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Abstract

Let G = (V,E,Q) be a undirected graph, where V is the set of vertices, E is the set

of edges, and Q = {Q1, . . . , Qq} is a partition of V into q subsets. We refer to Q1, . . . , Qq

as the components of the partition. The Partition Coloring Problem (PCP) consists of

finding a subset V ′ of V with exactly one vertex from each component Q1, . . . , Qq and

such that the chromatic number of the graph induced in G by V ′ is minimum. This

problem is a generalization of the graph coloring problem. This work presents a branch-

and-cut algorithm proposed for PCP. An integer programming formulation and valid

inequalities are proposed. A tabu search heuristic is used for providing primal bounds.

Computational experiments are reported for random graphs and for PCP instances

originating from the problem of routing and wavelength assignment in all-optical WDM

networks.
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1 Introduction

Let G = (V, E, Q) be an undirected graph, where V is the set of vertices, E is the set of

edges, and Q = {Q1, . . . , Qq} is a partition of V into q subsets, i.e., Q1 ∪ · · · ∪ Qq = V and

Qi ∩ Qj = ∅, for every i, j = 1, . . . , q with i 6= j. We refer to Q1, . . . , Qq as the components

of the partition (or, more simply, as the components). We denote by P [v] the index of

the component of vertex v ∈ V : i.e., v ∈ QP [v]. The Partition Coloring Problem (PCP)

consists of finding a subset of vertices V ′ ⊆ V such that |V ′ ∩Qi| = 1, for every i = 1, . . . , q

(i.e., V ′ contains one vertex from each component Qi), and the chromatic number of the

graph induced in G by V ′ is minimum. This problem is clearly a generalization of the

graph coloring problem. Li and Simha [18] have shown that the decision version of PCP is

NP-complete.

We illustrate an instance of PCP in Figure 1. The associated graph has seven vertices and

three components. An optimal solution makes use of two colors: the first color is used to

color vertices 2 and 5, while the second is used to color vertex 3.
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Figure 1: (a) Instance of PCP and (b) optimal solution with two colors.

Algorithms for solving PCP have been used in the literature as building blocks for algorithms

for the Routing and Wavelength Assignment (RWA) problem in optical networks [15, 22].

In such networks, each signal is converted to the optical domain and reaches the receiver

without conversion to the electrical domain. Wavelength Division Multiplexing (WDM)

allows the more efficient use of the huge capacity of optical fibers, as far as it permits the

simultaneous transmission of different channels along the same fiber, each of them using a

different wavelength. An all-optical point-to-point connection between two vertices is called

a lightpath. Two lightpaths may use the same wavelength, provided they do not share any

common link. The routing and wavelength assignment problem consists of routing a set of

lightpaths and assigning a wavelength to each of them. Variants of RWA are characterized

by different optimization criteria and traffic patterns; e.g., see [8].

Li and Simha [18] proposed a two phase decomposition strategy to solve the min-RWA

off-line variant, in which the objective function consists of minimizing the total number
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of wavelengths used to route all traffic demands. In the first phase, one or more possible

routes are computed for each lightpath. In the second phase, one precomputed route and one

wavelength are assigned to each lightpath by solving a PCP instance. In this transformed

instance, the vertices correspond to routes, there is an edge between each pair of vertices

whose associated routes share a common link, and all alternative routes associated with the

same connection are placed in the same component of the partition.

This paper presents an exact branch-and-cut algorithm for the partition coloring problem.

Related works are discussed in Section 2. Section 3 presents the integer programming

formulation proposed for PCP. Section 4 describes the proposed branch-and-cut algorithm.

Computational experiments are reported in Section 5. Concluding remarks are drawn in

the last section.

2 Related work

Li and Simha [18] proposed two groups of construction heuristics for PCP, referred to as

one-step algorithms and two-step algorithms. The heuristics in the first group are extensions

of the three well-known graph coloring heuristics: largest-first [26], smallest-last [19], and

color-degree [2]. The corresponding PCP heuristics are called onestepLF, onestepSL, and

onestepCD, respectively. At each iteration, one vertex from a yet uncolored component

of the partition is selected, according to the same greedy criterion used in the respective

heuristic for graph coloring. The selected vertex is colored with the smallest color available

(refer to colors as integer numbers), and the other vertices in the same component are

discarded (i.e., they remain uncolored). Two-step algorithms have two different phases.

First, one vertex is selected from each component. Next, a classical graph coloring heuristic

is applied to color the graph induced by the selected vertices. The heuristics are called

twostepLF, twostepSL, and twostepCD, respectively. The best results were obtained with

algorithm onestepCD (One Step Color Degree).

Noronha and Ribeiro [22] proposed an improvement heuristic to PCP, based on tabu

search [12]. Algorithm onestepCD is applied to create a feasible initial solution S to PCP

with C colors. Then, a new (possibly infeasible) solution S′ using C − 1 colors is built.

