B. Lint and T. Agerwala, ((Communication Issues in the Design and Analysis of Parallel Algorithmsa,
IEEE Transactions on Software Engineering 7, 174 - 188, 1981.
H. Lomax and T.H. Pulliam, ((A Fully Implicit, Factored Code for Computing Three-Dimensional
Flows on the ILLIAC-IVD, in G. Rodrigue, ed., Parallel Computations, 217 - 250, Academic Press,
New York, 1982.
S.-W. Mai and D.J. Evans, ((A Parallel Algorithm for the Enumeration of the Spanning Trees of a
Graph)), Parallel Computing 1, 275 - 286, 1984.
D.L. Mangasarian and R. DeLeone, ((A Parallel Successive Overrelaxation (SOR) Algorithm for
Linear Programming)), XII International Symposium on Mathematical Programming, Cambridge,
1985.
P. Mateti and N. Deo, ((Parallel Algorithms for the Single Source Shortest Path Problem)), Compu-
ting 29, 31 - 49, 1982.
C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading, 1980.
N . Megiddo, ctPoly-log Parallel Algorithms for LP with an Application to Exploding Flying Objects)),
unpublished manuscript, 1982.
N. Megiddo, ((Applying Parallel Computation Algorithms in the Design of Serial Algorithms)),
JournaloftheACM30,852-865,1983.
R.R. Meyer, ((Large-Scale Parallel Optimization on the Crystal Multicomputer)). XII International
Symposium on Mathematical Programming, Cambridge, 1985.
J . Mohan, ((Experience with Two Parallel Programs Solving the Traveling Salesman Problem*,
Proceedingsof the 1983 International Conference on Parallel Processing, 191 - 193, 1983.
V. Montanari, ((On the Optimal Detection of Curves in Noisy Pictures)), Communications o f t h e

D.E. Muller and F.P. Preparata, ((Bounds to Complexities of Networks for Sorting and for Swit-
chingr.JournaloftheACM22, 195 - 201, 1975.
D. Nassimi and S . Sahni, ((Bitonic Sort on a Mesh-Connected Parallel Computer)), IEEE Transactions
on Computers C-28, 2.7, 1979.
D. Nassimi and S . Sahni, ((Finding Connected Components and Connected Ones on a Mesh-Connect-
ed Parallel Computera,SIAMJournulon Computing 9, 744 - 757, 1980.
D. Nassimi and S. Sahni, ((An Optimal Routing Algorithm for Mesh-Connected Parallel Computers)),
Journal of the ACM 27.6 - 29, 1980.
D. Nassimi and S . Sahni, ((Data Broadcasting in SIMD Computers)), IEEE Transactions on Compu-
tersC-30 , 101 - 106, 1981.
1). Nassimi and S . Sahni, ctParallel Permutation and Sorting Algorithms and a New Generalized
Connection Network)), Journalof the ACM 29,642 - 667. 1982.
D.D. Nath and S.N. Maheshwari, ((Parallel Algorithms for the Connected Components and Minimal
Spanning Tree Problems)), Information Processing Letters 14, 7 - 11, 1982.
D.D. Nath, S.N. Maheshwari and P.C.P. Bhatt, ((Efficient VLSI Networks for Parallel Processing
Based on OrthogonalTrees)), IEEE Transactionson Computers C-32,569 - 581, 1983.
S.E. Orcutt, ctImplementation of Permutation Functions on llliac IV-Type Computers)), IEEE
Transactionson Computers C-25,929 - 936, 1976.
C. H. Papadimitriou and K . Steiglitz, Combinatorml Optimization: Algorithms and Complexity,
Prentice Hall, Englewood Cliffs, 1982.
D.S. Parker J r . and B. Samadi, ((Distributed Minimal Spanning Tree Algorithms)), in G. Pujolle, ed.,
Performance of Data Communication Systems and Their Applications, 45 - 52, North-Holland,
Amsterdam, 1981.
F.P. Preparata, ((New Parallel-Sorting Schemes)), IEEE Transactions on Computers C-27, 669 -
673, 1978.
F.P. heparata, ((Algorithm Design and VLSI Architectures)), Proceedings of the Symposium on
Vector and Parallel Processors, Rome, Italy, 1982.
F.P. Preparata and J . Vuillemin, ((The Cube-Connected Cycles: A Versatile Network for Parallel
Cornputation)), Communications of the ACM 24, 300 - 309, 1981.
R.C. Prim, ((Shortest Connection Networks and Some Generalizations)). Bell System Technicul

E.A. Pruul, ((Parallel Processing and a Branch-and-Bound Algorithm)), MSc. Thesis, Cornell Univer-
sity, Ithaca, 1975.
M.J. Quinn and N. Deo, ((A Parallel Approximate Algorithm for the Euclidean Traveling Salesman

ACM 14, 335 - 345, 1971.

Journal 36, 1389 - 1401, 1957.

1671

1681

1691

1701

1711

1721

1731

1741

Parallel computer models and combinatorial algorithms 363

Problem)), Report CS-83 .105 , Computer Science Department, Washington State University, Pul-
lman, 1983.
M.J. Quinn and N. Deo, ((Parallel Graph Algorithms)), ACMComputingSurveys 16,319 - 348, 1984.
S.F. Reddaway, ((The DAP Approach)), in C.R. Jesshope and R.W. Hockney, eds., Infotech State
o f the Art Report: Supercomputers- Vo1. 2, 311 - 329, Infotech Intl. Ltd,, Maidenhead, 1979.
E. Reghbati and D.C. Corneil, ((Parallel Computations in Graph Theoryr, SIAM Journal on Compu-
ting 7, 230. 237, 1978.
J .H. Reif and L.G. Valiant, ((A Logarithmic Time Sort for Linear Size Networks)), Proceedings o f
the 15th Annual ACMSymposium on Theory o f Computing, 10 - 16, 1983.
R. Reischuk, ((A Fast Probabilistic Parallel Sorting Algorithm)), Proceedings o f the 22nd Annual
IEEESymposiumon Foundationsof ComputerScience, 212- 219, 1981.
R. Reischuk, ((Probabilistic Parallel Algorithms for Sorting and Selection)), SIAM Journal on Com-
puting 14, 396 - 409, 1985.
C.C. Ribeiro. ((Performance Evaluation of Vector Implementations of Combinatorial Algorithms)),
Parallel Computing 1, 287 - 294, 1984.
G. Rote, ((A Systolic Array Algorithm for the Algebraic Path Problemb,Bericht 8 4 - 4 3 , Technische
Universitat Graz, Inatitut fur Mathematik, Graz, Austria, 1984.
C. Roucairol, ((A Parallel Branch and Bound Algorithm for the Quadratic Assignment Problems,
School on Combinatorial Optimization, Rio de Janeiro, Brazil, 1985.
R.M. Russell, ((The CRAY-1 Computer Systenin, Communications o f the ACM 21, 63 - 72, 1978.
N. Santoro, ((On the Message Complexity of Distributed Problems#, Research Report. Distributed
Computing Group. Carleton University, Ottawa, 1982.
C. Savage, ((Parallel Algorithms for Graph Theoretic Problems)), Ph.D. Thesis. University of Illinois,
1977.
C. Savage, ((A Systolic Design for Connectivity Problems)), IEEE Transactions on Computers C-33,

C. Savage and J . Ja’Ja’, ((Fast, Efficient Parallel Algorithms for Some Graph Problems,, SIAM
JournaIonComputing10,682-691, 1981.
W.J. Savitch, ((Relationships between Nondeterministic and Deterministic Tape Complexities#,
Joumalof Computerand System Sciences 4 ,117 - 192, 1970.
J .T. Schwartz, ctUltracomputersn. ACM Transactions on Programming Languages and Systems 2,

C.L. Seitz, ((The Cosmic Cubes, Communicationsofthe ACM28, 22 - 3 3 , 1985.
J.A. Sharp, Data Flow Computing, Ellis Horwood Limited, Chichester, 1985.
J .C. Shepherdson and H.E. Sturgis, ((Computability of Recursive Functions)), Journal o f the ACM

