
MIC/MAEB 2017 id–1

A GRASP with restarts heuristic for the Steiner traveling
salesman problem

Ruben Interian, Celso C. Ribeiro

Institute of Computing, Universidade Federal Fluminense,
Niterói, RJ 24210-346, Brazil.

rinterian@ic.uff.br, celso@ic.uff.br

Abstract

Given a set of nodes and the distances between them, the traveling salesman problem (TSP)
consists in finding the shortest route that visits each node exactly once and returns to the first. The
Steiner traveling salesman problem (STSP) is a variant of the TSP that assumes that only a given
subset of nodes must be visited by a shortest route, eventually visiting some nodes and edges more
than once. In this paper, we extend some classical TSP constructive heuristics and neighborhood
structures to the STSP variant. In particular, we propose a reduced 2-opt neighborhood and we
show that it leads to better results in smaller computation times. Computational results with an
implementation of a GRASP heuristic using path-relinking and restarts are reported. In addition, a
set of test instances and best known solutions is made available for benchmarking purposes.

1 Introduction

The traveling salesman problem (TSP) is one of the fundamental combinatorial optimization problems
[4, 12] and has numerous real-life applications in transportation, logistics,vehicle routing, genome se-
quencing, and other areas. Given a set of nodes and the distances between them, it consists in finding the
shortest route that visits each node exactly once and returns to the first. Mathematically, the TSP can be
defined as follows [2]. Given a graphG = (V,E) and a functionw : E → R that associates a weight
w(e) to each edgee ∈ E, the goal is to find a Hamiltonian cycle of minimum total weight (or cost).
The traveling salesman problem is NP-hard, since its decision version is proven to be NP-complete by a
simple reduction from the Hamiltonian cycle problem [4].

However, in many practical applications it is more frequent to find the following variant of the TSP.
A setVR ⊆ V of required nodes is given. Instead of searching for a Hamiltonian cyclevisiting all nodes,
a minimum-weight closed walk is requested that visits only the required nodes. Since only a walk is
sought, nodes can be visited more than once and edges may be traversed more than once. The so-called
Steiner traveling salesman problem (Steiner TSP, or STSP) was first proposed in [2, 3], where its NP-
hardness is also proved. The Steiner TSP is specially suitable to model network design [1], package
delivery [12, 13], and routing [7] problems. All of them are typically modeled using sparse graphs.

Most studies on the Steiner TSP focus on integer programming formulations and valid inequalities.
The STSP is solved efficiently (in linear time) for series-parallel graphs in [2]. Compact, polynomial
size integer programming formulations of the TSP are extended to the STSP in [7]. An extension of
the Steiner TSP that adds penalties to the nodes not visited by the cycle is proposed in [11]. A network
design problem consisting of multiple Steiner TSPs with order constraints is studied in [1], using an
integer linear programming formulation and a branch-and-cut algorithm. An extension of the STSP in
which the edge traversal costs are stochastic and correlated is studied in [6]. An online algorithm is
proposed in [12, 13] to solve another extension of the STSP consideringreal-time edge blockages.

This paper is organized as follows. In the next section, adaptive greedy constructive heuristics for
the Steiner TSP are presented. Section 3 reports on local search strategies that are explored by the
GRASP with path-relinking heuristic presented in Section 4. Computational experiments are reported
in Section 5 and extended in Section 6, where an improved strategy exploring periodical restarts is
developed. Concluding remarks are drawn in the last section.

Barcelona, July 4-7, 2017

id–2 MIC/MAEB 2017

2 Greedy algorithms for the Steiner TSP

The following strategy can be applied as a heuristic for the Steiner TSP [7].First, the instance of the
STSP is reduced to a TSP instance in a complete graph defined by the set of required nodes, in which the
new distances correspond to the shortest paths between every pair of required nodes in the original graph.
Next, any exact or heuristic algorithm is used to solve the TSP in this new, complete graph. Finally, the
solution of the TSP is converted into an STSP solution by expanding every edge by the corresponding
shortest path between the two consecutive required nodes.

