Edge Coloring: A Natural Model for Sports Scheduling
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Abstract

In this work, we consider some basic sports scheduling problems and intro-
duce the notions of graph theory which are needed to build adequate models.
We show, in particular, how edge coloring can be used to construct schedules
for sports leagues. Due to the emergence of various practical requirements,
one cannot be restricted to classical schedules given by standard construc-
tions, such as the circle method, to color the edges of complete graphs. The
need of exploring the set of all possible colorings inspires the design of ade-
quate coloring procedures. In order to explore the solution space, local search
procedures are applied. The standard definitions of neighborhoods that are
used in such procedures need to be extended. Graph theory provides efficient
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tools for describing various move types in the solution space. We show how
formulations in graph theoretical terms give some insights to conceive more
general move types. This leads to a series of open questions which are also
presented throughout the text.

Keywords: OR in sports, Scheduling, Graph Theory, Edge Coloring, Local
Search.

1. Introduction

Multiple agents of sports events, such as organizers, players, referees, fans,
journalists, medical doctors, and airlines play an important role in profes-
sional sports leagues and tournaments. Major events such as the Olympic
Games and the Football World Cup create thousands of jobs and economic
opportunities to their hosts |19, 29].

Many discrete problems in several areas can be formulated in graph the-
oretical terms and then solved using graph algorithms (see, e.g., [12]). In
this work, we show how basic concepts of graph theory provide a natural and
very adequate tool for formulating and solving some of the problems which
tournament organizers face. We will start by taking into account only some
of the most frequent requirements.

We assume throughout the text that we have a round robin tournament
involving an even number n of teams. Every game involves two teams, say ¢
and j. Therefore, it is natural to associate each team with a vertex of a graph
and every game involving ¢ and j with an edge (4, 7) of this graph. Figure
shows an edge-colored complete graph corresponding to a tournament of
n = 4 teams.
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Figure 1: Example of a tournament represented by an edge-colored complete graph with
n = 4 vertices.

The primary goal of tournament scheduling is to find an assignment of



each game to some time slot (or round) such that each team plays at most one
game in each round and the total number of rounds is as small as possible. If
each team has p games to play, any schedule clearly needs at least p rounds.
For convenience, we associate each round with a specific color. Therefore,
each schedule corresponds to an assignment of a color to each edge of the
corresponding graph.

Games are divided into subsets Fy, each of them formed by all games
assigned to a specific round s. Figure [1] illustrates a tournament schedule
with n = 4 teams represented by a complete graph K,. Edges of subset F}
are represented by dashed lines, while those of F; are represented by straight
solid lines and edges of F3 are represented by double solid lines. Each of these
subsets represents the set of games played in a given round. We observe that,
in this case, in every subset F§ of games each team is matched with exactly
one other team, forming a perfect matching.

A tournament is said to be compact if each team plays exactly once in each
round. In a very typical tournament format among n teams, each team plays
exactly once (resp. twice) against all other teams in a given number of rounds.
This type of competition format is called a single round robin (SRR) (resp.
double round robin (DRR)) tournament. In view of simplicity, we consider
the problem of scheduling a compact SRR tournament involving an even
number of teams. The ideas and results presented here for SRR tournaments
can also be easily adapted to handle the case of DRR tournaments. Most of
the results for tournaments with an even number of teams may be extended
to tournaments with an odd number of teams by simply adding a dummy
team.

A basic problem in sports scheduling consists in defining the round and
the venue in which each game of a tournament will be played at. Even though
it may seem simple to schedule a tournament at first glance, the addition of
simple constraints transforms this task into challenging combinatorial opti-
mization problems belonging, in most cases, to the NP-hard class [32]. A
great research effort has been made to devise improved algorithms, resulting
in better schedules obtained in smaller computational times. For many types
of problems, instances with no more than 20 teams are considered as large-
scale and approximate approaches are often used to obtain good results [29].
In the related literature, it is possible to find methods that range from in-
teger and constraint programming to metaheuristics approaches and various
hybrid algorithms [3], 10, 111, 22} B0] B1].

