Using UML-F to Enhance Framework Development: a Case
Study in the Local Search Heuristics Domain

Marcus Fontouras, Carlos J. Lucena*, Alexandre Andreattas , Sérgio E. Carvalho*, and
Celso C. Ribeiro*

& Department of Computer Science, Princeton University
35 Olden Stred, Princeton, NJ 08544, U.S.A.
fontoura@cs.princeton.edu

* Computer Science Department, Catholic University of Rio de Janeiro
Rua Marqués de Sdo Vicente 225 Rio de Janeiro 22453-900, Brazl
{lucena, sergio, cdso} @inf.puc-rio.br

+ UNIRIO - University of Rio de Janeiro
Department of Applied Computer Science
Rua Voluntarios da Patria 107, Rio de Janeiro, RJ 22270, Braal
andreat@uniriotecbr

ABSTRACT

Currently frameworks are most commonly represented through design diagrams written in standard oljed-
oriented analysis and design languages. However, these design notations do not provide dements for
identifying framework variation points and how their instantiation should be performed. Therefore, in order
to creae framework instances, users have to rely on extra documentation that is not always available. This
paper shows the benefits of an extension to UML that explicitly represents all the information required for
framework development and instantiation. The gproac isill ustrated through alarge red-world framework
for locd seach heuristics for combinatorial optimization problems.

KEY WORDS: objed-oriented frameworks, design notation, UML-F, framework development, framework
instantiation.

1. INTRODUCTION

This paper ill ustrates the weakness of standard oljed-oriented design languages regarding framework
documentation and shows how UML-F (Fontoura, 1999 Fontoura €. al., 2000) can be used to addressthis
problem. It shows how the documentation of a large framework in the locad seach heuristics domain,
namely the Seacher framework (Andredta €. al., 1998, can be complemented through UML-F diagrams.
This case study highlights the benefits of this approach regarding framework development and
instantiation. Searcher was first described in (Andredta €. al., 1998) through OMT diagrams (Rumbaugh
et. a., 1994) and pattern descriptions (Gamma . a., 1995. UML-F was not available & that time.

UML-F is a UML profile (D’Souza d. al., 199) useful for modeling frameworks and product-line
architedures. UML-F uses the basic UML extension mechanisms to define new constructs for modeling all
the relevant aspeds of framework designs. Several other projeds have dready been successully developed
with UML-F, as reported in (Fontoura, 1999. The Seacher case study is a mndensed version of a red
applicaion of UML-F.

The rest of this paper is organized as follows. Sedion 2 describes the locd seach heuristics domain and
presents the Seacher framework using the OMT design language (Rumbaugh et. al., 1994. Sedion 3
revisits the framework description using UML-F, and discuses the benefits of this new representation.
Sedion 4 describes me related work. Finally, Sedion 5 presents our conclusions and future reseach
diredions.

2. LOCAL SEARCH HEURISTICSAND THE SEARCHER FRAMEWORK

Hard combinatorial optimization problems usually have to be solved by approximate methods. Constructive
methods build up feasible solutions from scratch. Among them, we find the so-cdled greedy algorithms,
based on a preliminary ordering of the solution elements acording to their cost values. Basic locd seach
methods are based on the evaluation of the neighborhood d successve improving solutions, until no
further improvement is possible. As an attempt to escgoe from locd optima, some methods allow
controlled deterioration of the solutionsin order to dversify the seach (Andredta . a., 1998).

In the study of heuristics for combinatorial problems, it is often important to develop and compare, in a
systematic way, different algorithms, strategies, and parameters for the same problem. The Searcher
framework (Andredta €. a., 1998) encapsulates different aspeds involved in locd search heuristics, such
as algorithms for the construction of initial solutions, methods for neighborhood generation, and movement
seledion criteria. Encapsulation and abstradion promote unbiased comparisons between different
heuristics, code reuse, and easy extensions.

2.1 SEARCHER PATTERN-BASED DESCRIPTION

This dion describes the framework as it was first documented by its authors (Andredta d. al., 1998,
using a variation of the pattern form proposed in (Gamma d. al., 1995 and OMT diagrams (Rumbaugh et.
al., 1994).

Intent:
To provide an architedural basis for the implementation and comparison of different locd search strategies.
M otivation:

In the study of heuristics for combinatorial problems, it is important to develop and compare, in a
systematic way, different heuristics for the same problem. It is frequently the case that the best strategy for
a spedfic problem is not a good strategy for another. It follows that, for a given problem, it is often
necessary to experiment with different heuristics, using different strategies and parameters.

