MIC/MAEB 2017 id-1

A GRASP with restarts heuristic for the Steiner traveling
salesman problem

Ruben Interian, Celso C. Ribeiro

Institute of Computing, Universidade Federal Fluminense,
Niterdi, RJ 24210-346, Brazil.
rinterian@ic.uff.br, celso@ic.uff.br

Abstract

Given a set of nodes and the distances between them, thédirtgagalesman problem (TSP)
consists in finding the shortest route that visits each nadetly once and returns to the first. The
Steiner traveling salesman problem (STSP) is a variant@fltBP that assumes that only a given
subset of nodes must be visited by a shortest route, evintisiting some nodes and edges more
than once. In this paper, we extend some classical TSP ootigé heuristics and neighborhood
structures to the STSP variant. In particular, we proposedaaed 2-opt neighborhood and we
show that it leads to better results in smaller computatiores. Computational results with an
implementation of a GRASP heuristic using path-relinkimgl aestarts are reported. In addition, a
set of test instances and best known solutions is made hlaftar benchmarking purposes.

1 Introduction

The traveling salesman problem (TSP) is one of the fundamental combihajatiization problems
[4, 12] and has numerous real-life applications in transportation, logisttscle routing, genome se-
guencing, and other areas. Given a set of nodes and the distatweshéhem, it consists in finding the
shortest route that visits each node exactly once and returns to the fateiatically, the TSP can be
defined as follows [2]. Given a graghi = (V, E) and a functionw : £ — R that associates a weight
w(e) to each edge € E, the goal is to find a Hamiltonian cycle of minimum total weight (or cost).
The traveling salesman problem is NP-hard, since its decision versiorvismtm be NP-complete by a
simple reduction from the Hamiltonian cycle problem [4].

However, in many practical applications it is more frequent to find the follgwariant of the TSP.
A setVyr C V of required nodes is given. Instead of searching for a Hamiltonian gisiteng all nodes,
a minimum-weight closed walk is requested that visits only the required nodese &nly a walk is
sought, nodes can be visited more than once and edges may be traversg¢tianmnce. The so-called
Steiner traveling salesman problem (Steiner TSP, or STSP) was firsiggon [2, 3], where its NP-
hardness is also proved. The Steiner TSP is specially suitable to modelrketegign [1], package
delivery [12, 13], and routing [7] problems. All of them are typically migdieusing sparse graphs.

Most studies on the Steiner TSP focus on integer programming formulatiodng#id inequalities.
The STSP is solved efficiently (in linear time) for series-parallel graph]in Compact, polynomial
size integer programming formulations of the TSP are extended to the STSP iArf&xtension of
the Steiner TSP that adds penalties to the nodes not visited by the cycle és@ddp [11]. A network
design problem consisting of multiple Steiner TSPs with order constraints iedtird[1], using an
integer linear programming formulation and a branch-and-cut algorithm.xfemsion of the STSP in
which the edge traversal costs are stochastic and correlated is stud@&d iar{ online algorithm is
proposed in [12, 13] to solve another extension of the STSP considedhtime edge blockages.

This paper is organized as follows. In the next section, adaptive gie@tstructive heuristics for
the Steiner TSP are presented. Section 3 reports on local searchistrdleyy are explored by the
GRASP with path-relinking heuristic presented in Section 4. Computationariexgnts are reported
in Section 5 and extended in Section 6, where an improved strategy explaiitglipal restarts is
developed. Concluding remarks are drawn in the last section.

Barcelona, July 4-7, 2017

id-2 MIC/MAEB 2017

2 Greedy algorithmsfor the Steiner TSP

The following strategy can be applied as a heuristic for the Steiner TSH-[&t, the instance of the
STSP is reduced to a TSP instance in a complete graph defined by theespiicéd nodes, in which the
new distances correspond to the shortest paths between every pajuiwéd nodes in the original graph.
Next, any exact or heuristic algorithm is used to solve the TSP in this new,letergyaph. Finally, the
solution of the TSP is converted into an STSP solution by expanding evgeylsdthe corresponding
shortest path between the two consecutive required nodes.