The text is organized as follows. Sections [2| and [3| lay out the terms and
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definitions, respectively, in graph theory and sports scheduling that will be
used in the remainder of the text. Section [d]tackles the problem of generating
SRR schedules from scratch. Section [5| describes in edge colorings terms the
neighborhoods commonly used by local search sports scheduling algorithms.
Section [6] presents results on the connectivity of the solution space for the
classical neighborhoods. Section [7| analyzes scheduling problems when con-
sidering the venue of each game and sketches some formulations in terms
of list colorings of graphs. Concluding remarks and suggestions for further
research are made in the last section.

2. Elements of Graph Theory

A graph G = (V, E) is defined by two sets V and F, in which the n
elements of V' are the vertices of the graph G and the m elements of E are
its edges. Two distinct vertices u,v € V joined by an edge e = (u,v) € E
are said to be adjacent. In this case, both u and v are the endpoints of e
and e is said to be incident to both v and v. Two edges are adjacent if they
are incident to the same vertex. The degree d(v) of a vertex v is the number
of edges incident to it and the number A(G) = maz{d(v) : v € V} is the
maximum degree of a vertex in G. In addition, d(v) stands for the set of
edges incident to vertex v.

A chain is a sequence of edges with common vertices, where each edge
in the sequence has one vertex in common with the preceding edge and the
other in common with the next one. The length of a chain is the number
of its edges. A graph is connected if for any pair of vertices there is a chain
linking them. A cycle is a chain formed by at least three edges starting and
ending in the same vertex. A Hamiltonian cycle is a cycle that visits every
vertex of the graph exactly once.

A proper edge coloring of G is a mapping ¢ : E — C so that c(e;) # c(e;)
for any adjacent edges e; and e;, where the elements of C are the available
colors. A k-coloring is a proper edge coloring with |C| = k. The chromatic
indez of a graph G is defined as x'(G) = min{k : a k-coloring of G exists}.
A color is present in a vertex if any edge incident to this vertex has that
color; otherwise, the color is free (or available) in that vertex. A conflict
is characterized by the existence of two edges with the same color incident
to a common vertex. In other words, a proper edge coloring is a a color
assignment without conflicts to the edges of a graph. A proper partial edge
coloring is a color assignment without conflicts such that some edges of G



may be uncolored. If V/ CV and E' C E, then G’ = (V', E’) is a subgraph
of G = (V, E) (and G a supergraph of G'), written as G' C G. If G’ C G and
G' # G, then G’ is a proper subgraph of G. If G’ C G and G’ contains all the
edges (v,w) € E with v,w € V', then G’ is the subgraph of G induced by the
subset of vertices V’. The subgraph of G spanned by a subset E’ of edges
contains exactly all the edges in £’ and all the endpoints of edges in E'. A
connected component of G is an inclusion-wise maximal connected induced
subgraph of G.

A one-factor of G is a set of edges ' C FE, such that all vertices in V'
have degree equal to one in the subgraph G’ = (V, F'). In this case, F' is also
called a perfect matching in G. One-factors may only exist for graphs with
an even number of vertices. A one-factorization of GG is a partition of E into
one-factors, i.e., a set F = {[F, F, ..., Fy} of disjoint one-factors such that
UF_,F; = E. A one-factorization is said to be perfect when G(V,F; U F})
is a Hamiltonian cycle for any two distinct one-factors F; and F}, for i,j =
1,... k.

Two one-factorizations F = {F, Fy, ..., F.} and H = {Hy, Hs, ..., H} of
a graph G = (V, E) are called isomorphic if there is a bijection ¢ : V —
V such that H; = {(¢(x),¢(y)) : (x,y) € F;} for each ¢ = 1,... Kk [9].
The concepts of a proper edge coloring and that of a one-factorization are
equivalent whenever each color is present in each vertex of the graph. In this
case, each color relates to a one-factor. In the remainder of this work, the
term proper edge coloring refers to one-factorizations.

3. Elements of Sports Scheduling

Due to several research groups working in parallel on sports scheduling
problems, it is not uncommon to find in the literature different names corre-
sponding to the same concept |19, 29, [30].

A round robin tournament is a competition involving n different teams
indexed by ¢ € {1,...,n} in which all teams play against each other a fixed
number g of games. The games of the tournament must be scheduled in a
number 7 of rounds in such a way that each team plays at most one game
in each round. As mentioned, we assume that the number of teams is even,
which is usually the case in real competitions.

