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a b s t r a c t 

Given a graph G = (V, E) and a threshold γ ∈ (0, 1], the maximum cardinality quasi-clique problem con- 

sists in finding a maximum cardinality subset C ∗ of the vertices in V such that the density of the graph 

induced in G by C ∗ is greater than or equal to the threshold γ . This problem is NP-hard, since it admits 

the maximum clique problem as a special case. It has a number of applications in data mining, e.g. in 

social networks or phone call graphs. In this work, we propose a biased random-key genetic algorithm 

for solving the maximum cardinality quasi-clique problem. Two alternative decoders are implemented for 

the biased random-key genetic algorithm and the corresponding algorithm variants are evaluated. Com- 

putational results show that the newly proposed approaches improve upon other existing heuristics for 

this problem in the literature. All input data for the test instances and all detailed numerical results are 

available from Mendeley. 
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. Introduction 

Let G = (V, E) be a graph defined by a vertex set V and an edge

et E ⊆V × V . A graph G 

′ = (V ′ , E ′ ) is a subgraph of G if V 

′ ⊆V and

 

′ ⊆E , which is denoted by G 

′ ⊆G . The graph G ( V 

′ ) induced in G by

 

′ ⊆V is that with vertex set V 

′ and edge set E ( V 

′ ) ⊆E formed by all

dges of E with both ends in V 

′ . 
The density of graph G is given by dens (G ) = | E| / (| V | × (| V | −

) / 2) . The degree deg G (v ) of a node v ∈ V denotes the number of

ertices in G that are adjacent to v . 
A graph is complete if there is an edge connecting any pair of

ts vertices. A subset C ⊆V is a clique of G if the graph G ( C ) induced

n G by C is complete. Given a graph G = (V, E) , the maximum

lique problem consists in finding a maximum cardinality clique of

 . It was proved to be NP-hard by Karp (1972) . 

Given a graph G = (V, E) and a threshold γ ∈ (0, 1], a γ -clique

s any subset C ⊆V such that the density of the subgraph G ( C ) is

reater than or equal to γ . A γ -clique C is maximal if there is

o other γ -clique C ′ that strictly contains C . The maximum quasi-

lique problem (MQCP) amounts to finding a maximum cardinality

ubset C ∗ of the vertices in V such that the density of the graph

nduced in G by C ∗ is greater than or equal to the threshold γ .

his problem is also NP-hard, since it admits the maximum clique
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roblem as a special case in which γ = 1 , see ( Pattillo, Veremyev,

utenko, & Boginski, 2013 ). The problem has many applications

nd related clustering approaches include classifying molecular

equences in genome projects by using a linkage graph of their

airwise similarities ( Brunato, Hoos, & Battiti, 2008 ) and the

nalysis of massive communication data sets obtained from social

etworks or phone call graphs ( Abello, Pardalos, & Resende, 1999 ),

s well as various data mining and graph mining applications. 

A few heuristics for MQCP exist in the literature, based on

ell known approaches such as greedy randomized algorithms

nd their iterated extensions ( Oliveira, Plastino, & Ribeiro, 2013 ),

tochastic local search ( Brunato et al., 2008 ), and GRASP ( Abello,

esende, & Sudarsky, 2002 ). In this work, we propose two vari-

nts of a biased random-key genetic algorithm for solving the

aximum quasi-clique problem. The remainder of this article

s organized as follows. Section 2 presents the formulation of

he maximum quasi-clique problem and reviews exact solution

pproaches. Heuristics and related work are reviewed in Section 3 .

ection 4 gives the overall description of biased random-key

enetic algorithms and their customization to the maximum

uasi-clique problem. Section 5 describes the decoders and two

ariants of the biased random-key genetic algorithm, each of

hem based on a different decoder. Computational results are

resented in Section 6 . Concluding remarks are drawn in the last

ection. The computational experiments on dense graphs showed

hat the biased random-key genetic algorithm outperformed the

est heuristic in the literature. The experiments on sparse graphs

https://doi.org/10.1016/j.ejor.2018.05.071
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mailto:bruno.queiroz@iftm.edu.br
mailto:celso@ic.uff.br
mailto:rosseti@ic.uff.br
mailto:plastino@ic.uff.br
https://doi.org/10.1016/j.ejor.2018.05.071


850 B.Q. Pinto et al. / European Journal of Operational Research 271 (2018) 849–865 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

b  

γ  

d  

c  

t  

t  

R  

b  

r  

i  

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(  

h  

t  

s  

p  

p  

(  

c  

d

 

s  

a  

t  

i  

t  

p  

b  

e

 

p  

i  

d  

t  

o

4

q

 

n  

B  

l  
showed that the biased random-key genetic algorithm found

results that are competitive with the mixed integer programming

approaches in Veremyev, Prokopyev, Butenko, and Pasiliao (2016) . 

2. Problem formulation 

The maximum quasi-clique problem can be formulated by

associating a binary variable x i to each vertex of the graph ( Pattillo

et al., 2013 ): 

x i = 

{
1 , if vertex v i ∈ V belongs to the solution, 
0 , otherwise. 

This formulation also considers a variable y i j = x i · x j associated

to each pair of vertices i , j ∈ V , with i < j , and is linearized as

follows: 

max 
∑ 

i ∈ V 
x i (1)

subject to: ∑ 

(i, j) ∈ E: i< j 

y i j ≥ γ ·
∑ 

i, j∈ V : i< j 

y i j (2)

y i j ≤ x i , ∀ i, j ∈ V, i < j, (3)

y i j ≤ x j , ∀ i, j ∈ V, i < j, (4)

y i j ≥ x i + x j − 1 , ∀ i, j ∈ V, i < j, (5)

x i ∈ { 0 , 1 } , ∀ i ∈ V, (6)

y i j ≥ 0 , ∀ i, j ∈ V, i < j. (7)

The objective function (1) maximizes the number of vertices

in the solution. If two vertices i , j belong to a solution, then

x i = x j = 1 and y i j = x i · x j = 1 . If edge ( i , j ) ∈ E , then it contributes

to the density of the quasi-clique. Constraint (2) ensures that the

density of the solution is greater than or equal to γ . Constraints

(3) and (4) ensure that any edge may contribute to the density

of a solution only if both of its ends are chosen to belong to this

solution. Constraints (5) ensure that any existing edge ( i , j ) ∈ E

will contribute to the solution if both of its ends are chosen.

Constraints (6) and (7) impose the binary and nonnegativity

requirements on the problem variables, respectively. 

Veremyev et al. (2016) reported and compared four mixed

integer programming formulations for the maximum quasi-clique

problem in sparse graphs. Two algorithms based on the best

formulations led to better results than the mixed integer pro-

gramming formulation proposed in Pattillo et al. (2013) , with all

mixed integer programs solved using FICO Xpress-Optimizer ( FICO,

2017 ) with the time limit of 3600 seconds. Ribeiro and Riveaux

(2018) developed an exact algorithm based on a quasi-hereditary

property and proposed a new upper bound that is used for prun-

ing the search tree. Numerical results showed that their approach

is competitive with the best integer programming approaches

in the literature and that their new upper bound is consistently

tighter than previously existing bounds. 

3. Heuristics and related work 

Some heuristics for the maximum quasi-clique problem exist

in the literature, based on well known approaches such as greedy

randomized algorithms and their iterated extensions ( Oliveira

et al., 2013 ), stochastic local search ( Brunato et al., 2008 ), and

GRASP ( Abello et al., 2002 ). 
The constructive heuristic HC3 ( Oliveira et al., 2013 ) is an

daptation of the construction phase of the algorithm developed

y Abello et al. (2002) . It builds an initial solution, whose density

temp is greater than or equal to the threshold γ and may be

ecreased by the insertion of new vertices. At each iteration, it

reates a candidate list of vertices ( CL ) that can be inserted into

he current solution. A restricted candidate list ( RCL ) is built with

he best candidates in CL and a vertex is randomly selected from

CL to be inserted in the current solution, until the candidate list

ecomes empty. A parameter α is used to define the size of the

estricted candidate list. The criteria summarized below are used

n this order to select the vertices that will be placed in CL by

C3 ( Abello et al., 1999; Abello et al., 2002; Oliveira et al., 2013 ): 

1. Vertex degree: this criterion is applied only once. The candi-

date list CL at the first iteration is formed by all vertices of the

graph. The vertices with the largest degrees are inserted into

RCL and one of them is randomly selected as the first vertex to

be part of the solution. 

