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a b s t r a c t 

Finding an implicit polynomial that fits a set of observations X is the goal of many researches in recent 

years. However, most existing algorithms assume the knowledge of the degree of the implicit polynomial 

that best represents the points. This paper presents two main contributions. First, a new distance measure 

between X and the implicit polynomial is defined. Second, this distance is used to define an algorithm 

able to find the degree of the polynomial needed for the representation of the data set. The proposed 

algorithm is based on the idea of gradually increase the degree, while there is an improvement in the 

smoothness of the solutions. The experiments confirm the validity of the approach for the selected 2D 

and 3D datasets. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The problem of 2D and 3D object representation is present in

different areas of research as computer graphics and computer vi-

sion. Modelling, 3D reconstruction and recognition tasks depend

totally on a good representation of the observed objects. 

Unfortunately, it is usual to receive noised, discrete or in-

complete real world data. The models are obtained from images,

videos, 3D scanners or another capture devices [11] . The nature of

this devices allow to obtain a finite and discrete amount of data

from the original object, commonly as a point set. The process of

finding a model that fits better this observation set is a goal of

many investigations in the last years [5,15,21,35] . 

Implicit polynomials (from now on IPs) are proved to be a pow-

erful tool modelling real objects compared to other representa-

tion types, like explicit or parametric [34] , with surprising variety

of forms ( Fig. 1 , “Cherries” and “The pear”) and good properties

where required: 

• A compact surface representation, i.e. concise, efficient descrip-

tion of the object, using few parameters [8] 
• Algebraic and geometric invariants, for instance, area and vol-

ume [30] 
• A fast way for classifying points as internal or external to the

object 
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• Robust algorithms in presence of noise and occlusion [34] 

.1. Implicit polynomials 

Implicit curve or surface is a zero set of a polynomial function

 . For instance, in the case of a surface, the function is expressed

s: 

f a (x, y, z) = 

∑ 

0 ≤i + j+ k ≤n 

a i jk x 
i y j z k 

= ( 1 x y z x 2 . . . ) ︸ ︷︷ ︸ 
m (x ) T 

( a 0 0 0 a 100 a 010 a 001 a 200 . . . ) T ︸ ︷︷ ︸ 
a 

= m (x ) T a 

IP is being seen as product between a monomial vector m ( x ) T 

hat only depends on the point ( x , y , z ), and the parameters vector

 . 

Formally, an implicit polynomial surface is the solution set of

he following equation: 

 (x ) T a = 0 (1)

here x is the variable. This solution set is denoted as Z ( f a ). In

oth cases - 2D and 3D - usually implicit polynomial term is used.

The main contribution of this research is to develop an IP fitting

lgorithm capable of discovering an optimal polynomial degree to be

sed during the fitting process. 

This paper presents two contributions. A new distance mea-

ure between X and the implicit polynomial is defined, and an

http://dx.doi.org/10.1016/j.cag.2017.05.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2017.05.002&domain=pdf
mailto:rinterian@ic.uff.br
mailto:rubenus@yandex.ru
http://dx.doi.org/10.1016/j.cag.2017.05.002
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Fig. 1. Implicit Polynomials. (a) “The pear”, 6 th degree IP (b) “The cherries”. Taken 

from [24] . 
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lgorithm able to find the optimal degree of the polynomial

eeded for the representation of the data set is proposed. The

oal is to find an implicit polynomial that produces a compact and

mooth representation of the point set with the lowest degree as

ossible, and at the same time minimizes the fitting error. The co-

fficients of the implicit polynomial can be used then as a descrip-

or for other tasks, for instance, shape analysis and recognition [7] ,

n which complex and extensive representations are not useful. 

.2. Structure of present work 

This work is organized as following. In the Section 2 , main IP

tting methods are presented. In the Section 3 , a novel distance

easure between the point set and an IP is introduced. In the

ection 4 , fitting algorithm that uses the new measure in order to

nd IPs with certain desired properties, without previous knowl-

dge of the best degree to be used in the fitting process, is pro-

osed. In the Section 5 , experimental results obtained from the

roposed method are analyzed. 

. IP fitting methods 

Fitting methods are classified as linear or nonlinear according

o how the distance dist ( x i , Z ( f a )) between a point x i and the zero

et Z ( f a ) is defined. 

.1. Nonlinear methods 

There is no simple way to find analytically the distance from

ny point to Z ( f a ). Approximate iterative methods are used instead

16,20,33] . 