However, if the original STSP instance is a sparse graph, the conversion to a standard TSP instance
significantly increases the number of edges, some of which may never be used. Therefore, instead of
using a complete graph formed by the required nodes, we shall use the original graph for searching a
minimum-weight closed walk. We use a straightforward adaptation of the nearest neighbor TSP adaptive
greedy heuristic (see e.g. Chapter 3 of [10]) to the STSP described in Algorithm 1, which builds the
solution greedily by choosing at each iteration the closest required node tothat previously added to the
walk.

The algorithm starts in line 1 by arbitrarily selecting any initial nodei ∈ VR to start the walk. The
set of required nodesN already visited by the walk is initialized in line 2. The partially built walkP is
initialized in line 3. The currently visited required nodecurrent is set in line 4. The loop in lines 5 to
11 is performed until all required nodes have been visited. At each iteration, the nodenext to be visited
is set to the closest among all yet unvisited required nodes. The shortestpathP ′ from current to next

is computed in line 7. The partially built walkP is updated in line 8 by appending the shortest pathP ′

to it. The set of already visited required nodesN and the current node are updated in lines 9 and 10,
respectively. Finally, after completing the loop, the shortest path fromcurrent to the initial nodei is
appended to the walk in lines 12 and 13. The result is returned in line 14.

Algorithm 1 Nearest neighbor adaptive greedy heuristic for STSP.
1: Select initial required nodei ∈ VR;
2: N ← {i};
3: P ← {i};
4: current ← i;
5: while N 6= VR do
6: next← closest node tocurrent among all those inVR \ N ;
7: P ′ ← shortest path fromcurrent to next;
8: P ← P ⊕ P ′;
9: N ← N ∪ {next};

10: current ← next;
11: end while;
12: P ′ ← shortest path fromcurrent to initial nodei;
13: P ← P ⊕ P ′;
14: return P.

In the case of the Steiner TSP, the greedy criterion is the choice of the nearest required node to be
visited.

Algorithms that add randomization to a greedy or adaptive greedy algorithm are calledsemi-greedyor
randomized greedyalgorithms. Randomization is an important feature in the implementation of effective
heuristics. Semi-greedy algorithms act by replacing the deterministic greedy choice of the next element
to be incorporated into the solution under construction by the random selection of an element from a
restricted set of best candidate elements, called the restricted candidate list(RCL).

A simple quality-based scheme is used to define a restricted candidate list. Letgmin = min{gi :
i ∈ VR \ N andgi is the shortest path fromcurrent to nodei} andgmax = max{gi : i ∈ VR \ N and
gi is the shortest path fromcurrent to nodei}. Furthermore, letα be such that0 ≤ α ≤ 1. The RCL is
formed by all yet unselected required nodesi ∈ VR \N satisfyinggmin ≤ gi ≤ gmin + α(gmax − gmin).

Barcelona, July 4-7, 2017

MIC/MAEB 2017 id–3

3 Local search

Local search procedures are used to iteratively improve the quality of aninitial solution, usually obtained
by a constructive heuristic. First-improving and best-improving strategies are proposed and compared in
terms of their performance. Efficient objective function updates are used, without the need of recalculat-
ing the objective function values from scratch: the weight of the previouswalk is used in order to find
that of the walk obtained after the changes performed during each iteration.

3.1 Neighborhood structure

The 2-opt neighborhood is the most commonly used neighborhood structure for the TSP problem and
consists in replacing any pair of nonadjacent edges of the current solution by the unique pair of new
edges that recreates a cycle.

The following property holds: LetW = (v1, . . . , vi, . . . , vj , . . . , vm) be any optimal solution of the
Steiner TSP. Then, the subpath(vi, . . . , vj) is also a shortest path between the required nodesvi andvj .
This is true because, if this subpath was not the shortest, thenW would not be optimal. Therefore, it
is not necessary to investigate moves that involve changes in the order in which the non-required nodes
are visited. Then, the problem amounts to determining the order in which the required nodes should be
visited and then finding the shortest path between any pair of consecutiverequired nodes in the walk.