Y. Shiloach and U. Vishkin, ((Finding the Maximum, Merging and Sorting in a Parallel Computation
Model,, JournalofAlgorithms 2, 88 - 102, 1981.
Y. Shiloach and U. Vishkin. ((An O(logn) Parallel Connectivity Algorithm)), Journal ofAlgorithms

Y. Shiloach and U . Vishkin, ((An O(na logn) Parallel MAX-FLOW Algorithms, Journal o f Algo-
rithms 3, 128 - 146, 1982.
A.R. Siegel, ((Minimum Storage Sorting Network$)), IEEE Transactions on Computers C-34, 355 -
361, 1985.
H.J. Siegel, ((A Model o f SIMD Machines and a Comparison of Various Interconnection Networks)),
IEEE Transactionson Computers C-28,907 - 917, 1979.
B.J. Smith, ((A Rpelined, Shared Resource MlMD Computers, Proceedings o f the 1978 International
Conference on Parallel Processing, 6 - 8, 1978.
J .S. Squire and S.M. Palais, ((Programming and Design Considerations of a Highly Parallel Com-
putern, Proceedings of the AFIPS Spring Joint Computer Conference 23, 395 - 400, 1963.
H.S. Stone, ctParallel Processing with the Perfect Shuffle)), IEEE Transactions on Compurers C-20,

Q.F. Stout, ((Sorting, Merging, Selecting, and Filtering on Tree and Pyramid Machines)). Proceedings
of the 1983 International Conferenceon ParallelProcessing, 214 - 221, 1983.
H. Tamura, S . Kamiya and T . Ishigai, (tFACOM VP-100/200: Supercomputers with Ease of Use)),
Parallel Computing 2, 87 - 107, 1985.
R.E. Ta jan and U. Vishkin, t A n Efficient Parallel Biconnectivity Algorithm,, SIAM Journal on
Computing 14,862 - 874, 1985.
C.D. Thompson, ((Area-Time Complexity for VLSIs,Proceedings o f the 11th Annual ACMSympo-
sium on Theory o f Computing, 81 - 88, 1979.

99 - 104, 1984.

484 - 521, 1980.

10, 217 - 255. 1963.

3 ,57 - 67, 1982.

1.53 - 161, 1971.

C. C. Ribeiro

C.D. Thompson and H.T. Kung, ((Sorting on a Mesh-Connected Computer)), Communications of
theACM20. 2 6 3 - 2 7 1 . 1977.
K . J . Thurber and L.D. Wald, ((Associative and Parallel Processors)), ACM Computing Surveys 7.

S . Todd, ((Algorithm and Hardware for a Merge Sort Using Multiple Processors)), IEM Journal of
Research and Development 22, 5 0 9 - 517. 1978.
P.C. Treleaven, D.R. Brownbridge and R.P. Hopkins, ((Data-Driven and Demand-Driven Compu-
ter Architecture)), ACMComputingSurveys 14. 9 3 - 143, 1982.
Y. H. Tsin, ((Bridge-connectivity and Biconnectivity Algorithms for Parallel Computer Models)),
Proceedingsofthe 1983International ConferenceonParaNelProcessing. 180 - 182, 1983.
Y.H. Tsin, ((An Optimal Parallel Processor Bound in Strong Orientation of an Undirected Graphn.
Information Processing Letters 20, I43 - 146, 1985.
Y.H. Tsin and F.Y. Chin. ((Efficient Parallel Algorithms for a Class of Graph Theoretic Problcmss,
SIAMJoumalon Computing 1 3 , 5 8 0 - 5 9 9 , 1984.
S.H. Unger, ((A Computer Oriented Toward Spatial Problems)), Proceedings IRE 4 6 , 1744 - 1750,
1958.
L.G. Valiant, ctParallelism in Comparison Problems)), SIAM Journal on Computing 4 , 348 - 355,
1975.
L.G. Valiant, ((A Scheme for Fast Parallel Communicationr. SIAM Journal on Computing 11.

L.G. Valiant, ((Reducibility by Algebraic Projections)), Enseignement Mathitnatique 28. 253 -
268, 1982.
L.G. Valiant, #Parallel Computation)), in Foundations of Computer Science I V - Distributed
Systems: Part I , Algorithms and Complexity, 35 - 4 8 , Mathematical Ccntre Tract 158, Centre for
Mathematics and Coniputcr Science, Amsterdam, 1983.
L.G. Valiant and G.J. Brebner, ((Universal Schemes for Parallel Communications. Proceedings of the
I3rh Annual ACMSymposium on Theory o f Computing, 263 - 277, 1981.
P. Van Enide Boas, ((The Second Machine Class: Models of Parallelisms, in J . Van Leeuwen and
J . K . Lenstra, eds., Parallel Computers and Computations, CWI Syllabus, Centre for Mathematics
and Computer Science, Amsterdam, 1985.
F. L. Van Scoy, ((The Parallel Recognition of Classes of Graphs)), IEEE Transacfions on Computers

U. Vishkin, ((Synchronous Parallel Computation - A Survey)), Preprinr, Courant Institute, New
York University, 1983.
U. Vishkin, ((On Efficient Parallel Strong Orientation)), Information Processing Letters 20, 235 -
240, 1985.
U. Vishkin and A. Wigdarson, ((Trade-offs between Depth and Width in Parallel Computationa,
SIAMJoumalon Computing 14. 303 - 314, 1985.
B.W. Wah and Y.W. Ma, ((MANIP-A Multicomputer Architecture for Solving Combinatorial Extre-
mum-Search Problems)), IEEE Transactions on Computers C-33, 3 7 7 . 390, 1984.
W.J. Watson, ((The TI-ASC - A Highly Modular and Flexible Super Computer Architecture)>. AFIPS
Proceedings FJCC, 221 - 228, 1972.
J.A. Wisniewski and A.H. Sameh, ((Parallel Algorithms for Network Routing Problems and Recur-
rences)), SIAM Journal on Algebraic and Discrete Methods 3, 319 - 394, 1982.
J.C. Wyllie, ((The Complexity of Parallel Computations)), Ph.D. Thesis, Cornell University, Ithaca.
1979.
A.C.-C. Yao, ((On Parallel Computation for the Knapsack Problem)), Journal of the ACM 2 9 , 8 9 8 -
903, 1982.
V. Zakharov, c(Para1lelism and Array Processing>), IEEE Transactions on Computers C-33, 45 - 7 8 ,
1984.

215 - 255, 1975.

350 - 3 6 1 , 1 9 8 2 .

C - 2 9 , 5 6 3 - 5 7 0 , 1980.

Celso Carneiro Ribeiro
Catholic University of Rio de Janeiro
Department of Electrical Engineering
Ghea-Caixa Postal 38063
Rio de Janeiro 22452
Brazil

Annals of Discrete Mathematics 31 (1987) 365 - 384
0 Elsevier Science Publishers B.V. (North-Holland)

PROBABILISTIC ANALYSIS OF ALGORITHMS

Alexander H.G. RINNOOY KAN

1. Introduction

Suppose that two thieves meet on a regular basis t o divide the proceeds of their
joint effort. Each stolen object has a specific dollar value and has to be assigned
to one of the two. For obvious reasons, they are interested in a quick and fair
partitioning scheme.

In spite of its apparent simplicity, the above combinatorial problem is not
easy to solve if we insist on an optimal solution, i.e., one in which the difference
between the values assigned to each thief is as small as possible. As is the case
with most practical problems, this problem too is known to belong to the class
of NP-complete problems. This implies that any optimization method for its
solution could be expected to perform very poorly on some occasions: more
formally, its worst case running time is likely to grow exponentially with problem
size.

Hence, in choosing a solution scheme, the thieves will be forced into an unplea-
sant trade-off between two features of algorithmic quality: the computational
effort (the smaller running time, the better) on one hand and the computational
result (the smaller deviation from optimality, the better) on the other hand.
Complexity theory indicates that we cannot insist on a simultaneous absolute
guarantee for both, i.e., on a fast (polynomially bounded) running time as well
as a zero deviation from the optimal solution value.

One possible way out of this dilemma is to change the perspective on the
analysis by no longer demanding an absolute guarantee. For practical purposes
an algorithm that, with respect t o both effort and result, does well in the majority
of cases or even on average might be perfectly acceptable.