However, if the original STSP instance is a sparse graph, the cormvéostostandard TSP instance
significantly increases the number of edges, some of which may neveelle Tikerefore, instead of
using a complete graph formed by the required nodes, we shall use ti@abgoaph for searching a
minimum-weight closed walk. We use a straightforward adaptation of thestesmighbor TSP adaptive
greedy heuristic (see e.g. Chapter 3 of [10]) to the STSP described arithigy 1, which builds the
solution greedily by choosing at each iteration the closest required ndbattpreviously added to the
walk.

The algorithm starts in line 1 by arbitrarily selecting any initial nede Vy to start the walk. The
set of required node&” already visited by the walk is initialized in line 2. The partially built watkis
initialized in line 3. The currently visited required noderrent is set in line 4. The loop in lines 5 to
11 is performed until all required nodes have been visited. At each iteraiie noderezt to be visited
is set to the closest among all yet unvisited required nodes. The shmatb$t’ from current to next
is computed in line 7. The partially built walk is updated in line 8 by appending the shortest Fth
to it. The set of already visited required nod¥sand the current node are updated in lines 9 and 10,
respectively. Finally, after completing the loop, the shortest path tement to the initial node; is
appended to the walk in lines 12 and 13. The result is returned in line 14.

Algorithm 1 Nearest neighbor adaptive greedy heuristic for STSP.
1: Select initial required nodec Vg;

N {i};

P {i};

:current < 1,

: while N/ # Vi do

next + closest node teurrent among all those iy \ N;

P’ < shortest path fronaurrent to next;

P+ PaP,;

N «— N U {next};

current < next;

: end while;

: P’ + shortest path fronaurrent to initial nodes;

P« PaP,

:return P,

e e
5 W N RO

In the case of the Steiner TSP, the greedy criterion is the choice of thesheaquired node to be
visited.

Algorithms that add randomization to a greedy or adaptive greedy algorithoaledsemi-greedypr
randomized greedglgorithms. Randomization is an important feature in the implementation of effective
heuristics. Semi-greedy algorithms act by replacing the deterministic gréeitecf the next element
to be incorporated into the solution under construction by the random selexdten element from a
restricted set of best candidate elements, called the restricted candid@R€Elist

A simple quality-based scheme is used to define a restricted candidate ligty;ket min{g;

i € Vg \ NV andyg; is the shortest path fromurrent to nodei} andgmax = max{g; : i € Vg \ N and
gi is the shortest path fromurrent to nodei}. Furthermore, letv be such thah < o < 1. The RCL is
formed by all yet unselected required nodes Vi \ N satisfyinggmin < ¢i < gmin + @(gmax — Gmin)-

Barcelona, July 4-7, 2017

MIC/MAEB 2017 id-3

3 Local search

Local search procedures are used to iteratively improve the qualityioiteh solution, usually obtained
by a constructive heuristic. First-improving and best-improving strategéegraposed and compared in
terms of their performance. Efficient objective function updates ar, ugthout the need of recalculat-
ing the objective function values from scratch: the weight of the prewalk is used in order to find
that of the walk obtained after the changes performed during each iteration

3.1 Neighborhood structure

The 2-opt neighborhood is the most commonly used neighborhood stdotuthe TSP problem and
consists in replacing any pair of nonadjacent edges of the currertosohy the unique pair of new
edges that recreates a cycle.

The following property holds: LelV = (vy,...,v;,...,vj,...,v,) be any optimal solution of the
Steiner TSP. Then, the subpdth, . .., v;) is also a shortest path between the required nodasdv;.
This is true because, if this subpath was not the shortest,I#hevould not be optimal. Therefore, it
iS not necessary to investigate moves that involve changes in the ordercim tive non-required nodes
are visited. Then, the problem amounts to determining the order in which theeeaodes should be
visited and then finding the shortest path between any pair of conseretiviged nodes in the walk.

In consequence, we explore a 2-opt neighborhood for the STSRsthatmed by all moves that
replace the paths between two pairs of consecutive required nodesaalihky the two unique pairs of
shortest paths that reconnect a closed walk.