In consequence, we explore a 2-opt neighborhood for the STSP thatis formed by all moves that
replace the paths between two pairs of consecutive required nodes in thewalk by the two unique pairs of
shortest paths that reconnect a closed walk.

3.2 Reduced 2-opt neighborhood

A reduced 2-opt neighborhood can be defined in order to take advantage of the problem structure. In
fact, convergence can be faster if only a few, promising moves in the neighborhood are considered.

We implement this idea in the following way. For each required nodev, let I(v) be the set formed
by all required nodes that are reachable fromv by a shortest path that does not visit any other required
node. In other words,I(v) represent the set of required nodes that are closer tov, in the sense that they
necessarily belong to paths to farther nodes.

Using this auxiliary data structure, we restrict the 2-opt moves to pairs of consecutive required nodes
(v1, v2) and(w1, w2) satisfying the condition thatw1 ∈ I(v1).

4 GRASP with path-relinking heuristic

GRASP (which stands forgreedy randomized adaptive search procedures) is a multi-start metaheuristic,
in which each iteration consists of two main phases: construction and local search. The first phase is the
construction of a feasible solution, usually by a greedy randomized algorithm. Once a feasible solution
is obtained, its neighborhood is investigated until a local minimum is found duringthe second phase
of local search. The best overall solution is kept as the result. The reader is referred to Resende and
Ribeiro [10] for a complete account of GRASP.

We used the adaptive greedy randomized heuristic presented in Section 2 and the local search strate-
gies described in Section 3 to customize a GRASP with path-relinking heuristic for the Steiner TSP.

Path-relinking is an intensification strategy that explores trajectories connecting elite solutions pro-
duced by metaheuristics. Path-relinking is usually carried out between two solutions: one is the initial
solutionSi, while the other is the guiding solutionSg. A path that connects these solutions is con-
structed in the search for better solutions. Local search may be applied to the best solution in the path,
since there is no guarantee that this solution is locally optimal. In the context of GRASP, path-relinking
may be used to connect solutions obtained after the local search step with elitesolutions produced during
previous iterations, providing a sort of memory mechanism.

Barcelona, July 4-7, 2017

id–4 MIC/MAEB 2017

More specifically, in the context of the STSP, path-relinking attempts to preserve common character-
istics of good walks, i.e. common subpaths. As explained below, path-relinking matches the positions
of the largest common subpath to the initial and guiding solutions and then swapsthe positions of nodes
that do not belong to this common subpath.

We first observe that any solution of the STSP has no unique representation as a sequence of the
visited required nodes, since any closed walk can start from differentnodes and can be traversed in
two directions (forward and backward). Therefore, the representation of the initial and guiding solu-
tions must be adjusted to facilitate the operation of relinking them. With this purpose, before applying
path-relinking, we adjust the representations of the initial and guiding solutions by detecting the largest
common subpathwl = (vi . . . vj) between them.

In our implementation, we choose to detect the largest (or longest) common subpath, instead of the
longest common subsequence, in order to prioritize consecutive sequences of nodes in both solutions.
This problem is known as the largest (or longest) common substring (LCS) problem and can be solved
in O(n) time and space [5].

The guiding solutionSg and the initial solutionSi are oriented in the same direction according with
wl. Next, the initial nodes of the walks associated withSg andSi are made to coincide with the initial
nodevi of wl.

To move from the initial to the guiding solution, path-relinking considers a restricted neighborhood.
Each move in this restricted neighborhood involves the swap of two requirednodes in the walk cor-
responding to the current solution that are not in the same positions as they are visited in the guiding
solution. In addition, each move should place at least one of the two involvednodes in the appropriate
position corresponding to the order in which it will be visited in the guiding solution. After two required
nodes are swapped, the shortest paths from their predecessors andto their successors are updated. Since
at least one node is placed in the appropriate position of the guiding solution at each iteration, path-
relinking will take at most as many iterations as the number of required nodes that were misplaced in the
initial solution with respect to the guiding solution.