Next, the tabu search procedure TS-PCP attempts to restore the feasibility of S′. A coloring

conflict is defined by a pair of adjacent vertices in different components which are colored

with the same color. TS-PCP aims to minimize the number of coloring conflicts until there

are no coloring conflicts in S′ and feasibility is restored. It is based on a first-improving local

search strategy using a 1-opt neighborhood. Each neighbor is obtained by (a) recoloring

with a different color exactly one vertex involved in a coloring conflict or (b) changing (and

coloring) the vertex that is colored in a component involved in a coloring conflict. If at any
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point of the algorithm there are no coloring conflicts in S′, then a new solution with C − 1

colors is obtained and the procedure is restarted from S′ attempting to reduce one further

color. If a stopping criterion is met and solution S′ is still infeasible, the procedure halts

and the best feasible solution is returned.

There is no exact algorithm for PCP in the literature. However, there are many algorithms

for the classical graph coloring problem. The first enumeration techniques [2, 3, 16, 17] were

inefficient for medium and large size instances. Better results were obtained by integer pro-

gramming approaches. Mehrotra and Trick [20] proposed a column generation algorithm for

the maximum independent set that was able to solve medium size instances. Figueiredo et al.

[11] and Méndez-Dı́az and Zabala [21] developed branch-and-cut algorithms. Campêlo et

al. [5] proposed a 0-1 integer formulation for the graph coloring problem that can be seen

as a set packing formulation with additional constraints [1]. An asymmetric formulation

and valid inequalities for the same problem was proposed in [4]. The formulations in [4, 5]

are extended in the next section to the partition coloring problem.

3 Integer programming formulation

The formulation proposed in this section is based on choosing one vertex to be the represen-

tative of all vertices with the same color, instead of directly coloring all vertices. Therefore,

each vertex is in exactly one of the following three states: (i) colored and representing all

vertices with this same color, (ii) colored and represented by another vertex with the same

color, or (iii) uncolored.

We define A(u) = {w ∈ V : (u, w) /∈ E, w 6= u} as the anti-neighborhood of vertex u (i.e., the

subset of vertices that are not adjacent to u) and AP (u) = {v ∈ A(u) : P [u] 6= P [v]} as the

component anti-neighborhood of a vertex u ∈ V (i.e., the vertices in the anti-neighborhood

of u that are in another component of the partition). We also define A′
P (u) = AP (u)∪{u}.

Given a subset of vertices V ′ ⊆ V , we denote by E[V ′] the subset of edges induced in

G = (V, E) by V ′. A vertex v ∈ AP (u) is said to be isolated in AP (u) if E[AP (u)] =

E[AP (u) \ {v}] (i.e., vertex v has no adjacent vertex in AP (u)). We define the binary

variables xuv for all u ∈ V and for all v ∈ A′
P (u), such that xuv = 1 if and only if vertex u

represents the color of vertex v; otherwise xuv = 0. The number of x variables is | V | +mc,

where mc is the number of edges in the complementary graph of G whose endvertices are

in different components. The PCP can be formulated as the following integer programming

problem:

min
∑

u∈V

xuu (1)
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subject to: ∑

u∈Qp

∑

v∈A′

P
(u)

xvu ≥ 1 ∀p = 1, . . . , q (2)

xuv + xuw ≤ xuu ∀u ∈ V, ∀(v, w) ∈ E with v, w ∈ AP (u) and P [v] 6= P [w] (3)

xuv ≤ xuu ∀u ∈ V, ∀v ∈ AP (u) such that v is isolated in AP (u) (4)

xuv ∈ {0, 1} ∀u ∈ V, ∀v ∈ A′
P (u). (5)

The above model is said to be the formulation by representatives of PCP. The objective

function (1) counts the number of representative vertices, i.e., the number of colors. Con-

straints (2) enforce that each component Qp, p = 1, . . . , q, have at least one of its vertices

u ∈ Qp represented either by itself (xuu = 1) or by some other vertex v (xvu = 1, with v 6= u)

in its component anti-neighborhood (i.e., a vertex from another component that does not

share an edge with u). Inequalities (3) enforce that adjacent vertices have distinct repre-

sentatives. Inequalities (3) together with constraints (4) ensure that a vertex can only be

represented by a representative vertex. Note that a feasible solution for inequalities (2) - (5)

may assign multiple representatives to the same vertex. However, any of the representative

vertices leads to a feasible solution.

To break symmetries in the above formulation, we generalized the asymmetric formulation

by representatives in [4]. We establish that a vertex u can only represent the color of a

vertex v if P [u] < P [v]. Therefore, the representative vertex of a color is the vertex with

the smallest component index. We define AP>(u) = {v ∈ AP (u) : P [u] < P [v]} as the

out-anti-neighborhood of a vertex u ∈ V (i.e., the vertices that cannot represent the vertex

u) and AP<(u) = {v ∈ AP (u) : P [v] < P [u]} as the in-anti-neighborhood of vertex u (i.e.,

the vertices that can represent the vertex u). We also define A′
P>(u) = AP>(u) ∪ {u} and

A′
P<(u) = AP<(u) ∪ {u}. Based on this property, inequalities (2) - (5) are rewritten as

inequalities (7) - (10), respectively.

