
1

Using UML-F to Enhance Framework Development: a Case
Study in the Local Search Heuristics Domain

Marcus Fontoura♣♣, Car los J. Lucena*, Alexandre Andreatta♦, Sérgio E. Carvalho*, and
Celso C. Ribeiro*

♣ Department of Computer Science, Princeton University
35 Olden Street, Princeton, NJ 08544, U.S.A.

fontoura@cs.princeton.edu

* Computer Science Department, Catholic University of Rio de Janeiro
Rua Marquês de São Vicente 225, Rio de Janeiro 22453-900, Brazil

{ lucena, sergio, celso} @inf.puc-rio.br

♦UNIRIO - University of Rio de Janeiro
Department of Applied Computer Science

Rua Voluntários da Pátria 107, Rio de Janeiro, RJ 22270, Brazil
andreatt@uniriotec.br

ABSTRACT

Currently frameworks are most commonly represented through design diagrams written in standard object-
oriented analysis and design languages. However, these design notations do not provide elements for
identifying framework variation points and how their instantiation should be performed. Therefore, in order
to create framework instances, users have to rely on extra documentation that is not always available. This
paper shows the benefits of an extension to UML that explicitly represents all the information required for
framework development and instantiation. The approach is ill ustrated through a large real-world framework
for local search heuristics for combinatorial optimization problems.

KEY WORDS: object-oriented frameworks, design notation, UML-F, framework development, framework
instantiation.

1. INTRODUCTION

This paper ill ustrates the weakness of standard object-oriented design languages regarding framework
documentation and shows how UML-F (Fontoura, 1999; Fontoura et. al., 2000) can be used to address this
problem. It shows how the documentation of a large framework in the local search heuristics domain,
namely the Searcher framework (Andreatta et. al., 1998), can be complemented through UML-F diagrams.
This case study highlights the benefits of this approach regarding framework development and
instantiation. Searcher was first described in (Andreatta et. al., 1998) through OMT diagrams (Rumbaugh
et. al., 1994) and pattern descriptions (Gamma et. al., 1995). UML-F was not available at that time.

UML-F is a UML profile (D’Souza et. al., 1999) useful for modeling frameworks and product-line
architectures. UML-F uses the basic UML extension mechanisms to define new constructs for modeling all
the relevant aspects of framework designs. Several other projects have already been successfully developed
with UML-F, as reported in (Fontoura, 1999). The Searcher case study is a condensed version of a real
application of UML-F.

The rest of this paper is organized as follows. Section 2 describes the local search heuristics domain and
presents the Searcher framework using the OMT design language (Rumbaugh et. al., 1994). Section 3
revisits the framework description using UML-F, and discusses the benefits of this new representation.
Section 4 describes some related work. Finally, Section 5 presents our conclusions and future research
directions.



2

2. LOCAL SEARCH HEURISTICS AND THE SEARCHER FRAMEWORK

Hard combinatorial optimization problems usually have to be solved by approximate methods. Constructive
methods build up feasible solutions from scratch. Among them, we find the so-called greedy algorithms,
based on a preliminary ordering of the solution elements according to their cost values. Basic local search
methods are based on the evaluation of the neighborhood of successive improving solutions, until no
further improvement is possible.  As an attempt to escape from local optima, some methods allow
controlled deterioration of the solutions in order to diversify the search (Andreatta et. al., 1998).

In the study of heuristics for combinatorial problems, it is often important to develop and compare, in a
systematic way, different algorithms, strategies, and parameters for the same problem. The Searcher
framework (Andreatta et. al., 1998) encapsulates different aspects involved in local search heuristics, such
as algorithms for the construction of initial solutions, methods for neighborhood generation, and movement
selection criteria. Encapsulation and abstraction promote unbiased comparisons between different
heuristics, code reuse, and easy extensions.

2.1 SEARCHER PATTERN-BASED DESCRIPTION

This section describes the framework as it was first documented by its authors (Andreatta et. al., 1998),
using a variation of the pattern form proposed in (Gamma et. al., 1995) and OMT diagrams (Rumbaugh et.
al., 1994).

Intent:

To provide an architectural basis for the implementation and comparison of different local search strategies.

Motivation:

In the study of heuristics for combinatorial problems, it is important to develop and compare, in a
systematic way, different heuristics for the same problem.  It is frequently the case that the best strategy for
a specific problem is not a good strategy for another.  It follows that, for a given problem, it is often
necessary to experiment with different heuristics, using different strategies and parameters.