Algorithm 2 presents the pseudo-code of path-relinking from the initial solution Si to the guiding
solutionSg. The current solutionS and the best solutionsS∗ are initialized in line 1. The costf∗ of
the best solution found by path-relinking is initialized in line 2. The loop in lines 3 to10 is performed
until the current solution reaches the guiding solution.S′ is set to the best solution in the restricted
neighborhood of the current solutionS in line 4. The best solutionS∗ found by path-relinking and its
costf∗ are updated in lines 6 and 7, respectively, if the new solutionS′ improved the previous best. The
current solution is updated in line 9 and a new path-relinking iteration resumes. The best solution found
by path-relinking is returned in line 11.

Algorithm 2 Path-relinking algorithm for STSP.
1: S, S∗ ← Si;
2: f∗ ← cost(Si);
3: while S 6= Sg do
4: S′ ← best solution in the restricted neighborhood ofS;
5: if cost(S′) < f∗ then
6: S∗ ← S′;
7: f∗ ← cost(S′);
8: end if;
9: S ← S′;

10: end while;
11: return S∗.

The pseudo-code in Algorithm 3 summarizes the main steps of the proposed GRASP with path-
relinking (GRASP+PR) heuristic, following the same structure proposed in Section 9.3 of [10]. The
set of elite solutions is initialized in line 1. The loop in lines 2 to 12 is performed until some stopping
criterion is satisfied. An initial solution is built in line 3 by the greedy randomized constructive heuristic

Barcelona, July 4-7, 2017

MIC/MAEB 2017 id–5

described in Section 2. A local search procedure is used in line 4 to improvethe solution obtained at the
end of the construction phase. Except for the first iteration, when the eliteset is still empty, lines 6 to 9
amount to the application of path-relinking. Line 6 randomly selects an elite solution S′ from the elite
setE . The representation of solutionS is adjusted considering the selected elite solutionS′. Backward
path-relinking is applied from the initial solutionSi = S′ to the guiding solutionSg = S. Local search
is applied in line 9 to the solution obtained by path-relinking. The elite setE is updated with the new
solutionS in line 11. The best elite solution is returned in line 13.

Algorithm 3 GRASP+PR algorithm for STSP
1: E ← ∅;
2: while stopping criterion not satisfieddo
3: S ← RandomizedGreedy ;
4: S ← LocalSearch(S);
5: if |E| > 0 then
6: Select solutionS′ at random fromE ;
7: S ← AdjustRepresentation(S, S′)
8: S ← PathRelinking(S, S′);
9: S ← LocalSearch(S);

10: end if;
11: UpdateEliteSet(S, E);
12: end while;
13: Return the best solutionS in E .

5 Computational experiments

Several experiments were performed to assess the performance of the algorithms presented above and
their variants. The algorithms were implemented in C# programming language and compiled by Roslyn,
a reference C# compiler, in a Intel Core i5 machine with a 2.9 GHz processorand 8 GB of random-access
memory, running under the Windows 10 operating system.

We considered the same test problems used by Letchford et al. [6, 7] andZhang et al. [12, 13], created
by a random generator described in [7]. This generator was designedto create graphs that resemble real-
life road networks. It creates connected sparse graphs and a fraction of required nodes is specified for
each instance. In addition to the graphs from [7], we considered some larger instances, with up to 300
nodes. Altogether, ten sparse weighted graphs with 50 to 300 nodes wereused to assess the performance
of the heuristics. Each graph generated two instances: one with

⌊

N
3

⌋

required nodes and another with
⌊

2·N
3

⌋

required nodes, whereN is the total number of nodes, corresponding to 20 different instances. We
observe that individual optimal values for each of these instances havenot been previously reported in
[7]. Due to space limitations, we report here only numerical results for the instances with

⌊

2·N
3

⌋

required
nodes. Additional computational results will be reported in the final, extended version of this work.

