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Abstract

Given a set of lightpath requests, the problem of routing andwavelength assignment (RWA) in
optical networks consists in routing a subset of these requests and assigning a wavelength to each of
them, such that two lightpaths that share a common link are assigned to different wavelengths. There
are many variants of this problem in the literature. We focusin the variant in which the objective is to
maximize the number of requests that may be accepted, given alimited set of available wavelengths.
This problem is called max-RWA and it is of practical and theoretical interest, because algorithms for
this variant can be extended to other problems that arise from the design of optical networks. In this
paper, we propose a biased random-key genetic algorithm formax-RWA. Computational experiments
showed that for the largest instances in the literature where only upper bounds to the value of the
optimal solutions are known, the average optimality gap of the best of the proposed biased random-
key genetic algorithm is smaller than 4%.

1 Introduction

In optical networks, the information is transmitted as optical signals through optical fibers.Wavelength
Division Multiplexing(WDM) allows the more efficient use of the capacity of the optical fibers. Anall-
optical point-to-point connection between two nodes is called alightpath. Each lightpath is characterized
by its route and by the wavelength with which it is multiplexed. Two lightpaths may use the same
wavelength, provided they do not share any common fiber.

Given the physical topology of an optical network and a set of lightpaths defining a logical topology
in this network, the problem ofRouting and Wavelength Assignment(RWA) in WDM optical networks
consists in routing the set of lightpaths and assigning a wavelength to each ofthem, such that lightpaths
whose routes share a common fiber are assigned to different wavelengths. We consider the max-RWA
variant, in which the set of lightpath requests are known beforehand andno wavelength conversion is
available. LetG = (V,A) be a directed graph representing the physical network topology, whereV is
the set of the nodes andA represents the fiber connections between the nodes. Let alsoR be the set of
lightpaths requests, each one defined by a source and a destination nodein V . There can be more than
one lightpath request between two nodes, since the traffic between a pair of nodes can be larger than that
supported by a single lightpath. We denote byΛ the set of available wavelengths.

As the size of optical networks increase, exact algorithms become inefficient to solve large problems.
In this paper, we propose a random-key genetic algorithm to efficiently solve large, real-life size instances
of max-RWA. Computational experiments showed that the average optimality gapobtained with this
heuristic are smaller than 4% for classic instances in the literature.
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2 Biased random-key genetic algorithm

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA), were first introduced
by Bean [1]. Solutions are represented as vectors of randomly generated real numbers called keys. A
deterministic algorithm, called a decoder, takes as input a solution vector and associates with it a feasible
solution. Two parents are selected at random from the entire population to implement the cross-over
operation in the implementation of a RKGA. Parents are allowed to be selected formating more than
once in a given generation.

A biased random-key genetic algorithm (BRKGA) differs from a RKGA in theway parents are
selected for crossover, see [3] for a review. In a BRKGA, each element is generated combining one
element selected at random from the elite solutions in the current population,while the other is a non-
elite solution. Selection is biased, since one parent is always an elite individual. The development
and application of a BRKGA to max-RWA was motivated by successful applications to other network
optimization problems, such as other variants of routing and wavelength assignment [4, 6–8] and routing
in OSPF networks [2].

The biased random-key genetic algorithm for max-RWA evolves a populationof chromosomes that
consists of vectors of real numbers (called keys). Each solution is represented by an|R|-vector, in which
each component is a real number in the range[0, 1] associated with a lightpath request inR. Each
solution represented by a chromosome is decoded by a decoding heuristic that receives the vector of
keys and builds a feasible solution for max-RWA.

The minimum length (min-length) of a lightpath is defined as the number of hops in theroute with
the smallest number of arcs between its endnodes. The decoding heuristic consists of two steps. First, the
lightpaths are sorted in non-decreasing order of their min-lengths. Therefore, the relative order between
lightpaths with the same min-length value is defined by their keys. The resulting order is used in the
second step as the vectorΠ = π(1), . . . , π(|R|) by the decoding heuristic. We notice that the larger is
the minimum length of a lightpath, the larger is the number of arcs used by its shortest route, and the
harder will be to route it. Therefore, the decoding heuristic will first consider the lightpaths with the
smallest minimum lengths, as a strategy to accept a higher number of lightpaths. Since there might be
several lightpath with the same minimum length, ties are broken in favor of that withminimum key.