By modeling the different concerns involved in local search in separate classes, and relating these classes in
a framework, our abili ty to construct and compare heuristics is increased, independently of their
implementations. Implementations can easily affect the performance of a new heuristic, for example due to
programming language, compiler, and other platform aspects.

Applicabili ty:

The Searcher framework can be used in situations involving:

• local search strategies that can use different methods for the construction of the initial solution,
different neighborhood relations, or different movement selection criteria;

• construction algorithms that utili ze subordinate local search heuristics; and

• local search heuristics with dynamic neighborhood models.

Structure:

Figure 1 shows the classes and relationships involved in the Searcher framework.

Par ticipants:

• Client:  contains the combinatorial problem instance to be solved, its initial data and the pre-processing
methods to be applied. It also contains the data for creating the SearchStrategy that will be used to solve
the problem. Generally, it can have methods for processing the solutions obtained by the
SearchStrategy.

• Solution: encapsulates the representation of a solution for the combinatorial problem. It defines the
interface the algorithms must use in order to construct and modify a solution.  It delegates to
IncrementModel or to MovementModel requests to modify the current solution.



3

• SearchStrategy: constructs and starts the BuildStrategy and the LocalSearch algorithms, also handling
their intercommunication, in case it exists.

• BuildStrategy: encapsulates constructive algorithms in concrete subclasses. It investigates and
eventually requests Solution for modifications in the current solution, based on an IncrementModel.

• LocalSearch: encapsulates local search algorithms in concrete subclasses. It investigates and eventually
requests Solution for modifications in the current solution, based on a MovementModel.

• Increment: groups the necessary data for an atomic modification of the internal representation of a
solution for constructive algorithms.

• Movement: groups the necessary data for an atomic modification of the internal representation of a
solution for local search algorithms.

• IncrementModel: modifies a solution according to a BuildStrategy request.

• MovementModel: modifies a solution according to a LocalSearch request.

Client

SearchStrategy

BuildStrategy LocalSearch

SolutionIncrement

IncrementModel

Movement

MovementModel

strategy

searchers_listbuilders_list

current found
best_list
currrent initial

candidate_list
selected

candidate_list
selected

search modelbuilding model

initial_list found_list

Figure 1. Searcher class diagram

Collaborations:

The Client wants a Solution for a problem instance. It delegates this task to its SearchStrategy, which is
composed by at least one BuildStrategy and one LocalSearch. The BuildStrategy produces an initial
Solution and the LocalSearch improves the initial Solution through successive movements. The
BuildStrategy  and the LocalSearch perform their tasks based on neighborhood relations provided by  the
Client.

The implementation of these neighborhoods is delegated by the Solution to its IncrementModel (related to
the BuildStrategy) and to its MovementModel (related to the LocalSearch). The IncrementModel and the
MovementModel are the objects that will obtain the Increments or the Movements necessary to modify the
Solution  (under construction or not).

The IncrementModel and the MovementModel  may change at runtime,  reflecting the use of a dynamic
neighborhood in the LocalSearch, or having a BuildStrategy that uses several kinds of Increments to
construct a Solution. The variation of the IncrementModel is controlled inside the BuildStrategy and  the



4

variation of the MovementModel is controlled by the LocalSearch. This control is performed using
information made available by the Client and accessible to these objects. Figure 2 ill ustrates this scenario.

aClient aSearchStrategy aBuildStrategy aLocalSearch
aSolution

 new SearchStrategy
new BuildStrategy

new LocalSearch
PreProcess( )

PosProcess()

Start( )

Construct( )

Search( )

GetIncrement( )

DoIncrement( )

GetMovement( )

DoMovement( )

new Solution

Figure 2. Collaborations in the Searcher framework

3. SEARCHER DESIGN MODEL IN UML-F

Although the pattern-based description gives an intuition of the framework design structure, there are
several problems related to it1:

• Variation point identification: Variation points (or hot-spots) (Pree, 1995) are the points in the
framework structure that are designed to be replaceable. Frameworks instances are created through the
adaptation of the variation points. In the OMT diagrams shown in Figures 1 and 2 there is no
indication of what are the variation points and how they should be adapted. The textual description is
informal and might not be clear enough.

                                                          
1 It is important to remember that in the initial version of the Searcher project (Andreatta et. al., 1998)
UML-F was not yet available.



5

• Complex design model: the design diagram presented in Figure 1 is very tangled and hard to be
understood.