The main idea of the nonlinear IP fitting methods is to use the

aubin first order approximation to the exact point-curve or point-

urface distance [28,29,31] : 

ist(x , Z( f a )) ≈ | f (x ) | 
‖∇ f (x ) ‖ 

This kind of distance is usually named geometric , because it

ses information from the partial derivatives of f a . 

.2. Linear methods 

The linear methods have been used most [6,36] , because they

o not require iterative approximations and are faster than nonlin-

ar ones. The most important linear fitting algorithms are classic

inear fitting and 3L algorithm. 
The linear methods use the algebraic distance: 

ist(x , Z( f a )) ≈ f a (x ) 

The following assumptions are made. By continuity, the value of

 a is close to zero near Z ( f a ). It is also assumed that far from Z ( f a ),

 a is growing. 

In this case, the fitting problem is solved as a overdetermined

ystem M n ×k a k ×1 = b n ×1 where M is the monomial matrix, which

ows are the n monomial vectors of each point in the set X , and b

s ( initially ) a zero vector. 

The least squares solution of this overdetermined system

10] is: 

 = (M 

T M ) −1 M 

T b = M 

+ b 

here M 

+ is the Moore–Penrose pseudoinverse [3] . 

However, the linear algorithms suffer instability, because small

hanges in the observations can lead to completely different solu-

ions [6] . Furthermore, since b = 0 , there is a trivial solution a = 0

hat should be avoid. Thereby this classical linear method is im-

roved by other linear algorithms, like the 3L algorithm [6] . The

tability of fitting is increased, and the vector b is substituted by

nother nonzero vector. 

. New distance measure to an IP 

In order to obtain a good fitting algorithm, a new distance mea-

ure between a point and an IP is defined. In this regard, firstly two

pecific measures (called dissimilarity and smoothness measures)

re deduced, with the aim of evaluating the “separation” and the

proximity” of the point set to Z ( f a ). 

.1. Dissimilarity measure 

The dissimilarity measure evaluates quantitatively the real dis-

ance between the IP and the points. 

First order Taubin approximation [31] is chosen for providing

ast and analytically substantiated approximation to the point-IP

istance: 

issim (x , Z( f a )) = 

| f (x ) | 
‖∇ f (x ) ‖ 

Therefore, for calculating the dissimilarity between a point set

 and the IP, we propose to use the following function by averag-

ng the Taubin approximations in each point: 

issim (X , Z( f a )) = 

1 

N 

N ∑ 

i =1 

| f (x i ) | 
‖∇ f (x i ) ‖ 

(2)

This function is called hereinafter dissimilarity measure between

 and Z ( f a ). 

.2. Smoothness measure 

In some of the latest works [21,27,34,35] , the idea of taking con-

rol of some geometric characteristics of the IPs over the course of

he fitting algorithms, is proposed. These characteristics could be:

radient vector norm near the point set, gradient direction rela-

ive to some estimated tangent vector in some points, as well as

ome others. All of them attempt to avoid the effects of overfit-

ing, promoting those polynomials which have desired geometric

roperties. 

For those reasons, “smoothness” measure is also used in order

o provide a geometric proximity criterion between the IP and the

ataset [34] . This measure evaluates qualitatively any IP as an ap-

roximation to the given set of points. The advantage of using this

uality measure consists in obtain only IPs with certain desired

opological properties, as shown below. 
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Fig. 2. Smoothness measure. If the directions of the estimated normal vector and 

the gradient vector are very different, the quality of the fitting is poor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Overfitting. The implicit polynomial pass close all the points in X ; it is well 

evaluated quantitatively, but has a poor qualitative evaluation, since it can be im- 

proved [27] by eliminating the turns it makes when passing through several points. 
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Given a dataset X , an IP is smooth in x i ∈ X if: 

∇ f (x i ) 

‖∇ f (x i ) ‖ 

N i ≈ 1 

where N i is an estimated normalized normal vector in x i . It can be

obtained from physical models or estimated from X . 

Care should be taken when generating N i vectors in a noisy

point cloud, since inaccurate generation of these vectors can lead

to poor fitting results. There are several algorithms addressing this

problem [12,22,23] . In particular, we refer to Sahin method [22,23] ,

in which this issue is tackled. In this work, the existence of a set

of N i vectors computed by any efficient method is assumed. 

