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We consider the multi-item uncapacitated lot-sizing problem with inventory bounds, in which a production plan for multiple
items has to be determined considering that they share a storage capacity. We present (a) a shortest path formulation and (b)
a formulation based on the a priori addition of valid inequalities, which are compared with a facility location formulation
available in the literature. Two easy-to-implement mixed integer programming heuristic frameworks are also presented, (a)
a rounding scheme and (b) a relax-and-fix approach performed in a time partitioning fashion. Computational experiments
are performed to evaluate the different approaches. The numerical results show that the proposed relax-and-fix heuristic
outperforms all other approaches. Its solutions are within 4.0% of optimality in less than 10 minutes of running time for
all tested instances, with mean gaps in the order of 2.1 and 1.8% for instances with more relaxed and tighter capacities,
respectively. The obtained solutions were always better than those obtained by a commercial MIP solver running for one
hour using any of the available formulations.

Keywords: lot sizing; production planning; mixed integer linear programming; matheuristics; optimisation

1. Introduction

The production planning of goods usually deals with determining production quantities in order to minimise costs and provide
customer satisfaction. In many cases, this amounts to providing the goods when they are required. In industrial applications,
it is common that the production is limited by the capacity of the storage facilities which, in many situations, can be used to
stock different types of items. Therefore, problems with limited storage, i.e. inventory bounds, including those imposed on
collections of different items, become very relevant from a practical point of view.

The uncapacitated lot-sizing is a basic production planning problem whose results have been extended very successfully
to treat more general problems, see e.g. Akartunali and Miller (2012). Barany, Van Roy, and Wolsey (1984) showed that
the (l, S)-inequalities describe the convex hull of solutions for the problem. In addition, extended formulations such as the
facility location (Krarup and Bilde 1977) and the shortest path (Eppen and Martin 1987) formulations, which were originally
proposed for the uncapacitated lot-sizing, have been adapted to treat several extensions of the problem. An extensive review
can be found in Pochet and Wolsey (2006).

Single-item problems with inventory bounds have been studied by several authors. Pochet and Wolsey (1994) gave a
complete description of the convex hull of solutions for the single-item uncapacitated lot-sizing with bounds on stocks
under Wagner–Whitin costs (Wagner and Whitin 1958). Atamtürk and Küçükyavuz (2005) performed a polyhedral study
of an extension of the problem studied in Pochet and Wolsey (1994), with fixed and linear costs on the amount of stock.
Wolsey (2006) showed that the variant of the lot-sizing problem with production and delivery time windows with nonspecific
orders (i.e. the orders are not client-specific and, therefore, indistinguishable) is equivalent to the single-item lot-sizing with
bounds on stocks. Di Summa and Wolsey (2010) gave valid inequalities and extended formulations describing the convex
hull of a discrete lot-sizing problem with bounds on the initial stocks. Hwang and van den Heuvel (2012) presented dynamic
programming algorithms for the lot-sizing problem with inventory bounds and backlogging. Hwang, van den Heuvel, and
Wagelmans (2013) studied dynamic programming algorithms for the lot-sizing with lost sales and bounded inventories.

Multi-item problems with inventory bounds have also been studied, in particular in the context of more general models,
see e.g. Park (2005) and Melo and Wolsey (2012). The multi-item extension of the uncapacitated lot-sizing problem with
bounds on stocks was studied by Lange (2010) in the context of transportation planning of reusable packages. The authors
presented a facility location formulation (Krarup and Bilde 1977) and a family of simple valid inequalities. Akbalik, Penz,
and Rapine (2015) further analysed the computational complexity associated with the problem. Gutiérrez et al. (2013) studied
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a weighted variant of this problem in which the weights may represent e.g. the storage capacity used by each item. In that
problem, bounds are imposed on the total weight of the stock at the start of the period plus the amount produced in that
period.

Relax-and-fix is a mixed integer programming (MIP) based heuristic which has been successfully applied to various
NP-hard production planning problems. The approach consists in decomposing the problem into more tractable, smaller
subproblems, which are sequentially solved using information from previously solved subproblems. The approach was
applied in Federgruen and Tzur (1999) to multi-item one-warehouse multi-retailer problems, in Stadtler (2003) to the multi-
level lot-sizing with set-up times and multiple constrained resources, in Federgruen, Meissner, and Tzur (2007) to multi-item
capacitated lot-sizing problems, in Akartunali and Miller (2009) to big bucket multi-level problems, and to several others.
Other MIP-based heuristics can be encountered in Brahimi, Aouam, and Aghezzaf (2015), Eppen and Martin (1987), Katok,
Lewis, and Harrison (1998), Melo and Wolsey (2012), Sambasivan and Yahya (2005), and Steinrücke (2015).

In this paper, we study MIP formulations for the multi-item uncapacitated lot-sizing with inventory bounds and show
how they can be used to devise an effective MIP heuristic approach.

In Section 2, we describe the multi-item uncapacitated lot-sizing problem with inventory bounds. The formulations are
presented and their linear relaxation bounds are compared in Section 3. Two MIP heuristics making use of these formulations
are presented in Section 4: the first is a simple rounding-based heuristic following the idea of Eppen and Martin (1987), while
the second is a relax-and-fix approach based on the ideas of time partitioning and rolling horizon. Computational experiments
comparing the different approaches are reported in Section 5. The numerical results showed that the relax-and-fix heuristic
is able to encounter reasonably good solutions in no more than a few minutes, outperforming a standard MIP solver running
for one hour. Final remarks are drawn in the last section.

2. Problem description

The multi-item uncapacitated lot-sizing with inventory bounds deals with the single-level production planning of NI items
over a finite time horizon of NT periods. The demand for each item i = 1, . . . , NI at each period t = 1, . . . , NT is represented
by di

t and the total amount of stock in period t = 1, . . . , NT is limited by ut . There is a fixed set-up cost f i
t , a variable

production cost p̃i
t and a storage cost hi

t associated with each item i = 1, . . . , NI and each period t = 1, . . . , NT . We assume
that there are no initial and final stocks and that the demands and costs are nonnegative. The demand for a given item in an
interval [k, t] is denoted by di

kt =
∑t

l=k di
l .

For each item i = 1, . . . , NI and each period t = 1, . . . , N T , let variables xi
t be the amount of item i produced in period

t ; si
t be the amount of item i in stock at the end of period t ; and yi

t = 1 if item i is produced in period t , yi
t = 0 otherwise.

The problem can be cast as the following MIP model:

(MI -ULS-IB) zSTD = min
NI∑

i=1

NT∑
t=1

(hi
t s

i
t + p̃i

t x i
t + f i

t yi
t )

si
t−1 + xi

t = di
t + si

t , i = 1, . . . , NI; t = 1, . . . , NT , (1)

xi
t ≤ Myi

t , i = 1, . . . , NI; t = 1, . . . , NT , (2)
N I∑
i=1

si
t ≤ ut , t = 1, . . . , NT , (3)

xi
t , si

t ≥ 0, i = 1, . . . , NI; t = 1, . . . , NT , (4)

yi
t ∈ {0, 1}, i = 1, . . . , NI; t = 1, . . . , NT . (5)

The objective function minimises the sum of storage costs, variable production costs and fixed production costs. Equalities
(1) are balance constraints. Inequalities (2) are set-up enforcing constraints. Constraints (3) limit the total stock at a given
period. Inequalities (4) and (5) are, respectively, nonnegativity and integrality constraints on the variables.