2. Potential difference: the candidate list CL is formed by all

vertices whose insertion in the current solution results in a

new solution whose density is greater than or equal to the

current density γ temp . The vertices in RCL are those with

the largest potential differences, i.e., those whose insertion

increases maximally the density of the current solution. 

3. Degree in the current solution: this last criterion is applied

when there is no further vertex whose insertion in the current

solution increases the density γ temp of the current solution.

The candidate list CL is formed by all neighbors of the current

solution. The vertices in CL with the largest degrees are placed

in RCL . The density of the resulting solution decreases with

respect to the current density γ temp whenever this selection

criterion is applied. 

Other constructive heuristics proposed by Oliveira et al.

2013) start from solutions generated by the greedy randomized

euristic HC3. They alternate between two phases: partial destruc-

ion of the current solution and reconstruction of a new feasible

olution using a greedy randomized algorithm to complete the

artially destroyed solution. Among some variants of this ap-

roach, the iterated greedy strategy (IG), used by Ruiz and Stützle

2006) to solve the permutation flowshop scheduling problem,

onsists in the repeated application of the process of partial

estruction, followed by the reconstruction of a feasible solution. 

The optimized iterated greedy heuristic (IG 

∗) builds an initial

olution using the constructive heuristic HC3 and repeatedly

pplies a destruction phase followed by a reconstruction phase

hat applies the HC3 heuristic. Two parameters δ and β are used

n the destruction phase: parameter δ controls the fraction of

he vertices of the current solution that will be removed, while

arameter β determines the greediness of the removal process,

y controlling the size of the restricted candidate list from where

ach vertex will be extracted. 

The restarted optimized iterated greedy (RIG 

∗) strategy re-

eatedly applies IG 

∗, until the best solution found can not be

mproved ( Oliveira et al., 2013 ). Furthermore, parameter δ is

ynamically modified to diversify the fraction of the solution

hat is destroyed in the destruction phase of IG 

∗. This strategy

utperformed the others investigated in Oliveira et al. (2013) . 

. Biased random-key genetic algorithms for maximum 

uasi-clique 

Genetic algorithms with random keys, or random-key ge-

etic algorithms (denoted by RKGA), were first introduced by

ean (1994) for combinatorial optimization problems whose so-

utions may be represented by permutation vectors. Solutions are
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TOP TOP

REST

BOT

XCrossover

Copy best solutions

Select one parent
from TOP

Select other
parent from REST

Randomly generated
solutions
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Fig. 1. Population evolution between consecutive generations of a BRKGA. 
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epresented as vectors of randomly generated real numbers called

eys. A deterministic algorithm, called a decoder, takes as input

 solution vector and associates with it a feasible solution of the

ombinatorial optimization problem, for which an objective value

r fitness can be computed. Two parents are selected at random

rom the entire population to implement the crossover operation

n the implementation of an RKGA. Parents are allowed to be

elected for mating more than once in the same generation. 

A biased random-key genetic algorithm (BRKGA) differs from an

KGA in the way parents are selected for crossover, see ( Gonçalves

 Resende, 2011 ) for a review. In a BRKGA, each element is gen-

rated combining one element selected at random from the elite

olutions in the current population, while the other is a non-elite

olution. The selection is said to be biased because one parent is

lways an elite solution and has a higher probability of passing its

enes to the new generation. 

In the following, we propose two variants of a BRKGA for MQCP,

ach of them using a different decoder. Both of them evolve a pop-

lation of chromosomes that consists of vectors of real numbers in

he interval [0,1) associated with the vertices of the graph G . Each

hromosome is decoded by an algorithm that receives the vector

f keys and builds a feasible solution for MQCP, i.e., the decoder

eturns a γ -clique as its output. The two decoders DECODER-HCB

nd DECODER-IG 

∗ will be described in the next section. 

We used the parameterized uniform crossover scheme proposed

n Spears and de Jong (1991) to combine two parent solutions

nd to produce an offspring. In this scheme, the offspring inherits

ach of its keys from the best fit of the two parents with a higher

robability. The biased random-key genetic algorithm developed

n this work does not make use of the standard mutation operator,

here parts of the chromosomes are changed with small proba-

ility. Instead, the concept of mutants is used: mutant solutions

re introduced in the population in each generation, randomly

enerated in the same way as in the initial population. Mutants

lay the same role of the mutation operator in traditional genetic

lgorithms, diversifying the search and helping the procedure to

scape from locally optimal solutions ( Brandão, Noronha, Resende,

 Ribeiro, 2015; 2017; Noronha, Resende, & Ribeiro, 2011 ). 

The keys in the chromosome are randomly generated in the

nitial population. At each generation, the population is parti-

ioned into two sets: TOP and REST . The size of the population

s | T OP | + | REST | . Subset TOP contains the best solutions in the

opulation. Subset REST is formed by two disjoint subsets: MID

nd BOT , with subset BOT being formed by the worst elements in

he current population. As illustrated in Fig. 1 , the chromosomes

n TOP are simply copied to the population of the next generation.

he elements in BOT are replaced by newly created mutants that

re placed in the new set BOT . The remaining elements of the new
opulation are obtained by crossover, with one parent randomly

hosen from TOP and the other from REST . This distinguishes

 biased random-key genetic algorithm from the random-key

enetic algorithm of Bean (1994) , where both parents are selected

t random from the entire population. Since a parent solution can

e chosen for crossover more than once in a given generation,

lite solutions have a higher probability of passing their random

eys to the next generation. In this way, | MID | = | REST | − | BOT |
ffspring solutions are created. 

. Decoders 

The implementation of biased random-key genetic algorithms

or the maximum quasi-clique problem made use of the C++ li-

rary brkgaAPI framework developed by Toso and Resende (2015) .

he instantiation of the framework shown in Fig. 2 to some spe-

ific optimization problem requires exclusively the development

f a class implementing the decoder for this problem. This is

he only problem-dependent part of the tool. Other applications

f this framework in the implementation of biased random-key

enetic algorithms can be seen e.g. in Brandão et al. (2015, 2017) ,

haves, Lorena, Senne, and Resende (2016) , Gonçalves, Resende,

nd Toso (2014) , Ribeiro, Oliveira, Carravilla, and Oliveira (2017) ,

uiz, Albareda-Sambola, Fernández, and Resende (2015) . 

According to Gonçalves et al. (2014) , the BRKGA frame-

ork requires the following parameters: (a) the population size

 p = | T OP | + | REST | ); (b) the fraction pe of the population corre-

ponding to the elite set TOP ; (c) the fraction pm of the population

orresponding to the mutant set BOTTOM ; (d) the probability rhoe

hat the offspring inherits each of its keys from the best fit of

he two parents; and (e) the number k of generations without

mprovement in the best solution until a restart is performed. 

We developed two variants of a biased random-key genetic al-

orithm for solving MQCP: algorithm BRKGA-HCB makes use of the

ecoder DECODER-HCB based on the HCB constructive heuristic,

hich is an optimized implementation of the constructive heuris-

ic HC3 ( Oliveira et al., 2013 ), while algorithm BRKGA-IG 

∗ makes

se of the decoder DECODER-IG 

∗ that applies the strategy IG 

∗ in

he place of HCB. The heuristics and decoders are described next. 

.1. Constructive heuristic HC3 

Algorithm 1 describes the constructive heuristic HC3, originally

roposed in ( Oliveira et al., 2013 ). It is slighted adapted from the

onstruction phase of the algorithm developed by Abello et al.