3.2 Reduced 2-opt neighborhood

A reduced 2-opt neighborhood can be defined in order to take adwanfahe problem structure. In
fact, convergence can be faster if only a few, promising moves in the laigbod are considered.

We implement this idea in the following way. For each required ngdet 7 (v) be the set formed
by all required nodes that are reachable froiloy a shortest path that does not visit any other required
node. In other wordg](v) represent the set of required nodes that are closeritothe sense that they
necessarily belong to paths to farther nodes.

Using this auxiliary data structure, we restrict the 2-opt moves to pairssiemuitive required nodes
(v1,v2) and(wy, we) satisfying the condition that, € I(v).

4 GRASP with path-relinking heuristic

GRASP (which stands fagreedy randomized adaptive search procedpi®a multi-start metaheuristic,
in which each iteration consists of two main phases: construction and l@aahsd he first phase is the
construction of a feasible solution, usually by a greedy randomized algorifimce a feasible solution
is obtained, its neighborhood is investigated until a local minimum is found danegecond phase
of local search. The best overall solution is kept as the result. Thieréareferred to Resende and
Ribeiro [10] for a complete account of GRASP.

We used the adaptive greedy randomized heuristic presented in Sectidrit®docal search strate-
gies described in Section 3 to customize a GRASP with path-relinking heuristlof&teiner TSP.

Path-relinking is an intensification strategy that explores trajectories ctngelite solutions pro-
duced by metaheuristics. Path-relinking is usually carried out betweendiwtiosis: one is the initial
solution S;, while the other is the guiding solutiofl,. A path that connects these solutions is con-
structed in the search for better solutions. Local search may be applieel beshsolution in the path,
since there is no guarantee that this solution is locally optimal. In the conteXRASB, path-relinking
may be used to connect solutions obtained after the local search step wigokittens produced during
previous iterations, providing a sort of memory mechanism.

Barcelona, July 4-7, 2017

id—4 MIC/MAEB 2017

More specifically, in the context of the STSP, path-relinking attempts to ju@semmon character-
istics of good walks, i.e. common subpaths. As explained below, path-redimkériches the positions
of the largest common subpath to the initial and guiding solutions and then sweapgsitions of nodes
that do not belong to this common subpath.

We first observe that any solution of the STSP has no unique repriésarda a sequence of the
visited required nodes, since any closed walk can start from differetés and can be traversed in
two directions (forward and backward). Therefore, the repreientaf the initial and guiding solu-
tions must be adjusted to facilitate the operation of relinking them. With this purpegare applying
path-relinking, we adjust the representations of the initial and guiding soubig detecting the largest
common subpathy; = (v; .. .v;) between them.

In our implementation, we choose to detect the largest (or longest) commpatkuimstead of the
longest common subsequence, in order to prioritize consecutive sexguehnodes in both solutions.
This problem is known as the largest (or longest) common substring (L@8)em and can be solved
in O(n) time and space [5].

The guiding solutior5, and the initial solutiors; are oriented in the same direction according with
w;. Next, the initial nodes of the walks associated withand.S; are made to coincide with the initial
nodev; of wy.

To move from the initial to the guiding solution, path-relinking considers aiotstt neighborhood.
Each move in this restricted neighborhood involves the swap of two requodds in the walk cor-
responding to the current solution that are not in the same positions asréheigigéed in the guiding
solution. In addition, each move should place at least one of the two invavéels in the appropriate
position corresponding to the order in which it will be visited in the guiding satutidter two required
nodes are swapped, the shortest paths from their predecessdosthaeid successors are updated. Since
at least one node is placed in the appropriate position of the guiding soluteach iteration, path-
relinking will take at most as many iterations as the number of required noalesdine misplaced in the
initial solution with respect to the guiding solution.