Since si
t =

∑t
k=1(xi

k − di
k) for any i = 1, . . . , NI and t = 1, . . . , NT , the objective function of (MI -ULS-IB) can be

replaced by

min
NI∑

i=1

NT∑
t=1

(pi
t xi

t + f i
t yi

t )+
NT∑
t=1

dt

(
NT∑
k=t

hk

)
,

where pi
t = p̃i

t +
∑N T

k=t hk . As
∑NT

t=1 dt (
∑NT

k=t hk) is a constant, the objective function becomes equivalent to

min
NI∑

i=1

NT∑
t=1

(pi
t xi

t + f i
t yi

t ). (6)
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Observation 1 below states the fact that feasible solutions for the multi-item uncapacitated lot-sizing problem with
inventory bounds are composed of solutions for the single-item uncapacitated lot-sizing problems associated with each item
such that the sum of the stocks for all these items does not exceed the inventory bounds.

Observation 1 The set of feasible solutions to problem (MI-ULS-IB) can be described by

XMI-ULS-IB =
(

NI∏
i=1

XLS−Ui

)⋂{
s :

NI∑
i=1

si
t ≤ ut , t = 1, . . . , NT

}
,

where XLS−Ui is the set of feasible solutions for the uncapacitated lot-sizing problem (LS − Ui) for item i = 1, . . . , NI,
given by

si
t−1 + xi

t = di
t + si

t , t = 1, . . . , NT , (7)

xi
t ≤ Myi

t , t = 1, . . . , NT , (8)

xi
t , si

t ≥ 0, i = 1, . . . , NI; t = 1, . . . , NT , (9)

yi
t ∈ {0, 1}, i = 1, . . . , NI; t = 1, . . . , NT . � (10)

3. Reformulations

In this section, we describe reformulations for the multi-item uncapacitated lot-sizing problem with inventory bounds
(MI -ULS-IB). The first one is the facility location formulation used in Lange (2010) as an extension of the approach
presented in Krarup and Bilde (1977). The second is an extension of the shortest path formulation proposed by Eppen and
Martin (1987) to (MI -ULS-IB). The other two reformulations make use of (l, S)-inequalities, proposed by Barany, Van Roy,
and Wolsey (1984), in order to strengthen relaxations of the (MI -ULS-IB).

3.1 Facility location formulation

The facility location formulation is obtained by treating each demand period t = 1, . . . , NT for each item i = 1, . . . , NI as
a single facility that can be served from any production period not later than t . In this formulation, the new variables wi

lt
represent the amount of item i that is produced in period l to satisfy the demand of period t . The facility location formulation
is

(FL) zFL = min
NI∑

i=1

NT∑
t=1

( f i
t yi

t + pi
t xi

t )

t∑
l=1

wi
lt = di

t , i = 1, . . . , NI; t = 1, . . . , NT , (11)

wi
lt ≤ di

t yi
l , i = 1, . . . , NI; l = 1, . . . , NT ; t = l, . . . , NT , (12)

NI∑
i=1

t∑
l=1

NT∑
j=t+1

wi
l j ≤ ut , t = 1, . . . , NT , (13)

xi
t =

NT∑
l=t

wi
tl , i = 1, . . . , NI; t = 1, . . . , NT , (14)

wi
lt ≥ 0, i = 1, . . . , NI; l = 1, . . . , NT ; t = l, . . . , NT , (15)

xi
t ≥ 0, i = 1, . . . , NI; t = 1, . . . , NT , (16)

yi
t ∈ {0, 1}, i = 1, . . . , NI; t = 1, . . . , NT . (17)

Constraints (11) imply that the demand for item i in period t is satisfied. Inequalities (12) are set-up enforcing constraints.
Constraints (13) limit the total stock at a given period. They consider that the amount of stock of item i at the end of period
t is equal to the total production until period t to satisfy demands that occur later than t , given by si

t =
∑t

l=1
∑NT

j=t+1 wi
l j .

Constraints (14) link the facility location variables with the original ones. Inequalities (15) and (16) are nonnegativity
constraints, while (17) are integrality constraints.
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3.2 Shortest path formulation

In order to describe the shortest path formulation, we consider variable φi
lt to be the fraction of di

lt to be produced in period l:

(SP) zSP = min
NI∑

i=1

NT∑
t=1

( f i
t yi

t + pi
t xi

t )

N T∑
t=1

φi
1t = 1, i = 1, . . . , NI , (18)

t−1∑
k=1

φi
k,t−1 −

N T∑
k=t

φi
tk = 0, i = 1, . . . , NI , t = 2, . . . , N T (19)

N T∑
t=1

φi
t,N T = 1, i = 1, . . . , NI , (20)

N T∑
l=t

φi
tl ≤ yi

t , i = 1, . . . , NI; t = l, . . . , NT , (21)

NI∑
i=1

t∑
l=1

NT∑
j=t+1

di
t jφ

i
l j ≤ ut , t = 1, . . . , NT , (22)

xi
t =

NT∑
l=t

di
tlφ

i
tl , i = 1, . . . , NI; t = 1, . . . , NT , (23)

φi
lt ≥ 0, i = 1, . . . , NI; l = 1, . . . , NT ; t = l, . . . , NT , (24)

xi
t ≥ 0, i = 1, . . . , NI; t = 1, . . . , NT , (25)

yi
t ∈ {0, 1}, i = 1, . . . , NI; t = 1, . . . , NT . (26)

Equalities (18)–(20) are shortest path constraints defining flow conservation requirements related to the φ variables for each
item. The reader is referred to Pochet and Wolsey (2006) for a more detailed explanation of shortest path formulations applied
to lot-sizing problems. Inequalities (21) are set-up enforcing constraints. Constraints (22) limit the total stock at a given period.
Constraints (23) link the shortest path variables with the original ones. Inequalities (24) and (25) are nonnegativity constraints,
while expressions (26) correspond to integrality constraints.

3.3 Formulations using (l, S)-inequalities

The next formulation uses (l, S)-inequalities (Barany, Van Roy, and Wolsey 1984) and, differently from the previous
formulations, does not rely on additional variables. It is obtained by adding valid inequalities to the standard formulation in
order to achieve improved bounds. Given an interval [l, t] define L = {l, . . . , t} and S ⊆ L . The formulation is

(LS) zLS = min
NI∑

i=1

NT∑
t=1

(pi
t xi

t + f i
t yi

t )

(1)−(5)

si
l−1 +

∑
u∈S

di
ut yi

u +
∑

u∈L/S
xi

u ≥ di
lt , i = 1, . . . , NI; l = 1, . . . , NT ; t = l, . . . , NT . (27)

Constraints (27) are the well-known (l, S)-inequalities for the uncapacitated lot-sizing problem, which imply that the
demand di

lt is either satisfied by the stock available at the end of period l − 1 or there should be additional production in
periods l, l + 1, . . . , t , forcing some set-up variables to take nonzero values. Note, however, that there is an exponential
number of such inequalities and their practical use requires the implementation of a cutting-plane algorithm.

Definition 1 The costs are said to be nonspeculative (or Wagner–Whitin) if p̃i
t + hi

t ≥ p̃i
t+1, for all i = 1, . . . , NI and

for all t = 1, . . . , NT − 1 or, alternatively, pi
t ≥ pi

t+1 in terms of the modified costs that appear in the objective function (6).

Situations with nonspeculative costs are very frequent in practical situations. We remark that such assumption appears
in the instances considered in several recent studies in the lot-sizing literature.



International Journal of Production Research 5

The last formulation is obtained using just a subset of the (l, S)-inequalities, namely the Wagner–Whitin (l, S)-inequalities
(Pochet and Wolsey 1994). The Wagner–Whitin-based formulation can be described as

(WW ) zWW = min
NI∑

i=1

NT∑
t=1

(pi
t xi

t + f i
t yi

t )

(1)−(5)

si
l−1 +

t∑
u=l

di
ut yi

u ≥ di
lt , i = 1, . . . , NI; l = 1, . . . , NT ; t = l, . . . , NT . (28)

Constraints (28) are the Wagner–Whitin (l, S)-inequalities. However, we note that, contrary to the case of the general
(l, S)-inequalities, there is only a polynomial number of Wagner–Whitin (l, S)-inequalities, which makes it easy to add
them a priori in the formulation. As it will be noted later in Proposition 2, in some situations adding only this polynomial
family of inequalities may lead to linear relaxation bounds that are as strong as those obtained with the complete family of
(l, S)-inequalities.

