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Abstract

Given a set of lightpath requests, the problem of routingwadelength assignment (RWA) in
optical networks consists in routing a subset of these iqwad assigning a wavelength to each of
them, such that two lightpaths that share a common link aigead to different wavelengths. There
are many variants of this problem in the literature. We fdouke variant in which the objective is to
maximize the number of requests that may be accepted, giveitad set of available wavelengths.
This problem is called max-RWA and it is of practical and ttetizal interest, because algorithms for
this variant can be extended to other problems that arise fhe design of optical networks. In this
paper, we propose a biased random-key genetic algorithmdsrRWA. Computational experiments
showed that for the largest instances in the literature loaty upper bounds to the value of the
optimal solutions are known, the average optimality gapheftiest of the proposed biased random-
key genetic algorithm is smaller than 4%.

1 Introduction

In optical networks, the information is transmitted as optical signals throutitebfibers. Wavelength
Division Multiplexing(WDM) allows the more efficient use of the capacity of the optical fibersakn
optical point-to-point connection between two nodes is callighg#path Each lightpath is characterized
by its route and by the wavelength with which it is multiplexed. Two lightpaths may &seame
wavelength, provided they do not share any common fiber.

Given the physical topology of an optical network and a set of lightpatfisidg a logical topology
in this network, the problem dRouting and Wavelength AssignméRWA) in WDM optical networks
consists in routing the set of lightpaths and assigning a wavelength to etdtedmafsuch that lightpaths
whose routes share a common fiber are assigned to different wavelengéhconsider the max-RWA
variant, in which the set of lightpath requests are known beforehans@mehvelength conversion is
available. LetG = (V, A) be a directed graph representing the physical network topology, Wwhése
the set of the nodes antl represents the fiber connections between the nodes. LeRdisothe set of
lightpaths requests, each one defined by a source and a destinatioim "dd&here can be more than
one lightpath request between two nodes, since the traffic between d paites can be larger than that
supported by a single lightpath. We denote/bthe set of available wavelengths.

As the size of optical networks increase, exact algorithms become ineffioisolve large problems.
In this paper, we propose a random-key genetic algorithm to efficientlg tmige, real-life size instances
of max-RWA. Computational experiments showed that the average optimalitplgamed with this
heuristic are smaller than 4% for classic instances in the literature.
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2 Biased random-key genetic algorithm

Genetic algorithms with random keys, or random-key genetic algorithms (RKe first introduced
by Bean [1]. Solutions are represented as vectors of randomly dgedesal numbers called keys. A
deterministic algorithm, called a decoder, takes as input a solution vectosanciaes with it a feasible
solution. Two parents are selected at random from the entire population tenmipt the cross-over
operation in the implementation of a RKGA. Parents are allowed to be selectathfimg more than
once in a given generation.

A biased random-key genetic algorithm (BRKGA) differs from a RKGA in tisgy parents are
selected for crossover, see [3] for a review. In a BRKGA, each eleisegenerated combining one
element selected at random from the elite solutions in the current popubatidle,the other is a non-
elite solution. Selection is biased, since one parent is always an elite inalividine development
and application of a BRKGA to max-RWA was motivated by successful agjgitato other network
optimization problems, such as other variants of routing and wavelengtmes=ig [4, 6—8] and routing
in OSPF networks [2].

The biased random-key genetic algorithm for max-RWA evolves a populationromosomes that
consists of vectors of real numbers (called keys). Each solution isgepted by afi?|-vector, in which
each component is a real number in the rafigé| associated with a lightpath requestih Each
solution represented by a chromosome is decoded by a decoding heuastiedbives the vector of
keys and builds a feasible solution for max-RWA.

The minimum length (min-length) of a lightpath is defined as the number of hops noute with
the smallest number of arcs between its endnodes. The decoding hewrisiits of two steps. First, the
lightpaths are sorted in non-decreasing order of their min-lengths. foiheyéhe relative order between
lightpaths with the same min-length value is defined by their keys. The resultiey ©rused in the
second step as the vectdr= 7(1),..., n(|R|) by the decoding heuristic. We notice that the larger is
the minimum length of a lightpath, the larger is the number of arcs used by its shartge, and the
harder will be to route it. Therefore, the decoding heuristic will first adersthe lightpaths with the
smallest minimum lengths, as a strategy to accept a higher number of lightpatbs.tig&re might be
several lightpath with the same minimum length, ties are broken in favor of thamidiimnum key.