• Interrelated variation points: there are variation point interdependencies that are not represented in the
standard class and sequence diagrams. For instance, whenever new build strategies are defined new
increment models also need to be. The same holds for the search strategies and the movement models.

Figure 3 represents the Searcher design structure through an extended class diagram, in which the
{variable, static} tags are attached to method names. The {variable} tag is an UML-F construct useful to
identify methods that model variation points and need to be implemented during framework instantiation.
The {static} tag indicates that the instantiation needs to be done statically, meaning that it requires the
recompilation of the system for the changes take effect. Another possibili ty would be the use of the tag
{dynamic}, meaning that the instantiation would be possible during runtime. However, the use of
{dynamic} in the design model would require an interpreted implementation language that allows dynamic
class loading (such as Java and Smalltalk), since generally {dynamic} variation points cannot be directly
implemented in complied languages such as C++.

Client

SearchStrategy

Increment Movement

candidate_list
selected

candidate_list
selected

+start()
{ variable, static}

+build()
{ variable, static}

+localSearch()
{ variable, static}

Solution

+getIncrement()
{ variable, static}

+doIncrement()
{ variable, static}

+getMovement()
{ variable, static}

+doMovement()
{ variable, static}

* *

** *

Figure 3. UML extended class diagram for the Searcher framework

Figure 4 ill ustrates the instantiation diagram for the Searcher framework. Instantiation diagrams provide a
representation of the instantiation process through the use of UML activity diagrams. Activity diagrams are
used to represent workflow procedures in standard UML (Rumbaugh et. al., 1998; OMG, 1999). In
instantiation diagrams each action state represents one variation point. The transitions indicate the variation
points interdependencies, describing the way they should be instantiated.

Several facts related to the framework instantiation may be derived from this diagram. The variation points
build(), getIncrement(), and doIncrement() are interrelated. For each adaptation of build(), one or more
adaptations of getIncrement() and doIncrement() have to be defined. The same holds for search(),
getMovement(), and doMovement(). Finally, the diagram specifies that the start() variation point always
have to be intantiated with exactly one definition of the start() method per framework instance.

Extended class diagrams (Figure 3) and instantiation diagrams (Figure 4) complement each other. Together,
they completely specify variation points and how the framework should be instantiated.



6

start()

build

getIncrement

doIncrement

localSearch

getMovement

doMovement

Figure 4. Searcher instantiation diagram

Note that, now, the variation points are explicitly documented, the design is more clear (four classes have
been eliminated) and the variation point interdependencies are formally documented in the instantiation
diagram. In fact, Figures 1 and 3 complement each other: the first provides a more concrete description of
the framework implementation, while the second better models the variation points and their instantiation
requirements. Figure 3 is more abstract than Figure 1, which can be seen as an implementation refinement
based on design patterns. The stereotype � realize� , defined in UML 1.3 (OMG, 1999), specifies the
relationship between a specification model and a model that implements it.  In this case we can say that
Figure 3 is a specification model and Figure 1 is a implementation model that realizes it through the use of
design patterns.

The implementation of variation points is one of the most critical parts in framework development. Several
techniques can be used, such as design patterns (Buschmann et. al., 1996; Gamma et. al., 1995), meta-level
programming (Kiczales et. al., 1991), and contracts (Helm et. al., 1990; Holland, 1993). However, the
selection of the most appropriate technique for each of the framework’s variation points may be a very
diff icult task. If the variation points and their properties are not explicitly represented, this task can become
even harder.

Once the variation points have been documented in UML-F, the application of the most adequate technique
to model each variation point may be automated through design transformations. These transformations are
realization transformations that specify how each variation point in a UML-F diagram, modeled by a
{variable, static} tag for example, can be implemented in actual programming languages such as Java and
C++.

Figure 5 shows a logic program that applies the Strategy design pattern (Gamma et. el., 1995) to all
variation points defined in the design diagram shown in Figure 3. The result of this transformation is the
diagram presented in Figure 1. The transformation ill ustrated in Figure 5 is part of the framework
development tools proposed in (Fontoura, 1999), which assist the development and instantation of
frameworks using UML-F. The tool stores UML-F diagrams as graphs in a knowledge base, and provides
several logic programs for transforming these graphs. In this example, it searches for all methods marked as
{variable, static} tags transforming them into the Strategy design pattern model. Figure 6 ill ustrates this
transformation visually for the localSearch() variation point.