Next, a graphGk = (V,Ak) is created for each wavelengthk ∈ Λ, whereV is the set of nodes
andAk is the set of arcs in which a lightpath multiplexed with wavelengthk can be routed. Initially,
Ak = A. Every time a lightpath is assigned to a new route and a wavelengthk, the arcs in this route
are removed fromGk to avoid that other lightpaths multiplexed with wavelengthk use them. For each
lightpathj ∈ R, the decoding heuristic computes the shortest pathP (j,Gk) between its endnodes in
each copyGk, with k = 1, . . . , |Λ|, and setsP (j,Gk) = ∅ if there is no such a path.

Let k∗ = argmink∈Λ{length(P (j,Gk))}, where length(P (j, Gk)) denotes the number of arcs in
P (j,Gk), with length(P (j, Gk)) = ∞ if P (j,Gk) = ∅. If P (j,Gk∗) 6= ∅, then lightpathj is accepted,
assigned to wavelengthk∗, and routed using the arcs inP (j,Gk∗). All these arcs are removed fromGk∗

to avoid that other lightpaths use them. Otherwise, lightpathj is not accepted because it cannot be routed
in any of the copies ofG and the procedure moves to the next lightpath following the order defined by
permutationΠ, until all of them are considered. The number of lightpaths accepted by thisheuristic will
be used as the fitness of the chromosome.

We use the parametrized uniform crossover scheme proposed in [9] to combine two parent solutions
and produce an offspring. In this scheme, the offspring inherits each of its keys from the best fit of the
two parents with probability 0.7 and from the least fit parent with probability 0.3. This genetic algorithm
does not make use of the standard mutation operator. Instead, the concept of mutants is used: a fixed
number of mutant solutions are introduced in the population in each generation, randomly generated in
the same way as in the initial population.

The keys associated to each lightpath request are randomly generated in the initial population. At
each generation, the population is partitioned into two sets:TOP andREST . Consequently, the size of
the population is|TOP | + |REST |. SubsetTOP contains the best solutions in the population. Subset
REST is formed by two disjoint subsets:MID andBOT , with subsetBOT being formed by the worst
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elements on the current population. The chromosomes inTOP are simply copied to the population of
the next generation. The elements inBOT are replaced by newly created mutants that are placed in the
new setBOT . The remaining elements of the new population are obtained by crossover withone parent
randomly chosen fromTOP and the other fromREST . Therefore,|MID | = |REST −BOT | offspring
solutions are created. In our implementation, the population size was set to|TOP |+ |MID|+ |BOT | =
|V |, with the sizes of setsTOP , REST , andBOT set to0.25 × |V |, 0.7 × |V |, and0.05 × |V |,
respectively, as suggested by Noronha et al. [7].

3 Computational experiments

In order to evaluate if BRKGA efficiently identifies the relationships between keys and good solutions
and converges to near-optimal solutions, we compared its performance withthat of a multi-start (MS)
procedure that uses the same decoding heuristic as BRKGA. Each iterationof the multi-start procedure
applies the same decoding heuristic, but starting from a randomly generatedvector of keys. Therefore,
nothing is learned from one iteration of MS to the next. We have considered 72 instances in the exper-
iments, divided in three test sets of 24 instances. They are built from 24 networks and consider three
different numbers of wavelengths for each network.

Each of the heuristics BRKGA and MS was given ten minutes of computation time and stopped
thereafter. Ten runs of each heuristic have been performed for eachinstance. The average optimality gap
(with respect to the upper bounds reported in [5]) observed for BRKGA was only 3.56%, while that for
MS was 5.04%.

Figure 1(a) illustrates the evolution of the solution population along 200 generations of BRKGA for
one execution of one of the tested instances. It shows that the biased random-keys genetic algorithm is
able to continuously evolve the solution population and to improve the best solution value. Figure 1(b)
illustrates for the same instance how the best solutions found by BRKGA and by the multi-start proce-
dure evolve along the six first seconds of processing time. It shows thatthe biased random-key genetic
algorithm systematically finds better solutions faster than the other algorithm. Thebest solution obtained
by BRKGA is better than that found by multi-start at any time along the run whoseresults are displayed
in these figures.
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Figure 1: (a) Population evolution: the value of the best solution found by BRKGA after 4.42 seconds
(200 generations) is 1492, while the best solution value after 10 minutes of running time is 1502. (b)
Evolution of the best solutions found by BRKGA and MS along the six first seconds of processing time:
the best solution value obtained by BRKGA is 1493, while that found by MS is only 1457.
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4 Conclusions

We proposed a biased random-key genetic algorithm to for the max-RWA problem. Computational
experiments show that the biased random-key genetic algorithm BRKGA is very effective and has found
near-optimal solutions whose average optimality gap was at most 10.53% overall 72 test instances. The
average optimality gap within each test set never exceeded 4% and the overall average gap amounted to
only 3.56%. Detailed results are reported in the full version of this paper.
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