An SRR tournament is a competition in which all teams face each other
exactly once (i.e., g = 1). A DRR tournament is a competition in which all
teams face each other twice (i.e., g = 2) and any two teams meet once in each



other’s home venue. We shall assume here that all round robin tournaments
are compact. This implies that n/2 games are held in each round.

The graph corresponding to an SRR tournament is a complete graph K,
i.e., one edge between any two vertices. The graph corresponding to a DRR
tournament has two edges between any pair of vertices since there are two
games between any pair of teams.

A common way to describe the schedule of a round robin tournament
is by using a timetable as the one depicted in Figure A timetable is a
matrix of n rows and r columns, in which n is the number of teams and r is
the number of rounds of the tournament. Each row refers to a team i, each
column represents a round k& and each cell (7, k) represents the opponent of
team ¢ in round k, for all 1 < ¢ < nand 1 < k < r. A sign associated
with the opponent denotes the location of the match. The positive sign (+)
indicates that team ¢ will play at home against its opponent, i.e., this is a
home-game for i. A negative sign (—) indicates that team 7 will play away
against its opponent, i.e., this is an away-game for 7.

A mirrored double round robin tournament (MDRR) is a special type of
a DRR tournament consisting of a simple SRR in the first n — 1 rounds (first
leg), followed by the same tournament with reversed venues in the last n — 1
rounds (second leg).

First leg ‘ Second leg

6| +2| 3|44 |+5|+6] 2| +3|—4|-5
5| 1|46 [ 4+3| -4 | +5|+1|—6| -3 | +4
4| +5 [ 41| =2 =6 | +4| =5 | =1 | 42| 46
43| =6 | 45| =1 |42 | =3 | +6| 5| +1 | —2
42| =3 | =4 | 46| 1| 2| +3|+4| -6 +1
41| 44| 2| 5|43 |-1|-4|+2|+5|-3

Figure 2: A timetable representation of a DRR tournament schedule for an instance with
six teams and ten rounds.

Concerning the geographical positions and the distances traveled by the
teams, we assume that each team is associated with a home venue located
in its city and the distances between the venues are known beforehand and
given by an n x n distance matrix D. We assume that each team starts
the tournament at its home venue. Whenever a team plays two consecutive



away games, it goes directly from the city of the first opponent to that of the
second, without returning to its own home city. At the end of the tournament,
if a team played its last match away from home, then it must return to its
home venue.

We say that there is a break when a team plays two consecutive home
games or two consecutive away games. A road trip is a maximal sequence
of consecutive away games for a team, while a home stand is a sequence of
consecutive home games. In tournaments among teams spread over large
regions, it is advantageous to schedule the games with a number of consecu-
tive away matches to reduce the distance traveled. This creates consecutive
breaks on away games.

The situation in which two teams play two consecutive matches against
each other is called a repeater and should be avoided in some DRR competi-
tions. Such constraint, called no-repeater, is common in some DRR compe-
titions.

The traveling tournament problem (TTP), introduced in [I0], is one of
the most studied optimization problems in the sports scheduling literature.
It can be defined as follows: given two integer numbers L and U, an even
number n of teams and an n x n distance matrix, find a schedule for a DRR
tournament on the n teams avoiding repeaters, in which the total distance
traveled by the teams is minimized and the size of any home stand and any
road trip is bounded by L and U, respectively.

A schedule T has n(n — 1) — B(T")/2 trips, where B(T') is the number of
breaks. Observe that B(T')/2 is equal to the number of home breaks, i.e.,
the number of times any team plays two consecutive home games. If instead
of minimizing distances one is interested in minimizing the number of trips,
then the problem amounts to maximizing the number of breaks B(T') over
all schedules T' [33].

De Werra [5] was one of the first authors to discuss the application of
graph theory concepts (with emphasis in edge coloring) to sports scheduling
problems. Lewis and Thompson [22] presented models based on vertex col-
oring to solve the traveling tournament problem [10]. For a comprehensive
list of graph theoretical approaches to sport scheduling we refer to [19].

As mentioned in the introduction, there is a natural one-to-one corre-
spondence between any schedule of an SRR tournament and a proper edge
coloring of the corresponding complete graph with n vertices using n — 1 col-
ors. This is why we recall in the next section some concepts and procedures
related to edge coloring.