We use the following expression [35] as the smoothness measure

of an IP regarding the point set X : 

smooth (X , Z( f a )) = 

1 

N 

N ∑ 

i =1 

∇ f (x i ) 

‖∇ f (x i ) ‖ 

N i (3)

We note that this function is bounded between -1 and 1 due to

the normalization of both, gradient and normal vectors. Neverthe-

less, in practice, if the directions of the estimated normal vectors

are determined accurately, the smoothness measure should never

be close to −1. We note that smoothness can be interpreted as the

average of cosine values of the angles between the gradient vector

and the estimated normal vector, for every point of the dataset. If

the cosine value is close to −1, that means the angle is close to 180

degrees. If that happens, it implies inversion of orientation which

we should avoid because we are working with orientable surfaces.

In the worst case, the gradient can be perpendicular to the esti-

mated normal vector, causing smoothness be zero at this point. 

In the Fig. 2 , the intuitive idea of the smoothness measure is

illustrated. 

If the fitting result has good quality, the normalized gradient

vector 
∇ f (x i ) ‖∇ f (x i ) ‖ is close to the normal vector N i in any point x i . 

3.3. Penalization strategy 

One of the contributions of this work is to propose a combi-

nation of the measures described above as an objective function

(from now on OF) used in the fitting process. It is common to use

quantitative OF in linear and nonlinear fitting methods, i.e. a func-

tion that describe an approximation to real distance from some IP

to the points. Our approach include an objective function that pe-

nalizes non-smooth solutions during the optimization process, pro-

moting higher quality IPs. 

A strategy based on the idea of penalizing non-smooth IP solu-

tions along the fitting process is described. Given a point set X , we

say that an IP is non-smooth if smooth ( X , Z ( f a )) ≈ 0, that is: 

1 − smooth (X , Z( f a )) ≈ 1 

Therefore, a new OF that penalizes non-smoothness is defined

as the sum of two terms. The first term is the dissimilarity mea-

sure. The second term reflects how far the IP is from being smooth.
he positive constant δ has the role of penalty coefficient: 

ist(X , Z( f a )) = dissim (X , Z( f a )) + δ(1 − smooth (X , Z( f a ))) 

Substituting the expressions of dissimilarity and smoothness

easures, and grouping the terms, we get: 

ist(X , Z( f a )) = 

1 

N 

N ∑ 

i =1 

| f (x i ) | 
‖∇ f (x i ) ‖ 

+ δ

( 

1 − 1 

N 

N ∑ 

i =1 

∇ f (x i ) 

‖∇ f (x i ) ‖ 

N i 

) 

ist(X , Z( f a )) = 

1 

N 

N ∑ 

i =1 

( | f (x i ) | 
‖∇ f (x i ) ‖ 

+ δ

(
1 − ∇ f (x i ) 

‖∇ f (x i ) ‖ 

N i 

))
(4)

This formulation of the distance function attempts to reconcile

he two concepts we exposed in past sections: the proximity be-

ween the point cloud and the polynomial, and geometrical proper-

ies that the polynomial must have. The positive parameter δ indi-

ates how strong is the penalty for not having those desired prop-

rties. 

The δ parameter acts in a similar way to ridge regularization

arameter α [22] . The aim of both parameters is to improve sta-

ility. However, there is no equivalence between the two. While in

idge regression the parameter works on global stability [22] (pos-

ibly causing local inaccuracy), in our method the value of δ acts

ocally by fixing gradient directions and improving local stability. 

The distance function (4) is taken as the new OF that should be

inimized during the fitting process: 

in 

f a 

1 

N 

N ∑ 

i =1 

( | f (x i ) | 
‖∇ f (x i ) ‖ 

+ δ

(
1 − ∇ f (x i ) 

‖∇ f (x i ) ‖ 

N i 

))
(5)

Note that the IP can pass through all the points in X having

ositive OF value, for example, as in Fig. 3 . We define now the fit-

ing algorithm based on the distance measure (4) . 

. An adaptive fitting algorithm 

The main contribution of this work is to provide an algorithm

apable of finding the degree of the polynomial needed for the

epresentation of the points, without previous knowledge of the

omplexity of the dataset. This kind of algorithm is called here-

nafter “adaptive fitting algorithm”. 

Firstly, a fixed degree fitting algorithm is discussed. Subse-

uently, this algorithm is generalized to the variable degree case. 