2002) . It takes as inputs the graph G = (V, E) , the threshold γ ,

nd a parameter α ∈ [0, 1]. 
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begin
generate P vectors

of random keys

stopping rule

satisfied?

decode each vector
of random keys

sort solutions by

their fitness

classify solutions as

elite or non-elite

copy elite solutions

to next population

generate mutants in

next population

combine selected parents
and add offspring
to next population

update best

result

restart rule
satisfied?

yes

no

end
yes

no

Fig. 2. BRKGA framework. 
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First, all vertices in V are assigned to the candidate list CL in

line 1 and the restricted candidate list RCL is created in line 2,

containing the max {1, α · | CL |} vertices with the largest degrees

in CL . A vertex x is randomly selected from RCL in line 3 to

initialize a solution S temp in line 4. The density γ temp of the graph

G ( S temp ) is set to 1 in line 5. The density γ temp of G ( S temp ) will be

progressively reduced as new vertices are inserted into S temp along

the iterations of the loop in lines 6–34. The temporary solution

S temp is copied to S in line 7 and the candidate list CL is reset in

line 8. The loop in lines 9–13 places in the candidate list CL the

vertices of V �S that may be added to the current solution without

reducing the density γ temp of the corresponding γ -clique. If the

candidate list CL is not empty, then the potential difference for

each candidate vertex is computed in line 16 as proposed in Abello

et al. (2002) . The restricted candidate list RCL is created in line 18,

containing the max {1, α · | CL |} vertices with the largest potential

differences in CL . Otherwise, in case the candidate list was empty,

the third criterion is applied from lines 19–30. The insertion of any

new vertex in the current solution S temp will lead to a reduction in

the density γ temp of the graph G ( S temp ). A new candidate solution

CL will be built in lines 20–24, containing all neighbors of the

current solution S . If this new candidate list is also empty, then

the algorithm stops and returns the current solution in line 26,

since there are no more candidate vertices to be added to the

current solution. Otherwise, the restricted candidate list RCL is

created in line 28, containing the max {1, α · | CL |} vertices with

the largest degrees in CL . Since the restricted candidate list is not

empty, a new vertex x ∈ RCL is selected to be added to the current

solution in line 31. The current solution S temp and its density γ temp 

are updated in lines 32 and 33, respectively, and a new iteration

resumes. The algorithm returns the solution S in line 35. 

5.2. Constructive heuristic HCB 

The constructive heuristic HCB introduced in this work is a vari-

ant of heuristic HC3 discussed in the previous section. While HC3

makes use of a control variable γ temp to avoid that the number of
andidates in RCL that satisfy the second criterion (potential dif-

erences) becomes very large, it will not be used by HCB since this

s relevant only in the case of massive graphs ( Abello et al., 2002 ).

e also introduced a minimum size minsize for the restricted can-

idate list, to avoid that it becomes very small for small graphs. 

The pseudo-code of Algorithm 2 presents the construc-

ive heuristic HCB, which is basically a simplification of

lgorithm 1 considering the two aspects above. 

.3. Decoder DECODER-HCB 

Each solution of the maximum quasi-clique problem is asso-

iated with a set of | V | random keys. Each random key is a real

umber in the range [0,1) and corresponds to a vertex of the

raph. Each chromosome represented by a set of random keys is

ecoded by an algorithm (the decoder) that receives the keys and

uilds a feasible solution to MQCP. In other words, the decoder

eturns a γ -clique associated with the set of random keys. 

Decoder DECODER-HCB to MQCP, whose pseudo-code is given

y Algorithm 3 , is based on and derived from the constructive

euristic HCB. It is used in two situations, as it will be described

ater in detail. First, to build a solution from scratch. Second, to

omplete (i.e., to reconstruct) a partially destroyed solution. In the

econd case, the decoder receives as an additional parameter a

artial solution S formed by a non-empty list of vertices, while

n the first case, S = ∅ . DECODER-HCB decodes a population of

andom keys r j ∈ [0 , 1) , j = 1 , . . . , | V | . 
.4. Decoder DECODER-IG 

∗

The second decoder is an extension of DECODER-HCB proposed

n the previous section. It is based on the constructive heuristic

CB and on the optimized iterated greedy heuristic IG 

∗ described

n Section 3 , but decodes a population formed by longer vectors

f 2 · | V | random keys R j ∈ [0 , 1) , j = 1 , . . . , | V | , | V | + 1 , . . . , 2 · | V |
ach. The first | V | positions of each vector of random keys are used

n the construction of the initial solution and in the reconstruction
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Algorithm 1 HC3( G , γ , α) 

1: CL ← V 

2: RCL ← { v ∈ CL : |{ v ′ ∈ CL : deg G (v ′ ) ≥ deg G (v ) }| ≤ max { 1 , α ·
| CL |}} 

3: Randomly select x ∈ RCL 

4: S temp ← { x } 
5: γtemp ← 1 

6: while γtemp ≥ γ do 

7: S ← S temp 

8: CL ← ∅ 
9: for all v ∈ V \ S do 

10: if 
| E(S) | + deg G (S) (v ) 

(| S| +1) ·| S| / 2 ≥ γtemp then 

11: CL ← CL ∪ { v } 
12: end if 

13: end for 

14: if CL � = ∅ then 

15: for all v ∈ CL do 

16: di f v ← deg G ( CL ) (v ) + | CL | · ( deg G (S) (v ) − γtemp · (| S| + 1)) 

17: end for 

18: RCL ← { v ∈ CL : |{ v ′ ∈ CL : di f (v ′ ) ≥ di f (v ) }| ≤ max { 1 , α ·
| CL |}} 

19: else 

20: for all v ∈ V \ S do 

21: if deg G (S) (v ) > 0 then 

22: CL ← CL ∪ { v } 
23: end if 

24: end for 

25: if CL = ∅ then 

26: return S 

27: else 

28: RCL ← { v ∈ CL : |{ v ′ ∈ CL : deg G (S) (v ′ ) ≥ deg G (S) (v ) }| ≤
max { 1 , α · | CL |}} 

29: end if 

30: end if 

31: Randomly select x ∈ RCL 

32: S temp ← S ∪ { x } 
33: γtemp ← | E(S temp ) | / 

(| S temp | 
2 

)
34: end while 

35: return S 

Algorithm 2 HCB( G , γ , α, minsize ) 

1: CL ← V 

2: RCL ← { v ∈ CL : |{ v ′ ∈ CL : deg G (v ′ ) ≥ deg G (v ) }| ≤
max { minsize , α · | CL |}} 

3: Randomly select x ∈ RCL 

4: S ← { x } 
5: while CL � = ∅ do 

6: CL ← ∅ 
7: for all v ∈ V \ S do 

8: if 
| E(S) | + deg G (S) (v ) 

(| S| +1) ·| S| / 2 ≥ γ then 

9: CL ← CL ∪ { v } 
10: end if 

11: end for 

12: if CL � = ∅ then 

13: for all v ∈ CL do 

14: di f v ← deg G ( CL ) (v ) + | CL | · ( deg G (S) (v ) − γ · (| S| + 1)) 

15: end for 

16: RCL ← { v ∈ CL : |{ v ′ ∈ CL : di f (v ′ ) ≥ di f (v ) }| ≤
max { minsize , α · | CL |}} 

17: Randomly select x ∈ RCL 

18: S ← S ∪ { x } 
19: end if 

20: end while 

21: return S 

Algorithm 3 DECODER-HCB( G , γ , α, minsize , S , r ) 

1: CL ← V \ S 
2: if S = ∅ then 

3: RCL ← { v ∈ CL : |{ v ′ ∈ CL : deg G (v ′ ) ≥ deg G (v ) }| ≤
max { minsize , α · | CL |}} 

4: x ← argmin { r j : j ∈ RCL } 
5: S ← { x } 
6: end if 

7: while CL � = ∅ do 

8: CL ← ∅ 
9: for all v ∈ V \ S do 

10: if 
| E(S) | + deg G (S) (v ) 

(| S| +1) ·| S| / 2 ≥ γ then 

11: CL ← CL ∪ { v } 
12: end if 

13: end for 

14: if CL � = ∅ then 

15: for all v ∈ CL do 

16: di f v ← deg G ( CL ) (v ) + | CL | · ( deg G (S) (v ) − γ · (| S| + 1)) 

17: end for 

18: RCL ← { v ∈ CL : |{ v ′ ∈ CL : di f (v ′ ) ≥ di f (v ) }| ≤
max { minsize , α · | CL |}} 

19: x ← argmin { r j : j ∈ RCL } 
20: S ← S ∪ { x } 
21: end if 

22: end while 

23: return S 

p  

v  

o  

s

 

A

1  

R  

i  

f  

s

 

t  

c  

5  

v  

f  

t

 

c  

o  

d  
hase of the IG 

∗ strategy, while the the last | V | positions of each

ector of random keys are used in the destruction phase. The roles

f parameters α, δ, and β are the same explained in Section 3 for

trategy IG 

∗. 