Algorithm 2 presents the pseudo-code of path-relinking from the initiattieolLs; to the guiding
solution S,. The current solutior$’ and the best solutionS* are initialized in line 1. The cosf* of
the best solution found by path-relinking is initialized in line 2. The loop in lines BXds performed
until the current solution reaches the guiding solutidii.is set to the best solution in the restricted
neighborhood of the current solutighin line 4. The best solutio™* found by path-relinking and its
costf* are updated in lines 6 and 7, respectively, if the new solutiamproved the previous best. The
current solution is updated in line 9 and a new path-relinking iteration resurhesbest solution found
by path-relinking is returned in line 11.

Algorithm 2 Path-relinking algorithm for STSP.
1. §,5% «+ S;;
2: f* « cost(S;);
3: while § # S, do

4: S’ < best solution in the restricted neighborhoodSef
5: if cost(S") < f* then

6 S* «— S

7: 1%+ cost(S");

8: end if;

9: S « S

10: end while;

11: return S*.

The pseudo-code in Algorithm 3 summarizes the main steps of the propos&8R5Rith path-
relinking (GRASP+PR) heuristic, following the same structure proposeceatidh 9.3 of [10]. The
set of elite solutions is initialized in line 1. The loop in lines 2 to 12 is performed umilesstopping
criterion is satisfied. An initial solution is built in line 3 by the greedy randomizmtstructive heuristic

Barcelona, July 4-7, 2017

MIC/MAEB 2017 id-5

described in Section 2. A local search procedure is used in line 4 to imgirexslution obtained at the
end of the construction phase. Except for the first iteration, when theselite still empty, lines 6 to 9
amount to the application of path-relinking. Line 6 randomly selects an elite solitifrom the elite
set€. The representation of solutighis adjusted considering the selected elite solufanBackward
path-relinking is applied from the initial solutio$y = S’ to the guiding solutior, = S. Local search
is applied in line 9 to the solution obtained by path-relinking. The elite€sstupdated with the new
solutionS in line 11. The best elite solution is returned in line 13.

Algorithm 3 GRASP+PR algorithm for STSP
1. € « (;
2: while stopping criterion not satisfiedb
3: S <+ RandomizedGreedy;

4: S < LocalSearch(S);

5: if |€] > 0then

6: Select solutiors’ at random fron€;
7: S « AdjustRepresentation(S, S")
8: S < PathRelinking(S, S");

9: S+ LocalSearch(S);

10: end if;

11: UpdateEliteSet (S, E);

12: end while;

13: Return the best solutior$ in £.

5 Computational experiments

Several experiments were performed to assess the performance tfahthes presented above and
their variants. The algorithms were implemented in C# programming languageramded by Roslyn,
areference C# compiler, in a Intel Core i5 machine with a 2.9 GHz procass@ GB of random-access
memory, running under the Windows 10 operating system.

We considered the same test problems used by Letchford et al. [6, Zhang et al. [12, 13], created
by a random generator described in [7]. This generator was dedigeeate graphs that resemble real-
life road networks. It creates connected sparse graphs and affrattiequired nodes is specified for
each instance. In addition to the graphs from [7], we considered soger lastances, with up to 300
nodes. Altogether, ten sparse weighted graphs with 50 to 300 nodesisesr¢o assess the performance
of the heuristics. Each graph generated two instances: one[\@’tiﬂrequired nodes and another with
L%J required nodes, wher¥ is the total number of nodes, corresponding to 20 different instanoes. W
observe that individual optimal values for each of these instancesrnu®en previously reported in
[7]. Due to space limitations, we report here only numerical results for Starnices witq%J required
nodes. Additional computational results will be reported in the final, extemeesion of this work.

5.1 Selecting the quality measurefor the RCL

In order to compare the effect of the valuewfn the quality-based scheme used to define a restricted
candidate list, we ran the randomized nearest neighbor constructisistteawith o = 0.1 anda: = 0.05.

The greedy randomized algorithm was applied to all instances. Averapbest values over 100 runs
are presented in Table 1. As for all tables that follow, the best solutiomsdtund for each instance are
depicted in boldface. The randomized heuristic witk 0.05 found significantly more better solutions.
We observe that the use of a better constructive method for building the ufiations is likely to
improve the quality of the solutions produced by the GRASP heuristic.