A vertex that stands alone in a component is called an elementary vertex. We define V e ⊆ V

as the set of all elementary vertices in G (i.e., the set of vertices that are guaranteed of

being colored), V 0 = {u ∈ V e : AP<(u) = ∅} as the set of elementary vertices that have no

in-anti-neighborhood in G (i.e., the set of vertices that are always representatives), and Q0

as the set of components that contains the vertices in V 0. Since a vertex v ∈ V 0 is always

a representative, xvv = 1 in any feasible solution of PCP. Therefore, these variables may

be removed from the asymmetric formulation and the number of x variables is reduced to

mc + |V \V 0|. The objective function (1) is rewritten as (6) in the new formulation:

min
∑

v∈V \V 0

xvv+ | V 0 | (6)

5



subject to: ∑

u∈Qp

∑

v∈A′

P<
(u)

xvu ≥ 1 ∀Qp ∈ Q\Q0 (7)

xuv + xuw ≤ βu ∀u ∈ V, ∀(v, w) ∈ E with v, w ∈ AP>(u) and P [v] 6= P [w] (8)

xuv ≤ xuu ∀u ∈ V, ∀v ∈ AP>(u) such that v is isolated in AP>(u) (9)

xuv ∈ {0, 1} ∀u ∈ V, ∀v ∈ A′
P>(u), (10)

where βu = 1 if u ∈ V 0; otherwise βu = xuu.

4 Branch-and-cut

In this section, we describe the branch-and-cut algorithm for partition coloring [6] based

on the asymmetric formulation given by inequalities (6) - (10). Valid inequalities are pro-

gressively added to each subproblem of the search tree, which in most cases improves the

linear relaxation bound. We first explain how to reduce the size of a PCP instance by

preprocessing. Next, we describe the branching strategy. Following, we show how to build

good feasible solutions for each subproblem in the branch-and-cut tree. Finally, we present

valid inequalities that are used in a cutting plane procedure developed for improving the

linear relaxation.

4.1 Preprocessing

Preprocessing is used to reduce the size of the graph before applying the branch-and-cut

algorithm. It is divided into three steps.

First, all edges (u, v) ∈ E with P [u] = P [v] are removed from the graph, because at most

one of u and v is colored in the same solution.

Next, every elementary vertex (i.e., a vertex which stands alone in its component) connected

to all other vertices in the graph is eliminated, because they will require an additional color

whatever the colors of the other vertices are. The number of vertices removed is added to

the chromatic number obtained at the end of the branch-and-cut algorithm.

Finally, all components with at least one vertex v with degree smaller than the linear

relaxation lower bound at the root node of the branch-and-cut tree are removed. This can

be done because the number of colors in the optimal solution will be larger than the number

of neighbors of v. Therefore, v can be colored with any of the colors in the solution that

are not being used by any of its neighbors.
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4.2 Branching rule

The classical branching rule of Mehrotra and Trick [20] for the graph coloring problem

branches on two non-adjacent vertices. We adopted a modified rule which takes into account

the specific characteristics of PCP. We define the following operations for PCP, for any

i, j = 1, . . . , q such that i 6= j:

• SAME(i, j) enforces that the same color is used to color components Qi and Qj ; and

• DIFFER(i, j) requires that different colors are used to color components Qi and Qj .

The first operation can be implemented by merging the two components Qi and Qj into a

single one: the new component will be formed by merging every pair of vertices w ∈ Qi and

z ∈ AP (w) ∩ Qj such that (w, z) /∈ E into a new vertex y, with the neighbors of y being

those of w or z. DIFFER(i, j) can be implemented by inserting edges between every pair

of non-adjacent vertices in components Qi and Qj .

When these two operations are simultaneously applied in the branching step, they create

two new PCP subproblems such that an optimal feasible coloring to the original problem

exists in exactly one of them. In addition, this branching rule has the advantage of leading

to denser graphs without increasing the complexity of the subproblems. Figure 2 illustrates

the decomposition of a problem defined by a graph G into two disjoint subproblems defined

by graphs G1 and G2, where G1 was generated by SAME(1, 2) and G2 by DIFFER(1, 2).

4.3 Upper bounds

The tabu search procedure TS-PCP [22] described in Section 2 provides an upper bound on

each node of the branch-and-cut tree. However, we introduce another procedure to provide

the initial solution to TS-PCP.

Since the branching strategy described in the previous subsection implies that the graph

associated with the parent node slightly differs from those associated with its children, we

can construct an initial feasible solution to TS-PCP at any node of the branch-and-cut tree

by using the solution associated with its parent node. The constructive procedure starts

from a partial solution that is equal to the solution at the parent node in the branch-and-

cut tree, except for the two components involved in the branching operation. The partial

solution has at most two uncolored components, which are colored with the same greedy

strategy of onestepCD [18]. Therefore, TS-PCP starts from an initial solution with at most

two more colors than the solution at the parent node.
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Figure 2: Decomposition of a problem graph G into two disjoint subproblem graphs G1 and
G2.