7

applyS t rategy ( Projec t ,  NewProject ) :-
[...]
forall ( variat i onMeth od( Projec t ,  Class ,  Metho d, dynami c),
strate gy( Projec t ,  NewProject ,  Class ,  Metho d)),
[...]

strate gy( Projec t ,  NewProject ,  Class ,  Metho d) :-
concat ( Method ,  'Stra t egy' ,  NewClass ),
create Class ( NewProj ect ,  NewClass ,  dynami c),
create Method ( NewProj ect ,  NewClass ,  Metho d,  publi c,  none ,  abstr act ),
create Aggrega t ion ( NewProj ect ,  Class ,  NewClass ,  strat egy ),
assert ( implem entatio n( Projec t , [... ] , strate gy)).
[...]

Searches for
variation
points in a
design

Uses strategy pattern
to model them

Figure 5. Design-implementation transformation: using Strategy to model variation points

SearchStrategy

+localSearch()
{ variable, static}

LocalSearch

+search()

searchers_list
SearchStrategy

+localSearch()

Framework design 
representation

(UML-F)

Framework
implementation ConcreteSearch

+search()

Figure 6. Visual transformation of the design

We think that framework builders should not focus on design patterns, but instead on the domain variabili ty
and extensibil ity requirements. Once this knowledge is captured, it should be expressed in appropriate
design notation, such as UML-F. Design patterns and other implementation techniques should be
considered only in the implementation step of the process, once the design is completely validated by the
domain experts. The above example shows that tools can support these ideas by concentrating at the design
level and systematizing the mapping from design to implementation.

Moreover, the instantiation diagram can be used as a formal representation for the instantiation process. It
completely specifies the tasks that should be performed by the framework users while adapting the
framework. Since all the variation points that need to be adapted are marked in the design, the UML-F
diagrams can be processed by tools that use this description for guiding the users during the adaptation. A
prototype of such a tool is described in (Fontoura, 1999).

4. RELATED WORK

UML uses collaboration diagrams to model design patterns and provides a way of instantiating pattern
descriptions through the � binding�  stereotype. Frameworks are represented in UML as packages that
assemble several patterns (Rumbaugh et. al., 1998; OMG, 1999). Collaboration diagrams are useful for
documenting framework adaptation. However, they only partially address this problem since they do not
provide, for instance, a way of describing interdependencies among variation points. We think that
collaboration diagrams can be usefull y complemented with UML-F diagrams to further assist framework
users in during the instantiation process.

UML 1.3 also provides the concept of subsystem. A subsystem offers an interface and can contain
specification and realization (or implementation) models. Therefore, frameworks can be represented in
UML 1.3 as subsystems. In this case the UML-F diagrams are used to describe the specification models of



8

the subsystem, while standard UML are used to describe its realization models.

Catalysis proposes a methodological approach for developing frameworks based on standard UML
diagrams (D’Souza and Will s, 1997). Frameworks are represented in Catalysis as collaborations, and the
adaptation process is specified through the use of substitutions. However, there is no direct support in
Catalysis for assisting the implementation of variation points and for guiding the instantiation process.

Cookbooks (Krasner and Pope, 1988) provide a textual description of the purpose of the framework,
describing its major components and providing examples of its use. However, cookbooks do not have a
formal structure, and different cookbooks may focus on different aspects of the framework with different
levels of detail . The descriptions are quite informal, and this lack of formality may lead to misconceptions
by the user. Although the patterns described in (Johnson, 1992) are based on an Alexandrian narrative, they
respect a pattern form and can be seen as a cookbook with more structure.

Riehle and Gross (1998) proposes an extension of the OOram methodology (Reenskaug et. al., 1996) to
facilit ate framework design and documentation. They propose the use of role diagrams to explicit document
the interaction of the framework with its clients. Although this approach produces good results for pattern
documentation, it does not provide an explicit representation for variation points and it does not model the
instantiation process.

Some work in the systematic application of patterns to implement framework variation points can be found
in (Pree, 1995; Schmid, 1997).

5. CONCLUSIONS AND FUTURE WORK

This paper has shown that an adequate notation for frameworks can be useful in automating the
implementation and instantiation steps of the software development process. The case study has shown how
framework instantiation can be largely improved by the use of UML-F notation. It has also shown that
representing frameworks at a higher level of abstraction than programming languages can be very useful to
assist with the understanding of a design.