By modeling the different concernsinvolved in locd seach in separate dasss, and relating these dassesin
a framework, our ability to construct and compare heuristics is increased, independently of their
implementations. | mplementations can easily affed the performance of a new heuristic, for example due to
programming language, compil er, and ather platform aspeds.

Applicability:
The Searcher framework can be used in situations involving:

e locd seach strategies that can use different methods for the @nstruction of the initial solution,
different neighborhoodrelations, or different movement seledion criteria;

e congtruction algorithms that utili ze subordinate locd search heuristics, and
¢ locd seach heuristics with dynamic neighborhood models.

Structure:

Figure 1 shows the dasses and relationships involved in the Searcher framework.
Participants:

« Client: containsthe combinatorial problem instanceto be solved, itsinitial data and the pre-processng
methods to be gplied. It also contains the data for creaing the SearchStrategy that will be used to solve
the problem. Generally, it can have methods for processng the solutions obtained by the
SearchStrategy.

e Solution: encapsulates the representation of a solution for the combinatorial problem. It defines the
interface the dgorithms must use in order to construct and modify a solution. It delegates to
IncrementModel or to MovementModel requests to modify the current solution.

e SearchStrategy: constructs and starts the BuildStrategy and the Local Search algorithms, also handling
their intercommunicdtion, in case it exists.

» BuildStrategy: encgpsulates constructive dgorithms in concrete subclasses. It investigates and
eventually regquests Solution for modificaions in the current solution, based on an IncrementModel.

» LocalSearch: encgpsulates locd seach algorithms in concrete subclasss. It investigates and eventually
reguests Solution for modificationsin the current solution, based on a MovementModel.

* Increment: groups the necessry data for an atomic modificaion of the internal representation of a
solution for constructive dgorithms.

» Movement: groups the necessary data for an atomic modification of the interna representation of a
solution for locd seach algorithms.

* IncrementModel: modifies a solution acording to a BuildStrategy request.

» MovementModel: modifies a solution ac@rding to a Local Search request.

Client
strategy
builders list searchers list
= L SearchStrategy =
initial_list Q found_ist
Buil dStrategy Local Search
candidate list candidate list
selected best list selected
current found currrent initial
Increment Solution Movement

buil ding model < > (i search model
IncrementModel MovementM odel

Figure 1. Searcher classdiagram

Collabor ations:

The Client wants a Solution for a problem instance. It delegates this task to its SearchStrategy, which is
composed by at lesst one BuildStrategy and one LocalSearch. The BuildStrategy produces an initial
Solution and the LocalSearch improves the initial Solution through successve movements. The
BuildStrategy and the Local Search perform their tasks based on neighborhood relations provided by the
Client.

The implementation of these neighborhoods is delegated by the Solution to its IncrementModel (related to
the BuildStrategy) and to its MovementModel (related to the Local Search). The IncrementModel and the
MovementModel are the objeds that will obtain the Increments or the Movements necessary to modify the
Solution (under construction or not).

The IncrementModel and the MovementModel may change & runtime, refleding the use of a dynamic
neighborhood in the LocalSearch, or having a BuildStrategy that uses svera kinds of Increments to
construct a Solution. The variation of the IncrementModel is controlled inside the BuildStrategy and the

variation of the MovementModel is controlled by the LocalSearch. This control is performed using
information made available by the Client and accessible to these objeds. Figure 2 ill ustrates this scenario.

aClient i
aSearchStrategy aBuildStrategy alocal Search aSolution

new SearchStrategy
new BuildStrategy

PreProcesy() new LocalSearch I

L new Solution

Start()
Construct() Getlncrement()
- -
Dolncrement()
Search()
GetM ovement()
-
DoMovement()
PosProcesy) -

Figure 2. Collaborationsin the Searcher framework

3. SEARCHER DESIGN MODEL IN UML-F

Although the pattern-based description gves an intuition of the framework design structure, there ae
several problemsrelated to it™:

e Variation point identification: Variation points (or hot-spots) (Preg 1995) are the poaints in the
framework structure that are designed to be replacedle. Frameworks instances are aeaed through the
adaptation of the variation points. In the OMT diagrams shown in Figures 1 and 2 there is no
indicaion of what are the variation points and how they should be alapted. The textual description is
informal and might not be dea enough.