Algorithm 4 starts by creating an initial solution S ′ in line

lgorithm 4 DECODER-IG 

∗( G , γ , α, δ, β , minsize , R ) 

1: S ′ ← DECODER-HCB (G, γ , α, minsize , ∅ , R j : j = 1 , . . . , | V | ) 
2: repeat 

3: S ← S ′ 
4: for k = 1 to δ · | S ′ | do 

5: RCL ← { v ∈ S ′ : |{ v ′ ∈ S ′ : deg G (S ′ ) (v ′ ) ≤ deg G (S ′ ) (v ) }| ≤
max { minsize , β · | S ′ |}} 

6: x ← argmin { R | V | + j : j ∈ RCL } 
7: S ′ ← S ′ \ { x } 
8: end for 

9: S ′ ← DECODER-HCB (G, γ , α, minsize , S ′ , R j : j = 1 , . . . , | V | ) 
10: until | S ′ | ≤ | S| or graph G (S ′ ) is not connected 

11: return S 

, using the decoder DECODER-HCB and the first random keys

 j , j = 1 , . . . , | V | . This solution is copied to S in line 3. The loop

n lines 2–10 repeats the partial destruction (vertex eliminations)

ollowed by the reconstruction (vertex insertions) of the current

olution, until no further improvements can be obtained. 

The loop in lines 4–8 removes one by one the δ · | S ′ | vertices

hat should be eliminated from the current solution. A restricted

andidate list RCL of size max { minsize , β · | S ′ |} is created in line

, containing the vertices with the smallest degrees in G ( S ′ ). The

ertex with the smallest random key R | V | + j , j ∈ RCL , is selected

rom the restricted candidate list in line 6 and eliminated from

he current solution in line 7. 

The reconstruction phase is performed in line 9, where the

urrent, partial solution S ′ is rebuilt by decoder DECODER-HCB,

nce again using the first random keys R j , j = 1 , . . . , | V | . The

ecoder stops when the new solution obtained by destruction-
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Table 1 

Test instances (20) used in the tuning experiment with 

IRACE for dense graphs. 

Instance | V | | E | Threshold γ

brock200_4 200 13,089 0.80 

brock400_4 400 59,765 0.80 

brock800_4 800 207,643 0.80 

C20 0 0.5 20 0 0 999,836 0.80 

frb30-15-3 450 83,216 0.95 

frb35-17-3 595 148,784 0.95 

frb40-19-3 760 247,325 0.95 

frb45-21-3 945 387,795 0.95 

frb50-23-3 1150 579,607 0.95 

frb53-24-3 1272 714,229 0.95 

frb56-25-3 1400 869,921 0.95 

frb59-26-3 1534 1,049,729 0.95 

gen200_p0.9_55 200 17,910 0.99 

gen400_p0.9_75 400 71,820 0.99 

p_hat300-3 300 33,390 0.95 

p_hat500-3 500 93,800 0.95 

p_hat700-3 700 183,010 0.95 

p_hat1500-1 1500 284,923 0.95 

p_hat1500-3 1500 847,244 0.95 

san400_0.9_1 400 71,820 0.99 

Table 2 

Value ranges used by IRACE and best parameter values obtained 

after tuning. 

Parameter Value ranges BRKGA-HCB BRKGA-IG ∗

α 0.01, 0.02, ..., 0.20 0.01 0.01 

minsize 1, 2, 3, 4, 5, 6 3 3 

β 0.01, 0.02, ..., 0.20 – 0.02 

δ 0.01, 0.02, ..., 0.50 – 0.40 

p 50, 51, ..., 100 64 91 

pe 0.10, 0.11, ..., 0.25 0.22 0.13 

pm 0.10, 0.11, ..., 0.30 0.15 0.22 

rhoe 0.50, 0.51, ..., 0.80 0.63 0.78 
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reconstruction does not improve the incumbent S . The best

solution S is returned in line 11. 

6. Computational results 

In this section, we address the effectiveness of the heuristics

based on biased random-key genetic algorithms. We compare the

results obtained with the two proposed BRKGA variants with those

obtained by the original RIG 

∗ implementation of Oliveira et al.

(2013) and by the BRKGA algorithm originally presented in Pinto,

Plastino, Ribeiro, and Rosseti (2015) , which is a preliminary version

of BRKGA-HCB. The first proposed variant is called BRKGA-HCB and

makes use of the decoder DECODER-HCB described in Section 5.3 ,

while the second one is denoted BRKGA-IG 

∗ and makes use of

decoder DECODER-IG 

∗ proposed in Section 5.4 . A restart strategy

is incorporated into BRKGA-IG 

∗ and we show that it further im-

proves the performance of the heuristic. We also report numerical

experiments on sparse graph instances comparing BRKGA-IG 

∗

with the mixed integer programming approaches AlgF3 and AlgF4

of Veremyev et al. (2016) . 

Both algorithms BRKGA-HCB and BRKGA-IG 

∗ were implemented

in C++ with the GNU GCC compiler C/C++ version 5.4.0. The ex-

periments have been performed on a Lenovo i7-6500U computer

with a 2.50 GHz CPU (maximum turbo frequency with 3.10 GHz)

with 8 GB of RAM under the operating system Linux Ubuntu 16.04

LTS with parallel processing features disabled. 

The numerical experiments on dense graphs involved 67 max-

imum clique instances of the Second DIMACS Implementation

Challenge ( DIMACS, 2016; Johnson & Trick, 1996 ) and 33 maxi-

mum clique instances of the Benchmarks with Hidden Optimum

Solutions for Graph Problems ( BHOSLIB, 2014; Pullan, Mascia,

& Brunato, 2011 ). The experiments on sparse graphs considered

12 instances obtained from the University of Florida Sparse

Matrix Collection ( Davis & Hu, 2011 ) that have also been used

by Veremyev et al. (2016) . 

All the input data for the above test instances are available in

Mendeley (see ( Pinto, Ribeiro, Rosseti, & Plastino, 2017 )), together

with the forthcoming detailed numerical results that will be

reported along this section. 

6.1. Tuning 

The best parameters for algorithms BRKGA-HCB and BRKGA-IG 

∗

have been determined using the IRACE ( Alfaro-Fernández, Ruiz,

Pagnozzi, & Stützle, 2017; López-Ibánez, Dubois-Lacoste, Stützle,

& Birattari, 2011; Pérez Cáceres, López-Ibáñez, & Stützle, 2014 )

automatic tuning tool. In the first step of the tuning experiment,

we determined the best values for parameters α and minsize used

by the constructive heuristic HCB. In the second step, we looked

for the best values for parameters δ and β used by algorithm

BRKGA-IG 

∗. Finally, in the third step, we sought the best values

for parameters p (population size), pe (fraction of the population

corresponding to the elite set), pm (fraction of the population

corresponding to the mutant set), and rhoe (probability that the

offspring inherits each of its keys from the best fit of the two

parents) used by the biased random-key genetic algorithm, with

the running times limited to one hour and considering the value

ranges suggested by Gonçalves and Resende (2011) . 

The IRACE tuning experiment performed 10 0 0 runs ( Bouamama

& Blum, 2017; Maschler, Hackl, Riedler, & Raidl, 2017 ) of each algo-

rithm for 20 additional problem instances selected from different

classes, as listed in Table 1 : 12 instances from the Second DIMACS

Implementation Challenge and eight BHOSLIB instances. 

The value ranges considered by IRACE and the best parameter

values identified by the tuning experiment are reported in Table 2 .
.2. Experiments on dense graphs 

We considered 100 test problems for the comparative evalua-

ion of the two biased random-key genetic algorithms BRKGA-HCB

nd BRKGA-IG 

∗ proposed in this work with the optimized restarted

terated greedy strategy RIG 

∗ ( Oliveira et al., 2013 ) and with the

reliminary BRKGA algorithm in Pinto et al. (2015) . None of

hese instances was used in the tuning experiments reported in

ection 6.1 . Each algorithm was run ten independent times for

ach instance using different seeds. Algorithm RIG 

∗ was made to

top after 100 iterations without improvement in the incumbent.

he average time taken by algorithm RIG 

∗ over the ten runs for

ach problem was used as the stopping criterion for each of the

RKGA variants. Therefore, all algorithms are subject to exactly the

ame stopping criterion. 