Probability theory provides the natural setting for such an analysis ofalgorithms.
This analysis starts from a specification of what an average problem instance
would look like, in terms of a probability distribution over the class of all instances.
The running time and the solution value of a particular algorithm are then consi-
dered as random variables, whose behaviour can be studied and evaluated. This
approach can therefore be viewed as the analytical counterpart to the familiar
experimental analysis in which an algorithm is tried out on a set of supposedly
representative test problems and evaluated statistically. Here we obtain the rigor

365

366 A. H. G. Rinnooy Kan

of mathematical analysis at the expense of a certain naivete, in that only relatively
straightforward solution methods can be analyzed probabilistically in full detail.

Although the probabilistic analysis of algorithms has only recently become an
active research area, it has already generated an impressive number of publica-
tions. A concise survey of this area would require the prior introduction of many
techniques from probability theory and could hardly do justice to the diversity
of ideas and approaches that one finds in the literature. Fortunately, a recent
annotated bibliography (Karp et al. 1321) provides an up to date survey of the
available articles and publications. In view of the existence of this source of detail-
ed information, no attempt at completeness will be made in what follows below.
Rather, the nature of the analysis and of the results will be illustrated by some
typical examples.

In Section 2, we consider the problem of the two thieves in more detail. It
is, of course, none other than the well know PARTITION problem in which
one seeks to minimize the size of the largest share. In Section 3, we review some
representative result that are known for problems defined in the Euclidean plane.
In Section 4, we examine the fertile area of optimization problems defined on
graphs and networks. In Section 5 , we indicate some possibilities for future work
in this very lively research area.

We conclude this introduction by a short digression on modes of stochastic
convergence, clearly an essential concept if we want to analyze the notion of a
random variable such as the error of a heuristic going to 0 with increasing problem
size.

Almost sure Convergence of a sequence of random variablesf,, to a constant c
by definition means that Pr{ ,ll= y,, = c } = 1; it is a strong form of stochastic
convergence and implies the weaker convergence in probability, which stands
for ,I@- Pr { I?,, - c 1 > E }= 0 for all E > 0. The reverse implication holds under
the additional assumption that, for all f > 0,

n = 1

Similarly, convergence ofz,, to c in expectation, i.e.

also implies convergence in probability, with the reverse implication holding
under additional boundedness assumptions on - y,, .

2. The partition problem

Perhaps the simplest possible way to solve the PARTITION problem of the two

Probabilistic analysis of algorithms 361

thieves is t o allow each thief t o choose a particular item in turn until they have all
been assigned. If the i - t h item has value ai (1 = 1, . . . , n) , then this amounts to
ordering the items according to decreasing aj values a(") 2 > . . .2 a(') ; one
thief receives a(") + a (n - 2) + . . . , the other a(" - ') + a(n-3) +

This is clearly a fast heuristic method that may, however, produce a very
inequitable result: in the worst case, the first thief may receive up to 50 percent
more than the optimal partition would grant him. (Take a, = 2, aZi = aZi+ =
= 2-' (i > 1). How about its average case behaviour? To answer that question,
we specify a probability distribution over all problem instances by assuming that
robberies are so frequent and haphazard that the ai can be thought of as inde-
pendent draws from a uniform distribution on, say, [0, 1 I. (Actually, many of
the results mentioned below hold under much more general assumptions, though
independence is always required.)

Under the uniform assumption, the optimal solution value ZnoPT of the parti-
tion problem (i.e., the smallest possible size of the larger share) turns out to be
almost surely (as.) asymptotic to the lower bound (2;= , gi) /2 :

zOPT
- n

(3)

This result provides a first example of asymptotic probabilistic value analysis :
for n large enough, the optimal solution value ZfPT can be guessed with increasing
(relative) accuracy. What about the heuristic solution value Zr, i.e. the size of
the share under the heuristic scheme proposed above? We know that

and it is not hard to show that the difference between z," and (Z;=, gi) /2 a s .
converges to 1/4, so that also

ZH
(5)

- n
-+ 1 (a.s.1

(i = -f 1 4) i Z

and hence

- -+1 (as.).
zOPT
- n

This implies that the heuristic is asymptotically optimal: its relative error (i.e.,
its percentage deviation from the optimum) (zf - gfPT)/zfPT a s . goes to 0.

368 A . H. G. Rinnooy Kan

Hence, a probabilistic analysis leads to a much more optimistic conclusion than
a worst case oriented one.

What about the absolute error g: - ZnoPT o r the absolute difference between
the two shares? Neither of these two quantities goes to 0 for the above heuristic,
so there is room for improvement. A slightly more sophisticated scheme would
be to allow each thief in turn to select items until the value of his share exceeds
the value of the current share of his colleague. Even from a worst case point
of view, this is a much more reasonable approach: the larger share can never
exceed its smallest possible size by more than 16 2/3 percent (Graham [20]).
(For a worst case example, take e.g., a , = a , = 3 , a 3 = a4 = a5 = 2.) In a probabi-
listic sense, the difference is even more impressive. Of course, the relative error
again goes to 0, but the absolute difference between the shares df (which is an
upper bound on the absolute error) also satisfies

g;+ 0 (as.)

(Frenk and Rinnooy Kan [141). To prove this result, one observes that

which, after repeated application, yields that

(7)

for all S > 0. The first term converges a s . to S and can therefore be made arbitra-
rily small; for any fixed S, the second term converges a s . to 0 since Z!"=na(i) =

= O (n) and a(") is o (n) for every distribution with finite first moment.
The two results presented so far demonstrate the importance of the theory of

order statistics for the analysis of heuristics that involve the sorting of numbers;
priority rules generally fall into this class.

Can we d o still better? One weakness of a result such as (7) is its asymptotic
nature, i.e. its validity only for sufficiently large values of n. At the very least,
one would like to know the rate at which _df converges to 0. It can be shown
(Frenk and Rinnooy Kan [161) that

AH u - n lim sup <m (as.)
n+ - log log n/n

and a simple argument shows that the rate of convergence for this heuristic
has to be at least l / n in expectation (Karp [32]). This rate is good but not quite
good enough: indeed, it is also known that d,OPT, the smallest possible absolute

Probabilistic analysis of algorithms 369

difference, satisfies
OPT

(Karmarkar et al. [2 9]) . Hence, the exponential effort that may be required for
the computation of the optimal partition is at least rewarded by an exponential
decrease to 0 of the difference between the two shares. Can this also be achieved
a s . in polynomial time?

The answer to this question is unknown, but the previous heuristic can again
be improved upon by essentially assigning two items at a time and compensating
for their difference. More precisely, in the first iteration a(") would be assigned
to one thief, and a("- ') t o the other. The two items would then be replaced by
a single item of value a('2) - and the process would be repeated on the new
set of n - I items until only one item remains; its value represents the difference
between the two shares. A simple backtracking procedure establishes the partition
in terms of the original items.

In the worst case, this heuristic method is not better than the previous one.
The probabilistic analysis of its performance is quite difficult: as on so many
other occasions, each step in the algorithm conditions the probability distribution
encountered in the succeeding steps in a complicated fashion. Since the difference
of two independent uniformly distributed random variables follows a triangular
distribution, there is no distributional invariance throughout the steps of this
method and yet such invariance is an essential prerequisite for a successful analy-
sis. One way to overcome this kind of obstacle is to change the algorithm so that
(with high probability) the value produced will not be affected but its modified
behaviour can be analyzed rigorously. In this particular case, the new version of
algorithm works roughly as follows. In iteration m, it deals with numbers in an
interval [0, am], which is first partitioned into subintervals of size am + The
original differencing method is then applied to random pairs of numbers taken
from the set Si found in the i-th subinterval (i = 1 , . . . , am/am + until a
set S; C [0, a, + is obtained and at most one of the numbers originally in Si
remains. The original differencing method is then used on the set of remaining
numbers to reduce them to a single number in [O, am +

the issue of
distributional invariance has to be addressed. To do so, we assume (inductively)
that S = u Si was divided into two subsets, a subset G of ((good)) points that can
be assumed to come from a uniform distribution over [0, am] and a subset B of
((bad)) points. During the application of the differencing method to the sets Si
the numbers entering S; are labeled good only if they are obtained as the diffe-
rence of two good numbers in Si. As a result, we know that the good numbers
in S' = U S; follow a distribution related to the triangular one. In a final step,
a subset of these numbers is relabeled ((bad)) so that the remaining good ones
are again uniformly distributed over [0, a, + All that remains to be shown is

Now, before the method can be applied recursively to [0,am +

370 A . H. G. Rinnooy Kan

that for appropriate choices of a,, enough good numbers remain for the method
to reach the number of iterations that is required for a good result.