LIt is important to remember that in the initial version of the Seacher projed (Andredta €. al., 1998)
UML-F was not yet available.

e Complex design model: the design diagram presented in Figure 1 is very tangled and hard to be
understood

* Interrelated variation points: there ae variation point interdependencies that are not represented in the
standard class and sequence diagrams. For instance, whenever new build strategies are defined new
increment models also need to be. The same holds for the search strategies and the movement models.

Figure 3 represents the Seacher design structure through an extended class diagram, in which the
{variable, static} tags are dtached to method names. The {variable} tag is an UML-F construct useful to
identify methods that model variation points and need to be implemented during framework instantiation.
The {static} tag indicates that the instantiation needs to be done staticdly, meaning that it requires the
recompil ation of the system for the changes take dfed. Another posshility would be the use of the tag
{dynamic}, meaning that the instantiation would be possble during runtime. However, the use of
{dynamic} in the design model would require an interpreted implementation language that allows dynamic
classloading (such as Java and Smalltalk), since generally {dynamic} variation points cahnot be diredly
implemented in compli ed languages such as C++.

Client

i

SearchStrategy

candidate list

candidate list |+start() selected

selected {variable, static}
+build()
{variable, static}
+local Search() .
{variable, static}

Increment Movement
* % *

Solution

+getlncrement()
{variable, static}
[+dol ncrement()
{variable, static}
+getMovement()
{variable, static}
+doM ovement()
{variable, static}

Figure 3. UML extended class diagram for the Searcher framework

Figure 4 ill ustrates the instantiation diagram for the Searcher framework. Instantiation diagrams provide a
representation of the instantiation processthrough the use of UML adivity diagrams. Activity diagrams are
used to represent workflow procedures in standard UML (Rumbaugh et. a., 1998 OMG, 1999). In
instantiation diagrams each adion state represents one variation point. The transitions indicate the variation
points interdependencies, describing the way they should be instantiated.

Several facts related to the framework instantiation may be derived from this diagram. The variation points
build(), getincrement(), and dolncrement() are interrelated. For ead adaptation of build(), one or more
adaptations of getincrement() and dolncrement() have to be defined. The same holds for search(),
getMovement(), and doMovement(). Finally, the diagram spedfies that the start() variation point always
have to be intantiated with exadly one definiti on of the start() method per framework instance

Extended class diagrams (Figure 3) and instantiation diagrams (Figure 4) complement ead other. Together,
they completely spedfy variation points and how the framework should be instantiated.

start()

Search

=
=5
=

vement

®

Figure 4. Searcher instantiation diagram

Note that, now, the variation points are explicitly documented, the design is more dea (four classes have
been eliminated) and the variation point interdependencies are formally documented in the instantiation
diagram. In fad, Figures 1 and 3 complement ead other: the first provides a more wncrete description of
the framework implementation, whil e the second better models the variation points and their instantiation
requirements. Figure 3 is more éstrad than Figure 1, which can be seen as an implementation refinement
based on design patterns. The stereotype «redize», defined in UML 1.3 (OMG, 1999), spedfies the
relationship between a spedfication model and a model that implements it. In this case we can say that
Figure 3 is a spedficaion mode and Figure 1 is aimplementation model that redizes it through the use of
design patterns.

The implementation of variation points is one of the most criticd partsin framework development. Several
techniques can be used, such as design patterns (Buschmann et. al., 1996 Gamma . a., 199%), meta-level
programming (Kiczdes et. a., 1991, and contrads (Helm et. a., 1990 Holland, 1993). However, the
seledion of the most appropriate technique for ead of the framework’s variation points may be avery
difficult task. If the variation points and their properties are not expli citly represented, this task can become
even harder.

Oncethe variation points have been documented in UML-F, the goplication of the most adequate technique
to model ead variation point may be aitomated through design transformations. These transformations are
redization transformations that spedfy how each variation point in a UML-F diagram, modeled by a
{variable, static} tag for example, can be implemented in adual programming languages such as Java and
C++.