Tables 3–6 display the number of nodes | V |, the number of

dges | E |, the density, and the threshold γ for each instance. In

ddition, for each instance and for each algorithm, these tables

how the best and the average solution values over the ten runs.

he last column in each table shows the running time in seconds

bserved for RIG 

∗, which was used as the stopping criterion for

he BRKGA variants. Cells highlighted in boldface indicate the

lgorithms that attained the best values for each heuristic. These

ables show that the biased random-key genetic algorithm variants

RKGA-HCB and BRKGA-IG 

∗ found systematically better solutions

han RIG 

∗. In fact, while for only two (MANN_a27 and MANN_a45

both of them being very dense graphs with density greater than

9%) out of the 100 instances RIG 

∗ found a solution that was not

atched by at least one of the genetic algorithm variants, either
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Table 3 

Results for algorithms BRKGA, BRKGA-HCB, BRKGA-IG ∗ , and RIG ∗ – Part I. 

BRKGA BRKGA-HCB BRKGA-IG ∗ RIG ∗ Running 

Instance | V | | E | dens. (%) γ Best Average Best Average Best Average Best Average time (seconds) 

C125.9 125 6963 89.85 0.999 34 34.00 34 34.00 34 34.00 34 34.00 1.82 

C250.9 250 27,984 89.91 0.999 44 44.00 44 44.00 44 44.00 44 43.30 5.29 

C500.9 500 112,332 90.05 0.999 57 55.80 57 56.20 57 56.70 55 54.00 12.09 

C10 0 0.9 10 0 0 450,079 90.11 0.999 66 65.10 67 65.00 67 65.80 64 62.40 43.61 

C20 0 0.9 20 0 0 1,799,532 90.02 0.999 73 71.60 72 71.30 74 72.20 71 68.70 95.67 

C40 0 0.5 40 0 0 4,0 0 0,268 50.02 0.800 41 40.60 40 39.30 44 42.60 42 38.40 69.01 

DSJC500.5 500 62,624 50.20 0.800 33 32.20 34 32.40 34 32.80 31 30.20 5.93 

DSJC10 0 0.5 10 0 0 249,826 50.02 0.800 37 35.90 38 35.00 37 36.20 35 33.70 13.34 

MANN_a9 45 918 92.73 0.999 16 16.00 16 16.00 16 16.00 16 16.00 0.24 

MANN_a27 378 70,551 99.01 0.999 133 132.20 133 132.40 133 132.40 135 134.60 37.21 

MANN_a45 1035 533,115 99.63 0.999 426 425.10 423 422.20 425 421.20 439 437.60 640.09 

brock200_1 200 14,834 74.54 0.800 114 113.30 114 113.70 114 114.00 114 113.00 8.17 

brock200_2 200 9876 49.63 0.800 24 23.20 24 24.00 24 24.00 23 22.40 1.44 

brock200_3 200 12,048 60.54 0.800 41 40.30 41 40.70 41 40.70 40 39.20 2.70 

brock400_1 400 59,723 74.84 0.800 189 187.60 189 187.90 189 189.00 188 186.60 36.48 

brock400_2 400 59,786 74.92 0.800 185 184.40 186 184.80 186 185.90 185 183.20 32.45 

brock400_3 400 59,681 74.79 0.800 186 185.50 187 185.90 187 186.10 186 184.80 36.29 

brock800_1 800 207,505 64.93 0.800 92 90.70 92 89.50 96 93.30 87 85.10 31.84 

brock800_2 800 208,166 65.13 0.800 92 90.00 90 87.80 93 91.70 87 85.80 31.75 

brock800_3 800 207,333 64.87 0.800 90 89.40 90 88.30 92 90.90 87 84.50 26.73 

c-fat200-1 200 1534 7.71 0.500 30 30.00 30 30.00 30 30.00 30 29.80 0.42 

c-fat200-2 200 3235 16.26 0.500 58 58.00 58 58.00 58 58.00 58 58.00 0.92 

c-fat200-5 200 8473 42.58 0.500 148 148.00 148 148.00 148 148.00 148 148.00 5.04 

c-fat500-1 500 4459 3.57 0.500 35 35.00 35 35.00 35 35.00 35 34.20 0.66 

c-fat500-2 500 9239 7.33 0.500 66 66.00 66 66.00 66 66.00 66 65.40 1.72 

c-fat500-5 500 23,191 18.59 0.500 164 164.00 164 164.00 164 164.00 164 163.50 7.86 

c-fat500-10 500 46,627 37.38 0.500 324 324.00 324 324.00 324 324.00 324 324.00 27.26 

frb30-15-1 450 83,198 82.35 0.950 57 56.30 59 57.20 59 58.40 56 54.70 11.39 

Table 4 

Results for algorithms BRKGA, BRKGA-HCB, BRKGA-IG ∗ , and RIG ∗ – Part II. 

BRKGA BRKGA-HCB BRKGA-IG ∗ RIG ∗ Running 

Instance | V | | E | dens. (%) γ Best Average Best Average Best Average Best Average time (seconds) 

frb30-15-2 450 83151 82.31 0.950 57 56.20 57 56.00 58 56.90 55 53.60 10.82 

frb30-15-4 450 83194 82.35 0.950 56 55.70 58 55.70 60 57.20 55 52.80 11.13 

frb30-15-5 450 83231 82.39 0.950 58 56.70 58 56.90 59 58.60 56 54.20 12.32 

frb35-17-1 595 148,859 84.24 0.950 75 74.10 75 73.90 78 76.60 73 70.20 23.07 

frb35-17-2 595 14 8,86 8 84.24 0.950 72 70.90 74 70.50 74 73.40 70 68.40 20.95 

frb35-17-4 595 148,873 84.24 0.950 77 75.80 79 77.20 80 78.60 74 72.80 23.21 

frb35-17-5 595 148,572 84.07 0.950 77 75.10 78 75.50 79 77.60 73 71.30 24.84 

frb40-19-1 760 247,106 85.68 0.950 107 105.10 108 105.60 111 109.70 102 100.30 44.72 

frb40-19-2 760 247,157 85.69 0.950 98 96.40 98 95.50 102 100.40 96 92.00 41.34 

frb40-19-4 760 246,815 85.57 0.950 94 92.00 92 90.70 95 94.00 91 87.20 43.53 

frb40-19-5 760 246,801 85.57 0.950 98 96.00 96 94.10 99 97.50 92 89.70 43.92 

frb45-21-1 945 386,854 86.73 0.950 117 115.30 117 114.90 121 120.00 114 111.40 64.34 

frb45-21-2 945 387,416 86.86 0.950 114 112.60 114 111.30 120 118.50 112 108.30 56.12 

frb45-21-4 945 387,491 86.87 0.950 123 122.20 123 119.80 128 126.00 119 116.00 74.75 

frb45-21-5 945 387,461 86.87 0.950 116 113.70 114 112.30 121 118.40 111 109.20 70.98 

frb50-23-1 1150 580,603 87.88 0.950 152 148.80 148 146.20 158 154.80 146 143.40 123.42 

frb50-23-2 1150 579,824 87.76 0.950 152 147.70 151 145.80 154 153.10 147 144.00 107.99 

frb50-23-4 1150 580,417 87.85 0.950 149 145.60 145 142.70 155 152.80 143 141.40 103.64 

frb50-23-5 1150 580,640 87.89 0.950 152 149.20 149 146.10 158 155.20 149 144.80 117.98 

frb53-24-1 1272 714,129 88.34 0.950 190 186.10 186 183.10 199 196.50 191 184.70 159.12 

frb53-24-2 1272 714,067 88.34 0.950 162 160.30 160 157.90 169 167.10 159 157.10 136.73 

frb53-24-4 1272 714,048 88.33 0.950 172 167.90 169 165.60 178 176.50 170 163.90 143.50 

frb53-24-5 1272 714,130 88.34 0.950 158 157.00 155 153.10 167 164.50 158 153.50 120.71 

frb56-25-1 1400 869,624 88.80 0.950 212 208.90 210 207.90 225 223.10 216 211.00 217.61 

frb56-25-2 1400 869,899 88.83 0.950 200 198.50 201 196.20 212 209.30 200 196.50 224.00 

frb56-25-4 1400 869,262 88.76 0.950 187 183.60 182 178.40 194 192.20 183 177.40 182.62 

frb56-25-5 1400 869,699 88.81 0.950 189 186.40 187 184.00 201 197.90 187 184.30 192.85 

frb59-26-1 1534 1,049,256 89.24 0.950 227 223.60 225 219.90 239 237.40 231 224.30 264.45 
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Table 5 

Results for algorithms BRKGA, BRKGA-HCB, BRKGA-IG ∗ , and RIG ∗ – Part III. 