Through this approach, it could be established in Karmarkar and Karp 1281
that

H

(12)

This, in O(n logn) time this method guarantees a rate of convergence that is
superpolynomial, yet subexponential. It is tempting to conjecture that this is
best possible for a polynomial time heuristic!

We have dealt with this simple example in some detail, since it exhibits many of
the ingredients typically encountered in a probabilistic analysis :
- a combinatorial problem that may be difficult t o solve to optimality (the

PARTITION problem is NP-complete);
- a probability distribution over all problem instances, that generates the

problem data as realizations of independent and identically distributed (i.i.d.)
random variables (the gj are independent and uniform over [O , I]);
- a probabilistic value analysis that yields a description of the asymptotic

optimal solution value as a simple function of the problem data (z2PT/(n/4) + 1
(as.));
- simple, fast heuristics whose relative error or absolute error may decrease to

0 in some stochastic sense or may be otherwise well behaved;
- a rate of convergence analysis that allows further differentiation among

the heuristics.
The state of the art for a particular problem class can conveniently be monitored

by means of the above concepts. Consider, for example, the MULTIKNAPSACK
problem max { 2, c, xi I Zj a,, x, < b, (i = 1 , . . . , m) , xi E { 0, 1). (j = I , . . . , n) } ,
which is a generalization of PARTITION (take m = 1, cj = a I j (1 = 1, . . . , n) ,

Let us assume that the g, and gij are i.i.d. uniform on [O , 11 and that bi = nPi
is constant. As above, we are interested in the optimal solution value as a function
of P = (P I , . . . , P,) and in heuristics whose error vanishes asymptotically with
high probability.

The analysis of this problem in Meanti et al. [45] is of interest in that exploits
the close relationship (in probability) between certain difficult nonconvex combi-
natorial optimization problems such as MULTIKNAPSACK and their convex LP
relaxations obtained by replacing the constraints xi E { 0, 1 } by 0 d xi < 1. It
is easy to see that the absolute difference between the solution values of these
two problems is bounded by m , so that the relative error that we make by focus-
ing on the LP relaxation goes to 0. But the LP relaxation (or, rather, its dual)
is much easier to analyze: its value is given by

min, L n 0) (13)

d n
lim sup - < M (as.).

n + w n - Q n

6 , = @;= 1a, j) /2) .

Probabilistic analysis of algorithms 37 1

with h = (h , , . . . ,A,,,) and

where the maximization problem in (14) is solved by setting

(o otherwise.

Results from convex analysis can then be used to establish that the optimal
solution value Z,OPT satisfies

zOPT

i?

- I 1 - -+ min,L(h) (a.s.1,

where

is a convex, twice differentiable function with a unique minimum that can actual-
ly be computed in closed form in some simple case (e.g., f o r m = 1).

Not surprisingly, successful heuristics for this problem also have a strong LP
flavor (cf. Frieze and Clarke [171). A natural one to consider is the generalized
greedy heuristic in which x;s are set equal t o 1 in order of nonincreasing ratio's
ci/(Ci", I hi aii). If the hi are chosen to be equal t o the values minimizing the right
hand side of (17), then the relative error of this greedy method goes to 0 a s . A
heuristic whose absolute error vanishes asymptotically is not known, however, and
further analysis of the model reveals puzzling differences between the minimiza-
tion and maximization version of MULTIKNAPSACK that stil have to be resolv-
ed. None the less, the probabilistic analysis of the model yields surprisingly high
returns.

What are the strong and the weak points of the approach? One one hand, the
algorithmic insights nicely complement the more traditional worst case analysis,
with an emphasis that is not so much on an exact guarantee that a certain running
time or a certain error will not be exceeded, as on an explanation why the algo-
rithm may perform so much better in practice than the worst case analysis would
seem to suggest. On the other hand, the results are obtained under probabilistic
assumptions that can always be questioned, and are usually only valid for ccsuffi-
ciently large)) problem sizes, with little indication of how large they might have to
be. Rate of convergence results somewhat compensate for this latter deficiency.

312 A. H. G. Rinnooy Kan

Apart from its contribution to error analysis, a probabilistic value analysis
may, however, yield additional benifits. An estimate of the optimal solution
value can, for instance, be used in a branch and bound procedure to replace
weak upper or lower bounds, at the possible expense of sacrificing optimality
but at the gain of a significant improvement in running time (Derigs [lo]). Or
it may be used in a two stage stochastic programming problem, where the first
stage decision determines the value of some parameters of the second stage
problem. A probabilistic value analysis may then reveal how the second stage
solution value depends on these parameters so that they can be given optimal
values in the first stage (Stougie [53]).

As a fist step towards a classification of results in probabilistic analysis, let
us note that the PARTITION problem and its generalization, the MULTIKNAP-
SACK problem, both have a problem input that consists of numbers. The proba-
bilistic analysis of algorithms for these problems usually assumes that these are
independently generated from a fixed distribution. To close this section, we
brietly review some typical results that were obtained for other problems in this
category .

The MULTIMACHINE SCHEDULING problem is an appropriate starting
point, since it can be viewed as yet another generalization of PARTITION: it
is the problem to distribute jobs with processing times a,, . . . ,a, among m
identical machines so as to minimise the maximal sum of processing times assigned
to any machine (the makespan); the PARTITION problem corresponds to the
case that m = 2 .

The second heuristic proposed for PARTITION can be viewed as a special
case of the LPT (Largest Processing Time) heuristic for MULTIMACHINE
SCHEDULING, in which jobs are assigned to the earliest available machine in
order of nonincreasing aj . If the aj are i.i.d. uniform on [0, 11, the proof techni-
que based on order statistics can again be applied to show that the absolute
error of the LPT heuristic goes to 0 a s . ; the optimal solution value is asymptotic
to nl(2m). The order in which jobs are assigned to machines turns out to be
really essential : an arbitrary list scheduling heuristic will have a relative error
that goes to 0 as. but an absolute error that does not. The Karp-Karmarkar
heuristic can be extended to the case of arbitrary m to improve the rate of conver-
gence to optimality from l /n for the LPT rule to n-Iogn. We refer to Coffman
et al. [8] for additional references.

The famous BIN PACKING problem is in a sense dual to MULTIMACHINE
SCHEDULING: here, the makespan is fixed (say, equal to 1) and the objective
now is to find the minimum number of bins (machines) into which the items
(jobs) of size a,, . . . , an can be packed. The probabilistic analysis of this problem
is again usually carried out under the assumption that the jobs are i.i.d. uniform
on [0, 11. It has yielded many beautiful results. To give one example, consider
the heuristic that inspects the items in order of decreasing aj and matches each
item ak with the largest unassigned item a, satisfying uk + a, < 1. To analyze

Probabilistic analysis of algorithms 3 7 3

the performance of this heuristic, we consider the set of all aj on the interval
[0, 11 and replace each item ak larger than 1/2 by 1 -ak, marking it with a ((+));

the items smaller than 1/2 get a ((-)) sign. The heuristic now amounts to pairing
each K+)) with largest ((->) to its left; the number of poorly filled bins (i.e., bins
with only one item) is related to the excess of cc+))s over a - ~ . But the sequence
of N+)U and ((-))s can be viewed as generated by flips of a coin, and results from
the theory of random walks can be invoked to show that the expected total
number of bins used is n/2 + O(&); since the expected optimal number of bins
is known to be n / 2 + a(&), the relative error of this heuristic goes to 0 in
expectation (Frederickson [121, Knodel [36]).