5.1 Selecting the quality measure for the RCL

In order to compare the effect of the value ofα in the quality-based scheme used to define a restricted
candidate list, we ran the randomized nearest neighbor constructive heuristic withα = 0.1 andα = 0.05.
The greedy randomized algorithm was applied to all instances. Average and best values over 100 runs
are presented in Table 1. As for all tables that follow, the best solution values found for each instance are
depicted in boldface. The randomized heuristic withα = 0.05 found significantly more better solutions.
We observe that the use of a better constructive method for building the initialsolutions is likely to
improve the quality of the solutions produced by the GRASP heuristic.

Barcelona, July 4-7, 2017

id–6 MIC/MAEB 2017

Table 1: Greedy randomized heuristic: average and best value over 100 runs.
α = 0.10 α = 0.05

Nodes average best average best
50 1207.51 979 1213.34 1031
75 1308.21 1125 1309.491094

100 1607.99 1375 1599.441299
125 1929.31 1627 1911.411623
150 2110.56 1875 2102.40 1899
175 2248.23 1970 2265.401913
200 2615.95 2369 2614.782354
225 2817.25 2524 2844.122522
250 3022.70 2748 2988.792723
300 3242.32 2952 3264.87 2977

5.2 Reduced 2-opt neighborhood

We now address the benefits of using the reduced 2-opt neighborhood, designed specifically for this
problem. Preliminary computational experiments have shown that the use of thisreduced neighborhood
led to some target objective function values much faster than the use of the entire 2-opt neighborhood.
These empirical observations were explored by the implementation of an alternative VND (variable
neighborhood descent) local search procedure. First, only moves in the reduced 2-opt neighborhood
are applied. The full neighborhood is explored only after a local minimum is obtained in the reduced
2-opt neighborhood.

Table 2 illustrates the efficiency of the VND approach when compared with theclassic use of the
full 2-opt neighborhood. It presents the solution values and the computation times in seconds for 100
iterations of the pure GRASP (without path-relinking) heuristic using both thepure 2-opt neighborhood
and the VND approach for local search. In both cases, local searchhas been implemented following a
best-improvement strategy.

Table 2: 2-opt vs reduced 2-opt neighborhoods, 100 GRASP iterations.
2-opt neighborhood reduced 2-opt

Nodes value seconds value seconds
50 978 0.484 978 0.36
75 1035 1.078 1045 0.985

100 1239 2.359 1208 1.610
125 1496 4.454 1469 2.921
150 1643 7.468 1615 4.703
175 1743 11.313 1719 6.687
200 1976 17.469 1925 9.187
225 2094 24.891 2047 12.828
250 2224 32.546 2170 15.297
300 2409 55.718 2285 26.578

The VND local search strategy starting by the reduced 2-opt neighborhood led to the best solutions
for nine out of the ten test problems. In addition, its computation times have beensignificantly smaller
for all instances. As an example, in the case of the largest instance with 300nodes, the time taken by 100
GRASP iterations using the VND local search strategy amounted to only 47.8% of the time taken when
exclusively the complete 2-opt neighborhood is used. The GRASP heuristic using the VND local search
strategy performs better both in terms of solution quality and computation times.

Barcelona, July 4-7, 2017

MIC/MAEB 2017 id–7

5.3 Probabilistic choice of α

We have already shown in Section 5.1 that, although choosingα = 0.05 most often leads to better
results thanα = 0.10 for the greedy randomized heuristic proposed for the STSP, for some instances the
latter was a better choice than the former. Different probabilistic strategies were considered in [8] for
the choice of the RCL parameterα, in contrast with the commonly used choice of fixing its value (see
also [10]). It was shown that a randomly chosenα from a decreasing nonuniform discrete probability
distribution offers a good compromise between the running time of the algorithm and the quality of the
solutions produced by the randomized heuristic. We relied on this work to sustain that it can be a good
choice, in addition to the previously used “good” valueα = 0.05, to consider also other higher values for
this parameter with smaller probabilities of being chosen at each iteration. Therefore, in the following
experiments, we usedα = 0.05 with a probability 70% and the valuesα = 0.10 andα = 0.20 with
probabilities 20% and 10%, respectively.