4. Construction Techniques for SRR Schedules

The circle method, also called the polygon method or the canonical pro-
cedure, generates the canonical edge coloring for a complete graph K. Tt
is often used to generate initial solutions for heuristics tackling round robin
scheduling problems [3], @, 31, 35]. The circle method has been used in some
real situations, such as the schedule of the Spanish First Division (BBVA
League) [14].

We denote the set of teams by T'= {1,2,...,n} and the set of rounds by
R={1,2,...,n—1}. To schedule a tournament following the circle method,
we first place points numbered from 1 to n — 1 at equal distances on a circle.
We place an additional point, numbered by n, in the center of the circle.
Then we associate a team i to each point ¢ for 1 <7 < n.

In order to determine the n/2 games that will be played in round r = 1, 2,

.., n—1 of the tournament, the circle method considers that a straight line
is drawn between point n and point r of the circle together with all possible
straight lines orthogonal to (7, n) that join two other points previously defined
on the circle. All matches that can be obtained this way determine the games
in the r** round of the tournament. Figure [3|illustrates the application of
this method for n = 6.

Therefore, we can represent the circle method by the following opponent
schedule function [26]:

r ift=n,
Y(t,r)=<n ift=r, (1)
(2r —t) mod'(n —1) otherwise,

where a mod ’(b) is defined as follows:

a mod (b) ifa mod (b) #0,

d'(b) =
a mod (b) {b ifa mod (b) = 0.

Function Y(¢,7) computes the opponent of team ¢ € T'in round r € R based
on the circle method. Table [1| shows a schedule constructed with the circle
method for a tournament with n = 6 teams.

As an attempt to obtain different initial schedules for each run, the order
of the rounds and the initial placement of teams in the polygon could be
randomized. However, all colorings obtained with this strategy would still
be isomorphic to each other.
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Figure 3: Circle method for Kg.

Therefore, other techniques should be used for generating a proper edge
coloring of the complete graph using exactly n—1 colors, instead of the circle
method, for constructing distinct SRR schedules. Different procedures have
been developed to create schedules with particular structures, see, e.g., [4]
where a construction technique using a division of a league into two or more
sub-leagues is described.

We present a framework for the construction of an arbitrary edge coloring
of K,. Vizing [34] proved that every simple graph G has a proper coloring
with at most A(G) 4 1 colors. This bound is not tight in the context of an
SRR scheduling, since the circle method itself constructs a proper coloring
of a complete graph K, with n — 1 = A(K,) colors.

Many of the different proofs of Vizing’s theorem given in the literature
[7, 8, 13, 15, 24] are constructive. They show how to obtain a proper (A(G)+
1)-coloring of an arbitrary graph. Some of these proofs also show how to color
an additional uncolored edge of a partially colored graph (which may require
changing the color of some already colored edges) never exceeding A(G) + 1
different colors. The procedure can be repeated until all edges are colored.

Let eg = (w,vp) be an uncolored edge of a graph G = (V, E) partially



.
Y,r) |1 2 3 4 5
116 3 5 2 4
2 |5 6 4 1 3
L 3416 5 2
4135 2 6 1
512 4 1 3 6
6 |1 2 3 4 5

Table 1: Schedule constructed by the circle method for a tournament with n = 6 teams.
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Figure 4: Color S is free at vertex vy after the switch.

colored with no more than A(G)+1 colors. Observe that since both w and vy
have at most A(G)—1 colored incident edges, there are at least two available
colors in both of them. We denote the set of colors available at vertex v € V'
by Free(v). If Free(w)NFree(vy) # &, then we can simply choose any color
from the intersection to color edge ey.

Now, we assume that F'ree(w) N Free(vy) = @. Let oy € Free(vy) and
B € Free(w) be two free colors at vertices vy and w, respectively. Let P be
a maximal chain that starts from vy so that its edges are alternately colored
with colors # and ag. Such a chain will be called an «p/f-chain. Two cases
may arise: P ends at a vertex different from w or P ends at w. In the first
case, the coloring may be augmented by exchanging the colors of the edges
along the chain P and coloring edge ey with S that is now free in v, as shown
in Figure [4

Next, we assume that the chain P ends at vertex w. If we exchange the
colors of the edges of P, then € Free(vy) but § ¢ Free(w), as shown in
Figure

Let v; be the vertex adjacent to w in P and e; = (w,v;) be the edge
which is colored with «g. At this point, the color aq is removed from edge
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Figure 5: A situation where the path P ends at vertex w.

e; and edge eq is colored with that same color, as Figure [] illustrates.

ap/B-chain ap/B-chain

& Qg — B

Figure 6: Color ap moves from edge (w,v1) to edge (w, vg).