This analysis reveals an interesting connection bet ween matching problems
on the interval [0, 1/21 and bin packing methods. In a similar vein, a connection
can be established between on line bin packing methods (i.e., methods in which
items arrive in arbitrary order and have to be irrevocably assigned to a bin right
away; the previous method is offline) and matching problems on a square, where
one o f the dimensions corresponds to item size and the other dimension repre-
sents time, i.e., it indicates the order in which the items arrive for packing. In
this case, feasibility dictates that each point can only be matched to a right
upward neighbour; this matching problem was studied in a different context in
Karp et al. [33], and the clever extension and refinement of these results to on-
line bin packing can be found in Shor [50] . Further references can be found in
the useful survey by Coffman et al. [8] that was already quoted above.

A final number problem that deserves to be mentioned is LINEAR PROGRAM-
MING, not because it is a hard combinatorial problem (the Khachian method
solves it in polynomial time) but because probabilistic analysis played such a
vital role in understanding the excellent average performance of the simplex
method. The history of the analysis illustrates the importance of an appropriate
probabilistic model: ultimately, the concept of a random polytope as being
generated by m fixed hyperplanes in IRn and m coin flips to determine the direc-
tion of the corresponding inequalities reduced the computation of the average
number of simplex pivots to a combinatorial counting question. Within this
model, various simplex variants admit of a quadratic upper bound on the expect-
ed number of iterations (including those in Phase I), which takes us very close to
the behaviour observed in practice (Haimovich [22], Adler et al. [l] , Adler and
Megiddo 121, Todd [541).

In the next section, we turn to problems with a geometric flavor, whose proba-
bilistic analysis involves random sets of points in the Euclidean plane.

3. Euclidean problems

In this section we are concerned with problems whose input includes a set of n

314 A. H. G. Rinnooy Kan

points in the Euclidean plane. The most famous problem of this type is surely
the TRAVELLING SALESMAN problem, which is to find the shortest tour
connecting the n points. It has a venerable history, of which its probabilistic
analysis forms one of the most recent chapters (see Lawler et al. [101).

To carry out such an analysis, one usually assumes the points to be uniformly
distributed over a fixed region, e.g., the unit (1 x 1) square. Under such an assump-
tion, it is not difficult to arrive at an intuitive probabilistic value analysis for the
TRAVELLING SALESMAN problem. For n large, the length of an optimal
tour through a 2 x 2 square with 4n points will be approximately 4 times as
large as the optimal tour in a unit square with n points. Scaling back the 2 x 2
square to a unit one, we conclude that the optimal tour length ZnoPT is likely to
grow proportionally to A. Indeed, a heuristic from Few [1 11 shows that its value
is bounded deterministically from above by 6, and it is not hard to show that
there exists a positive constant c such that it is a.s. bounded by c f i f r o m below.

The actual convergence argument is much more difficult and was first provided
in Beardwood et al. [5] : as expected,

zOPT
- n (as.)

where p is a constant that has been estimated empirically to be about 0.765.
The proof of this result involves a technique useful in a broader context:

rather than viewing the problem on a fixed set of n points, uniformly distributed
on a square, they are assumed to be generated by a Poisson process of intensity 1.
The advantage is that point sets in disjoint regions are now fully independent;
the disadvantage that an expression for, say, the expected routelength F(t) in
a square [O, t] x [0, t] has to be converted back into a result for the expected
length EZ,OPT of a tour through n points, using the relation

(t2Y -
F(t) = t E g y e - t 2 - ,

n = 1 n !

Certain Tauberian theorems allow one to do precisely that.
In the specific case of the TRAVELLING SALESMAN problem,F(t) is comput-

ed through the use of a heuristic that embodies the intuitive insight mentioned
above. The square [0, t] x [0, t] is divided into m2 equal size subsquares; a tour
in each subsquare has expected lenght F(t/m). These tours can be linked to form
a feasible solution to the original problem by adding segments of length O(tm),
and hence

(20)

It is not hard to see that this implies that F(t) / t2 converges to a constant /3 and
to conclude from (1 9) that Ez2PT = PA. The argument is completed by proving

F(t) d m2 F(tlm) + O(tm).

Probabilistic analysis of algorithms 315

the variance of g:PT t o be O(1) through the Efron-Stein inequality; Chebyshev's
inequality and the Borel-Cantelli lemma then yield (18) (Karp & Steele [34]).

Given the result of the probabilistic value analysis, it now becomes attractive
to search for heuristics whose absolute error is o (6) ; their relative error then
goes to 0 almost surely. As in the case of other Euclidean problems, partitioning
heuristics do precisely that. Generally, in these heuristics the square is appropria-
tely partitioned into subregions (e.g. rectangIes), subproblems defined by the
points in each subregion are analyzed separately, and a feasible solution to the
problem as a whole is composed out of the separate results.

For the TRAVELLING SALESMAN problem, one partitioning approach is
t o execute an alternating sequence of horizontal and vertical cuts through the
point with current median vertical and horizontal coordinate respectively, until
the resulting rectangles contain no more than 6 points. Each of these sub-
problems is solved to optimality by some enumerative technique (say, dynamic
programming, which takes O (n E) time per rectangle, and hence O(nl + €1 time
overall, for any e > 0). The resulting tours define a connected graph with even
degree at each point; the Euler walk that visits each edge of this graph can be
converted into a tour of no greater length by eliminating multiple visits to one .
point. The difference between the length of this tour and the optimal one can
be shown t o be of the same order as the total perimeter of the rectangles generat-
ed, which is easily seen to be o (6) in this case. Thus, the relative error of the
heuristic goes to 0 a s . (Karp [30], Karp and Steele [34]).

Not much is known about the rate of convergence to optimality of this heuris-
tic, nor is any heuristic known whose absolute error goes to 0 asymptotically. The
partitioning approach, however, has been generalized to a variety of other Euclidean
problems. Consider, for example, the CAPACITATED ROUTING problem, where
the points have to be equally distributed among salesmen, each of whom can visit
no more than q customers before returning to a common depot. If we assume that
the i- th customer is at distance ri from the depot (ri i.i.d., with finite first moment
EL), then it is not hard to prove that the optimal solution value satisfies

i = 1

where TnoPT is the length of a single travelling salesman tour through the n custo-
mers. A tour partitioning heuristic, in which T, is optimally divided into [nlq]
consecutive segments containing 4 customers each, can be shown to yield a
value no more than the sum of the two terms on the right hand side of (21),
so that - in view of (1 8) - z:PT is a s . asymptotic t o 2nEylq. As a byproduct of
this result, one obtaines that the tour partitioning heuristic (of the ({route first,
cluster second)) type) has relative error going to 0 as. . A similar result holds for
certain region partitioning heuristics ((d u s t e r first, route second))) : as indicated

316 A . H. G. Rinnooy Kan

above, their absolute error is dominated by the total perimeter of the subregions
generated, which in this case is O (G) and hence vanishes asymptotically relati-
ve to g:pT.

All these results presuppose that q is a constant that does not grow with n ;
if it does, than the results hold as long as q = o (6) . Above this threshold,
zPT behaves as in (lS) , since at that point the total cost of moving among
the groups of customers, T,, starts to dominate the total cost 2Z;=, ri /q of
reaching thesegroups from the depot (cf. (21)).

The ubiquitous presence of partitioning techniques in probabilistic Euclidean
analysis points in the direction of a common generalization, which was indeed
provided in Steele [5 11. There, (1 8) is generalized to problems of arbitrary dimen-
sion, provided that the objective function is subadditive on sets of points (and
that a few other technical conditions are satisfied). The TRAVELLING SALES-
MAN problem is one example, the MATCHING problem (find the segments linking
each point to a neighbour, of minimum total length) is another one: see Papadimi-
triou [46] for a probabilistic value analysis and a heuristic that together establish
the optimal solution value to be as. asymptotic to e&, with E E [0.25, 0.401061.

We close this section by discussing an interesting class of problems that cannot
quite be handled by Steele’s techniques, i.e. LOCATION problems, in which k
depots have to be located so as to minimize the average distance between each
point to its closest depot (the k-MEDIAN problem) or the maximum of these
distances (the k-CENTER problem). The probabilistic value analysis for both
problems leads to surprisingly similar results, provided that k = U(n/log n) (the
case k = a n is partially open; see Hochbaum and Steele 1251). Both optimal
solution values are asymptotically proportional to I / 4, albeit for different
constants of proportionality.