Barcelona, July 4-7, 2017

id—6 MIC/MAEB 2017

Table 1: Greedy randomized heuristic: average and best value dveuds.
a=0.10 a=0.05
Nodes average best average best
50 1207.51 979 1213.34 1031
75 1308.21 1125 1309.491094
100 1607.99 1375 1599.441299
125 1929.31 1627 1911.411623
150 2110.56 1875 2102.40 1899
175 2248.23 1970 2265.401913
200 2615.95 2369 2614.782354
225 2817.25 2524 2844.122522
250 3022.70 2748 2988.792723
300 3242.32 2952 3264.87 2977

5.2 Reduced 2-opt neighbor hood

We now address the benefits of using the reduced 2-opt neighbgrtesigined specifically for this
problem. Preliminary computational experiments have shown that the use oédhised neighborhood
led to some target objective function values much faster than the use oftitteeZppt neighborhood.
These empirical observations were explored by the implementation of anagiter’vVND (variable
neighborhood descent) local search procedure. First, only moveg irettuced 2-opt neighborhood
are applied. The full neighborhood is explored only after a local minimuniiaioed in the reduced
2-opt neighborhood.

Table 2 illustrates the efficiency of the VND approach when compared witbl#ssic use of the
full 2-opt neighborhood. It presents the solution values and the comgutimes in seconds for 100
iterations of the pure GRASP (without path-relinking) heuristic using botlptine 2-opt neighborhood
and the VND approach for local search. In both cases, local séacheen implemented following a
best-improvement strategy.

Table 2: 2-opt vs reduced 2-opt neighborhoods, 100 GRASP itesation
2-opt neighborhood reduced 2-opt

Nodes value seconds value seconds
50 978 0.484 978 0.36
75 1035 1.078 1045 0.985
100 1239 2.359 1208 1.610
125 1496 4.454 1469 2.921
150 1643 7.468 1615 4.703
175 1743 11.313 1719 6.687
200 1976 17.469 1925 9.187
225 2094 24.891 2047 12.828
250 2224 32.546 2170 15.297
300 2409 55.718 2285 26.578

The VND local search strategy starting by the reduced 2-opt neigbbdrled to the best solutions
for nine out of the ten test problems. In addition, its computation times havedigificantly smaller
for all instances. As an example, in the case of the largest instance witho@@8, the time taken by 100
GRASP iterations using the VND local search strategy amounted to only 47.8% time taken when
exclusively the complete 2-opt neighborhood is used. The GRASP tiewsing the VND local search
strategy performs better both in terms of solution quality and computation times.

Barcelona, July 4-7, 2017

MIC/MAEB 2017 id—-7

5.3 Probabilistic choice of o

We have already shown in Section 5.1 that, although choasing 0.05 most often leads to better
results tharx = 0.10 for the greedy randomized heuristic proposed for the STSP, for sotaades the
latter was a better choice than the former. Different probabilistic strategies @onsidered in [8] for
the choice of the RCL parameter in contrast with the commonly used choice of fixing its value (see
also [10]). It was shown that a randomly chosefrom a decreasing nonuniform discrete probability
distribution offers a good compromise between the running time of the algoritidrthe quality of the
solutions produced by the randomized heuristic. We relied on this work taisukat it can be a good
choice, in addition to the previously used “good” vatue= 0.05, to consider also other higher values for
this parameter with smaller probabilities of being chosen at each iterationefdherin the following
experiments, we used = 0.05 with a probability 70% and the values = 0.10 anda = 0.20 with
probabilities 20% and 10%, respectively.

5.4 Path-relinking

In this section, we address the impact of path-relinking in the searchgmo€able 3 shows the lengths
of the solutions produced by the nearest neighbor adaptive greadgtit by the pure GRASP heuristic
running for 200 iterations (together with its running time in seconds), andebBRASP with backward
path-relinking running by the same time taken by 200 pure GRASP iteratioes.afhdomized heuristic
used in the construction phase of both the pure GRASP and GRASP withgbatting algorithms
makes use of the probabilistic criterion for the choicexadiscussed in Section 5.3. The local search
phase of both the pure GRASP and the GRASP with path-relinking algorithm&wdemented using
the best improvement VND strategy starting by the reduced 2-opt neigbbadr Path-relinking made
use of elite sets formed by at most ten elements.