3.4 Comparison of the linear relaxation bounds

In this section, we compare the linear relaxation bounds produced by the different relaxations.

Proposition 1 Let zF L , zS P , and zL SI be the linear relaxation bounds provided by the facility location, shortest path and
(l, S)-inequalities based formulations, respectively. Then, zF L = zS P = zL SI .

Proof Denote by QFL−Ui , QSP−Ui and QLSI−Ui the polyhedron defined by the linear relaxations of the facility location,
shortest path and (l, S)-inequalities based formulations of X L S−Ui , respectively. It is well known that projx,y,s QFL−Ui =
conv(XLS−Ui ), projx,y,s QSP−Ui = conv(XLS−Ui ), and QLSI−Ui = conv(XLS−Ui ). Together with Observation 1, the above
implies that the three linear relaxations correspond to the polyhedron (

⋂N I
i=1 conv(XLS−Ui ))

⋂{s : ∑NI
i=1 si

t ≤ ut t =
1, . . . , NT } and, therefore, zFL = zSP = zLSI . �
Proposition 2 Let zW W be the linear relaxation bound provided by the Wagner–Whitin-based formulation. Then, zF L =
zS P = zL SI = zW W if the costs are nonspeculative (Wagner–Whitin).

Proof Denote by QWW−Ui the polyhedron defined by the linear relaxation of the Wagner–Whitin formulation of X L S−Ui .
It was already argued in Proposition 1 that projx,y,s QFL−Ui = projx,y,s QSP−Ui = QLSI−Ui = conv(XLS−Ui ). In addition,
under the assumption of nonspeculative costs QWW−Ui = conv(XLS−Ui ). Therefore, under nonspeculative costs QWW−Ui

also corresponds to the polyhedron (
⋂N I

i=1 conv(XLS−Ui ))
⋂{s : ∑NI

i=1 si
t ≤ ut t = 1, . . . , NT } and thus zFL = zSP =

zLSI = zWW . �
Corollary 1 Under general costs (i.e. when costs are not assumed to be nonspeculative), zF L = zS P = zL SI ≥ zW W .

4. MIP heuristics

In this section, we present a rounding and a relax-and-fix heuristic. For the ease of explanation, we describe the heuristics
in general MIP terms, and not specifically applied to the problem treated in this paper. Note that variables x and w used in
this section are not the same used in the formulations presented in the previous sections, but they are utilised for the sake of
consistency with the standard MIP notation in the literature.

4.1 Rounding heuristic

The principle of this heuristic consists in rounding the value of some fractional variables in the optimal solution of a strong
linear programming relaxation (i.e. one that gives a good approximation of the convex hull of the feasible solutions) and to
fix certain variables in order to allow an optimiser to solve a constrained MIP formulation within a reasonable amount of
time (or, at least, find a high quality solution with a small gap).

Consider the integer problem z∗ = min{cx : x ∈ X} with a standard formulation P0 = {x ∈ R
n : Ax ≥ b} such

that X = P0 ∩ Z
n . We also assume there is an extended formulation Pe = {(x, w) ∈ R

n × R
q : A′x + D′w ≥ d}, with

X = projx (Pe) ∩ Z
n and z∗ = min{cx + 0w : (x, w) ∈ Pe, x ∈ Z

n}, obtained using additional variables w, which is
a better approximation to the convex hull of X than P0 and consequently implies a better linear relaxation bound. For the
sake of simplicity of explanation, we assume that all variables x are binary. Note that this approach can be easily extended
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Figure 1. Illustration of the time intervals in the partitioning heuristic.

to more general mixed integer problems by performing all the rounding and fixing procedures only on the integer variables.
We now present the heuristic followed by an explanation of its mechanism.

Rounding heuristic
Ad hoc parameters: φi

min, φ
i
max for i = 1, . . . , n.

Step 1: Solve the linear program min{cx : (x, w) ∈ Pe} to obtain a solution (x̂, ŵ).
Step 2: Determine a neighborhood N (x̂, ŵ) = {(x, w) ∈ Pe : xi = 0 if x̂i ≤ φi

min, i = 1, . . . , n} ∩ {(x, w) ∈ Pe : xi =
1 if x̂i ≥ φi

max, i = 1, . . . , n}.
Step 3: Solve the integer problem min{cx : (x, w) ∈ Pe ∩ N (x̂, ŵ) ∩ {0, 1}n×q} to obtain an approximate solution x̄ ∈ X .

The algorithm is straightforward and works as follows, assuming that an appropriate extended formulation Pe was already
obtained. In Step 1, the linear programming relaxation of the extended formulation is solved. In Step 2, a neighbourhood is
defined by fixing each variable xi according with the solution obtained in Step 1 and with ad hoc parameters φi

min and φi
max,

for i = 1, . . . , n. They are used to determine intervals in which the variables are considered to be close enough to an integer
value and, therefore, likely to take its rounded value in a good feasible integer solution. Note that all other variables remain
unrestricted. In Step 3, the restricted MIP with some of the variables fixed according with the neighbourhood obtained in
Step 2 is solved. This heuristic framework can be easily applied to formulations (SP), (FL) and (WW ).

However, we note that this sort of fixations may lead to infeasibilities in some situations and that our framework does
not have a backtracking mechanism. For the problem (MI -ULS-IB) considered in this work, fixing the binary variables to 0
can lead to infeasibilities using any of the formulations, since they create limitations in the stocks. Fixing variables only to
1, and never to 0, guarantees that all the subproblems are feasible as long as the whole problem also is. We notice that this
behaviour can be easily achieved by setting the thresholds φi

min to any negative value, for 1 ≤ i ≤ NI .

4.2 Relax-and-fix

We consider an integer problem z∗ = min{cx : x ∈ X} whose variables can be partitioned according to time periods
t ∈ {1, . . . , N T }. The underlying principle of this heuristic consists in partitioning the time horizon and solving relaxations
of some restricted, more manageable subproblems. The algorithm starts with a restrained subproblem in the beginning of
the horizon and moves forward towards the end of the time horizon. Once a particular restricted subproblem is solved, some
variables are fixed and the algorithm continues to the next subproblem, until the end of the horizon is reached and a feasible
solution is obtained.

Using any valid formulation P available to the problem, the heuristic solves a series of consecutive subproblems in
which, according to the period to which they correspond, certain integer variables are fixed, some are restrained to be integer
and others are relaxed. In our specific case, we consider P to be a partial Wagner–Whitin formulation in which just a subset
of the inequalities (28) are added to the formulation, as it will be explained with more details later in this section. Let α and
β be integers such that 1 ≤ α ≤ β ≤ N T . Starting from α = 1, the algorithm successively solves constrained subproblems
while increasing the values of α and β, which define three intervals at each iteration as illustrated in Figure 1. The first
interval is composed of all periods t < α and all integer variables associated with periods in this interval are fixed according
to the values assumed in one of the previous iterations of the heuristic. The second interval is formed by periods t such that
α ≤ t ≤ β and all integer variables associated with periods in this interval are constrained to take integer values, with its
width being k = β−α+1. The third interval is formed by all periods t > β and all integer variables associated with periods
in this interval have their integrality requirements dropped. We now present a general description of the algorithm, followed
by an explanation of its working principle.
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Table 1. Results comparing the MIP formulations.