BRKGA BRKGA-HCB BRKGA-IG ∗ RIG ∗ Running 

Instance | V | | E | Dens. (%) γ Best Average Best Average Best Average Best Average time (seconds) 

frb59-26-2 1534 1,04 9,64 8 89.27 0.950 226 221.70 220 216.90 236 232.70 226 220.60 234.40 

frb59-26-4 1534 1,048,800 89.20 0.950 216 214.30 216 211.10 227 225.60 218 213.80 251.09 

frb59-26-5 1534 1,049,829 89.29 0.950 210 207.90 205 203.40 224 219.70 210 204.70 198.77 

frb100-40 40 0 0 7,425,226 92.84 0.950 1819 1815.60 1819 1817.30 1837 1835.50 1837 1836.00 6530.86 

gen200_p0.9_44 200 17,910 90.00 0.999 40 40.00 40 40.00 42 40.40 40 39.80 3.91 

gen400_p0.9_55 400 71,820 90.00 0.999 52 51.40 53 52.20 53 52.40 51 50.70 10.47 

gen400_p0.9_65 400 71,820 90.00 0.999 52 50.80 55 53.20 66 62.00 51 49.20 9.24 

hamming6-2 64 1824 90.48 0.950 37 37.00 37 37.00 37 37.00 37 37.00 0.64 

hamming6-4 64 704 34.92 0.500 32 32.00 32 32.00 32 32.00 32 32.00 0.44 

hamming8-2 256 31,616 96.86 0.999 129 129.00 129 129.00 129 129.00 129 129.00 13.18 

hamming8-4 256 20,864 63.92 0.800 71 71.00 71 71.00 71 71.00 71 71.00 4.89 

hamming10-2 1024 518,656 99.02 0.999 525 525.00 525 525.00 525 525.00 525 525.00 505.75 

hamming10-4 1024 434,176 82.89 0.950 82 81.60 81 80.70 82 81.20 81 79.00 38.48 

johnson8-2-4 28 210 55.56 0.800 5 5.00 5 5.00 5 5.00 5 5.00 0.06 

johnson8-4-4 70 1855 76.81 0.800 43 42.80 43 43.00 43 43.00 43 43.00 1.03 

johnson16-2-4 120 5460 76.47 0.800 34 34.00 34 34.00 34 34.00 34 34.00 1.12 

johnson32-2-4 496 107,880 87.88 0.950 21 21.00 21 21.00 21 21.00 21 21.00 4.59 

keller4 171 9435 64.91 0.800 51 51.00 54 52.40 54 54.00 54 52.70 3.86 

keller5 776 225,990 75.15 0.800 486 486.00 486 486.00 486 486.00 486 486.00 110.42 

keller6 3361 4,619,898 81.82 0.950 269 263.50 267 260.70 279 275.80 270 263.20 742.24 

p_hat300-1 300 10,933 24.38 0.500 64 63.10 64 63.70 64 64.00 63 62.30 8.05 

p_hat300-2 300 21,928 48.89 0.800 114 114.00 114 114.00 114 114.00 114 114.00 9.72 

p_hat500-1 500 31,569 25.31 0.500 96 95.80 96 96.00 96 96.00 95 94.60 20.39 

p_hat500-2 500 62,946 50.46 0.800 211 211.00 211 211.00 211 211.00 211 211.00 28.74 

p_hat700-1 700 60,999 24.93 0.500 119 117.90 118 117.50 119 118.90 118 116.40 36.10 

p_hat700-2 700 121,728 49.76 0.800 288 288.00 288 288.00 288 288.00 288 288.00 55.17 

p_hat10 0 0-1 10 0 0 122,253 24.48 0.500 144 143.20 144 142.20 145 144.10 142 141.10 60.64 

p_hat10 0 0-2 10 0 0 244,799 49.01 0.800 385 385.00 385 385.00 385 385.00 384 384.00 107.91 

Table 6 

Results for algorithms BRKGA, BRKGA-HCB, BRKGA-IG ∗ , and RIG ∗ – Part IV. 

BRKGA BRKGA-HCB BRKGA-IG ∗ RIG ∗ Running 

Instance | V | | E | Dens. (%) γ Best Average Best Average Best Average Best Average time (seconds) 

p_hat10 0 0-3 10 0 0 371,746 74.42 0.950 210 210.00 210 210.00 210 210.00 209 208.30 87.93 

p_hat1500-2 1500 568,960 50.61 0.800 642 642.00 642 642.00 642 642.00 642 642.00 274.25 

san200_0.7_1 200 13,930 70.00 0.950 57 57.00 57 57.00 57 57.00 57 55.80 3.91 

san200_0.7_2 200 13,930 70.00 0.950 34 34.00 34 33.60 34 34.00 34 34.00 2.43 

san200_0.9_1 200 17,910 90.00 0.990 74 70.40 78 78.00 78 78.00 78 77.00 6.76 

san200_0.9_2 200 17,910 90.00 0.999 55 50.40 58 58.00 60 60.00 55 46.20 3.97 

san200_0.9_3 200 17,910 90.00 0.999 37 36.90 42 39.40 44 42.60 37 36.30 2.80 

san400_0.5_1 400 39,900 50.00 0.500 400 40 0.0 0 400 40 0.0 0 400 40 0.0 0 400 40 0.0 0 29.40 

san400_0.7_1 400 55,860 70.00 0.950 201 201.00 201 201.00 201 201.00 201 201.00 23.28 

san400_0.7_2 400 55,860 70.00 0.950 62 62.00 62 62.00 62 62.00 62 62.00 8.03 

san400_0.7_3 400 55,860 70.00 0.950 40 37.20 39 36.80 40 38.90 38 36.40 6.90 

san10 0 0 10 0 0 250,500 50.15 0.800 562 562.00 562 562.00 562 562.00 562 562.00 126.67 

sanr200_0.7 200 13,868 69.69 0.800 73 72.50 72 72.00 73 72.90 72 72.00 4.74 

sanr200_0.9 200 17,863 89.76 0.950 91 91.00 92 91.50 92 92.00 91 90.90 7.80 

sanr400_0.5 400 39,984 50.11 0.800 32 31.40 32 31.80 32 32.00 31 30.00 4.64 

sanr400_0.7 400 55,869 70.01 0.950 30 29.30 32 31.20 32 31.80 30 28.70 5.01 

Table 7 

Comparative performance statistics for algorithms BRKGA, BRKGA- 

HCB, BRKGA-IG ∗ , and RIG ∗ . 

BRKGA BRKGA-HCB BRKGA-IG ∗ RIG ∗

# Best 44 52 97 36 

# BestAvg 32 35 96 27 

SumBest 356 404 575 283 

AvgDevRuns (%) 3.33 3.29 0.95 4.99 

AvgDev (%) 2.27 2.07 0.07 3.35 

AvgDevAvg (%) 2.48 2.45 0.06 4.17 

Score 84 87 4 158 

ScoreM 102 119 6 203 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BRKGA-HCB or BRKGA-IG 

∗ found solutions unmatched by RIG 

∗ for

64 test problems. 