Now, the problem consists in re-coloring edge e;. The same procedure
applied to edge ey can be used to assign a color to edge e;. If Free(w) N
Free(vy) is also empty, then the color to be selected from Free(v;) must
be different from g in order to avoid cycling. Of course, this color always
exists, since |Free(vy)| > 2.

We may continue this way until Free(w) N Free(v;) is not empty or the
chain P does not end at w. The rest of the proof of Vizing’s theorem [I5]
shows that this will eventually be the case after at most A(G) iterations. This
proof of Vizing’s theorem immediately yields an O(|E||V|A) time algorithm
to obtain a proper (A(G) + 1)-coloring of a simple graph. A more efficient
algorithm is described in [13].

In this work, we are interested in finding proper edge colorings of complete
graphs K, using at most A(K,) colors to represent the n — 1 rounds of the
tournament. To obtain an edge coloring with A(K,,) colors, we consider the
complete graph K, _; with vertex set V' = {vy,vs,...,v,_1}. Then, color
K, 1 with n — 1 colors following the procedure derived from any proof of
Vizing’s theorem. Next, add vertex v, to the graph, and connect every
vertex in V' = {vy,vq,...,0,-1} to v, with an uncolored edge. Since graph
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K, _1 was edge-colored with n — 1 colors and each vertex has its degree equal
to n — 2, there is an available color at each vertex V = {vy,va,...,v,1}.
To see that the missing colors are distinct, observe that each color is used in
|(n —1)/2] edges and, as a consequence, each of the n — 1 colors is missing
in exactly one of the n — 1 vertices. To complete the coloring of graph K,
we just need to assign each edge (vi,v,), (va, V), ..., (vy_1,v,) to the color
that is available at vy, vs, ..., v,_1, respectively. This brings about a proper
edge coloring of K, with exactly A(G) colors. We refer to this procedure as
the Vizing algorithm.

An example of how this procedure can be applied to obtain an edge
coloring for K, is depicted in Figure

Figure 7: Finding an edge coloring of K4 based on an edge coloring of K.

The edge coloring of K,, with n — 1 colors constructed by Vizing’s algo-
rithm depends on the order in which the yet uncolored edges are considered.
In fact, one may get any possible edge coloring, since there is always an order
for which Vizing’s algorithm produces a given edge coloring of K. This is
clearly not the case for the circle method.

5. Neighborhoods in the Landscape of Edge Colorings

In this section we will exploit thoroughly the formulation in terms of
graphs to describe, interpret and generalize some classical moves from one
solution (an edge coloring) to a neighbor solution (a modified edge coloring).
These original formulations leading to generalized moves will exhibit the
power and the promises of the tools provided by graphs.

Let us first illustrate four neighborhoods commonly used in local search
heuristics for SRR and DRR problems formulated in edge colorings terms.
For didactic purposes, our description will be based on the SRR case. These
neighborhoods have received different names, e.g., in [1 6, B1]. Here, they are
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called Team Swap (TS), Round Swap (RS), Partial Team Swap (PTS), and
Partial Round Swap (PRS). Except for neighborhoods whose moves switch
home-away assignments, no other neighborhood, which is not a special case
or a combination of these neighborhoods, has ever been proposed in the
literature.

Each solution in the TS neighborhood is obtained by exchanging the
opponents of a pair of teams ¢ and j over all rounds. This neighborhood
can be seen as the exchange of the labels of two vertices in the graph that
represents the tournament.

In a move within the RS neighborhood, all games assigned to a round r;
are moved to a round r;, and vice-versa. This is equivalent to exchanging
two different colors in the associated edge-colored graph.

The colorings resulting from moves in neighborhoods TS and RS remain
valid after the moves, because they do not introduce color conflicts in the
graph. Every move in these neighborhoods leads to edge colorings that are
isomorphic to the original one. In consequence, such moves may not be very
effective to find improving solutions.