In this paper we have briefly described how tool support for UML-F can assist framework development and
adaptation. A more detailed description on that topic and more case studies of the use of the UML-F to
describe and implement real world frameworks can be found in (Fontoura, 1999).

A new version of this tool that provides cooperative work capabiliti es and graphical representation is now
being developed in Java. This tool will be used to experiment with different objet-oriented models and
evaluate the impact of these models in framework design. More concretely, the tool will provide a uniform
way of validating how roles (Riehle and Gross, 1998; Reenskaug et. al., 1996) and ADVs (Cowan and
Lucena, 1995) can enhance framework design and how they can be used together with UML-F.

REFERENCES

Andreatta, A., Carvalho, S., and Ribeiro, C., An Object-Oriented Framework for Local Search Heuristics,

26th Conference on Technology of Object-Oriented Languages and Systems (TOOLS USA’98), IEEE

Press, 33-45 (1998).

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M., Pattern-Oriented Software

Architecture: A System of Patterns, John Wiley & Sons  (1996).

Cowan, D. and Lucena, C., Abstract Data Views: An Interface Specification Concept to Enhance Design

for Reuse, IEEE Transactions on Software Engineering, 21(3), 229-243 (1995).

D’Souza, D. Sane, A., and Birchenough, A., First-class Extensibili ty for UML – Packaging of Profiles,

Stereotypes, Patterns, UML’99, LNCS 1723, Springer-Verlag, 265-277 (1999).



9

D’Souza, D. and Will s, A., Objects, Components, and Frameworks with UML: The Catalysis Approach,

Addison Wesley (1997).

Fontoura, M., A Systematic Approach for Framework Development, Ph.D. Thesis, Computer Science

Department, Pontifical Catholic University of Rio de Janeiro (1999).

Fontoura, M., Pree, W., and Rumpe, B., UML-F: A Modeling Language for Object-Oriented Frameworks,

ECOOP’2000, LNCS 1850, Sringer-Verlag, 63-82 (2000).

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns, Elements of Reusable Object-

Oriented Software, Addison-Wesley (1995).

Helm, R., Holland, I., and Gangopadhyay, D., Contracts: Specifying Behavioral Composition in Object-

Oriented Systems, OOPSLA/ECOOP’90, Norman Meyrowitz (ed.), ACM Press, 169-180  (1990).

Holland, I., The Design and Representation of Object-Oriented Components, Ph.D. Dissertation, Computer

Science Department, Northeastern University (1993).

Johnson, R., Documenting Frameworks Using Patterns, OOPSLA’92, ACM Press, 63-76 (1992).

Kiczales, G., des Rivieres, J., and Bobrow, D., The Art of Meta-object Protocol, MIT Press (1991).

Krasner, G., and Pope, S., A Cookbook for Using the Model-View-Controller User Interface Paradigm in

Smalltalk-80, Journal of Object-Oriented Programming, 1(3), 26-49 (1988).

OMG, OMG Unified Modeling Language Specification v.1.3 (1999).

Pree, W., Design Patterns for Object-Oriented Software Development, Addison-Wesley (1995).

Reenskaug, T., Wold, P., and Lehne, O., Working with objects, Manning (1996).

Riehle, D. and Gross, T., Role Model Based Framework Design and Integration, OOPSLA’98, ACM Press,

117-133 (1998).

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W., Object-Oriented Modeling and

Design, Prentice Hall , Englewood Clifs (1994).

Rumbaugh, J., Jacobson, I., and Booch, G., The Unified Modeling Language Reference Manual, Addison-

Wesley (1998).

Schmid, H., Systematic Framework Design by Generalization, Communications of the ACM, 40(10), 48-51

(1997).

Author biographies:

Marcus Fontoura is a post-doctoral researcher at the Department of Computer Science, Princeton

University, Princeton, USA.



10

Car los J. Lucena is a full professor at the Computer Science Department, Pontifical Catholic University of

Rio de Janeiro, Rio de Janeiro, Brazil .

Alexandre Andreatta is an assistant professor at the Department of Applied Computer Science, University

of Rio de Janeiro, Rio de Janeiro, Brazil .

Sergio E. Carvalho is an associate professor at the Computer Science Department, Pontifical Catholic

University of Rio de Janeiro, Rio de Janeiro, Brazil .

Celso C. Ribeiro is a full professor at the Computer Science Department, Pontifical Catholic University of

Rio de Janeiro, Rio de Janeiro, Brazil .