.1. Fixed degree fitting 

The minimization of the objective function defined above is

roposed: 

in 

f a 

1 

N 

N ∑ 

i =1 

( | f (x i ) | 
‖∇ f (x i ) ‖ 

+ δ

(
1 − ∇ f (x i ) 

‖∇ f (x i ) ‖ 

N i 

))
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Table 1 

Number of IP coefficients (problem dimension) 

from polynomial degree. 

Degree Coefficients, 2D Coefficients, 3D 

1 3 4 

2 6 10 

4 15 35 

6 28 84 

8 45 165 

10 66 286 

12 91 455 

14 120 680 

16 153 969 
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1 For instance, any line in the plane, or any plane in the space, are zero sets of 

one-degree polynomials, and also unbounded. 
Besides having not derivable nominator, it is well known that

urve and surface fitting problems commonly lead to multimodal

unctional dependencies of the solution from data, even those as-

ociated to linear methods, as explained very well in [6] . This

eans that the objective function may have several local opti-

ums. Exact methods are not efficient in this kind of problems,

onverging naturally to closest of them. 

Therefore, metaheuristic algorithms are used in order to realize

 better exploration of the search space and most important, refine

everal solutions provided by classical fitting methods, improving

he quality of those. Those that were designed specifically for con-

inuous problems are chosen, such as Particle Swarm Optimization

nd Differential Evolution [13,25] . Both have been previously used

n curve fitting problems [18] . 

.1.1. Optimization by PSO metaheuristic 

The Particle Swarm Optimization metaheuristic (PSO) keep a set

swarm) of N particles traveling in a d -dimensional space [13] . Ev-

ry particle represents a solution, and has associated a position

nd a speed vector, this last indicating the direction and the step

f the movement. Each time some particle moves, it readjust its

peed using information from the swarm, such that the search pro-

ess is directed to promising search space regions. The parameter

, called restriction factor, allows to bound speed values. In this

ay, the success of some particles affects the behavior of the oth-

rs. 

This algorithm has only two parameters: χ , the restriction fac-

or, and N , the size of the swarm. 

.1.2. Optimization by DE metaheuristic 

The Differential Evolution metaheuristic (DE) is an Evolution-

ry Algorithm and can be seen as a variation of the Genetic Algo-

ithm [25] . Like any genetic algorithm, DE uses a population of N

ndividuals represented by d -dimensional vectors. In summary, the

lgorithm generate new individuals using sum and difference op-

rations over vectors in the population. In recent years this meta-

euristic has been widely used in many practical problems, spe-

ially continuous ones [19] . 

Besides the population size N , DE has two parameters: weight-

ng factor F , which controls the amplification of the variation

btained from the vector difference; and crossover constant CR ,

hich indicates the percentage of the new individual vector com-

onents taken into account in the vectors of the next generation. 

.1.3. Seeded elements 

Small number of seeded elements is included into the initial

opulation of the iterative algorithms. Seeded elements typically

ave good values of the objective function, and is assumed that

hey increase the fitness of the population. 

Exact algorithms solutions can be used as seeded elements. In

articular, we use solutions of linear classic and 3L algorithms. The

olutions of these linear methods can be obtained very quickly. The

roposed number of seeded elements is N 
10 , where N is the total

ize of the population. The role of the metaheuristic is to improve

he quality of the exact method solutions if they have good fitness

espect to the distance measure defined above. 

.2. Adaptive fitting 

The following question arises: what criteria should be followed

or finding the optimum IP degree that best represents some

ataset X ? In order to find an answer, several aspects of this prob-

em are discussed below. 
.2.1. Maximum IP degree selection 

Some practical considerations on IP degrees utilization are ex-

osed. 

In most research works addressing IP fitting problem, only

ven degrees are used in experiments or practical examples

6,14,22,34,35] . 

Taubin’s work [32] has the explanation. Zero set of any odd

egree polynomial is always unbounded 

1 . Even degree polynomial

ero sets can be bounded or unbounded. Therefore, are only con-

idered even degree polynomials, due to finite nature of the ob-

erved datasets. 

Furthermore, on the same researches, the most used IP degrees

re in the range from 2 to 10. The use of superior degrees (12,

4, 16 and 18) is exceptional. In fact, the advantage of having a

ompact representation of the object is lost when these degrees

re utilized (see the Table 1 ). 