4.4 Valid inequalities

The lower bounds provided by the relaxation of the integrality constraints of the symmetric

and asymmetric formulations by representatives may be poor. Therefore, we generalize the

two families of valid inequalities described in [4, 5]. A component set is a subset of V whose

vertices belong to different components, while an independent component set is a component

set whose vertices are not connected by inner edges (see Figure 3).

Internal cuts are based on the idea of how many colors are necessary to color any odd

hole or anti-hole of the graph. We consider odd holes or odd anti-holes composed only of

elementary vertices, because they are the only vertices that are guaranteed of being colored

in a feasible solution. The internal cuts are defined by (11), where H ⊆ V e induces an odd

hole or an odd anti-hole in G and χ(G[H]) is the chromatic number of the subgraph G[H]

induced in G by H:

∑

v∈H\V 0

xvv+ | H ∩ V 0 | +
∑

v∈H\V 0,w∈AP<(v)\H

xwv ≥ χ(G[H]). (11)
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Figure 3: (a) A component set and (b) an independent component set.

Theorem 1 If H ⊆ V e induces an odd hole or an odd anti-hole in G, then (11) is a valid

inequality for the asymmetric formulation.

Proof: The first component of the left-hand side counts the number of vertices in H that

are representatives. The second component of the left-hand side counts the number of

vertices in H that are represented by a vertex not in H. In any feasible coloring of G,

each color appearing in H adds one either to the first or to the second term of the left-hand

side. Since at least χ(G[H]) colors are necessary to color G[H], then inequality (11) holds. �

External cuts are based on the idea of how many of the vertices of a subset K ⊆ AP>(u) can

be represented by vertex u ∈ V . They are strengthened versions of inequalities (8). For any

vertex v ∈ K, we define αv as the maximum size of an independent set of the graph G[K]

induced in G by K that contains v, and αK = maxv∈K{αv} as the size of the maximum

independent set of G[K]. The external cuts are defined by (12):

∑

v∈K

xuv

αv
≤ βu. (12)

Theorem 2 For every u ∈ V and any non-empty component set K ⊆ AP>(u), (12) is a

valid inequality for the asymmetric formulation.

Proof: We consider a feasible solution to PCP. If u is not a representative vertex in this

coloring, then βu = 0 and xuv = 0 for all v ∈ AP>(u). Therefore, inequality (12) holds

when u is not a representative vertex. We now consider the case where u is a representative

9



vertex. Then, βu = 1 and xuv = 1 for all v ∈ W , otherwise xuv = 0, where W ⊆ G[K] is

the component independent set composed of the vertices represented by u in the coloring.

Let δ = minv∈W {αv}. Then, |W | ≤ δ, because the cardinality of W is not larger than the

largest independent set of its vertices. It follows that

∑

v∈K

xuv

αv
=

∑

v∈W

1

αv
≤

∑

v∈W

1

δ
=

|W |

δ
≤ 1.

Therefore, inequality (12) also holds when u is a representative vertex. �

A clique K of graph G is said to be a component clique if all vertices in K belong to different

components. Corollary 1 below follows from Theorem 2 and the fact that αv = 1, for any

v ∈ K.

Corollary 1 For every u ∈ V and any maximal component clique K ⊆ AP>(u),

∑

v∈K

xuv ≤ βu (13)

is a valid inequality for the asymmetric formulation.

An odd hole (resp. odd anti-hole) H is said to be a component odd hole (resp. component

odd anti-hole) if all its vertices belong to different components. Theorem 2 is valid for any

non-empty component set. Therefore, it is also valid for a component odd hole and for a

component odd anti-hole. In both cases, the value of αv, for any v ∈ H, is equal to the

size αH of the maximum independent set of G[H], where αH = ⌊|H|/2⌋ for odd holes and

αH = 2 for odd anti-holes. Therefore, the left-hand side of (12) can be rewritten as

∑

v∈H

xuv

αv
=

∑

v∈H

xuv

αH

=

∑
v∈H xuv

αH

for any u ∈ V and H ⊆ AP>(u), and Corollary 2 follows:

Corollary 2 For every u ∈ V and any component odd hole or any component anti-hole

H ⊆ AP>(u), ∑

v∈H

xuv ≤ αHβu (14)

is a valid inequality for the asymmetric formulation.
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4.5 Cut identification

We developed a cutting plane procedure based on inequalities (12)-(14). The separation

of these inequalities consists of finding cliques, odd holes, and odd anti-holes in the graph

associated with each node of the branch-and-cut tree. We use a GRASP heuristic for finding

clique cuts and a modification of the Hoffman and Padberg heuristic [13] for finding odd

holes and anti-holes cuts. Both procedures are described in the next two subsections.

4.5.1 Separation of external clique cuts

Let Gu = (V u, Eu) be the subgraph induced in the graph G associated with some node

of the branch-and-cut tree by the out-anti-neighborhood V u = AP>(u) of a vertex u ∈ V .

Furthermore, let x̄uv be the optimal value of variable xuv in the linear relaxation of the

asymmetric formulation (6) - (10), for any u ∈ V and any v ∈ A′
P (u). For any u ∈ V such

that x̄uu > 0, the separation of an external clique cut consists of finding a component clique

K ⊆ V u such that
∑

v∈K x̄uv > βu.