STD FL SP WW W W10
Instance bi gap (%) bi gap (%) bi gap (%) bi gap (%) bi gap (%)

I_15_50_01 10,122 9.3 9880 5.8 9905 6.1 9848 5.5 9947 6.3
I_15_50_02 11,555 9.5 11,207 5.4 11,150 4.9 11,415 7.1 11,273 5.8
I_15_50_03 10,230 8.7 9936 4.7 9992 5.2 10,027 5.5 10,097 6.0
I_15_50_04 10,641 8.4 10,210 3.7 10,347 4.9 10,514 6.4 10,411 5.4
I_15_50_05 9472 8.6 9354 6.3 9296 5.7 9524 8.0 9409 6.7
I_15_50_06 12,216 11.2 11,854 6.5 11,742 5.6 11,828 6.2 11,702 5.2
I_15_50_07 9807 9.1 9543 5.2 9423 4.0 9548 5.2 9551 5.1
I_15_50_08 9110 8.2 8959 5.8 8944 5.6 8938 5.4 8931 5.2
I_15_50_09 10,013 8.8 9749 5.4 9737 5.2 9799 5.8 9784 5.5
I_15_50_10 10,463 8.5 10,209 5.8 10,189 5.5 10,162 5.3 10,278 6.3

I_30_50_01 19,144 9.2 18,502 3.5 18,463 3.3 18,335 2.6 18,419 3.0
I_30_50_02 17,215 6.3 16,824 2.6 16,793 2.4 16,807 2.5 16,810 2.4
I_30_50_03 20,861 7.4 20,327 3.6 20,206 3.1 20,200 3.0 20,120 2.6
I_30_50_04 19,153 8.1 18,632 2.9 18,587 2.6 18,646 3.0 18,663 3.1
I_30_50_05 20,271 8.6 19,502 2.7 19,539 2.9 19,504 2.7 19,586 3.1
I_30_50_06 19,039 7.3 18,553 2.9 18,670 3.5 18,492 2.6 18,638 3.4
I_30_50_07 20,724 7.2 20,342 3.5 20,239 3.0 20,309 3.3 20,386 3.7
I_30_50_08 17,430 7.8 16,979 3.2 16,974 3.2 16,962 3.1 17,063 3.7
I_30_50_09 18,694 7.6 18,263 3.3 18,251 3.3 18,177 2.9 18,251 3.2
I_30_50_10 19,525 9.0 18,807 3.2 18,878 3.5 18,782 3.0 18,837 3.2

I_45_50_01 30,064 9.3 28,614 1.6 28,747 2.1 28,688 1.9 28,617 1.6
I_45_50_02 29,822 7.5 28,842 1.8 29,027 2.4 28,905 2.0 28,788 1.6
I_45_50_03 29,590 8.0 28,631 2.3 28,629 2.3 28,543 2.0 28,511 1.9
I_45_50_04 26,807 6.8 26,049 1.9 26,135 2.2 25,992 1.7 26,002 1.7
I_45_50_05 32,313 8.9 31,030 2.6 31,113 2.8 30,902 2.2 30,853 2.0
I_45_50_06 27,564 7.2 26,745 2.0 26,821 2.3 26,618 1.5 26,692 1.8
I_45_50_07 27,853 8.0 26,849 1.6 27,002 2.2 26,906 1.8 26,971 2.0
I_45_50_08 31,480 7.8 30,431 2.0 30,615 2.6 30,432 2.0 30,430 2.0
I_45_50_09 30,049 7.8 29,260 1.9 29,573 3.0 29,343 2.2 29,191 1.7
I_45_50_10 29,102 7.0 28,271 1.8 28,537 2.7 28,365 2.1 28,363 2.1

Geometric mean 8.2 3.2 3.4 3.2 3.2
# best solutions 0 6 6 10 8

Relax-and-fix heuristic
Ad hoc parameters: k, k′.
Initialization: α = 1, β = α + k − 1, deactivate the integrality constraints.

Step 1: Run the MIP over formulation P activating the integrality constraints on all binary variables corresponding to interval
[α, β].

Step 2: Fix all binary variables in the interval [α, α + k′ − 1] to their optimal values in the solution obtained in Step 1.
Step 3: If β < N T , then set α← α + k′, β ← min{α + k − 1, N T }, and return to Step 1.

In Step 1, a MIP subproblem is solved with the integer variables constrained as described in the explanation of the interval
[α, β], which in our case corresponds to solving P with inequalities (5) active for t = α, . . . , β. In Step 2, all integer variables
associated with the interval [α, α + k′ − 1] are fixed according to the values they assumed in Step 1, where k ′ is an ad hoc
parameter that determines the width of the fixation horizon, with 1 ≤ k ′ ≤ k. Next, in Step 3 the values of α and β are updated,
i.e. increased, and the rolling interval moves toward the end of the horizon. This time partitioning scheme is illustrated in
Figure 2. Note that a total of

⌈
N T/k′

⌉
subproblems have to be solved and that Steps 1–3 are performed until the rolling

interval reaches the end of the time horizon (i.e. β = N T ) with an integer feasible solution. We remark that, considering
the multi-item uncapacitated lot-sizing problem with inventory bounds, the subproblem associated with each interval (which
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Figure 2. Rolling horizon representation with k = 5 and k′ = 3.

can be solved to optimality or until a small gap is reached within a reasonable amount of time) is NP-hard, and therefore
this approach does not lead to a polynomial time heuristic. We also notice that the subproblem obtained by fixing certain
variables at some iteration (differently from what happens with problems with capacitated production) is always feasible at
the next one due to the fact that there is only capacity on storage and not directly on production. A simple feasible solution
to any subproblem is one in which the demands of each period are produced in that period.

We remark that a sequence of MIPs has to be solved in order for the heuristic to terminate, implying that the used
formulation P should be effectively solved to optimality or, at least to a small gap, within a small amount of time. For this
reason, we consider P as a partial formulation using (WW ) in which the integrality constraints of the heuristic are determined
by (5). In some situations, large formulations can be used more effectively using the concept of partial formulations (see
Van Vyve and Wolsey (2006)), which consists in determining a valid formulation to the problem together with a parameter
K limiting its size. In our partial (WW ) formulation, inequalities (28) are added only for intervals of size at most K = 10,
meaning that the inequalities are only inserted into the formulation for pairs (l, t) with t − l ≤ K − 1.

5. Computational experiments

In this section, we report on computational experiments comparing the different formulations and the proposed heuristics.
All experiments were performed on a machine running under Xubuntu x86_64 GNU/Linux, with an Intel Core i7-4770S
3.10 GHz processor, 8 GB RAM memory using FICO Xpress 7.9. All the formulations and heuristics were implemented
using Mosel and the solver’s default settings were used, with the exception of the optimality tolerance which was set to 10−6.

In order to assess the performance of each approach, we replicated the same type of instance used by Lange (2010),
where the author only briefly explored the computational experiments. We also considered instances of larger sizes and with
different capacities. In our test set, the number of items NI ∈ {15, 30, 45}, the number of periods is NT = 50 and the bounds
on stocks are set to ut = 500 (for the instances with N I = 15 items), ut = 1000 (for the instances with N I = 30 items), and
ut = 1500 (for the instances with N I = 45 items), for t = 1, . . . , NT . An additional instance set was generated with bounds
ut = 375 (for the instances with N I = 15 items), ut = 750 (for the instances with N I = 30 items), and ut = 1125 (for the
instances with N I = 45 items), for t = 1, . . . , NT . The demands di

t are integer values in the interval [0, 25], while the fixed
costs f i

t are time-independent and assume integer values in the interval [20, 150]. There are neither production costs, which
are equivalent to the presence of time-invariant production costs as all the demands have to be satisfied, nor storage costs. Ten
instances were generated with the previous characteristics for each combination of problem size and capacity configuration.

5.1 Formulations

We summarise in Tables 1 and 2 the results obtained with the following formulations: standard (STD), facility location (FL),
shortest path (SP), Wagner–Whitin (WW ) and Wagner–Whitin adding only the inequalities (28) associated with intervals
[l, t] with t − l < 10 (WW 10). We remark that other values for this parameter could also be chosen, but intervals of size
10 already offer a good trade-off between formulation size and the linear relaxation bound. The first column of the table
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Table 2. Results comparing the MIP formulations on the instances with tighter capacities.