.2.2. Smoothness measure behaviour analysis increasing IP degree 

The key to determining the optimum IP degree is the behav-

or of the smoothness measure when this degree is increasing. The

ig. 4 shows the evolution of the above mentioned measure of the

olutions of two fitting algorithms, for two distinct datasets. 

In both cases, the smoothness measure increases, and then sta-

ilizes its growth. In one case, the measure reaches the maximum,

nd then drops slightly. In the second case, asymptotic behavior is

bserved. The 3L algorithm solutions have higher quality than the

olutions of the classical fitting algorithm. 

These considerations lead us to use the change of the smooth-

ess measure as a criterion of closeness to optimum IP degree. If

he increment of the smoothness is very small or negative (the

moothness decreases) the “best” degree is reached. 

.2.3. Summary of the adaptive fitting algorithm 

Taking into consideration all the above, the following fitting al-

orithm is proposed: 

The stopping criterion of this algorithm is the non-increment of

he smoothness measure in some ε. If ε = 0 , this is equivalent to

 decrement of the smoothness. 

One advantage of using this stopping criterion in the algorithm

s that it has a clear geometric interpretation. The smoothness is

he average of cosine values of the angles between the gradient

ector and the estimated normal vector, for every point of the

ataset. For instance, setting the value ε = 0 . 01 in the stopping cri-

erion represents a reduction of those angles in approximately 1 °. 
The following properties of the adaptive fitting algorithm can

e exploited: 

• It is able to find the degree of the IP that is necessary to get

a good fitting result without any previous knowledge of the com-

plexity of the dataset . 
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Fig. 4. Smoothness measure behaviour increasing IP degree, datasets: (a) “Boot”, (b) “Horse” ( Large Geometric Models Archive , Georgia Institute of Technology [1] ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. 2D datasets. (a) Boot, (b) Airplane, (c) Butterfly. 

Fig. 6. 3D datasets. (a) Apple, (b) Rubber duck, (c) Stanford Bunny. 
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• It introduces variability of the solutions, allowing to generate a

set of them as output of the algorithm. With this we capitalize

the multimodal nature of the IP fitting problem 

2 , which is an

advantage over exact algorithms. 
• It utilizes and improves the quality of the IPs that are solu-

tions of the classic algorithms. This can be seen as a post-

optimization process. The metaheuristics can generate new IPs

that are unrelated to classic solutions, if they have desired geo-

metric properties. 

Algorithm 1 Adaptive fitting algorithm. 

G ← Maximum degree to be used for the current dataset 

g ← 2 

while g ≤ G do 

best _ elements g ← F ixedDegree (g) 

if g > 2 and smooth (best _ elements g ) −
smooth (best _ elements g−1 ) ≤ ε then 

return best _ elements g−1 

else 

g ← g + 2 

end if 

end while 

return best _ elements g 

5. Experimental results 

Several issues concerning the practical implementation of the

proposed algorithms are clarified. 

One aspect that should be considered when applying fitting al-

gorithms is the need of centering the dataset X at the coordinate

origin. Furthermore, the dataset must be scaled (for example, di-

viding the points by their average distance from the coordinate

origin). These transformations avoid numerical problems in fitting

algorithms. 

The experiments evaluate the performance of the adaptive fit-

ting method in real 2D and 3D scenarios. Our main goal is to eval-

uate the quality of the solutions. The algorithm should generate
2 A multimodal problem has many local optima, which may have close values of 

the objective function. 

5

urves and surfaces that are interpretable and similar to the origi-

al 2D and 3D objects. 

.1. Datasets 

The 2D and 3D datasets are selected as follows. 

Point clouds are taken from widely known repositories, such as

tanford 3D Scanning Repository [2] and others ( Fig. 6 ). In partic-

lar, we take the following models: 

• Apple 
• Rubber duck 
• Stanford Bunny 

In the case of 2D models, plane figures that appear frequently

n implicit polynomial fitting research [6,27,35] are chosen ( Fig. 5 ).

here is not neither consensus nor repositories containing the ideal

atasets for two-dimensional fitting. Moreover, 2D models are eas-

ly reproducible by researchers in the area. 

.2. Parameters of the algorithms 

The following parameters were used in the experiments. 
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Fig. 7. Dataset “Boot”: setting parameter δ, 4th degree. Below each image is shown the value of δ. 