In a Partial Round Swap (PRS) move, the opponents of team ¢ in rounds
r; and r; are exchanged and a repair chain must be applied in order to remove
the resulting violations (see [0] for further details). In graph theoretical
terms, a PRS move consists of two steps. Initially, any two distinct colors
are selected and one considers a cycle in the subgraph spanned by the edges
with these two colors (edges in two distinct factors). Next, the colors of
the edges in the cycle are exchanged, leading to a new coloring. Figure
illustrates a move in the PRS neighborhood, in which the colors of the edges
in the cycle formed by vertices 5, 6, 7, and 8 have been exchanged.

%6 O=ONOZ0O
If the edges involved in a move in the PRS neighborhood form a Hamil-

Figure 8: A move in neighborhood PRS.
tonian cycle, then such move provides the same solution as a move in the
RS neighborhood, obtaining a coloring that is isomorphic to the original
one. If the cycle is not Hamiltonian, then the coloring obtained may not be

13



Figure 9: Subgraph Ks,_» with S =  Figure 10: Subgraph of Figure [9 after the
{ws, we} exchange of the colors in the edges incident
to S.

isomorphic to the original one.

In a Partial Team Swap (PTS) move, the opponents of the teams in a
given round are exchanged and a repair chain must be used in order to remove
the resulting violations (see [0] for further details). In graph theoretical
terms, a PTS move consists of the following steps. First, select two distinct
vertices v; and vy of the complete edge colored graph. Next, consider the
subgraph spanned by the edges of the symmetric difference between 6(v;)
and 0(v9), i.e., every vertex of the graph and all edges that connect v, and v
with all other vertices. This subgraph is isomorphic to the complete bipartite
graph K5 ,_o and colored with n —2 colors, (all but that of the edge (vq,v9)).
Following, compute a subset of vertices S C V' \ {v1, vy} such that the set
of colors assigned to edges joining v; to vertices in S is equal to the set of
colors assigned to edges joining vy to vertices in S.

Let Cy,...,C, be the chains of length two linking v; and vy through
S. Next, exchange the color assignment of edges in each chain C}, for ¢ =
1,...,p. Figure |§] shows such a subgraph Ks, o with S = {ws, ws} and
Figure [10]illustrates the resulting colored subgraph after the exchange of the
colors in the chains. If S = V'\ {vy, v2}, the move is equivalent to a TS move.

Both partial swap neighborhoods, PRS and PTS, may be applied to any
sport round robin scheduling problem but they are currently used almost
only for the TTP and its variants.

A more general move would be to consider edge disjoint alternating chains
Cy,...,C, of even length, possibly larger than two between vertices v; and
vg. The set of colors on edges of Ci,...,C, incident to vertex v is, as in

14



Figure 11: Initial coloring. Figure 12: Final coloring.

PTS, the same as the set of those incident to vs. Exchanging colors in each
one of the alternating chains gives a new proper coloring that could not be
directly obtained with PTS.

Figure (11| shows the initial coloring as an example of this type of move.
(1 is a 1/2-chain of length 4, C5 a 2/3-chain of length 6, C5 a 3/4-chain of
length 2 and Cjy a 4/1-chain of length 4. Note that some of these chains have
common vertices. The resulting coloring is given in Figure

Januario and Urrutia have shown in [I7] that a generalization of the PTS
neighborhood increases the solution space connectivity of the problem in
hand and allows a local search heuristic to obtain better results.

The generalized moves described above have shown how the formalism
and the language of graph theory are helpful to describe and to understand
the local modifications of schedules generated when moves are performed.
They are also useful for designing procedures to create schedules from scratch.
In the related literature, some neighborhoods are described as intricate struc-
tures, as ejection chains, that do not generally provide a deeper insight of
what is really happening.

6. Connectivity of the Solution Space

The size of the solution space of SRR scheduling problems is large even
when compared with the size of the solution space of classical combina-
torial optimization problems as the traveling salesman problem. There is
no known formula for the number of different proper edge colorings of K.
The number of non-isomorphic one-factorizations of K, increases very fast
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with n. Dinitz et al. [9] computed the complete set of 526,915,620 non-
isomorphic one-factorizations of Kjo. Kaski and Ostergard [18] reported a
total of 1,132,835,421,602,062,347 non-isomorphic one-factorizations of Ki,.