STD FL SP WW WW 10
Instance bi gap (%) bi gap (%) bi gap (%) bi gap (%) bi gap (%)

I_15_50_01B 14,019 8.6 13,686 5.9 13,805 6.7 13,777 6.5 13,680 5.7
I_15_50_02B 10,819 6.5 10,693 4.9 10,684 4.9 10,660 4.6 10,585 3.9
I_15_50_03B 10,572 7.5 10,254 4.0 10,290 4.3 10,362 5.0 10,297 4.2
I_15_50_04B 12,623 7.2 12,368 4.7 12,540 6.0 12,561 6.1 12,517 5.7
I_15_50_05B 11,006 6.9 10,743 4.2 10,812 4.8 10,912 5.6 10,859 5.1
I_15_50_06B 9715 7.6 9511 5.2 9437 4.4 9529 5.3 9531 5.2
I_15_50_07B 12,580 8.1 12,120 4.2 12,200 4.8 12,204 4.8 12,111 4.0
I_15_50_08B 15,012 7.3 14,726 4.9 14,832 5.6 14,956 6.4 14,802 5.3
I_15_50_09B 14,398 7.8 14,179 5.5 14,182 5.6 14,337 6.5 14,162 5.3
I_15_50_10B 13,619 7.2 13,404 5.4 13,341 4.8 13,393 5.3 13,330 4.7

I_30_50_01B 25,222 5.4 24,719 2.9 24,727 2.9 24,544 2.2 24,614 2.4
I_30_50_02B 22,604 5.4 22,318 3.1 22,115 2.2 22,171 2.4 22,134 2.3
I_30_50_03B 26,813 5.1 26,425 2.8 26,378 2.6 26,454 2.9 26,460 2.9
I_30_50_04B 24,328 5.3 23,900 2.8 24,045 3.4 23,979 3.1 24,043 3.4
I_30_50_05B 21,834 4.4 21,604 2.6 21,701 3.1 21,567 2.5 21,616 2.7
I_30_50_06B 26,396 6.2 25,696 2.9 25,675 2.8 25,507 2.1 25,658 2.7
I_30_50_07B 29,241 7.6 28,222 3.2 28,302 3.5 28,257 3.3 28,247 3.3
I_30_50_08B 24,401 6.7 23,713 3.0 23,736 3.1 23,678 2.8 23,786 3.3
I_30_50_09B 23,944 5.8 23,388 2.5 23,453 2.8 23,461 2.8 23,485 2.9
I_30_50_10B 21,602 5.1 21,207 2.4 21,254 2.6 21,251 2.6 21,397 3.3

I_45_50_01B 36,387 6.3 35,302 2.0 35,433 2.4 35,321 2.1 35,264 1.9
I_45_50_02B 40,185 6.5 38,696 1.9 38,878 2.4 38,736 2.0 38,737 2.0
I_45_50_03B 33,756 4.7 32,941 1.6 33,049 1.9 32,973 1.6 33,024 1.8
I_45_50_04B 37,577 6.1 36,369 2.0 36,344 1.9 36,297 1.8 36,176 1.5
I_45_50_05B 33,243 6.1 32,193 1.7 32,243 1.9 32,068 1.3 32,154 1.6
I_45_50_06B 35,085 4.7 34,481 1.9 34,650 2.3 34,419 1.7 34,364 1.5
I_45_50_07B 35,163 4.7 34,468 1.9 34,586 2.3 34,475 2.0 34,238 1.3
I_45_50_08B 40,611 5.9 39,381 1.7 39,660 2.4 39,408 1.8 39,394 1.8
I_45_50_09B 34,040 6.7 32,755 1.8 32,926 2.4 32,791 2.0 32,723 1.7
I_45_50_10B 37,622 6.0 36,263 1.6 36,374 1.9 36,426 2.1 36,348 1.8

Geometric mean 6.2 2.9 3.2 3.0 2.9
# best solutions 0 12 3 5 10

identifies each instance. For each of the formulations, we give the best integer solution value (bi), and the gap at the end of the
execution time, calculated as 100×(bi−bb)/bi, with bb being the best achieved bound using the corresponding formulation.
The solver was run with a time limit of 3600 s for each instance using each of the formulations. Values in boldface indicate
the best solution values obtained by the different approaches. Note that we do not report on the time to solve the instances
as none of the considered instances could be solved to optimality within 3600 s using any of the formulations.

The results in these tables show, as it was expected, that the solver did not perform well using the standard formulation:
there are mean (geometric) open gaps of 8.2 and 6.2% after one hour of running time for instances with more relaxed and
tighter capacities, respectively. It can be observed in these tables that stronger formulations performed much better than the
standard formulation.

Table 1 shows that FL, WW and WW10 obtained similar mean open gaps (3.2%), with WW obtaining the best solution
for more instances (10) than the others. Note that SP encountered 4 best solutions for instances with 15 items, WW obtained
6 best solutions for those with 30 items and WW10 found 5 best solutions for the largest instances with 45 items.

The results in Table 2 show that, for instances with tighter capacities, FL and WW10 obtained lower mean open gaps
(2.9%), with FL obtaining the best solution for more instances (12) than the others. Observe that WW10 encountered the
largest number of best solutions for instances with 15 items (five) and 45 items (five), while FL and WW obtained the largest
number of best solutions (four) for instances with 30 items.
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Table 3. Results using the rounding heuristic (time limit on each run: 600 s).

φi
max = 0.50 φi

max = 0.55 φi
max = 0.60

Instance bi gap (%) time (s) bi gap (%) time (s) bi gap (%) time (s) biM I P

I_15_50_01 9855 5.4 106 9740 4.3 600 9766 4.6 600 9848
I_15_50_02 11,286 5.9 278 11,246 5.6 600 11,183 5.0 600 11,150
I_15_50_03 10,054 5.6 200 10,029 5.4 600 10137 6.4 600 9936
I_15_50_04 10,350 4.8 6 10,319 4.6 176 10,303 4.4 600 10,210
I_15_50_05 9453 7.1 279 9346 6.1 550 9260 5.2 600 9296
I_15_50_06 11,804 6.0 600 11,784 5.8 600 11,725 5.3 600 11,742
I_15_50_07 9528 4.8 10 9528 4.8 33 9527 4.8 259 9423
I_15_50_08 9034 6.3 330 8917 5.1 600 8961 5.6 600 8938
I_15_50_09 9731 5.0 600 9686 4.5 600 9687 4.5 600 9737
I_15_50_10 10,125 4.9 7 10,105 4.7 41 10,093 4.6 600 10,162

I_30_50_01 18,498 3.4 600 18,351 2.7 600 18,356 2.7 600 18,335
I_30_50_02 16,836 2.6 600 16,827 2.5 600 16,812 2.5 600 16,793
I_30_50_03 20,241 3.2 600 20,125 2.6 600 20,030 2.2 600 20,200
I_30_50_04 18,707 3.3 600 18,604 2.7 600 18,559 2.5 600 18,587
I_30_50_05 19,642 3.4 65 19,516 2.8 600 19,516 2.8 600 19,502
I_30_50_06 18,631 3.3 600 18,513 2.7 600 18,688 3.6 600 18,492
I_30_50_07 20,162 2.6 492 20,106 2.3 600 20,112 2.4 600 20,239
I_30_50_08 16,980 3.2 600 16,916 2.8 600 16,869 2.6 600 16,962
I_30_50_09 18,299 3.5 600 18,208 3.0 600 18,336 3.7 600 18,177
I_30_50_10 18,702 2.6 600 18,695 2.5 600 18,695 2.5 600 18782