5.4 Path-relinking

In this section, we address the impact of path-relinking in the search process. Table 3 shows the lengths
of the solutions produced by the nearest neighbor adaptive greedy heuristic, by the pure GRASP heuristic
running for 200 iterations (together with its running time in seconds), and by the GRASP with backward
path-relinking running by the same time taken by 200 pure GRASP iterations. The randomized heuristic
used in the construction phase of both the pure GRASP and GRASP with path-relinking algorithms
makes use of the probabilistic criterion for the choice ofα discussed in Section 5.3. The local search
phase of both the pure GRASP and the GRASP with path-relinking algorithms was implemented using
the best improvement VND strategy starting by the reduced 2-opt neighborhood. Path-relinking made
use of elite sets formed by at most ten elements.

Table 3: GRASP and GRASP with path-relinking, 200 pure GRASP iterations.
Greedy (α = 0) GRASP (200 iterations) GRASP+PR (same running time)

Nodes value value seconds value seconds iterations
50 1356 978 0.750 978 0.750 179
75 1204 1031 1.781 1029 1.782 183

100 1290 1211 3.484 1193 3.485 182
125 1915 1450 6.297 1427 6.313 196
150 1847 1615 9.812 1567 9.844 184
175 2085 1704 14.64 1667 14.641 191
200 2484 1952 19.828 1895 19.828 177
225 2549 2024 27.266 1973 27.281 191
250 2523 2165 35.078 2080 35.172 182
300 2759 2308 62.328 2219 62.609 193

Path-relinking considerably improved GRASP performance, leading to better solutions for all in-
stances in the same running time and fewer iterations than the pure GRASP. Time-to-target plots for
pure GRASP and GRASP with path-relinking algorithms for a 200-node instance are shown in Figure 1.
The target value is 2000. Each algorithm was run 200 times. The plots in this figure provide empirical
evidence that algorithm GRASP+PR outperforms pure GRASP for this instance and target value.

6 Restart strategies for GRASP with path-relinking

Resende and Ribeiro [9] have shown that restart strategies are able to reduce the running time to reach a
target solution value for many problems. We apply the same type of restart(κ) strategy, in which the elite
set is emptied and the heuristic restarted from scratch afterκ consecutive iterations have been performed

Barcelona, July 4-7, 2017

id–8 MIC/MAEB 2017

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time to target solution value (seconds)

GRASP
GRASP+PR

Figure 1: Time-to-target plot for 200-node instance and target value set to 2000.

without improvement in the best solution found. Computational results for restart strategies for STSP
are displayed in Table 4, showing that they contribute to find better solutions inthe same number of
iterations, mainly when the problem size increases.

Table 4: Restart strategies for 1000 iterations.
no restarts restart(100) restart(200)

Nodes value seconds value seconds value seconds
50 978 4.03 978 3.96 978 3.95
75 1029 9.46 1029 9.45 1029 9.26

100 1193 18.95 1193 18.73 1193 18.43
125 1421 33.04 1417 33.93 1420 33.09
150 1565 53.39 1564 53.041562 52.23
175 1657 77.25 1665 76.841652 76.23
200 1883 105.53 1885 105.681867 105.20
225 1941 148.96 1953 144.681928 142.26
250 2054 173.68 2073 175.012035 176.04
300 2203 304.40 2192 310.03 2205 296.76

As previously observed in [9, 10], the effect of restart strategies can be mainly noticed in the longest
runs. Considering the 200 runs for the 200-node instance with the targetvalue set to 1900, they are
associated with the column corresponding to the fourth quartile of Table 5. Entries in this quartile
correspond to those in the heavy tails of the runtime distributions. The restartstrategies in general do not
affect too much the other quartiles of the distributions, which is a desirable characteristic. Compared to
the norestart strategy, the restart(200) strategy was able to reduce notonly the average running time in the
fourth quartile, but also in the third and second quartiles. Consequently, strategy restart(200) performed
the best among those tested, with the smallest average running times over the 200 runs.

7 Concluding remarks

In the Steiner TSP, one seeks a minimum-weight closed walk that visits a subsetof required nodes. Since
only a walk is sought, nodes can be visited more than once and edges may be traversed more than once.