We developed a GRASP [9, 10, 23, 24, 25] heuristic for finding cuts. The heuristic is an

iterative procedure composed of two phases: a construction phase and a local search phase.

The construction phase finds an initial solution that might be later improved by the local

search phase.

The GRASP heuristic attempts to find a clique C with maximum weight
∑

v∈K x̄uv for each

vertex u ∈ V such that x̄uu > 0. Its construction phase begins with an empty clique C and

builds a component clique, one vertex at a time. Let C ⊆ V u be a component clique of G

and δ(C) = {w ∈ V u\C : C ∪ {w} is also a component clique of G}. At each iteration, one

vertex w ∈ δ(C) is inserted into C with probability x̄uw/(
∑

z∈δ(C) x̄uz) and the set δ(C) is

updated. The procedure is repeated until δ(C) = ∅.

There is no guarantee that the construction phase returns a locally optimal solution with

respect to some neighborhood. Therefore, the component clique C may be improved by

a local search procedure. The neighborhood γ(C) is defined as the set of all component

cliques obtained by exchanging a vertex v ∈ C with another vertex u ∈ δ(C\{v}). The

method starts with the solution provided by the construction phase. It iteratively replaces

the current solution by that with maximum weight within its neighborhood. The local

search halts when no better solution is found in the neighborhood of the current solution.

The heuristic stops after 10 · |V u| iterations have been performed since the last time the

best solution was updated. The |V u| heaviest cliques are selected and a cut is generated

for each clique C such that
∑

v∈C x̄uv. The cuts are added to the asymmetric formulation
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defined by (6) - (10).

4.5.2 Separation of external odd hole and anti-hole cuts

For any u ∈ V such that x̄uu > 0, the separation of external odd hole cuts consists of finding

a component odd hole or anti-hole H ∈ V u such that
∑

v∈H x̄uv > αHβu.

We developed a generalization of the Hoffman and Padberg [13] algorithm for finding vi-

olated odd hole inequalities in Gu = (V u, Eu). The same algorithm is applied to the

complementary graph to find violated odd anti-hole inequalities.

First, the method performs a breadth-first search labeling of the vertices of graph Gu =

(V u, Eu) from any root vertex randomly chosen. A label hw is assigned to each vertex

w ∈ V u. Figure 4 illustrates a layered graph with its vertex labels. For any two adjacent

vertices w and z with labels hw = hz ≥ 2, if there exist two vertex-disjoint paths pw (from

w to r) and pz (from z to r), then there exists an odd cycle that contains w, z, and r.

x

y

z

r

q

Gu

11

2 2

0

3

w

Figure 4: Layered graph with labels.

Next, the algorithm assigns weights twz = 2−x̄uw−x̄uz to every edge (w, z) ∈ Eu. Then, for

every edge (w, z) ∈ Eu with hw = hz ≥ 2 and P [w] 6= P [z] 6= P [r], the algorithm computes

two vertex-disjoint shortest component paths (i.e., shortest paths formed exclusively using

vertices from different components), one from z to r and the other from w to r. If both

component paths exist, a component odd hole that can be used to generate a violated ex-

ternal cut is found. Otherwise, the algorithm continues from the next edge. This algorithm

is applied 0.4 · |V u| times, starting from different root vertices. Other algorithms for the

separation of odd hole inequalities can be found in [7].
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4.5.3 Separation of internal odd hole and odd anti-hole cuts

The separation of internal odd hole or anti-hole cuts consists of finding a component odd

hole or anti-hole H ∈ V such that

∑

v∈H\V 0

x̄vv + |H ∩ V 0| +
∑

v∈H\V 0,w∈AP<(v)\H

x̄wv < χ(G[H]).

The algorithm is similar to that developed for finding external odd hole cuts. The method

is applied to the complementary graph to find violated odd anti-hole inequalities. First,

it builds a layered graph rooted at a randomly chosen vertex r ∈ V . Next, the algorithm

assigns weights

twz =
∑

u∈A′

P>
(w)\H

x̄uw +
∑

u∈A′

P>
(z)\H

x̄uz

to every edge (w, z) ∈ E. Then, for any edge (w, z) ∈ E with hw = hz ≥ 2 and P [w] 6=

P [z] 6= P [r], the algorithm calculates two vertex-disjoint shortest component paths, one

from z to r and the other from w to r. If both component paths exist, a component odd

hole that can be used to generate a violated internal cut is found. Otherwise, the algorithm

continues from the next edge. This algorithm is repeated 0.4 · |V | times, starting from

different root vertices.

5 Computational results

Algorithm B&C-PCP described in the previous section was implemented in C++ and com-

piled with version v3.41 of the Linux/GNU compiler. The linear relaxation of the integer

programming formulation was solved by version 2005-a of XPRESS. All experiments were

performed on an AMD-Atlon machine with a 1.8 GHz clock speed and one Gbyte of RAM

memory. The algorithm stops if the optimal solution is not found within two hours of

processing time.