I_45_50_01 28,737 2.0 600 28,644 1.7 600 28,579 1.5 600 28,614
I_45_50_02 28,935 2.1 600 28,833 1.7 600 28,835 1.8 600 28,842
I_45_50_03 28,593 2.2 563 28,535 2.0 600 28,386 1.4 600 28,543
I_45_50_04 26,054 1.9 600 26,011 1.7 600 25,975 1.6 600 25,992
I_45_50_05 30,887 2.1 600 30,834 1.9 600 30,881 2.1 600 30,902
I_45_50_06 26,700 1.8 600 26,671 1.7 600 26,639 1.6 600 26,618
I_45_50_07 27,067 2.4 600 26,951 2.0 600 26,925 1.9 600 26,849
I_45_50_08 30,649 2.7 600 30,401 1.9 600 30,413 1.9 600 30,431
I_45_50_09 29,235 1.8 600 29,211 1.8 600 29,140 1.5 600 29,260
I_45_50_10 28,444 2.4 600 28,309 1.9 600 28,318 2.0 600 28,271

Geometric mean 3.3 2.9 2.8
# best solutions 0 8 11 12

5.2 Heuristics

The heuristic frameworks were implemented using partial Wagner–Whitin formulations. Namely, WW 10 was used for the
rounding while WW k was used for the relax-and-fix heuristic, where k equals the width of the intervals in the rolling horizon
scheme. The reason for this choice was not only that the partial Wagner–Whitin formulation provides good linear relaxation
bounds, but also that preliminary computational results showed that the larger formulations face difficulties to solve a sequence
of restricted problems. In addition, one can easily control the size of a partial Wagner–Whitin formulation by simply setting
the width of the interval [l, t] for which the inequalities (28) are added to the formulation.

A time limit of 600 s was imposed on each run. Three different ad hoc parameter values were considered for each of the
two heuristics.

As noted earlier in Section 4.1, fixing the y variables to zero in the rounding heuristic can lead to infeasibilities. Therefore,
only the variables assuming values greater than or equal to a certain threshold in the linear relaxation are fixed to one. The
three values used for the ad hoc parameter φi

max were 0.50, 0.55 and 0.60. The value of φi
max is set to−0.01 so that variables

are never fixed to zero.
In the case of the relax-and-fix heuristic, three different combinations were considered for the ad hoc parameters: k = 6

and k′ = 3, k = 7 and k′ = 4, and k = 8 and k′ = 5. Since the time limit for each run is 600 s and there are 
N T/k ′�
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Table 4. Results using the rounding heuristic on the instances with tighter capacities (time limit on each run: 600 s).

φi
max = 0.50 φi

max = 0.55 φi
max = 0.60

Instance bi gap (%) time (s) bi gap (%) time (s) bi gap (%) time (s) biM I P

I_15_50_01B 13,609 5.3 3 13,596 5.2 23 13,517 4.6 513 13,686
I_15_50_02B 10,790 5.7 4 10,790 5.7 75 10,725 5.1 293 10,660
I_15_50_03B 10,410 5.2 4 10,355 4.7 557 10,387 5.0 600 10,254
I_15_50_04B 12,512 5.7 3 12,478 5.4 3 12,420 5.0 600 12,368
I_15_50_05B 10,892 5.4 2 10,818 4.7 600 10,753 4.2 600 10,743
I_15_50_06B 9605 5.9 60 9536 5.2 600 9557 5.4 600 9437
I_15_50_07B 12,332 5.7 12 12,209 4.7 600 12,230 4.9 600 12,120
I_15_50_08B 14,821 5.4 2 14,647 4.3 178 14,598 4.0 600 14,726
I_15_50_09B 14,148 5.2 1 14,124 5.1 2 14,088 4.8 170 14,179
I_15_50_10B 13,400 5.2 8 13,358 4.9 600 13,333 4.7 600 13,341

I_30_50_01B 24,611 2.4 6 24,606 2.4 600 24,595 2.4 600 24,544
I_30_50_02B 22,172 2.4 600 22,170 2.4 600 22,105 2.1 600 22,115
I_30_50_03B 26,416 2.7 25 26,315 2.3 600 26,426 2.8 600 26,378
I_30_50_04B 23,942 3.0 3 23,912 2.8 218 23,868 2.6 600 23,900
I_30_50_05B 21,671 2.9 600 21,618 2.7 600 21,576 2.5 600 21,567
I_30_50_06B 25,784 3.2 11 25,650 2.7 600 25,707 2.9 600 25,507
I_30_50_07B 28,169 3.0 37 28,197 3.1 600 28,117 2.8 600 28,222
I_30_50_08B 23,647 2.7 125 23,612 2.5 600 23,556 2.3 600 23,678
I_30_50_09B 23,610 3.4 184 23,459 2.8 600 23,538 3.1 600 23,388
I_30_50_10B 21,382 3.2 13 21,283 2.7 600 21,205 2.4 600 21,207

I_45_50_01B 35,204 1.7 600 35,204 1.7 600 35,173 1.6 600 35,302
I_45_50_02B 38,519 1.5 600 38,530 1.5 600 38,515 1.4 600 38,696
I_45_50_03B 33,024 1.8 61 33,024 1.8 600 32,975 1.6 600 32,941
I_45_50_04B 36,393 2.1 600 36,380 2.0 600 36,213 1.6 600 36,297
I_45_50_05B 32,203 1.7 600 32,087 1.4 600 32,096 1.4 600 32,068
I_45_50_06B 34,472 1.8 65 34,359 1.5 600 34,335 1.4 600 34,419
I_45_50_07B 34,413 1.8 600 34,300 1.5 600 34,235 1.3 600 34,468
I_45_50_08B 39,480 2.0 600 39,424 1.8 600 39,357 1.7 600 39,381
I_45_50_09B 33,036 2.7 600 32,801 2.0 600 32,697 1.7 600 32,755
I_45_50_10B 36,300 1.7 600 36,298 1.7 600 36,461 2.1 600 36,263

Geometric mean 3.1 2.8 2.7
# best solutions 0 1 16 13

subproblems to be solved by this heuristic, each subproblem received initially 600/
N T/k ′� seconds. After each fixing, the
remaining available time was equally divided among the subproblems yet to be solved.

We summarise the results obtained with the rounding heuristic in Tables 3 and 4, and those found by the relax-and-fix
heuristic in Tables 5 and 6. In each of the tables, the first column identifies the instances. The next columns present, for each
value of the parameters, the best feasible solution value bi, the relative gap in per cent between the best solution value and the
best available bound achieved at the end of the execution using any of the formulations (bb), calculated as 100×(bi−bb)/bi,
and the time spent in seconds.

The last column in each of these tables gives the best solution values encountered with the previously considered
approaches: biM I P in Tables 3 and 4 is the best integer solution value obtained using any of the tested formulations within
the time limit of 3600 s, as already presented in Tables 1 and 2; while biM I P,round in Tables 5 and 6 is the best integer solution
value between biM I P (obtained with a time limit of 3600 s) and that found by the rounding heuristic (within the time limit
of 600 s). We recall that none of the problem instances could be solved to optimality using the formulations tested in Section
5.1.