Next, a graphG,, = (V, Ay) is created for each wavelengthe A, whereV is the set of nodes
and A, is the set of arcs in which a lightpath multiplexed with wavelengttan be routed. Initially,
A, = A. Every time a lightpath is assigned to a new route and a waveléndtie arcs in this route
are removed front7;, to avoid that other lightpaths multiplexed with wavelengtbse them. For each
lightpathj € R, the decoding heuristic computes the shortest g&th G) between its endnodes in
each copyGy, withk = 1,...,|A|, and setd(j, G;) = 0 if there is no such a path.

Let k* = argmin,c, {length P(j,G}))}, where lengthP(j, G))) denotes the number of arcs in
P(j,Gy), with length( P(j, Gx)) = oo if P(j,Gk) = 0. If P(j, Gk+) # 0, then lightpathy is accepted,
assigned to waveleng#tt, and routed using the arcs in(j, G~ ). All these arcs are removed frof, -
to avoid that other lightpaths use them. Otherwise, lightpasot accepted because it cannot be routed
in any of the copies ofs and the procedure moves to the next lightpath following the order defined by
permutatioril, until all of them are considered. The number of lightpaths accepted blyehisstic will
be used as the fitness of the chromosome.

We use the parametrized uniform crossover scheme proposed in [9htmre®two parent solutions
and produce an offspring. In this scheme, the offspring inherits ekith leys from the best fit of the
two parents with probability 0.7 and from the least fit parent with probability Diiss genetic algorithm
does not make use of the standard mutation operator. Instead, the cohomgants is used: a fixed
number of mutant solutions are introduced in the population in each generainmiomly generated in
the same way as in the initial population.

The keys associated to each lightpath request are randomly generatedritigth population. At
each generation, the population is partitioned into two SEP and REST. Consequently, the size of
the population iTOP| + |REST|. SubsetI’OP contains the best solutions in the population. Subset
REST is formed by two disjoint subsetd/ID and BOT, with subsetBOT being formed by the worst
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elements on the current population. The chromosomégQ® are simply copied to the population of
the next generation. The elementsB@ T are replaced by newly created mutants that are placed in the
new setBOT. The remaining elements of the new population are obtained by crossoveneifmarent
randomly chosen frofT’OP and the other fronREST. Therefore] MID| = |[REST — BOT | offspring
solutions are created. In our implementation, the population size was|$&?10| + | M ID|+ |BOT| =

|V|, with the sizes of set§'OP, REST, and BOT set t00.25 x |V|, 0.7 x |V|, and0.05 x |V,
respectively, as suggested by Noronha et al. [7].

3 Computational experiments

In order to evaluate if BRKGA efficiently identifies the relationships betwesys kand good solutions
and converges to near-optimal solutions, we compared its performancéhaitbf a multi-start (MS)
procedure that uses the same decoding heuristic as BRKGA. Each itevati@nmulti-start procedure
applies the same decoding heuristic, but starting from a randomly gengeatied of keys. Therefore,
nothing is learned from one iteration of MS to the next. We have consid&@usances in the exper-
iments, divided in three test sets of 24 instances. They are built from t&rks and consider three
different numbers of wavelengths for each network.

Each of the heuristics BRKGA and MS was given ten minutes of computation tichestapped
thereafter. Ten runs of each heuristic have been performed foiirestahce. The average optimality gap
(with respect to the upper bounds reported in [5]) observed for BRK@s only 3.56%, while that for
MS was 5.04%.

Figure 1(a) illustrates the evolution of the solution population along 200 gtoes of BRKGA for
one execution of one of the tested instances. It shows that the biagkuhr&eys genetic algorithm is
able to continuously evolve the solution population and to improve the best solatioe. Figure 1(b)
illustrates for the same instance how the best solutions found by BRKGA atitebnulti-start proce-
dure evolve along the six first seconds of processing time. It showshildiased random-key genetic
algorithm systematically finds better solutions faster than the other algorithnbeBtsolution obtained
by BRKGA is better than that found by multi-start at any time along the run wresdts are displayed
in these figures.
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Figure 1. (a) Population evolution: the value of the best solution foundRK®A after 4.42 seconds
(200 generations) is 1492, while the best solution value after 10 minutesoing time is 1502. (b)
Evolution of the best solutions found by BRKGA and MS along the six firsbsds of processing time:
the best solution value obtained by BRKGA is 1493, while that found by M&lis B457.
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4 Conclusions

We proposed a biased random-key genetic algorithm to for the max-RWalepno Computational
experiments show that the biased random-key genetic algorithm BRKGAyigffective and has found
near-optimal solutions whose average optimality gap was at most 10.53%lbv2rtest instances. The
average optimality gap within each test set never exceeded 4% and thé average gap amounted to
only 3.56%. Detailed results are reported in the full version of this paper.
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