We developed a GRASP with path-relinking and restarts for solving the Steiner Traveling Sales-
man Problem. The algorithm used in the construction phase is a randomized extension of the nearest

Barcelona, July 4-7, 2017

MIC/MAEB 2017 id–9

Table 5: Summary of computational results for each restart strategy for the200-node instance: 200
independent runs were executed for each strategy. Each run was made to stop when a solution as good
as the target solution value 1900 was found. For each strategy, the table shows the distribution of the
running times by quartile. For each quartile, the table gives the average running times in seconds over all
runs in that quartile. The average running times over the 200 runs are alsogiven for each strategy.

Average running times in quartile (seconds)
Strategy 1st 2nd 3rd 4th average
Without restarts 3.648 9.915 17.952 37.355 17.218
restart(100) 2.933 8.466 17.067 37.509 16.494
restart(200) 2.955 8.093 15.410 34.878 15.334

neighbor heuristic for the Traveling Salesman Problem. A variable neighborhood descent (VND) strat-
egy exploring a reduced 2-opt neighborhood is used to optimize a best improving local search scheme.
Path-relinking and restart strategies are used to improve the efficiency ofthe GRASP algorithm.

Extensive computational results for a set of instances previously used inthe literature are reported.
Since neither optimal values nor even upper bounds have been previously reported for these instances,
the solutions obtained by the GRASP with path-relinking and restarts heuristic proposed in this work
cannot be directly be compared with other solutions.

As a step towards avoiding this difficulty and facilitating the research on this problem, we made all
test instances considered in this paper (together with their best known solutions and their costs) avail-
able at http://www2.ic.uff.br/˜ rinterian/instances/allinstances.html. This website will be continuously
updated with information provided by other researchers working on this problem with optimal values,
upper bounds and best known feasible solutions for these and other benchmarking instances.

References

[1] S. Borne, A. R. Mahjoub, and R. Taktak. A branch-and-cut algorithm for the multiple Steiner TSP
with order constraints.Electronic Notes in Discrete Mathematics, 41:487–494, 2013.

[2] G. Cornúejols, J. Fonlupt, and D. Naddef. The traveling salesman problem on a graph and some
related integer polyhedra.Mathematical Programming, 33:1–27, 1985.

[3] B. Fleischmann. A cutting plane procedure for the travelling salesman problem on road networks.
European Journal of Operational Research, 21(3):307–317, 1985.

[4] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979.

[5] L. C. K. Hui. Color set size problem with application to string matching. InProceedings of the
Third Annual Symposium on Combinatorial Pattern Matching, CPM ’92, pages 230–243. Springer-
Verlag, 1992.

[6] A. N. Letchford and S. D. Nasiri. The Steiner travelling salesman problem with correlated costs.
European Journal of Operational Research, 245:62–69, 2015.

[7] A. N. Letchford, S. D. Nasiri, and D. Oliver Theis. Compact formulations of the Steiner traveling
salesman problem and related problems.European Journal of Operational Research, 228:83–92,
2013.

[8] M. Prais and C. C. Ribeiro. Parameter variation in GRASP procedures. Investigacíon Operativa,
9:1–20, 2000.

Barcelona, July 4-7, 2017

id–10 MIC/MAEB 2017

[9] M. G. C. Resende and C. C. Ribeiro. Restart strategies for GRASP with path-relinking heuristics.
Optimization Letters, 5:467–478, 2011.

[10] M. G. C. Resende and C. C. Ribeiro.Optimization by GRASP. Springer, New York, 2016.

[11] J.-J. Salazar-González. The Steiner cycle polytope.European Journal of Operational Research,
147:671–679, 2003.

[12] H. Zhang, W. Tong, Y. Xu, and G. Lin. The Steiner traveling salesman problem with online edge
blockages.European Journal of Operational Research, 243:30–40, 2015.

[13] H. Zhang, W. Tong, Y. Xu, and G. Lin. The Steiner traveling salesman problem with online ad-
vanced edge blockages.Computers & Operations Research, 70:26–38, 2016.

Barcelona, July 4-7, 2017