As before, values in boldface indicate the best solution values obtained using the different approaches.
The results in Table 3 show that the three choices of parameters for the rounding heuristic allowed the solver to obtain

solutions which are competitive with the best ones encountered using the exact formulations, allowing an improvement in
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Table 5. Results using the relax-and-fix heuristic (time limit on each run: 600 s).

k = 6, k′ = 3 k = 7, k′ = 4 k = 8, k′ = 5
Instance bi gap (%) time (s) bi gap (%) time (s) bi gap (%) time (s) biM I P,round

I_15_50_01 9643 3.4 55 9637 3.3 69 9628 3.2 117 9740
I_15_50_02 11,033 3.7 104 11,017 3.6 161 11,034 3.7 254 11,150
I_15_50_03 9814 3.3 83 9834 3.5 94 9815 3.3 119 9936
I_15_50_04 10,232 3.7 108 10,233 3.8 149 10,186 3.3 208 10,210
I_15_50_05 9137 3.9 65 9125 3.8 95 9119 3.7 172 9260
I_15_50_06 11,457 3.1 90 11486 3.4 171 11,516 3.6 263 11,725
I_15_50_07 9476 4.3 70 9415 3.7 105 9384 3.4 143 9423
I_15_50_08 8832 4.2 78 8758 3.4 79 8707 2.8 184 8917
I_15_50_09 9643 4.1 84 9579 3.5 81 9599 3.7 161 9686
I_15_50_10 9964 3.4 80 10,009 3.8 87 9954 3.3 138 10,093

I_30_50_01 18,337 2.6 366 18,233 2.0 373 18,145 1.6 429 18,335
I_30_50_02 16,769 2.2 304 16,762 2.2 341 16,649 1.5 420 16,793
I_30_50_03 20,131 2.7 335 19,949 1.8 334 19,953 1.8 388 20,030
I_30_50_04 18,527 2.3 346 18,434 1.8 326 18,469 2.0 495 18,559
I_30_50_05 19,401 2.2 345 19,377 2.1 343 19,323 1.8 378 19,502
I_30_50_06 18,428 2.3 363 18,433 2.3 321 18,311 1.7 441 18,492
I_30_50_07 20,102 2.3 364 20,015 1.9 385 19,933 1.5 345 20,106
I_30_50_08 16,877 2.6 339 16,765 2.0 378 16,783 2.1 439 16,869
I_30_50_09 18,083 2.3 373 18,143 2.7 401 17,977 1.8 383 18,177
I_30_50_10 18,651 2.3 358 18,590 2.0 338 18,659 2.3 470 18,695

I_45_50_01 28,688 1.9 418 28,677 1.8 466 28,522 1.3 526 28,579
I_45_50_02 29,011 2.4 444 28,754 1.5 463 28,666 1.2 538 28,833
I_45_50_03 28,500 1.8 448 28,440 1.6 469 28,445 1.7 540 28,386
I_45_50_04 26,219 2.5 439 26,134 2.2 471 25,960 1.5 521 25,975
I_45_50_05 30,695 1.5 447 30,731 1.6 414 30,651 1.4 445 30,834
I_45_50_06 26,808 2.2 415 26,548 1.3 447 26,565 1.3 523 26,618
I_45_50_07 27,014 2.2 420 26,861 1.6 480 26,799 1.4 507 26,849
I_45_50_08 30,415 1.9 439 30,433 2.0 450 30,266 1.4 538 30,401
I_45_50_09 29,365 2.3 459 29,253 1.9 423 29,251 1.9 541 29,140
I_45_50_10 28,355 2.1 458 28,166 1.4 464 28,164 1.4 498 28,271

Geometric mean 2.6 2.3 2.1
# best solutions 2 7 19 2

the best known solution for 18 out of the 30 instances. Note that parameter φi
max = 0.60 lead to the best results among the

tested values and achieved the lowest mean gap (2.8%).
The competitive results of the rounding heuristic can also be observed in Table 4, allowing an improvement in the best

known solution for 17 out of the 30 instances. Again, the parameter φi
max = 0.60 performed the best, clearly outperforming

the other parameter choices for these instances. Note that although this choice leads to smaller neighbourhoods in which
solutions can be obtained, i.e. fewer solution choices, it allows a better exploration via branch-and-bound of the restricted
problem within the allowed time limit.

Tables 5 and 6 show that the relax-and-fix heuristic outperformed all other approaches when considering the quality
of the solutions found within the imposed time limits. It obtained the best solutions for all but two instances with more
relaxed capacities, as it can be observed in Table 5. The variant with larger horizon and fixing widths, i.e. k = 8 and k ′ = 5,
performed the best. Similar results can be observed in Table 6 when considering the instances with tighter capacities, for
which variations of the relax-and-fix could improve 29 out of the 30 best known solutions. Once again, the variant with larger
horizon and fixing widths performed the best.

Based on the results, we can see that the MIP heuristics found good quality solutions within just a few minutes considering
that we are treating large instances of a problem with big bucket-like constraints, which are constraints per period involving
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Table 6. Results using the relax-and-fix heuristic on the instances with tighter capacities (time limit on each run: 600 s).

k = 6, k′ = 3 k = 7, k′ = 4 k = 8, k′ = 5
Instance bi gap (%) time (s) bi gap (%) time (s) bi gap (%) time (s) biM I P,round

I_15_50_01B 13,323 3.2 54 13,372 3.6 70 13,319 3.2 111 13,517
I_15_50_02B 10,544 3.5 51 10,497 3.1 104 10,469 2.8 170 10,660
I_15_50_03B 10,204 3.3 43 10,191 3.2 49 10,127 2.6 79 10,254
I_15_50_04B 12,197 3.2 54 12,156 2.9 64 12,152 2.9 116 12,368
I_15_50_05B 10,681 3.5 58 10,664 3.4 82 10,616 2.9 155 10,743
I_15_50_06B 9395 3.8 48 9354 3.4 69 9336 3.2 125 9437
I_15_50_07B 12,019 3.2 46 11,960 2.8 62 11,929 2.5 87 12,120
I_15_50_08B 14,513 3.4 52 14,440 2.9 112 14,422 2.8 144 14,598
I_15_50_09B 13,829 3.0 56 13,821 3.0 132 13,814 2.9 248 14,088
I_15_50_10B 13,100 3.0 69 13,144 3.3 107 13,075 2.8 170 13,333

I_30_50_01B 24,458 1.8 283 24,383 1.5 376 24,325 1.3 430 24,544
I_30_50_02B 21,985 1.6 250 21,983 1.6 304 21,967 1.5 346 22,105
I_30_50_03B 26,073 1.4 252 26,045 1.3 353 26,035 1.3 516 26,315
I_30_50_04B 23,652 1.8 300 23,638 1.7 383 23,628 1.7 416 23,868
I_30_50_05B 21,385 1.6 286 21,355 1.5 438 21,418 1.8 504 21,567
I_30_50_06B 25,424 1.8 280 25,308 1.4 310 25,292 1.3 403 25,507
I_30_50_07B 27,842 1.9 340 27,738 1.5 424 27,754 1.6 498 28,117
I_30_50_08B 23,478 2.0 295 23,421 1.7 377 23,402 1.7 414 23,556
I_30_50_09B 23,189 1.7 304 23,186 1.7 342 23,109 1.3 418 23,388
I_30_50_10B 21,062 1.7 261 21,039 1.6 330 21,011 1.5 443 21,205

I_45_50_01B 35,049 1.3 427 35,026 1.2 448 35,046 1.3 517 35,173
I_45_50_02B 38,364 1.1 408 38,387 1.1 400 38,370 1.1 541 38,515
I_45_50_03B 32,885 1.4 460 32,887 1.4 416 32,890 1.4 541 32,941
I_45_50_04B 36,176 1.5 405 36,084 1.2 437 36,156 1.4 527 36,213
I_45_50_05B 32,083 1.4 389 32,169 1.6 449 32,093 1.4 510 32,068
I_45_50_06B 34,339 1.5 412 34,294 1.3 462 34,271 1.3 540 34,335
I_45_50_07B 34,187 1.1 396 34,195 1.1 432 34,110 0.9 453 34,235
I_45_50_08B 39,131 1.1 436 39,148 1.1 467 39,299 1.5 541 39,357
I_45_50_09B 32,540 1.2 399 32,718 1.7 430 32,692 1.6 516 32,697
I_45_50_10B 36,117 1.2 425 36,064 1.1 441 36,060 1.1 540 36,263

Geometric mean 1.9 1.8 1.8
# best solutions 4 4 21 1

multiple items. It is worth mentioning that problems with this characteristic are in general difficult to solve to optimality
even when the remaining open gap is already small.