The analysis leading to these results is of special interest, since it relies heavily
on the similarity between the original (discrete) problem for large n and the
continuous problem is which customer demand is not concentrated in a finite
set of points but spread uniformly and continuously over the entire region. A
simple partitioning heuristic in which a depot is located in each of k nonempty
subsquares of size 1 1 6 by l l& already provides an U (l / &) upper bound
on both optimal solution values. An asymptotically optimal heuristic, however,
is only obtained by partitioning the region into regular hexagons (the honeycomb
heuristic), with the constants of proportionality being determined by the optimal
solution value of the continuous problem with k = 1 over one such hexagon. This
heuristic actually solves the continuous problem to optimality, and a detailed
error analysis shows that, for n sufficiently large, its relative error in the discrete
case becomes vanishingly small (Haimovich [2 3] , Zemel [56]).

Probabilistic analysis of algorithms 377

4. Graphs and networks

We now turn to the rich area of combinatorial optimization problems defined
on graphs and networks. One of the reasons for the wide variety of probabilistic
results for this class of problems is the existence of a substantial theory dealing
with rurzdoirz graphs. There are two popular definitions of this concept: Gn,p is
defined to be the (undirected) graph for IZ vertices for which each of the
n (n - 1)/2 edges occurs independently with equal probability p ; G; is defined

by assuming that each of the (n(n ')I2) undirected graphs on rz vertices occurs
with equal probability (see Bollobas [6] for survey of the theory). Especially for
structural graph optirnizutiorz problems, in which we are interested in graph
properties that depend only on the node-edge incidence structure, random
graphs provide a natural probability distribution over the set of all problem
instances of size r z .

Continuing in the spirit of the previous two sections, we again refer to Karp
et al. [33] for a list of recent references in this area and review only a few typical
probabilistic analyses of heuristics for NP-complete problems, whose expected
performance compares favorably with the limits set by worst case analysis. In
doing so, we (reluctantly) exclude many beautiful results on problems of CON-
NECTIVITY and MATCHING that can be solved in worst case polynomial time.

A typical example of a difficult structural problem is the CLIQUE problem of
finding a complete subgraph of G that has maximal size w(C) . To carry out a
probabilistic value analysis of o(G,,,) for fixed p , we observe that the expected
number of cliques of size k in such a graph is equal t o pk(k-1u2. We would

expect the maximal clique size k to occur when the expected number is appro-
ximately equal t o 1, i.e., when (from Stirling's approximation of k !)

(4
1 nep(k -1)P k -(1 - 1 . (14)

The left hand side of (14) decreases very rapidly as k increases and passes through
the value 1 where

6

i.e. when

k = 2 log,lpn + 2 logllpe - 2 logllpk + 1 (16)

so that, approximately, k - k (n , p) with

k (n , p) = 2 logllf n - 2 logllplogllP n + 2 log,lp(e/2) + 1. (17)

This estimate turns out t o be very sharp indeed. In Matula [43], it is proved that,

318 A. H. G. Rinnooy Kan

for all E > 0,

lim Pr{[k(n, p) -el < zy= "(GJ < [k (n , p) + E] } = 1 (18)
n+ -

so that, for large enough n, the size of the largest clique can be predicted to be
one of two consecutive integers with high probability of success.

This precise probabilistic value analysis again encourages the search for a
fast heuristic whose absolute error compares favorably to 2 log,,,n. Consider,
for instance, the sequential greedy algorithm, which consider the vertices of G
in arbitrary order and adds a vertex to the current clique if it is adjacent t o all
its members. For an analysis of the performance of this method, one observes
that the expected number of trials to increase the clique size from j to j + 1 is
l / p j , so that we might guess the ultimate clique size ZH to satisfy

ZH- 1 1 - l/pZH

j=O 1 - l / P
c 1lP' = = n

i.e.,

Z H = log,,pn. (20)

A more precise analysis shwos that, indeed, this greedy approach a s . yields a
clique of size (1/2 - E) zfpT (Grimmett and McDiarmid [21]). Thus, the relative
error does not go to 0, but is almost surely close to 50 percent. (There is,by the
way, no known polynomial time heuristic with any constant worst case bound
on the relative error.)

The above result has immediate implications for the problem to find the
INDEPENDENT SET in G of maximal size; it coincides with the maximal size
clique in the complement of G. Again, the sequential greedy approach, which
picks up each successive vertex that is not adjacent t o any member of the current
independent set, produces an independent set whose size is a s . close to 50
percent of the optimal value. The COLORlNG problem, which is t o partition the
vertices of G into the smallest possible number x (C) of independent sets, is much
harder t o analyze: the asymptotic optimal solution value gFPT = x(Gn,J is
known for p = 1/2 (Korsunov [38]), though that (Russian) announcement has not
been verified. The heuristic method, which greedily finds an independent set as
above, deletes it and repeats on the remaining graph does poorly (McDiarmid
[44]) but good enough to get within a factor of 2 + E as. (Grimmett and
McDiarmid [2 1 I).

The other class of structural graph problems for which probabilistic analysis
has been successful is the HAMILTONIAN CIRCUIT problem of searching for a
simple cycle containing all vertices. The emphasis here is more on conditions
under which such a cycle exists (e.g., a s . in G,N when N = (1/2) n log n +
+ (1/2) n log log n + cn (Komlos and Szemeredi [37]) and less on the development

Probabilistic analysis of algorithms 379

of fast heuristics that, with high probability, would be successful in finding such
a cycle if it existed. However, the heuristic principle of extension and rotation
has been applied to this class of problems with considerable success (Posa [48],
Angluin and Valiant [3]). The general idea is as follows. Given a path of vertices
(u,,, . . . , uk), one of the neighbours of $, say w, is sampled randomly and the
edge { uk, w } is added to the path. If w is not in the path, i t is adjoined and the
method is applied to w. If w = ul (0 < Z < k - l) , then the edge { ul, u,+ is
removed from the path and the method is applied to uI+ If N exceeds the
threshold by a sufficient amount (e.g., N = cn log n, for large enough c) this
method will be successful with high probability.

We now turn briefly to number problems on weightedgraphs,i.e., graphs with
weights on the edges, an area which mixes features addressed in Section 2 with
the theory of random graphs. Here, most results refer to problems that admit of a
worst case polynomially bounded algorithm. A typical example is provided by
the LINEAR ASSIGNMENT problem of minimizing Zi c ~ ~ (~) over all permutations
71. If the cij are i.i.d. with distribution F , then a probabilistic value analysis can be
arrived at by viewing the problem as a weighted matching problem on a directed
bipartite graph, with weights bij on edge (i , j) and _dij on edge (j , i) such that
gij a min{bij,gji}. If we now remove all edges except the s outgoing ones of
minimal weight at each vertex and disregard edge orientations in the resulting
bipartite graph, a result by Walkup shows that a perfect matching will be present
with probability 1 - O (l / n) if s = 2 and 1 - 0 (2 - ") if s > 2 . Hence, ZnOPT is
essentially determined by the small order statistics of F. In the case that the
-11 c.. are uniform on [0, 11, this yields that EZ,OPT < 3 (Walkup [55]); generally,
Ez:PT is asymptotic to nF- ' (l / n) (Frenk & Rinnooy Kan [15]).

Many other problems in this category have also been succesfully analyzed. For
instance, in Frieze [18], the MINIMUM SPANNING TREE problem is studied
under the assumption that the graph is complete and the edge weights are i i d .
uniform on [0, 11; the expected optimal solution value is equal t o 2;= Ilk3 z
= 1.2202. We also refer t o Per1 [17] for an analysis of the SHORTEST PATH
problem; further references can be found in Karp et al. [331.

An NP-complete problem that belongs in this category is the ASYMMETRIC
TRAVELLING SALESMAN problem, defined on a complete directed graph. We
refer to Steele [52] for a probabilistic value analysis for a Euclidean variant of
this problem. The optimal solution value is asymptotic t o {&in expectation;
see also Karp [31] for a heuristic that patches the subcycles appearing in the
linear assignment relaxation together, t o achieve a relative error going to 0 in
expectation. Parhaps the most peculiar result has been obtained for its generaliza-
tion, the QUADRATIC ASSIGNMENT problem

380 A. H. G. Rinnooy Kan

In Burkhard and Fincke [7] and in Frenk et al. [13], it is shown that for this
problem with g i j and dk[i.i.d., the ratio of the best and the worst possible solu-
tion value tends to 1 in probability. It shows an unexpected side benefit of proba-
bilistic analysis, in that it clearly indicates how not t o generate test problems for
an empirical analysis of heuristic solution methods!