Fig. 8. Dataset “Airplane”, adaptive fitting run: (a) 2nd degree fit, (b) 4th degree fit (optimal degree), (c) evolution of the smoothness measure during the execution, (d) 3L 

fit for the 4th degree, (e) lineal classic fit for the 4th degree. 
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c  
In DE and PSO metaheuristics, the population (swarm) size is

et to four times the dimension of the problem [17] , that is, four

imes the dimension of the parameters vector a . As stopping condi-

ion in both metaheuristics, the criterion of reaching 500 iterations

s used. The run times of both algorithms are very similar. 

In PSO metaheuristic, value χ = 0 . 729 is taken, as suggested in

9] . 

In DE metaheuristic, values for weighting factor F = 0 . 7 and

rossover constant CR = 0 . 9 are assumed, as recommended in [26] .

The penalization parameter δ from the objective function (5) is

stimated in Section 5.3 . 

Finally, for 3D models, fractions of the total number of points in

he original dataset are taken, since the cardinality of these sets is

ery large, becoming 35,947 points in the dataset Stanford Bunny.

s

his is because these models are often used in research in the field

f computer graphics, where local accuracy is critical. 

.3. Setting parameter δ

The parameter δ introduced in the fitting algorithm, determines

ow strong is the penalty for having too low values of the smooth-

ess measure. 

Setting this parameter correctly is essential to obtain results

hat can be used and interpreted correctly, because a low value

an eliminate the necessary effect of the penalty, and a high value

an cause the implicit polynomial to stay away from the original

et of observations. 
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Fig. 9. Dataset “Boot”, adaptive fitting run: (a) 2nd degree fit, (b) 4th degree fit, (c) 6th degree fit (optimal degree for ε = 0 . 01 ), (d) evolution of the smoothness measure 

during the execution, (e) 3L fit for the 6th degree, (f) lineal classic fit for the 6th degree. 

Fig. 10. Dataset “Butterfly”, adaptive fitting run: (a) 2nd degree fit, (b) 4th degree fit (optimal degree for ε = 0 . 01 ), (c) 6th degree fit, (d) 8th degree fit (optimal degree for 

ε = 0 ), (e) evolution of the smoothness measure during the execution, (f) 3L fit for the 4th degree, (g) lineal classic fit for the 4th degree, (h) 3L fit for the 8th degree, (i) 

lineal classic fit for the 8th degree. 
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This fact is illustrated in the Fig. 7 . Unstable behavior of the

algorithm for small values of δ, as well as imprecise results for

the large values, is observed. There is also a wide range of accept-

able values for δ. We use the value δ = 0 . 25 in the experiments

described below. 

5.4. Analysis of adaptive fitting results 

The results of adaptive fitting algorithm for the different

datasets are presented. 

5.4.1. Fitting 2D curves 

Adaptive fitting algorithm runs for 2D datasets are shown

( Figs. 8–10 ), comparing the obtained results with classic linear and

3L algorithm results. 

As observed, the adaptive algorithm can determine the degree

of implicit polynomial needed to obtain an interpretable fitting. 

5.4.2. Fitting 3D surfaces 

Just as in 2D, experimental runs of the adaptive fitting algo-

rithm for 3D datasets are executed. The Figs. 11–13 show the ob-
ained results as well as the fits obtained by 3L and classic linear

lgorithms for the same datasets. 

It is remarked that the algorithm is able to represent complex

bjects by relatively low degree implicit polynomials (degrees 2, 4,

, 8). 

.4.3. Discussion of the graphical results 

The results we presented in Figs. 8–13 can be divided into two

roups. The first one contains datasets in which the smooth func-

ion has a strict maximum ( Figs. 8, 11 and 12 ). In this cases, any

onnegative value for ε leads to easily identifiable optimum de-

ree, in particular, ε = 0 or ε = 0 . 01 . 

The second group contains point clouds where the smoothness

s a strictly increasing function (like Figs. 9 and 13 ). In order to

each correct results, the value of ε must be strictly positive, for

xample ε = 0 . 01 . 

There is also a “Butterfly” dataset ( Fig. 10 ), an example of a

moothness function with a strict maximum that has some un-

sual behavior. In this case, any of the aforementioned values of

(0 and 0.01), leads to different but interpretable results. 



R. Interian et al. / Computers & Graphics 67 (2017) 14–23 21 

Fig. 11. Dataset “Apple”, adaptive fitting run: (a) original point cloud, (b) 2nd degree fit, (c) 4th degree fit (optimal degree), (d) evolution of the smoothness measure during 

the execution, (e) lineal classic fit for the 4th degree, (f) 3L fit for the 4th degree. 