Table 7 summarizes the following statistics resulting from the

experiments reported in Tables 3–6 : 
• # Best is the number of instances for which a given heuristic

found the best overall solution value. The higher its value, the

better is the performance of the corresponding heuristic. 
• # BestAvg is the number of instances for which a given heuristic

found the best average solution value. The higher its value, the

better is the performance of the corresponding heuristic. 
• SumBest is the number of runs in which a given heuristic found

the best overall solution value. The higher its value, the better

is the performance of the corresponding heuristic. 
• AvgDevRuns is the average relative deviation between the

solution value found by a given heuristic over all runs of some

instance and the best solution value obtained for this instance

over all heuristics. The smaller its value, the better is the

performance of the corresponding heuristic. 
• AvgDev is the average relative deviation between the best

solution value obtained by a given heuristic for some instance

and the best solution value obtained for this instance over all
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Fig. 3. Runtime distributions for the instance san200_0.9_1 with the target value set at 78 (threshold γ = 0.90). 

0

 0.2

 0.4

 0.6

 0.8

1

 0.1 1  10  100  1000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target (seconds)

BRKGA-IG*
BRKGA-HCB

RIG*

Fig. 4. Runtime distributions for the instance C500.9 with the target value set at 56 (threshold γ = 0.999). 



858 B.Q. Pinto et al. / European Journal of Operational Research 271 (2018) 849–865 

0

 0.2

 0.4

 0.6

 0.8

1

 0.1 1  10  100  1000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target (seconds)

BRKGA-IG*
BRKGA-HCB

RIG*

Fig. 5. Runtime distributions for the instance gen400_p0.9_65 with the target value set at 51 (threshold γ = 0.999). 
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Fig. 6. Runtime distributions for the instance frb30-15-4 with the target value set at 56 (threshold γ = 0.95). 
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Fig. 7. Population evolution for instance gen400_p0.9_65: best value found by BRKGA-IG ∗ after 33.3 seconds (100 generations) is 56 (threshold γ = 0.999). 
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Fig. 8. Population evolution for instance frb30-15-4: best value found by BRKGA-IG ∗ after 147.99 seconds (100 generations) is 60 (threshold γ = 0.95). 



860 B.Q. Pinto et al. / European Journal of Operational Research 271 (2018) 849–865 

 40

 45

 50

 55

 60

 65

 70

 1  10  100  1000

S
ol

ut
io

n 
va

lu
es

Time (s)

BRKGA-IG*
BRKGA-HCB

RIG*

Fig. 9. Evolution of the best solution value found by BRKGA-IG ∗ and the other algorithms along the 3600 first seconds of running time for instance gen400_p0.9_65: best 

solution value obtained by BRKGA-IG ∗ is 66 (threshold γ = 0.999). 

Table 8 

Summary of computational results for each strategy on instance san200_0.9_1. Each run 

was made to stop when a solution as good as the target solution value 79 was found 

(threshold γ = 0 . 90 ). For each strategy, the table shows the distribution of the running 

times by quartile. For each quartile, the table gives the average running times in seconds 

over all runs in that quartile. The average running times over the 200 runs are also given 

for each strategy. 

Average running times in quartile (seconds) 

Strategy 1st 2nd 3rd 4th Average 

BRKGA-IG ∗ without restarts 118.48 906.97 3341.26 – –

BRKGA-IG ∗ with restart(100) 39.51 133.93 330.57 799.44 325.86 

BRKGA-IG ∗ with restart(200) 81.07 232.08 438.30 1038.03 447.37 

BRKGA-IG ∗ with restart(500) 95.23 305.23 621.06 1452.35 618.47 

Table 9 

Test instances used in the tuning experiment with 

IRACE for sparse graphs. 

Instance | V | | E | Threshold γ

CA-GrQc 5242 14,496 0.4 

CA-GrQc 5242 14,496 0.6 

CA-GrQc 5242 14,496 0.8 

Harvard500 500 2636 0.4 

Harvard500 500 2636 0.6 

Harvard500 500 2636 0.8 

USAir97 332 2126 0.4 

USAir97 332 2126 0.6 

USAir97 332 2126 0.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

B  

s  
heuristics. The smaller its value, the better is the performance

of the corresponding heuristic. 
• AvgDevAvg is the average relative deviation between the av-

erage solution value obtained by a given heuristic for some
instance and the best average solution value obtained for this

instance over all heuristics. The smaller its value, the better is

the performance of the corresponding heuristic. 
• Score is the sum over all instances of the number of approaches

that provided a solution strictly better than that obtained by a

given heuristic. The smaller the value of Score , the better is the

performance of the corresponding heuristic. 
• ScoreAvg is the sum over all instances of the number of ap-

proaches that found an average solution value strictly better

than that obtained by a given heuristic for some instance.

The smaller its value, the better is the performance of the

corresponding heuristic. 

The results in Table 7 show that variant BRKGA-IG 

∗ consistently

btains the best performance statistics over all criteria considered.

RKGA-IG 

∗ found 97 best solution values and 96 best average

olution values out of the 100 instances. BRKGA-IG 

∗ also obtained
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Fig. 10. Evolution of the best value found by BRKGA-IG ∗ and the other algorithms along the 3600 first seconds of running time for instance frb30-15-4: best solution value 

obtained by BRKGA-IG ∗ is 61 (threshold γ = 0.95). 

Table 10 

Comparative running times in seconds for algorithms AlgF3 (original times multiplied by 0.65) 

and AlgF4 (original times multiplied by 0.65), and BRKGA-IG ∗ with restart(100). 

Running times (seconds) 

Instance | V | | E | dens. γ ω γ ( G ) AlgF3 AlgF4 BRKGA-IG ∗

(%) restart(100) 

Harvard500 500 2043 1.64 0.9 23 9.11 10.08 0.07 

Harvard500 500 2043 1.64 0.5 37 36.62 11.57 1.21 

CA-GrQc 5242 14,496 0.10 0.9 49 200.85 207.44 2.34 

CA-GrQc 5242 14,496 0.10 0.5 81 328.24 406.12 –

USAir97 332 2126 3.87 0.9 35 13.26 4.42 0.22 

USAir97 332 2126 3.87 0.5 67 10.40 1.88 0.53 

Email 1133 5451 0.85 0.9 13 – 345.41 0.17 

Email 1133 5451 0.85 0.5 25 809.25 – 1.48 

SmallW 396 994 1.27 0.9 11 4.74 1.88 0.06 

SmallW 396 994 1.27 0.5 28 3.71 1.76 0.28 

Erdos971 429 1312 1.43 0.9 8 13.00 2.47 0.05 

Erdos971 429 1312 1.43 0.5 23 3.97 478.59 0.23 
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he solutions that led to the smallest values for all statistics

eporting average relative deviations from the best solution values.

In the next experiment, we evaluate and compare the run time

istributions (or time-to-target plots – or ttt-plots, for short) of

lgorithms BRKGA-HCB, BRKGA-IG 

∗, and RIG 

∗. Time-to-target plots

isplay on the ordinate axis the probability that an algorithm will

nd a solution at least as good as a given target value within a

iven running time, shown on the abscissa axis. Run time distri-

utions have also been advocated by Hoos and Stützle (1998) as

 way to characterize the running times of stochastic local search

lgorithms for combinatorial optimization. In this experiment, the

hree algorithms were made to stop whenever a solution with

ost smaller than or equal to a given target value was found. The

euristics were run 200 times each, with different initial seeds
or the pseudo-random number generator. Next, the empirical

robability distributions of the time taken by each heuristic to

nd the target value are plotted. To plot the empirical distribution

or each heuristic, we followed the methodology proposed by Aiex,

esende, and Ribeiro (20 02, 20 07) . We associate a probability

p i = (i − 1 
2 ) / 200 with the i -th smallest running time t i and plot

he points ( t i , p i ), for i = 1 , . . . , 200 . The more to the left is a plot,

he better is the algorithm corresponding to it. 