5 . Concluding remarks

In this final section, we first discuss a limitation of the preceding survey in that
the probabilistic behaviour discussed there was only caused by factors extraneous
to the algorithm itself. The algorithm itself could also contribute to the random-
ness of its outcome by containing random steps, i.e., steps whose result depends
partially on a random mechanism.

A very early example of an algorithm that flips coins is the quicksort method
for SORTING. In each step, the algorithm picks a number ai from the set a,,
. . . ,a, to be sorted; it divides the set into the subset smaller than aj and the
subset larger than ui, and repeats recursively on each subset of cardinality greater
than two. The worst case and best case running time of the method are easily
seen to be O(n2) and O(n log n) respectively; the average running time is O(n log
n) under a variety of distributional assumptions but also under the assumption
that for a fixed input the splitting number ui is chosen randomly from the set
of candidates. Note that the behaviour of the algorithm is now a random varia-
ble independent of any distributional assumption, avoiding the always contro-
versial issue of what a random instance of a particular problem looks like.

The formal study of randomized algorithms is far from complete, and in
particular the real power of randomization remains a mysterious issue; for
instance, it is, not clear to what extent (if any) the class of problems that can
be solved in randomized polynomial time (i.e. fast with high reliability) strictly
includes the class of problems that can be solved in worst case polynomial time.
A recent annotated bibliography (Maffioli et al. [42]) provides a useful survey
of the area. We restrict ourselves once again to a discussion of a few examples
that highlight the variety of results produced so far.

Historically, PRIMALITY TESTING was the first successful application of
randomization. In the algorithm in Rabin [49], a number is submitted to k tests
and declared to be prime if it passes all of them, with the probability of it being
compositenone the less being equal to 2-k. Such an algorithm is called a Monte
Carlo method, in contrast to a Las Vegas method in which the algorithm never
produces an incorrent answer, but may - with small probability - produce no

Probabilistic analysis of algorithms 38 1

answer at all. The method for GRAPH ISOMORPHISM in Babai [4] is of this na-
ture. The two examples above are of special interest in that they concern two
problems whose computational complexity (polynomially solvable o r NP-com-
plete) is still unknown.

Generally, randomization may produce a speed -up of a polynomial computa-
tion at the expense of a little uncertainty, as for instance in the case of a fast BI-
PARTITE MATCHING algorithm in Ibarra and Moran [26] with a small probabi-
lity of error, o r an O(I VI2) expected time algorithm for CIRCUIT COVERING
(Itai and Rodeh [27]) that with small probability will not terminate. For NP-hard
problems, there are other potential benefits. Statistical inference has been sug-
gested as a way to estimate the optimal solution value from a sample of (sup-
posedly independent) local minima, i.e., feasible solutions whose value cannot
be further improved by a local improvement method (Dannenbring [91). And
the fashionable simulated annealing approach can be viewed as a randomized
version of such a local improvement heuristic, in which neighbouring solutions
that decrease the quality of the current feasible solution are also accepted, albeit
with a small probability that is appropriately decreasing over time (Kirkpatrick
et al. [3 5]) .

It should be clear by now that the area of probabilistic analysis still harbors
many interesting research challenges. The purpose of the preceding sections has,
again, not been to provide an exhaustive review, but to provide some typical
examples that convey the flavour of this area. They have ranged from the very
complete insight we have into various solution methods for the PARTITION
problem to the less satisfactory state of the art for the CLIQUE and the COLOR-
ING problem. Clearly, a lot of problems and a lot of algorithms await investiga-
tion. It is not hard to formulate open questions for probabilistic analysis; so
far, however, it has turned out t o be quite hard to come up with satisfactory
answers for any but the simplest heuristics.

A particularly fascinating possibility is the development of a complexity
theory that would lead to a class of problems for which solution to optimality
in polynomial expected time is as unlikely as the equality of P and NF'. A first
step in that direction can be found in Levin [41], where a TILING problem is
introduced, together with a probability distribution over its problem instances,
such that any other problem with a (mildly restricted type of) probability distri-
bution is reducible to the TILING problem.

To establish completeness for other problems in this class is a major challenge
of considerable interest. After all, the reasonable average behaviour of enumerati-
ve methods (and the remarkable success of a nonenumerative method based on
computations in an integer lattice (Lagarias and Odlyzko [39])) to solve some
NP-complete problems and the apparent impossibility to find such algorithms
for other NP-complete problems, still defy theoretical explanation!

382 A . H. G. Rinnooy Kan

Acknowledgements

This paper was written during a visit t o the Department of Industrial Engineer-
ing and Operations Research and the School of Business Administration of the
University of California at Berkeley, with partial support from a NATO Senior
Scientist Fellowship. I gratefully acknowledge various useful discussions with
Dick Karp and Dorit Hochbaum.

References

I . Adler, R.M. Karp and R. Shamir, ((A Simplex Variant Solving an m x d Linear Program in
O(min (m 2 , d ')) Expected Number of Pivot Stepsu, Report UCB CSD 83/158, Computer Science
Division, University o f California. Berkeley, 1983.
I . Adler and N. Megiddo, ((A Simplex Algorithm Whose Average Number of Steps is Bounded Between
Two Quadratic Functions of the Smaller Dimension,, Technical Report, University of California,
Berkeley, 1983.
D. Angluin and L.G. Valiant, ((Fast Probabilistic Algorithms for Hamiltonian Circuits and Matchingsr,
Journal of Computer and System Science 19, 155 - 193, 1979.
L. Babai, ((Monte Carlo Algorithms in Graph Isomorphism Testingr, Rapport de Recherches DMS
79 . 10, Ddpartemmt de Mathdmatique et de Statistique, Universitdde Montrdal, 1979.
J . Beardwood, J.H. Halton and J.M. Hammerslcy, ((The Shortest Path through Many Pointsr, Proceed-
ingsof the Cambridge PhilosophicalSociety 5 5 , 299 - 321, 1959.
B. Bollobds, ((Lectures on Random Graphs, (to appear).
R.E. Burkard and U. Fincke, ((Probabilistic Asymtotic Properties of Quadratic Assignment Problems,
Zeitschnft fuer Operations Research 21, 73 - 81, 1982.
E.G. Coffman, Jr., M.R. Garey and D.S. Johnson, ((Approximation Algorithms for Bin-Packing -
An Updated Survey)), Bell Laboratories. Murray Hill, NJ, 1983.
D. Dannenbring, ((Procedures for Estimating Optimal Solution Values for Large Combinatorial Prob-
lemw,Management Science 23, 1273 - 1283, 1977.
U. Derigs, Private communication, 1984.
L. Few, ((The Shortest Path and the Shortest Road throughn Pointsr,Marhematika 2,141 - 144,1955.
G.N. Frederickson, ((Probabilistic Analysis for Simple One - and Two - Dimensional Bin Packing
Algorithmsz,Information Processing Lerrers 11, 156 - 161, 1980.
J.B.G. Frenk, M. van Houweninge and A.H.G. Rinnooy Kan, ((Asymptotic Properties of the Quadra-
tic Assignment Problemr, Mathematics of OperationsResearch 10, 100 - 116, 1982.
J.B.G. Frenk and A.H.G. Rinnooy Kan, ((The Asymptotic Optimality of the LPT Heuristic), Mathe-
matics o f Operations Research (to appear).
J.B.G. Frenk and A.H.G. Rinnooy Kan, ((Order Statistics and the Linear Assignment Problenin.
Econometric Institute, Erasmus University. Rotterdam, 1984.
J.B.G. Frcnk and A.H.G. Rinnooy Kan, ((On the Rate of Convergence to Optimality of the LPT
Ruler, Discrete Applied Mathematics (to appear).
A.M. Frieze and M.R.B. Clarke, ((Approximation Algorithms for the m-dimensional 0-1 Knapsack
Problem*, European Journal of Operational Research 15,100 - 109, 1984.
A.M. Frieze, ((On the Value of a Random Minimum Spanning Tree Problemr, Technical reporf,
Deparrment o f Computer Science and Statistics, Queen Mary College, University of London, 1982.
B. Golden, Chapter 5. in E.L. Lawler, J .K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, eds.,
The lkavelinn Salesman Problem, Wiley, Chichester, 1985.
R. L. Graham, ((Bounds on Multiprocessing Timing Anomalies)), SIAM Journal on Applied Mathema-
tical 17, 263 - 269, 1969.
G. Grimmett and C.J.H. McDiarmid, ((On Colouring Random Graphs)), Mathematical Proceedins of
the Cambridge Philosophicalsociety 77, 313 - 324, 1975.
M. Haimovich, ((The Simplex Method is Very Good! ~ On the Expected Number of Pivot Steps and
Related Properties of Random Linear Programsr, Columbia University, New York, 1983.
M. Haimovich, Ph.D. Thesis, M.I.T., 1984.