Fig. 12. Dataset “Rubber duck”, adaptive fitting run: (a) original point cloud, (b) 2nd degree fit, (c) 4th degree fit, (d) 6th degree fit (optimal degree), (e) evolution of the 

smoothness measure during the execution, (f) lineal classic fit for the 6th degree, (g) 3L fit for the 6th degree. 
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All these examples suggest that that the value of ε, however

mall, must be strictly positive. The value 0.01 seems to be a good

trategy in all 6 cases we analyzed. 

.5. Comparison with 3L method plus ridge regression regularization 

Ridge regression regularization (RRR) is a method that improves

lobal stability of other linear methods, like 3L algorithm. It con-

ists in adding the term kD to the M 

T M matrix used in these meth-

ds (see Section 2 and [22] for further details). The variable k is

he ridge regression parameter that should be small enough to pre-

erve properties of the original matrix, but large enough to achieve

lobal stability. 

We now compare the performance of our method against 3L

ith RRR (3L+RRR) using some selected values of k parameter.

he results are shown in Figs. 14 and 15 . We use 3L+RRR with

he same degree founded by our algorithm. Unlike the 3L method
ith ridge regression regularization, our method preserves impor-

ant shape features, like a pronounced corner in the tail of the air-

lane, or the central part of the butterfly. The ridge regression is

nable to achieve this kind of results for these datasets, since it

nly cares about global stability. Increasing k parameter, 3L+RRR

tting results tend to be more “circular”, eliminating corners and

rotrusions. 

.6. Fitting in presence of noisy data 

To analyze the behavior of the algorithm when the data is noisy,

e generated Gaussian noise in the original point clouds, with

ifferent standard deviation values. The results are presented in

ig. 16 . Normal vectors N i are generated using a simple algorithm

resented in [12] . Our fitting algorithm always stopped in degree

. The presented empirical evidence indicates that the method is
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Fig. 13. Dataset “Stanford Bunny”, adaptive fitting run: (a) original point cloud, (b) 2nd degree fit, (c) 4th degree fit, (d) 6th degree fit (optimal degree for ε = 0 . 01 ), (e) 

evolution of the smoothness measure during the execution, (f) lineal classic fit for the 6th degree, (g) 3L fit for the 6th degree. 

Fig. 14. Dataset “Airplane”, comparing with 3L+RRR method: (a) Our method, (b) 3L method without RRR ( k = 0 ), (c) 3L+RRR, k = 10 −8 , (d) k = 3 ∗ 10 −8 , e) k = 10 −7 . 

Fig. 15. Dataset “Butterfly”, comparing with 3L+RRR method: (a) Our method, (b) 3L method without RRR ( k = 0 ), (c) 3L+RRR, k = 10 −5 , (d) k = 3 ∗ 10 −5 , (e) k = 10 −4 . 

Fig. 16. Fitting in presence of noisy data. Below each image is shown the standard deviation value of Gaussian noise. 
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little sensitive to noise, which allows it to be used for recognition

tasks. 

6. Conclusions 

Although the implicit polynomials are not the most locally pre-

cise representation scheme, they are very useful for applications

requiring a compact registration of data from a complex real-world
bject, in order to perform a process of recognition [4] of the same,

r other objects that correspond to the pattern. With the aim of

nding an IP that properly represents some dataset, a fitting pro-

ess is performed. The vast majority of fitting algorithms requires

nowledge of the IP degree that best represents the points. This

ork presents an alternative to these fitting algorithms. 

Firstly, an objective function to be used during the fitting

rocess is defined. This function is characterized by including a
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enalty of undesired geometric properties (non-smoothness) in the

olynomial. 

Then, heuristic adaptive fitting algorithm is proposed, which is

ble to find the degree of the implicit polynomial that is neces-

ary to represent the dataset. The algorithm is based on the idea

f gradually increasing the degree of the IP, while there is an im-

rovement in the smoothness of the solutions. 

This algorithm is beneficial in comparison to others for three

easons: it can automatically find the required degree of the im-

licit polynomial, it can offer a set of solutions in contexts where

ariability (options) is required, and it can post optimize solutions

f known fitting algorithms (classical linear and 3L), in order to

btain better quality solutions. 

The experiments confirm the validity of the approach for the

elected 2D and 3D datasets, since the fits made by the proposed

lgorithm are interpretable. 
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