Time-to-target plots for instance san200_0.9_1 are shown in

ig. 3 , with the target set to 78, which corresponds to the best

alue in Table 6 . Time-to-target plots for instance C500.9 are

hown in Fig. 4 , with the target set to 56, which corresponds

o the average solution value obtained by heuristic BRKGA-HCB

n Table 3 . Time-to-target plots for instance gen400_p0.9_65 are
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57 (threshold γ = 0 . 999 ). 
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6  
hown in Fig. 5 , with the target set to 51, which corresponds to

he best value obtained by heuristic RIG 

∗ in Table 5 . Also, time-to-

arget plots for instance frb30-15-4 are shown in Fig. 6 , with the

arget set to 56, which corresponds to the average solution value

btained by heuristic BRKGA-HCB in Table 4 . These plots show

hat heuristic BRKGA-IG 

∗ is able to find with higher probability

olutions as good as the target in smaller running times. 

Figs. 7 and 8 illustrate the evolution of the solution population

long 100 generations of BRKGA-IG 

∗ for one execution of instances

en400_p0.9_65 and frb30-15-4, respectively. They show that

he biased random-key genetic algorithm is able to continuously

volve the solution population and to improve the best solution

alue. 

Figs. 9 and 10 illustrate how the best solutions found by the

hree algorithms evolve along the first 3600 seconds of processing

ime, for the same two instances gen400_p0.9_65 and frb30-15-4,

espectively. They show that BRKGA-IG 

∗ systematically finds better

olutions faster than the other algorithms. The best solution ob-

ained by BRKGA-IG 

∗ is better than that found by RIG 

∗ and BRKGA-

CB most of the time along the runs displayed in these figures. 

Restart strategies are able to reduce the running times to reach

arget solution values. We applied to heuristic BRKGA-IG 

∗ the same

ype of restart( κ) strategy discussed in Resende and Ribeiro (2011,

016) (see also Interian & Ribeiro (2017) ), in which the population

s entirely renewed after κ generations have been performed with-

ut improvement in the best solution found. We evaluated the

erformance of restart( κ) strategies for κ = 10 0 , 20 0 , 50 0 . Time-

o-target plots for instance C500.9 are displayed in Fig. 11 with

00 runs of each strategy restart( κ). Each run was limited to 10 0 0

econds and the target value was set to 57. Fig. 11 shows that

IG 

∗ failed to reach the target within the time limit in 71 runs
nd BRKGA-HCB failed to reach the target within the time limit in

 runs. For this instance, strategy restart(100) presented the best

esults, i.e., the leftmost plots. 

The next experiment addresses the behavior of heuristic

RKGA-IG 

∗ with harder target values. Fig. 12 displays time-to-

arget plots for all variants of BRKGA-IG 

∗, with and without

estarts, on instance san200_0.9_1 with the target value set at 79.

n this experiment, each algorithm variant was run 200 times, with

he running time limited to 10,0 0 0 seconds. Again, BRKGA-IG 

∗

ith restart(100) presented the best behavior. 

Resende and Ribeiro (2011, 2016) observed that the effect

f restart strategies can be mainly noticed in the longest runs.

s an example, Table 8 illustrates the results obtained by the

estart strategies on instance san200_0.9_1, considering 200 runs

f each algorithm variant with the target value set to 79. We

onsider the column corresponding to the fourth quartile in this

able, whose entries correspond to those in the heavy tails of the

untime distributions. The restart strategies affect all quartiles of

he distributions, which is a desirable result. Compared to the

trategy without restarts, the restart(100) strategy was able to

educe not only the average running time in the fourth quartile,

ut also in the other quartiles. The best results for each quartile

re highlighted in boldface. Strategy BRKGA-IG 

∗ with restart(100)

learly outperformed all other variants tested, with the smallest

verage running times. We notice that BRKGA-IG 

∗ without restarts

ailed to reach the target within the time limit in 23 runs. 

Fig. 13 displays time-to-target plots for BRKGA-IG 

∗ with restart

100) strategy on instance frb30-15-4 with the running time

imited to 10 0 0 0 seconds as the target value increases from 55 to

1. Fig. 14 shows the average running time (in seconds) over 200
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runs for each target. As expected, the running time grows fast as

the target increases towards the optimal value. 

The experiments reported in this section showed that

the biased random-key genetic algorithm BRKGA-IG 

∗ with the

restart(100) strategy obtained the best results among all tested

variants. 

6.3. Experiments on sparse graphs 

In Section 6.2 , we concluded that variant BRKGA-IG 

∗ with

strategy restart(100) presented the best numerical results on

dense graphs. In this section, we compare this approach with

algorithms AlgF3 and AlgF4, originally proposed in Veremyev

et al. (2016) . Since the original source codes of AlgF3 and AlgF4

were not available and the experiments reported in Veremyev

et al. (2016) have been made on a different processor, we should

consider an approximate scale ratio to compare the speed of the

two processors. Regarding the single-rating performance, since

the algorithms were tested on single-thread environments, the

corresponding ratio for the two CPU models is 1067/1646 ≈ 0.65,

according to the PassMark benchmark ( PassMark, 2018 ). 

The performance of algorithms to the maximum quasi-clique

problem is very sensitive to the density of the input graph. Since

heuristic BRKGA-IG 

∗ did not performed well for sparse graphs

with the parameter α = 0 . 01 set as determined in the experiment

reported in Section 6.1 , we performed a new tuning experiment

for this parameter for the case of sparse graphs. Table 9 dis-

plays the characteristics of the nine instances of the University

of Florida Sparse Matrix Collection ( Davis & Hu, 2011 ) used for

tuning parameter α in the range 0 . 01 , 0 . 02 , . . . , 0 . 20 . The heuristic

was run 10 0 0 times, with all other parameters fixed as before. The
xperiment determined α = 0 . 09 as the most appropriate value

or this parameter. 

Algorithms AlgF3, AlgF4, and BRKGA-IG 

∗ with restart(100)

ere compared on six sparse instances with two values of the

hreshold γ for each of them. Each algorithm was made to stop

hen a solution with cardinality given by the bound ω γ ( G ) was

eached ( Veremyev et al., 2016 ). The running times for each algo-

ithm are reported in Table 10 . The running times for algorithms

lgF3 and AlgF4 are those reported by Veremyev et al. (2016) ,

ultiplied by the scale factor 0.65. The last column gives the aver-

ge running time over ten runs of BRKGA-IG 

∗ with restart(100) for

= 0 . 09 , limited to one hour for each run. The running times of

lgorithms AlgF3 and AlgF4 were also limited to one hour for each

nstance. Blank cells correspond to cases where none of the ten

uns reached a solution of cardinality ω γ ( G ). For all other cells, all

en runs found a γ -clique with ω γ ( G ) vertices. These results show

hat the biased random-key genetic algorithm BRKGA-IG 

∗ with the

estart(100) strategy proposed in this work was faster than AlgF3

nd AlgF4 for all but one of the test instances (CA-GrQc with the

hreshold γ = 0 . 5 ), for which it was not able to find a solution as

ood as the target in less than one hour of computation in any of

he ten runs. This was most likely due to the very small density

f this instance, for which AlgF3 and AlgF4 also took very long. 

. Concluding remarks 

Given a graph G = (V, E) and a threshold γ ∈ (0, 1], the max-

mum cardinality quasi-clique problem consists in finding a

aximum subset C ∗ of the vertices in V such that the density

f the graph induced in G by C ∗ is greater than or equal to the

hreshold γ . 
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In this work, we proposed a biased random-key genetic

lgorithm for finding approximate solutions to the maximum

uasi-clique problem, using two different decoders. The decoder

ased on an optimized iterated greedy constructive heuristic led

o the best numerical results. We also showed that the use of a

estart strategy significantly contributed to improve the robust-

ess and the efficiency of the algorithm. The resulting BRKGA-IG 

∗

euristic with restart(100) strategy outperformed different variants

f the algorithm, as well as the restarted optimized iterated greedy

RIG 

∗) construction/destruction heuristic that originally reported

he best results in the literature for dense graphs. 

In addition, the newly proposed BRKGA-IG 

∗ with restart(100)

pproach was also compared with the exact algorithms AlgF3 and

lgF4 of Veremyev et al. (2016) used as a heuristics with time

imits on their running times. Also in this case, BRKGA-IG 

∗ with

estart(100) applied to sparse graphs outperformed both mixed

nteger programming approaches, finding target solution values in

uch smaller running times. 

All the input data for the test instances used in the experiments

eported in this work are available in Mendeley (see Pinto et al.

2017) ), together with the resulting detailed numerical results. 
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