Probabilistic analysis of algorithms 383

1241

1251

1261

1271

1371

1381

I391

I401

1411

M . Haimovich and A.H.G. Rinnooy Kan, ((Bounds and Heuristics for Capacitated Routing Problems,,
Mathematics of Operations Research (to appear).
D.S. Hochbaum and J.M. Steele, ((Steinhaus’ Geometric Location Problem for Random Samples in
the Planer, Advances in AppliedProbability 14 ,56 - 67, 1981.
O.H. lbarra and S. Moran, ((Deterministic and Probabilistic Algorithms for Maximum Bipartite March-
ing via Fast Matrix Multiplications*, Information Processing Letters 13, 12 - 15, 1981.
A. Itai and M . Rodeh, ((Covering a Graph by Circuits,, in G. Ausiello and C. Bohm, eds.. Automata,
Languages and Bogramming, Lecture Notes in Computer Science 62, Springer, Berlin 289 - 299, 1978.
N. Karmarkar and R.M. Karp, ((The Differencing Method of Set Partitioning:,,Mathematics of Opera-
tions Reseclrch (to appear).
N. Karmarkar, R.M. Karp, G.S. Lueker and A. Odlyzko, ((The Probability Distribution of the Optimal
Value of a Partitioning Problem,, Bell Laboratories, Murray Hil, NJ, 1984.
R.M. Karp. ((Probabilistic Analysis of Partitioning Algorithms for the Traveling Salesman Problem in
the PIanen,Mathematicsof Operation Research 2, 209 - 224, 1977.
R.M. Karp, ((A Patching Algorithm for the Nonsyninietric Traveling Salesman Problem,, SIAM
Journalon Computing 8,561 - 573, 1979.
R.M. Karp, Private communication, 1984.
R.M. Karp, J.K. Lenstra, C.J.H. MsDiarmid and A.H.G. Rinnooy Kan, Chapter 6 in M . OhEigear-
taigh, J .K. Lenstra and A.H.G. Rinnooy Kan, cds., Combinatorial0ptimization:Annotated Biblwgra-
phies, Wiley, Chichester, 1985.
R.M. Karp and J.M. Steele, Chapter 6 in E.L. Lawler, J .K. Lenstra, A.H.G. Rinnooy Kan and D.B.
Shmoys. eds., The Raveling Salesman Problem, Wiley, Chichester, 1985.
S. Kirkpatrick, C.D. Gelat Jr . and M.P. Vecchi, ((Optimization by Simulated Annealing,, Science

W. Knodel, ((A Bin Packing Algorithm with Complexity O(n logn) and Performance 1 in the Sto-
chastic Limit,, in J . Gruska and M. Chytil, eds., Mathematical Foundations of Computer Science
1981, Lecture Notes in Computer Science 118, Springer, Berlin, 369 - 378, 1981.
1. Komlds and E. Szenicr6di. ((Limit Distribution for the Existence of Hamiltonian Cycles in Random
Graphs,, Discrete Mathematics 43, 55 - 63, 1983.
A.D. Korsunov, ((The Chromatic Number of n-vertex Graphsr, Metody Diskret. Analiz. 35, 14 - 4 4 ,
104 (in Russian), 1980.
J.C. Lagarias and A.M. Odiyzko, ((Solving Low-Density Subset Sum Problems)), Proceedings of the
24th AnnualIEEE Symposium on the Foundations o f Computer Science, 1 - 10,1983.
E.L. Lawler, J .K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, eds., The Traveling Salesman
hob lem, Wiley, Chichester, 1985.
L.A. Levin, ((Problems, Complete in ’Average’ Instance)), Proceedings of the 16th Annual ACM
Symposium on the Theory of Computing, 465, 1984.
F. Maffioli, M.G. Speranza and C. Vercellis, Chapter 7 in M. OhEigeartaigh, J.K. Lenstra and A.H.G.
Rinnooy Kan, eds., Combinatorial Optimization: Annotated Bibliographies, Wiley, Chichester, 1985.
D.W. Matula, ((The Largest Clique Size in a Random Graph*, Technical report CS7608, Department
of Computer Science, Southern Methodist University, Dalles TX, 1976.
C.J.H. McDiarmid, ((Colouring Random Graph Badly)), in R.J . Wilson, ed., Graph Theory and Com-
biatorics, Pitman Research Notes in Mathematics 34, Pitman, London, 76 - 86, 1979.
M. Meanti, A.H.G. Rinnooy Kan, L. Stougle and C. Vercellis, ((A Probabilistic Analysis of the Multi-
knapsack Value Functions, Econometric Institute, Erasmus University, Rotterdam, 1984.
C.H. Papadimitriou, ((The Complexity of the Capaeitated Tree Problemr,Networks 8,217 - 230,1978.
Y . Perl, ((Average Analysis of Simple Parth Algorithms,, Technical report UIUCDCS - R - 77.905,
Department of Computer Science, University of Illinois at Urbana-Champaign, 1977.
L. P6sa, ((Hamiltonian Circuits in Random Graphs,, DiscreteMathematics 14, 359 .364, 1976.
M.O. Rabin, ((Probabilistic Algorithms for Testing Primality), Journal of Number Theory 12, 128 -
138,1980.
P.W. Shor, ((The Average Case Analysis of Some On-line Algorithms for Bin-Packing)), Proceedings
of the 25th lEEE Symposium of the Foundations o f Computer Science, 1980.
J.M. Steele, ((Subadditive Euclidean Functionals and Nonlinear Growth in Geometric Probability)),
AnnalsofProbability 9, 365 - 376, 1981.
J. M. Steele, ((A Probabilistic Algorithm for the Directed Traveling Salesman Problems, Mathematics
of Operations Research (to appear).
L. Stougie, Ph.D. Thesis, Econometric Institute. Erasmus University, Rotterdam, 1985.
M.J. Todd, ((Polynomial Expected Behavior of a Pivoting Algorithm for Linear Complementarity
and Linear Programming Problems)), Technical report 595 , School of Operations Research and In-
dustrial Engineering, Come11 University, Ithaca, N Y , 1983.

220,671 - 680, 1983.

384 A. H. G. Rinnooy Kan

I551

(561

D.W. Walkup, ((On the Expected Value of a Random Assignment Problem)), SIAM Journal on Com-
puting 8 , 4 4 0 - 442, 1979.
E. Zemel, ((Probabilistic Analysis of Geometric Location Problems)), Annuls ofoperar ims Reseach I ,
1984.

Alexander H.G. Rinnooy Kan
Econometric Institute
Erasmus University Rotterdam
P.O. Box 1738
3000 DR Rotterdam
The Netherlands

	Surveys in Combinatorial Optimization
	Copyright Page
	Preface
	Contents
	Chapter 1. Selected topics in scheduling theory
	Chapter 2. Quadratic assignment problems
	Chapter 3. Order relations of variables in 0-1 programming
	Chapter 4. Single facility location on networks
	Chapter 5. Exact algorithms for the vehicle routing problem
	Chapter 6. The Steiner problem in graphs
	Chapter 7. Algorithms for knapsack problems
	Chapter 8. Linear assignment problems
	Chapter 9. Network synthesis and dynamic network optimization
	Chapter 10. Parallel computer models and combinatorial algorithms
	Chapter 11. Probabilistic analysis of algorithms