We first investigated the behavior of B&C-PCP for randomly generated graphs with 20 to 120

vertices. Each component has exactly two vertices and the edge density is 0.5. Five graph

instances were generated for each number of vertices. Algorithm B&C-PCP was run three

times for each instance, with different seeds for the pseudo-random number generator. The

average lower and upper bounds for the number of colors over the 15 runs for each graph

size are plotted in Figure 5 (a). Algorithm B&C-PCP solved to optimality all instances with

up to 80 vertices. Regarding the larger instances, the gap between the lower and upper

bounds was always exactly equal to one color.
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In the second experiment, we randomly generated graphs with 90 vertices distributed over

45 components with two vertices each. The edge densities ranged from 0.1 to 0.9. Five

graph instances were generated for each density. Algorithm B&C-PCP was run three times

with different seeds for each instance. The average lower and upper bounds for the number

of colors over the 15 runs for each graph size are plotted in Figure 5 (b). The number of

instances solved to optimality for each edge density is given in Table 1. The most difficult

instances are those with edge densities between 0.3 and 0.5. The number of instances solved

to optimality increases with the edge density, because graphs with higher edge densities have

more larger cliques that lead to better lower bounds. We also observe that the gap between

the lower and upper bounds was never larger than one color in the instances not solved to

optimality.
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Figure 5: Average lower and upper bounds for the number of colors: (a) varying the number
of vertices; (b) varying the edge densities.

Edge density 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Instances solved to optimality 5 3 — 1 — 12 15 15 15

Table 1: Instances solved to optimality (out of 15) for different edge densities.

Table 2 reports the contribution of external and internal cuts to the linear relaxation of the

asymmetric formulation for the instances used in the two experiments above. The first three

columns give the number of vertices, the number of edges, and the number of components for

each group of five instances randomly generated in both experiments. The average value

of the linear relaxation is displayed in the fourth column. The last two columns report

the average relative improvement in the linear relaxation obtained by adding (i) external

cuts and (ii) both external and internal cuts together. We observe that the external cuts

improved the linear relaxation by 32.92% on average, while the internal cuts only slightly

improved the results obtained with the external cuts.

14



Vertices Edges Components Linear Relative improvement (%)
relaxation External cuts Ext. and int. cuts

20 0.5 2 2.33 1.87 1.87
40 0.5 2 2.83 18.62 18.40
60 0.5 2 3.21 31.97 32.37
70 0.5 2 3.41 35.47 35.50
80 0.5 2 3.56 40.94 40.96
90 0.5 2 3.68 44.51 44.54

100 0.5 2 3.76 46.80 46.80
120 0.5 2 3.94 52.96 52.97
90 0.1 2 1.28 27.95 27.97
90 0.2 2 1.67 35.81 35.89
90 0.3 2 2.18 43.08 43.08
90 0.4 2 2.80 45.28 45.32
90 0.5 2 3.68 44.51 44.54
90 0.6 2 4.92 40.83 40.84
90 0.7 2 6.66 32.78 32.79
90 0.8 2 9.65 15.68 15.72
90 0.9 2 14.77 0.78 0.78

Average 32.93 32.96

Table 2: Contribution of external and internal cuts to the linear relaxation.

In the third experiment, we generated partition coloring instances from graph coloring

instances. The partitions were formed using exactly one vertex in each component. In this

case, PCP reduces to a classical graph coloring problem. The results obtained by B&C-PCP

are compared with those provided by the branch-and-cut algorithm proposed in [21]. The

computational results for the most difficult instances in [21] are presented in Table 3. For

each instance, the first three columns display the name of the instance, the number of

vertices, and the number of edges in the graph, respectively. The next three columns give

the upper bound, the lower bound, and the relative gap provided by B&C-PCP, respectively.

The last three columns give the same data for the algorithm in [21], after two hours of

processing time on a Sun ULTRA workstation (see Table 7 in [21]). We note that B&C-PCP

performs better than the algorithm in [21] on instances with larger cliques (such as the

DSJC instances), while it performs worse on instances with smaller cliques (such as the

queen and Mycielsky instances). This is due to the fact that the clique cuts of B&C-PCP

are stronger than those proposed in [21]. For the other instances, the performance of both

algorithm were very similar.

The fourth and fifth experiments report computational results for PCP instances arising

from those of the routing and wavelength assignment problem. First, we consider ring

topologies as those in [14]. Three ring network topologies with 10, 15, and 20 communication

nodes were considered. The traffic matrices were randomly generated, with the probability

Pl that there is a lightpath request between a pair of communication nodes ranging from