In a perfect one-factorization, or perfect proper edge coloring (PPEC),
the sub-graph containing all vertices and edges belonging to the union of any
two one-factors is a Hamiltonian cycle. Kotzig [21] conjectured that a PPEC
of K, exists for every even value of n > 2. Since 2009, when Wolfe [36] found
a PPEC of K5y after an exhaustive search that took more than 400 days of
computing time, Kx¢ is the smallest complete graph for which the existence
of a PPEC remains an open problem.

A PPEC may not be desirable as an initial solution for local search al-
gorithms of SRR scheduling problems. If a given proper edge coloring is
perfect, then any move in the PRS neighborhood has the same effect as a
move in the RS neighborhood, which generates colorings that are isomorphic
to the original one.

The circle method, introduced in Section [4] is a simple strategy to obtain
initial solutions for any local search heuristic for SRR scheduling problems.
However, it is able to generate only one single type of edge coloring (the
canonical edge coloring) for a complete graph. In fact, the circle method
generates PPECs for every complete graph K, for which n = p+ 1, where p
is a prime number. Therefore, whenever an initial solution is generated by the
circle method, when n = p+1, a move in the PRS neighborhood is equivalent
to a move in the RS neighborhood. In consequence, these neighborhoods
always lead to colorings which are isomorphic to the canonical edge coloring.

One may argue that the PTS neighborhood may be used to escape from
canonical colorings. However, in some cases, this neighborhood suffers from a
similar property. Partial team swaps are equivalent to team swaps, whenever
the set S of vertices computed as described in Section [f]is equal to V\{vy, v2 }.
One could ask if all possible partial team swap moves are equivalent to team
swap moves, for some value of n for which the canonical coloring is perfect.
In order to provide an answer to this conjecture, we applied an exhaustive
search procedure to check if that was the case for each even value of n =
p+ 1 < 100, where p is a prime number. We found that the partial team
swap neighborhood is, in fact, equivalent to the team swap neighborhood for
canonical edge colorings of K,, for n = 4, 6, 12, 14, 20, 30, 38, 54, 60, 62, 68,
and 84.

The above result shows that for all above mentioned values of n, any local
search heuristic using an initial solution constructed by the circle method will
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be trapped in a small portion of the solution space formed by all colorings
isomorphic to the canonical one. In such cases, applying Vizing’s algorithm
instead of the circle method, or using the ideas sketched in Section [5| for ex-
tending the neighborhoods, may improve the effectiveness of the local search
by exploring a broader portion of the search space.

An experiment using Vizing’s algorithm to build initial solutions for the
traveling tournament problem with predefined venues [23] was reported by
Costa et al. [3]. The authors evaluated instances with 18 and 20 teams. For
the instances with 20 teams, an improvement of almost 19% on average in the
cost function was obtained only because Vizing’s algorithm was used instead
of the circle method for constructing the initial solution. Their experiment
revealed that the choice of the coloring method based on Vizing’s theorem
can lead to better results for the considered problem.

7. Home-Away Assignments

Let us now examine the situation of a league in which each team has its
own venue (a stadium) and each game (i, j) is played either at the venue of
the team ¢ or at that of the team j. For simplicity, we deal with the case of
SRR tournaments. The extension to DRR tournaments can be easily carried
out.

It is natural to represent a game in which ¢ will play against j in the
venue of the latter by an oriented arc from 7 to j . This way the schedule
now corresponds, in graph theoretical terms, to an oriented edge coloring.
An illustration for a league of six teams is given in Figure[13] The timetable
on the left indicates in row ¢ and column s which is the opponent of the
team i in round s. The home-away pattern (HAP) set on the right indicates
in row ¢ and column s whether i plays in round s a home-game (H) or an
away-game (A).

As soon as we consider the venues of the teams, difficulties arise regarding
fairness. Ideally, one would like to have for each team a sequence of games
which would be perfectly alternating between home and away-games. This is
clearly impossible if n > 2. Two teams having exactly the same sequence of
H’s and A’s in the HAP set could never play against each other. Therefore, in
any real schedule, there must be some breaks in the perfect alternation of H’s
and A’s for some teams. A break was defined in Section 3 as the occurrence
of two consecutive H’s or two consecutive A’s for a team. In Figure [13] team
3 has a break in round 2 and so has team 4. In fact, the timetable and the
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round round

1 2 3 4 5 1 2 3 4 5
116 3 5 2 4 1lA H A H A
215 6 4 1 3 2/H A H A A
314 1 6 5 2 3/A H A H H
413 5 2 6 1 4/H A A H A
512 4 1 3 6 5/A H H A H
6|1 2 3 4 5 6/ H A H A H

Figure 13: Timetable and home-away pattern set.