Table 3: GRASP and GRASP with path-relinking, 200 pure GRASP iterations.
Greedy (¢ = 0) GRASP (200 iterations) GRASP+PR (same running time)

Nodes value value seconds value seconds iterations
50 1356 978 0.750 978 0.750 179
75 1204 1031 1.781 1029 1.782 183

100 1290 1211 3.484 1193 3.485 182
125 1915 1450 6.297 1427 6.313 196
150 1847 1615 9.812 1567 9.844 184
175 2085 1704 14.64 1667 14.641 191
200 2484 1952 19.828 1895 19.828 177
225 2549 2024 27.266 1973 27.281 191
250 2523 2165 35.078 2080 35.172 182
300 2759 2308 62.328 2219 62.609 193

Path-relinking considerably improved GRASP performance, leading tor tsethations for all in-
stances in the same running time and fewer iterations than the pure GRASPofianget plots for
pure GRASP and GRASP with path-relinking algorithms for a 200-node iostare shown in Figure 1.
The target value is 2000. Each algorithm was run 200 times. The plots in thige figovide empirical
evidence that algorithm GRASP+PR outperforms pure GRASP for this restamd target value.

6 Restart strategiesfor GRASP with path-relinking
Resende and Ribeiro [9] have shown that restart strategies are abthutierthe running time to reach a

target solution value for many problems. We apply the same type of reststriétegy, in which the elite
set is emptied and the heuristic restarted from scratch aftensecutive iterations have been performed

Barcelona, July 4-7, 2017

id-8 MIC/MAEB 2017

0.8 /
0.6
0.4 / i
0.2 e

// GRASP -------
0 A GRASP+PR ——

0.01 0.1 1 10 100
time to target solution value (seconds)

cumulative probability

Figure 1: Time-to-target plot for 200-node instance and target vaiue 2600.

without improvement in the best solution found. Computational results ftartesrategies for STSP
are displayed in Table 4, showing that they contribute to find better solutiotieisame number of
iterations, mainly when the problem size increases.

Table 4: Restart strategies for 1000 iterations.
no restarts restart(100) restart(200)
Nodes value seconds value seconds value seconds

50 978 4.03 978 3.96 978 3.95
75 1029 9.46 1029 9.45 1029 9.26
100 1193 18.95 1193 18.73 1193 18.43
125 1421 33.04 1417 33.93 1420 33.09
150 1565 53.39 1564 53.04 1562 52.23
175 1657 77.25 1665 76.84 1652 76.23
200 1883 105.53 1885 105.681867 105.20
225 1941 14896 1953 144.681928 142.26
250 2054 173.68 2073 175.012035 176.04
300 2203 304.40 2192 310.03 2205 296.76

As previously observed in [9, 10], the effect of restart strategiadeamainly noticed in the longest
runs. Considering the 200 runs for the 200-node instance with the tzalyet set to 1900, they are
associated with the column corresponding to the fourth quartile of Table Hrie&n this quartile
correspond to those in the heavy tails of the runtime distributions. The restaggies in general do not
affect too much the other quartiles of the distributions, which is a desirablacteristic. Compared to
the norestart strategy, the restart(200) strategy was able to redum@ytite average running time in the
fourth quartile, but also in the third and second quartiles. Consequemndiegy restart(200) performed
the best among those tested, with the smallest average running times oved th@20

7 Concluding remarks

In the Steiner TSP, one seeks a minimum-weight closed walk that visits a sfibsgtired nodes. Since

only a walk is sought, nodes can be visited more than once and edges maydrsdd more than once.
We developed a GRASP with path-relinking and restarts for solving the $t€iageling Sales-

man Problem. The algorithm used in the construction phase is a randomizediextef the nearest