0.1 to 1.0 by steps of 0.1. For each ring topology and each value of Pl, five traffic matrices
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B&C-PCP Branch-and-cut [21]
Name |V | |E| UB LB Gap (%) UB LB Gap (%)
DSJC125 5 125 3891 17 14 21.4 20 13 53.8
DSJC125 9 125 6961 43 43 0.0 47 42 11.9
DSJC250 1 250 3218 9 5 80.0 9 5 80.0
DSJC250 5 250 15668 29 15 93.3 36 13 176.9
DSJC250 9 250 27897 72 71 1.4 88 47 87.2
DSJR500 1c 500 121275 85 85 0.0 88 47 87.2
queen.9 9 81 2112 10 9 11.1 10 9 11.1
myciel6 95 755 7 4 75.0 7 5 40.0
myciel7 191 2360 8 4 100.0 8 5 60.0
1-Insertions-5 202 1227 6 3 100.0 6 4 50.0
1-Insertions-6 607 6337 7 3 133.3 6 4 50.0
2-Insertions-4 149 541 5 3 66.7 5 4 25.0
2-Insertions-5 597 3936 6 3 100.0 6 3 100.0
3-Insertions-4 281 1046 5 3 66.7 5 3 66.7
4-Insertions-3 79 156 4 3 33.3 4 3 33.3
4-Insertions-4 475 1795 5 3 66.7 5 3 66.7
1-FullIns-5 282 3247 6 4 50.0 6 4 50.0
2-FullIns-4 212 1621 6 5 20.0 6 5 20.0
2-FullIns-5 852 12201 7 5 40.0 7 5 40.0
3-FullIns-4 405 3524 7 6 16.7 7 6 16.7
3-FullIns-5 2030 33751 8 6 33.3 8 6 33.3
4-FullIns-4 690 6650 8 7 14.3 8 7 14.3

Average 51.06 53.37

Table 3: Graph coloring instances.
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were generated. All links are bidirectional and the lightpath requests are not necessarily

symmetric, i.e., the number of lightpath requests from communication node i to j may be

different from that from communication node j to i. Each RWA instance is transformed into

a PCP instance G = (V, E) and a partition Q that is built as following. Each component

in Q corresponds to a lightpath and has one vertex v ∈ V associated with each possible

route for this lightpath. In the case of ring networks, there are exactly two alternative

routes (clockwise and anti-clockwise) for each lightpath. There is one edge e ∈ E between

each pair of vertices whose associated routes share a common link. This transformation

guarantees that the optimal solution of a PCP instance corresponds to the optimal solution

of the respective RWA instance.

Algorithm B&C-PCP was applied to each of the above 150 instances. The computational

results are presented in Table 4. The first two columns display the number of communi-

cation nodes in the ring and the probability Pl of the existence of each lightpath. The

three next columns give the average number of vertices, edges, and components of the five

corresponding PCP instances. The next columns display the average and the maximum

number of evaluated nodes in the B&C-PCP tree, the average and the maximum absolute

gaps ⌈UB−LB⌉ (where UB and LB denote, respectively, the best upper and lower bounds

for each instance), the average and the maximum relative gaps (UB − LB)/LB, and the

number of instances solved to optimality (over the five instances associated with the same

lightpath probability). All PCP instances that arose from rings with 10 and 15 communi-

cation nodes and 40 out of the 50 instances from rings with 20 communication nodes were

solved to optimality. The relative gaps for the instances not solved to optimality within

two hours of computational time were never larger than 6%.

Next, we consider the topology of the real network NSFnet with 14 communication nodes

and 21 links, widely used in the literature for computational experiments. We first gen-

erated RWA instances in which a lightpath connecting communication node i to j exists

with probabilities Pl ranging from 0.1 to 1.0 by steps of 0.1. As before, all links are bidi-

rectional and the lightpath requests are not necessarily symmetric. Five RWA instances

were generated for each probability value. Every RWA instance was transformed into a

PCP instance by the 2-EDR procedure proposed in [22]. First, 2-EDR computes up to two

alternative routes for each lightpath. Then, a PCP instance is built with one vertex for

each alternative route. There is one edge between each pair of vertices whose associated

routes share a common link. All vertices associated with the same lightpath are placed in

the same component of the partition. We point out that in this case the optimal solution for

the PCP instance is not guaranteed to be optimal for the respective RWA instance, because

2-EDR does not generate all possible routes for each lightpath.

Algorithm B&C-PCP was applied to each of the 50 above instances. The computational
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Ring Pl Vertices Edges Comps. B&C nodes Gap Gap (%) Solved
nodes avg. avg. avg. avg. (max.) avg. (max.) avg. (max.)