HAP set can be represented in a more compact form using the “+” and “-”
signs, instead of H’s and A’s, respectively, as shown in Figure [14]

round
1 2 3 4 5
-6 +3 -5 +2 —4
+5 -6 +4 -1 -3
—4 41 -6 +5 +2
+3 -5 -2 +6 -1
-2 +4 41 -3 46
+1 -2 +3 -4 +5

DO W N~

Figure 14: A compact representation of a tournament schedule.

Since in any schedule there can be at most two teams with perfect alter-
nations of H’s and A’s, n —2 teams will have sequences of games with at least
one break each. Therefore, the total number of breaks in any schedule will
be at least n — 2. There is a simple construction [5] which gives a schedule
with n — 2 breaks for any league of n teams. In any schedule for n teams
with the minimum number of breaks produced by the circle method and with
the HAP set constructed by the algorithm in [5], the breaks occur at rounds
2-i—1, fori=2,...,n/2. However, for general schedules with n — 2 breaks
it is an open question to characterize the rounds at which the breaks may
occur. In practice, we may face the following problem: for some reason, a few
entries of a HAP set have been fixed beforehand, meaning that some teams
must play at home (or away) at some fixed rounds. Can one find a timetable
and an extension of the partial HAP set which will give a “feasible" schedule?
To solve this problem, integer programming models have been proposed [2].
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However, we may also express it in list edge coloring terms [7]. In such a
formulation, every edge e of a complete graph K, has a list L(e) of possible
(feasible) colors. Tt is required to find a proper edge coloring in which each
edge e of K, has a color ¢(e) € L(e).

In this problem, when some entries of a HAP set have been fixed with
either H or A, we proceed as follows: initially, for each edge e = (i, j) we set
L(e) = {1,2,...,n — 1}. Then, color s is removed from L(e) if and only if
either both teams ¢ and j are at home or both are away in round s.

Another frequent problem consists in finding a HAP set with a minimum
number of breaks for a given timetable: after all games have been assigned
to some round, it remains to determine where each game between ¢ and j is
played, i.e., in the venue of either ¢ or of j. This problem is NP-hard and it
has been shown in [28] that, for a league of n teams, the minimum number
of breaks is at most tn(n —2) if n =4k or $(n — 2)? if n = 4k + 2.

However, it is possible to find in polynomial time for a given timetable
with n teams, whether there is a HAP set with n — 2 breaks or not. We refer
the reader to [25] for several other formulations of this type of problem.

8. Concluding Remarks

There are many more real-world problems which may be modeled by edge
colorings in graphs, as in scheduling of tasks requiring the cooperation of two
processors [20)], file transfer operations [27], and channel assignment in wire-
less networks [I6]. In this work, we have presented an approach of sports
scheduling problems based on the systematic use of graph theory and, in
particular, edge colorings. We exploited the relations between single round
robin scheduling and proper edge colorings of complete graphs. After dis-
cussing the classical circle method, we introduced an edge coloring procedure
based on Vizing’s theorem that allows the construction of schedules which
are not restricted to any particular structure.

We have also presented an edge coloring interpretation of the neighbor-
hoods commonly used by local search algorithms for sports scheduling prob-
lems. We have shown certain properties of the neighborhoods based on this
representation and we have also discussed some of their variations and ex-
tensions.

Algorithms that construct initial solutions with the circle method and
use only the four classical neighborhoods in the literature may be trapped
in a very small portion of the solution space. The use of Vizing’s algorithm

19



instead of the circle method may circumvent this issue. In order to increase
the connectivity of the solution space, we have suggested some neighborhood
extensions.

There are many open questions to be studied in the field of sports schedul-
ing. We have mentioned a few in the previous sections. Since it is likely
that local search procedures will remain an important tool for dealing with
these problems, more efforts should be devoted to study the properties of
the currently known move types and to generate new ones to explore sys-
tematically the solution space of schedules. Furthermore, theoretical works
on one-factorizations of complete graphs are needed to better understand
the structure of schedules, thus being able to take into account the many
constraints and requirements appearing in real applications. We hope to
motivate further works in these research avenues.
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