Barcelona, July 4-7, 2017

MIC/MAEB 2017 id-9

Table 5: Summary of computational results for each restart strategy f@Ofode instance: 200

independent runs were executed for each strategy. Each run wastonstp when a solution as good

as the target solution value 1900 was found. For each strategy, the aile the distribution of the

running times by quartile. For each quartile, the table gives the averagmguimes in seconds over all

runs in that quartile. The average running times over the 200 runs argiadsofor each strategy.
Average running times in quartile (seconds)

Strategy 1st 2nd 3rd 4th average
Without restarts 3.648 9.915 17.952 37.355 17.218
restart(100) 2.933 8.466 17.067 37.509 16.494
restart(200) 2.955 8.093 15.410 34878 15.334

neighbor heuristic for the Traveling Salesman Problem. A variable neigbbdrdescent (VND) strat-
egy exploring a reduced 2-opt neighborhood is used to optimize a beshimgidocal search scheme.
Path-relinking and restart strategies are used to improve the efficietloy GRASP algorithm.

Extensive computational results for a set of instances previously ugkd literature are reported.
Since neither optimal values nor even upper bounds have been pigvigparted for these instances,
the solutions obtained by the GRASP with path-relinking and restarts heuniepoged in this work
cannot be directly be compared with other solutions.

As a step towards avoiding this difficulty and facilitating the research on tbislgm, we made all
test instances considered in this paper (together with their best knowiossland their costs) avail-
able at http://www?2.ic.uff.bf/rinterian/instances/allinstances.html. This website will be continuously
updated with information provided by other researchers working on tbislggn with optimal values,
upper bounds and best known feasible solutions for these and otigrrbarking instances.

References

[1] S. Borne, A. R. Mahjoub, and R. Taktak. A branch-and-cut algm for the multiple Steiner TSP
with order constraintsElectronic Notes in Discrete Mathematj@kl:487-494, 2013.

[2] G. Cornigjols, J. Fonlupt, and D. Naddef. The traveling salesman problem orph gral some
related integer polyhedrdathematical Programming33:1-27, 1985.

[3] B. Fleischmann. A cutting plane procedure for the travelling salesmatriggn on road networks.
European Journal of Operational Reseay@i(3):307-317, 1985.

[4] M. R. Garey and D. S. JohnsonComputers and Intractability: A Guide to the Theory of NP-
CompletenessW. H. Freeman and Company, 1979.

[5] L. C. K. Hui. Color set size problem with application to string matching.Phoceedings of the
Third Annual Symposium on Combinatorial Pattern Matchi@g§M '92, pages 230-243. Springer-
Verlag, 1992.

[6] A. N. Letchford and S. D. Nasiri. The Steiner travelling salesman lpralwith correlated costs.
European Journal of Operational Reseay@45:62—69, 2015.

[7]1 A. N. Letchford, S. D. Nasiri, and D. Oliver Theis. Compact fornigas of the Steiner traveling
salesman problem and related probler&gsiropean Journal of Operational Reseay@28:83-92,
2013.

[8] M. Prais and C. C. Ribeiro. Parameter variation in GRASP proceddingsstigacbn Operativa
9:1-20, 2000.

Barcelona, July 4-7, 2017

id-10 MIC/MAEB 2017

[9] M. G. C. Resende and C. C. Ribeiro. Restart strategies for GRASPpath-relinking heuristics.
Optimization Letters5:467-478, 2011.

[10] M. G. C. Resende and C. C. Ribei@ptimization by GRASPSpringer, New York, 2016.

[11] J.-J. Salazar-Go@atez. The Steiner cycle polytopd&uropean Journal of Operational Reseaych
147:671-679, 2003.

[12] H. Zhang, W. Tong, Y. Xu, and G. Lin. The Steiner traveling salesm@blem with online edge
blockages European Journal of Operational Resear@43:30-40, 2015.

[13] H. Zhang, W. Tong, Y. Xu, and G. Lin. The Steiner traveling salespblem with online ad-
vanced edge blockageSomputers & Operations Researct0:26—38, 2016.

Barcelona, July 4-7, 2017