10 0.1 17.6 63.6 8.8 1.0 (1) – (–) – (–) 5
10 0.2 35.6 242.8 17.8 1.2 (2) – (–) – (–) 5
10 0.3 49.6 477.2 24.8 1.0 (1) – (–) – (–) 5
10 0.4 67.6 886.2 33.8 1.0 (1) – (–) – (–) 5
10 0.5 83.2 1342.6 41.6 1.0 (1) – (–) – (–) 5
10 0.6 102.4 2024.0 51.2 1.0 (1) – (–) – (–) 5
10 0.7 127.2 3154.0 63.6 1.0 (1) – (–) – (–) 5
10 0.8 145.2 4119.2 72.6 1.0 (1) – (–) – (–) 5
10 0.9 164.4 5297.4 82.2 1.0 (1) – (–) – (–) 5
10 1.0 180.0 6360.0 90.0 1.0 (1) – (–) – (–) 5
15 0.1 47.2 457.8 23.6 1.0 (1) – (–) – (–) 5
15 0.2 92.8 1723.4 46.4 1.0 (1) – (–) – (–) 5
15 0.3 136.4 3729.4 68.2 1.0 (1) – (–) –( –) 5
15 0.4 178.0 6358.2 89.0 1.2 (2) – (–) – (–) 5
15 0.5 215.6 9316.8 107.8 1.0 (1) – (–) – (–) 5
15 0.6 255.6 13076.8 127.8 1.4 (3) – (–) – (–) 5
15 0.7 303.2 18492.6 151.6 1.0 (1) – (–) – (–) 5
15 0.8 339.6 23151.4 169.8 1.0 (1) – (–) – (–) 5
15 0.9 381.6 29285.2 190.8 1.2 (2) – (–) – (–) 5
15 1.0 420.0 35490.0 210.0 1.0 (1) – (–) – (–) 5
20 0.1 78.4 1251.0 39.2 2.2 (7) – (–) – (–) 5
20 0.2 155.2 4893.2 77.6 1.4 (3) – (–) – (–) 5
20 0.3 232.0 10925.6 116.0 8.0 (20) 0.4 (1) 2 (6) 3
20 0.4 308.4 19319.4 154.2 2.4 (8) 0.2 (1) 1 (4) 4
20 0.5 383.2 29848.8 191.6 1.0 (1) – (–) – (–) 5
20 0.6 454.0 41860.8 227.0 1.2 (2) – (–) – (–) 5
20 0.7 540.8 59507.2 270.4 1.0 (1) – (–) – (–) 5
20 0.8 612.8 76398.0 306.4 1.0 (1) – (–) – (–) 5
20 0.9 689.2 96702.8 344.6 1.0 (1) 0.4 (1) 1 (2) 3
20 1.0 760.0 117420.0 380.0 1.0 (1) 1.4 (2) 3 (4) 0

Table 4: Computational results for RWA instances associated with three ring networks.
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Probability Vertices Edges Components B&C nodes Gap Gap (%) Solved
avg. avg. avg. avg. (max.) avg. (max.) avg. (max.)

0.1 26.4 36.0 22.2 1 (1) – (–) – (–) 5
0.2 52.6 149.0 39.0 1 (1) – (–) – (–) 5
0.3 79.0 359.6 58.6 1 (1) – (–) – (–) 5
0.4 103.0 634.4 75.4 1 (1) – (–) – (–) 5
0.5 125.2 947.6 92.0 1 (1) – (–) – (–) 5
0.6 151.2 1410.4 109.6 24.2 (75) 0.4 (1) 4 (11) 3
0.7 181.0 2093.8 130.4 4.0 (16) 0.2 (1) 2 (10) 4
0.8 204.6 2638.2 146.6 8.6 (18) 0.6 (1) 5 (9) 2
0.9 224.8 3118.2 165.6 4.6 (8) 0.6 (1) 5 (8) 2
1.0 248.8 3885.6 182.0 2.2 (4) 0.4 (1) 3 (8) 3

Table 5: Computational results for RWA instances associated with the NSFnet.

results are presented in Table 5. The first column displays the probability of the existence

of each lightpath. The three next columns give the average number of vertices, edges,

and components of the five PCP instances. The next columns display the average and the

maximum number of evaluated nodes in the B&C-PCP tree, the average and the maximum

absolute gaps, the average and the maximum relative gaps, and the number of instances

solved to optimality (over the five instances associated with the same lightpath probability).

All instances in which the probability of the existence of a lightpath is less than or equal

to 0.5 were solved to optimality at the root node of the branch-and-cut tree. Furthermore,

the lower bound provided by rounding up the objective value of the linear programming

solution of each of these instances at the root node of the B&C-PCP is already the optimal

value. Although denser instances are considerably harder, approximately half of them could

be solved and the average gaps were never larger than 5%.

The largest instance solved to optimality within the 2-hour time limit is one of the five

associated with the problem of routing and wavelength assignment in a ring network with

20 communication nodes and the probability of a lightpath existing between any two of

them being equal to 90% (next to last line in Table 4). The corresponding PCP instance

has 706 vertices, 101,600 edges, and 343 components.

6 Concluding remarks

In this work, we proposed an integer programming formulation for the partition coloring

problem based on the model of representatives, together with valid inequalities and cutting

plane heuristics, a primal constructive heuristic, a branching strategy, and a branch-and-cut

algorithm for solving the partition coloring problem. The computational experiments were

carried out not only on randomly generated instances, but also on test problems arising
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either from classical graph coloring instances or from instances of the problem of routing

and wavelength assignment in all-optical WDM networks. The cutting plane procedures

improved the value of linear relaxation by approximately 32% on average on the random

instances. In addition, RWA instances with up to 706 vertices and 101,600 edges were solved

to optimality within the 2-hour time limit. Furthermore, we also notice that the results

obtained by B&C-PCP are competitive with those provided by the branch-and-cut algorithm

in [21] for pure graph coloring instances.
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