We now analyse how the time limit given to the heuristics can affect the quality of the solutions found. We considered two
specific instances and evaluated the behaviour of all previously tested variations of the rounding and relax-and-fix heuristics
when the time limit increases from 60 to 1200 s by steps of 60 s. Figures 3 and 4 depict the results for instances I_45_50_09
and I_30_50_04B, respectively. We observe that increasing the time limit does not considerably affect the solutions obtained
by the rounding heuristic. The best solutions produced by the rounding heuristic are obtained in less than 240 s and do
not change thereafter. However, significant improvements are achieved by the variants of the relax-and-fix heuristic when
the time limit is increased. It is important to notice that a small increase in the time limit does not necessarily lead to an
improvement in the best obtained solution. This behaviour occurs because fixing according to a slightly better solution to
a certain subproblem may lead to more difficult subsequent subproblems. In addition, fixing according to a slightly better
solution to a certain subproblem is not necessarily better when we take the complete problem into account. However, it is
noticeable that, considering these two instances, in the long run, the relax-and-fix heuristic benefits from larger time limits.
We observe that the relax-and-fix heuristic significantly improved the quality of the best solutions found when the time limit
increased from 600 to 1200 s.
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Figure 3. Obtained solutions by the heuristics for instance I_45_50_09 varying the maximum allowed time.
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Figure 4. Obtained solutions by the heuristics for instance I_30_50_04B varying the maximum allowed time.

In order to further evaluate the improvements that could be achieved in case some additional running time was allowed
to the heuristics, we performed new computational experiments, using the best variant of the relax-and-fix heuristic (with
parameters k = 8 and k′ = 5) running for a longer time limit of 1200 s. Table 7 displays, for each instance, the value of
the best integer solution found, the remaining open gap and the running time. Values in boldface indicate that the solution
found within the time limit of 1200 s is strictly better than that obtained by the same heuristic running within the time limit
of 600 s. Values with a superscript ‘a’ indicate instances in which the solutions obtained within 1200 s were worse than
those ones found by the same heuristic running with a time limit of 600 s. Although it is unusual to observe a deterioration
in solution quality when the allowed time limit is increased, in certain cases fixing variables according to a slightly better
solution to a subproblem may lead to solutions of lesser quality in later subproblems as we noted earlier. These results support
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Table 7. Results using the relax-and-fix heuristic with k = 8 and k′ = 5 (time limit on each run: 1200 s).

Instances with more relaxed capacities Instances with tighter capacities
Instance bi gap (%) time (s) Instance bi gap (%) time (s)

I_15_50_01 9628 3.2 119 I_15_50_01B 13,319 3.2 112
I_15_50_02 10,993 3.4 302 I_15_50_02B 10,469 2.8 200
I_15_50_03 9815 3.3 118 I_15_50_03B 10,127 2.6 79
I_15_50_04 a10,223 3.7 237 I_15_50_04B 12,152 2.9 122
I_15_50_05 9119 3.7 165 I_15_50_05B 10,616 2.9 168
I_15_50_06 11,464 3.2 370 I_15_50_06B 9336 3.2 134
I_15_50_07 9384 3.4 139 I_15_50_07B 11,929 2.5 86
I_15_50_08 a8753 3.3 274 I_15_50_08B 14,422 2.8 146
I_15_50_09 9599 3.7 192 I_15_50_09B 13,814 2.9 251
I_15_50_10 9954 3.3 170 I_15_50_10B 13,075 2.8 174

I_30_50_01 18,121 1.4 723 I_30_50_01B a24,327 1.3 631
I_30_50_02 a16,695 1.8 650 I_30_50_02B 21,927 1.3 525
I_30_50_03 19,897 1.5 862 I_30_50_03B 26,024 1.3 887
I_30_50_04 18,423 1.8 774 I_30_50_04B 23,549 1.3 807
I_30_50_05 19,260 1.5 732 I_30_50_05B 21,330 1.4 815
I_30_50_06 a18,316 1.7 470 I_30_50_06B a25,309 1.4 785
I_30_50_07 a19,935 1.5 645 I_30_50_07B 27,735 1.5 684
I_30_50_08 16,692 1.5 772 I_30_50_08B 23,335 1.4 771
I_30_50_09 17,931 1.5 737 I_30_50_09B 23,086 1.2 690
I_30_50_10 18,490 1.4 702 I_30_50_10B 20,982 1.3 620

I_45_50_01 28,490 1.2 1028 I_45_50_01B 34,975 1.1 956
I_45_50_02 a28,704 1.3 1054 I_45_50_02B 38,322 0.9 1056
I_45_50_03 28,249 1.0 954 I_45_50_03B 32,696 0.8 1081
I_45_50_04 25,829 1.0 1004 I_45_50_04B 35,975 0.9 1024
I_45_50_05 30,590 1.2 893 I_45_50_05B 31,957 1.0 1023
I_45_50_06 26,458 0.9 1033 I_45_50_06B 34,261 1.2 935
I_45_50_07 26,732 1.2 975 I_45_50_07B 34,089 0.8 1041
I_45_50_08 30,162 1.1 1066 I_45_50_08B 39,145 1.1 929
I_45_50_09 29,003 1.1 1081 I_45_50_09B 32,531 1.2 1064
I_45_50_10 28,078 1.1 1005 I_45_50_10B 36,058 1.1 1050

Geometric mean 1.8 Geometric mean 1.6

the conclusions drawn from Figures 3 and 4. Extending to 1200 s the time limit given to the relax-and-fix heuristic with
parameters k = 8 and k′ = 5 leads to improved results for most of the tested instances, with the main exceptions being the
smaller instances with 15 items for which most of the subproblems could already be solved to optimality within 600 s.

6. Final remarks

In this paper, we studied the multi-item uncapacitated lot-sizing problem with inventory bounds. We presented (a) a shortest
path formulation, (b) a formulation based on the addition of (l, S)-inequalities, (c) a rounding heuristic and (d) a relax-and-fix
heuristic based on a rolling horizon time partitioning scheme.

We discussed how these formulations compare in terms of their linear relaxation bounds, also considering an already
existing facility location formulation for the problem. The computational experiments have shown that, in general, all tested
reformulations performed well even though none of the instances could be solved to optimality. The formulations that
performed the best have obtained mean open gaps in the order of 3.2% for the instances with more relaxed capacities (facility
location and the Wagner–Whitin-based formulations) and in the order of 2.9% for the instances with tighter capacities
(facility location and partial Wagner–Whitin-based formulations), within 3600 s of running time. In terms of the number
of best solutions found, the facility location and the partial Wagner–Whitin-based formulations outperformed the others,
encountering better solutions than all the others for 18 out of 60 instances.
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Different configurations of the proposed heuristics were tested in our computational experiments. The best performing
configuration of the rounding heuristic improved the best solution obtained using the formulations for 27 out of the 60 tested
instances. In addition, it encountered solutions which are within mean gaps of 2.8 and 2.7% of optimality for the instances
with more relaxed and tighter capacities, respectively. The relax-and-fix heuristic clearly outperformed the other approaches
in terms of the quality of the solutions found, improving over the best known solutions for all but three of the 60 considered
instances. The best parameter configuration of the relax-and-fix heuristic led to solutions within mean optimality gaps in the
order of 2.1 and 1.8% for the instances with more relaxed and tighter capacities, respectively.

It was possible to note that, in some cases, the relax-and-fix heuristic may not use all the available time, due to the fact
that subproblems solved later in the process tend to be easier than those solved earlier. In consequence, there may be an
overestimation of the time reserved for solving them. This observation opens some interesting research directions, such as (a)
the study of metrics for estimating the time that should be given to earlier and later subproblems to be solved and (b) the use
of the unused time at the end of the execution for additional heuristic procedures, such as local search or fix-and-optimise.
The computational experiments also showed that, in general, better solutions could be obtained if additional time is available.

We remark that the approaches proposed in this paper can also be applied to other production planning problems with
limited inventory, such as the multi-item dynamic lot-sizing problem with storage capacities considered in Gutiérrez et al.
(2013) and the lot-sizing problems with emission constraints studied in Absi et al. (2013) and Retel (2015).
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