Figure 5 shows a logic program that applies the Strategy design pattern (Gamma €. €l., 19%) to all
variation points defined in the design diagram shown in Figure 3. The result of this transformation is the
diagram presented in Figure 1. The transformation illustrated in Figure 5 is part of the framework
development tools proposed in (Fontoura, 1999, which asdst the development and instantation of
frameworks using UML-F. The tod stores UML-F diagrams as graphs in a knowledge base, and provides
severa logic programs for transforming these graphs. In this example, it searches for all methods marked as
{variable, static} tags transforming them into the Strategy design pattern model. Figure 6 ill ustrates this
transformation visually for the local Search() variation point.

applyS trategy (Projec t, NewProject) :-
] < Searches for

forall (variat ionMethod(Projec t, Class , Method, dynamic), yvariation

strate gy(Projec t, NewProject , Class , Method)), points in a

-] design
strate gy(Projec t, NewProject , Class , Method): <&——|Jges strategy pattern

concat (Method, 'Stra tegy' , NewClass),

create Cass (NewProject, NewClass, dynami c), to model them

create Method (NewProj ect , NewClass, Method, publi ¢, none, abstr act),

create Aggrega tion (NewProj ect, Class , NewClass, strat egy),

assert (implem entatio n(Projec t,[...], strate gy)).

-]

Figure 5. Design-implementation transformation: using Strategy to model variation points

SearchStrategy SearchStrategy Local Search
+local Search() +localSearch() searchers_list
(0] aCl < >7
{variable, static} ﬂ +search()
Framework design \
: Framework |
representation _ _
(UML-F) implementation ConcreteSearch
+search()

Figure 6. Visual transformation of the design

We think that framework builders should not focus on design patterns, but instead on the domain variability
and extensibility requirements. Once this knowledge is captured, it should be expressed in appropriate
design motation, such as UML-F. Design patterns and cther implementation techniques should be
considered only in the implementation step of the process once the design is completely validated by the
domain experts. The @ove example shows that tools can suppart these ideas by concentrating at the design
level and systematizing the mapping from design to implementation.

Moreover, the instantiation diagram can be used as a formal representation for the instantiation process It
completely spedfies the tasks that should be performed by the framework users while alapting the
framework. Since dl the variation points that need to be aapted are marked in the design, the UML-F
diagrams can be processed by todls that use this description for guiding the users during the alaptation. A
prototype of such atod isdescribed in (Fontoura, 1999).

4. RELATED WORK

UML uses collaboration diagrams to model design patterns and provides a way of instantiating pattern
descriptions through the «binding» stereotype. Frameworks are represented in UML as padages that
asemble severa patterns (Rumbaugh et. a., 1998 OMG, 1999). Collaboration diagrams are useful for
documenting framework adaptation. However, they only partially addressthis problem since they do not
provide, for instance a way of describing interdependencies among variation points. We think that
collaboration diagrams can be usefully complemented with UML-F diagrams to further asdst framework
usersin during the instantiation process

UML 1.3 also provides the ancept of subsystem. A subsystem offers an interface and can contain
spedficaion and redization (or implementation) models. Therefore, frameworks can be represented in
UML 1.3 as subsystems. In this case the UML-F diagrams are used to describe the spedficaion models of

the subsystem, whil e standard UML are used to describe its redi zaion models.

Catalysis propcses a methoddogicd approach for developing frameworks based on standard UML
diagrams (D’ Souza and Will s, 1997). Frameworks are represented in Catalysis as collaborations, and the
adaptation processis pedfied through the use of substitutions. However, there is no dired suppat in
Catalysis for asdgsting the implementation of variation points and for guiding the instantiation process

Cookbodks (Krasner and Pope, 1988) provide atextual description of the purpose of the framework,
describing its major components and providing examples of its use. However, cookbodks do not have a
formal structure, and different cookbodks may focus on different aspeds of the framework with different
levels of detail . The descriptions are quite informal, and this lack of formality may lead to misconceptions
by the user. Although the patterns described in (Johnson, 1992 are based on an Alexandrian narrative, they
resped a pattern form and can be seen as a mwokbodk with more structure.

Riehle axd Gross (1998 propaoses an extension of the OOram methoddogy (Reenskaug et. al., 1996 to
fadlit ate framework designand decumentation. They propacse the use of role diagrams to expli cit document
the interadion of the framework with its clients. Although this approach produces good results for pattern
documentation, it does not provide an explicit representation for variation points and it does not model the
instantiation process

Some work in the systematic goplicdion of patterns to implement framework variation points can be found
in (Pree 1995; Schmid, 1997).

5. CONCLUSIONSAND FUTURE WORK

This paper has own that an adequate notation for frameworks can be useful in automating the
implementation and instantiation steps of the software development process The cae study has shown how
framework instantiation can be largely improved by the use of UML-F notation. It has also shown that
representing frameworks at a higher level of abstradion than programming languages can be very useful to
asdst with the understanding of a design.

In this paper we have briefly described how todl suppart for UML-F can assist framework development and
adaptation. A more detailed description on that topic and more cae studies of the use of the UML-F to
describe and implement red world frameworks can be found in (Fontoura, 199).

A new version of this toal that provides cooperative work capabiliti es and graphicd representation is now
being developed in Java. This tod will be used to experiment with different objet-oriented models and
evaluate the impad of these models in framework design. More cncretely, the toal will provide auniform
way of validating how roles (Riehle and Gross 1998 Reenskaug et. a., 1996 and ADV's (Cowan and
Lucena, 1995 can enhance framework design and how they can be used together with UML-F.

REFERENCES

Andredta, A., Carvalho, S., and Ribeiro, C., An Objed-Oriented Framework for Locd Seach Heuristics,
26" Conference on Technology of Objed-Oriented Languages and Systems (TOOLS USA’98), |IEEE
Press, 33-45 (1998).

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M., Pattern-Oriented Software
Architecture: A System of Patterns, John Wiley & Sons (1996.

Cowan, D. and Lucena, C., Abstrad Data Views. An Interface Spedficaion Concept to Enhance Design
for Reuse, |EEE Transactions on Software Engineering, 21(3), 229-243(1995).

D’Souza D. Sane, A., and Birchenough, A., First-class Extensibility for UML — Padaging of Profiles,
Stereotypes, Patterns, UML’'99, LNCS 1723, Springer-Verlag, 265277 (1999).

D’Souza D. and Wills, A., Objects, Components, and Frameworks with UML: The Catalysis Approach,
Addison Wesley (1997).

Fontoura, M., A Systematic Approach for Framework Development, Ph.D. Thesis, Computer Science
Department, Pontificd Catholic University of Rio de Janeiro (1999).

Fontoura, M., Pree W., and Rumpe, B., UML-F: A Modeling Language for Objed-Oriented Frameworks,
ECOOP 200Q LNCS 1850, Sringer-Verlag, 63-82 (2000).

Gamma, E., Helm, R., Johnson, R., and Vlissdes, J., Design Patterns, Elements of Reusable Object-
Oriented Software, Addison-Wesley (1995.

Helm, R., Holland, 1., and Gangopadhyay, D., Contrads. Spedfying Behavioral Composition in Objed-
Oriented Systems, OOPS_A/ECOOP’ 90, Norman Meyrowitz (ed.), ACM Press, 169-180 (1990).

Holland, I., The Design and Representation of Objed-Oriented Components, Ph.D. Disertation, Computer
Science Department, Northeastern University (1993.

Johnson, R., Documenting Frameworks Using Patterns, OOP3_A’92, ACM Press, 63-76 (1992).
Kiczdes, G., desRivieres, J., and Bobrow, D., The Art of Meta-object Protocol, MIT Press(1991).

Krasner, G., and Pope, S., A Cookbodk for Using the Model-View-Controller User InterfaceParadigm in
Smalltalk-80, Journal of Object-Oriented Programming, 1(3), 26-49 (1988).

OMG, OMG Unified Modeling Language Spedfication v.1.3 (199).
Pree W., Design Patterns for Object-Oriented Software Development, Addison-Wesley (1995.
Reenskaug, T., Wold, P., and Lehne, O., Working with objects, Manning (1996.

Riehle, D. and Gross T., Role Model Based Framework Design and Integration, OOPSLA’98, ACM Press,
117-133(1998).

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W., Object-Oriented Modeling and
Design, Prentice Hall, Englewood Clifs (1994).

Rumbaugh, J., Jacobson, I., and Booch, G., The Unified Modeling Language Reference Manual, Addison-
Wesley (1998.

Schmid, H., Systematic Framework Design by Generali zation, Communications of the ACM, 40(10), 48-51
(1997).

Author biographies:

Marcus Fontoura is a post-doctoral reseacher at the Department of Computer Science, Princeton

University, Princeton, USA.

Carlos J. Lucenaisafull professor at the Computer Science Department, Pontificd Catholic University of
Rio de Janeiro, Rio de Janeiro, Brazl.

Alexandre Andreatta is an assistant professor at the Department of Applied Computer Science, University
of Rio de Janeiro, Rio de Janeiro, Braal.

Sergio E. Carvalho is an asociate profesor at the Computer Science Department, Pontificd Catholic

University of Rio de Janeiro, Rio de Janeiro, Braal.

Celso C. Ribeiro isafull professor at the Computer Science Department, Pontifica Catholic University of
Rio de Janeiro, Rio de Janeiro, Brazl .

10

